
Fundamental Symmetries — Example Sheet 3

3.1 Consider the basis

t1 =
(

0 1
1 0

)
, t2 =

(
0 1
−1 0

)
, t3 =

(
1 0
0 −1

)
,

for sl(2, R). Write down the commutation relations, deduce generators in the adjoint
representation, and compute the Killing form. Is sl(2, R) semi-simple? Is it simple?
Is it compact?

Explain why in the defining representation the generator of so(2) (rotations) may be
chosen as t2, while the generator of so(1, 1) (boosts) may be chosen as t1. Write
down three generators of so(2, 1) in the defining representation (i.e. one rotation and
two boosts), and show that these are in one-to-one correspondence with the adjoint
representation generators of sl(2, R), so that so(2, 1) ∼= sl(2, R).

3.2 Show that a matrix corresponding to an infinitessimal rotation in RN has the form
Rij = δij + ωij, where ωij = −ωji. Hence show that the 1

2
N(N − 1) hermitian

N × N matrices (Mij)kl = i(δilδjk − δikδjl) may represent the generators of O(N),
since R = 1 + i

2
ωijMij. Deduce the commutation relations

[Mij,Mkl] = i(δikMjl + δjlMik − δilMjk − δjkMil).

Show further that when N = 4, if we define J1 = M23, J2 = M31, J3 = M12, Ki = M0i,
i = 1, 2, 3, and N±

i = Ji ± Ki, then N+
i and N−

i each satisfy so(3) commutation
relations. Deduce that so(4) ∼= so(3)⊕ so(3).

Show also that so(3, 1) ∼= sl(2, C).

3.3 For every x ∈ R4 we can construct an hermitian 2× 2 matrix

H ≡ x0 + xjσj =
(
x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
,

Show that the length ηµνxµxν ≡ x2
0−x2

1−x2
2−x2

3 is just detH, that thus that the map
H → H ′ = KHK†, with K ∈ SL(2, C) induces a linear map xµ → x′µ = Λ ν

µ (K)xν

which preserves ηµνxµxν . Show further that this mapping is two-to-one, and thus that
SO(3, 1) ∼= SL(2, C)/Z2. Explain why there is an SU(2) ⊂ SL(2, C) which covers the
SO(3) ⊂ SO(3, 1).

[This problem shows that SL(2, C) is the covering group for the Lorentz group, just
as SU(2) is the covering group for the rotation group. Similar arguments may be used
to show that SO(4) ∼= SU(2)⊗SU(2)/Z2, while SO(2, 2) ∼= SL(2, R)⊗SL(2, R)/Z2.]

3.4 Show that for a LH Weyl spinor the generator of Lorentz transformations Sµν =
i
4
(σ̄µσν − σ̄νσµ), while for a RH spinor Sµν = i

4
(σµσ̄ν −σν σ̄µ). Deduce that for a Dirac

spinor Sµν = i
4
[γµ, γν ].

3.5 Show that if the matrices γµ satisfy the Clifford algebra {γµ, γν} = ηµν , so do the
matrices U †γµU provided that U is unitary.

Show that the matrix U = 1√
2
(1

1
−1
1
) transforms the Weyl representation into the Dirac

representation γ0 = (1
0

0
−1

), γi = ( 0
σi

−σi

0
). Show further that in the Dirac representation

γ5 ≡ iγ0γ1γ2γ3 = (0
1

1
0
), while Sij is the same as in the Weyl representation.



3.6 (i) Confirm that if γµ are any matrices satisfying the Clifford algebra {γµ, γν} = 2ηµν ,
for some real metric tensor ηµν , then Sµν ≡ i

4
[γµ, γν ] satisfies the algebra

[Sµν , Sρσ] = i(ηµρSνσ + ηνσSµρ − ηµσSνρ − ηνρSµσ).

[Hint: use the fact that γµγν = 1
2
([γµγν ] + {γµ, γν}).]

(ii) Show that if γ†µ = PγµP for some P such that P 2 = 1, then if Λ ≡ exp( i
2
ωµνSµν)

is a Lorentz transformation, Λ† = PΛ−1P . Deduce that if under this transformation
ψ → Λψ,

ψ̄ ≡ ψ†P → ψ̄Λ−1,

and thus that ψ̄ψ is a Lorentz scalar.

(iii) Show that [γµ, ω
ρσSρσ] = iωµνγ

ν , and thus (by exponentiation) that

Λ−1γµΛ = Λ ν
µ γν ,

where Λ ν
µ = δ ν

µ − ω ν
µ + . . .. Deduce that ψ̄γµψ is a Lorentz vector.

[For Euclidean spaces we may take P = 1, while for spaces with metric (+−−− . . .)
we generally choose P = γ0, so that for spatial indices γ†i = −γi, and γ†i γi = −γ2

i = 1.]
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