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Fundamental Symmetries — Example Sheet 3

Counsider the basis

0 1 0 1 10
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for sl(2, R). Write down the commutation relations, deduce generators in the adjoint
representation, and compute the Killing form. Is sl(2, R) semi-simple? Is it simple?
Is it compact?

Explain why in the defining representation the generator of so(2) (rotations) may be
chosen as ty, while the generator of so(1,1) (boosts) may be chosen as t;. Write
down three generators of so(2,1) in the defining representation (i.e. one rotation and
two boosts), and show that these are in one-to-one correspondence with the adjoint
representation generators of sl(2, R), so that so(2,1) = sl(2, R).

Show that a matrix corresponding to an infinitessimal rotation in RY has the form
R;; = 0;; + wij, where w;; = —wj;. Hence show that the %N(N — 1) hermitian
N x N matrices (M) = (6405 — di0;1) may represent the generators of O(N),
since R=1+ %wijMij. Deduce the commutation relations

(M, My = i(6iMji + 00 M — 05 My, — 86 Myp).

Show further that when N = 4, if we define J; = Mss, Jo = M3y, J3 = Mo, K; = My,
i = 1,2,3, and Nf = J; £ K;, then N;" and N, each satisfy so(3) commutation
relations. Deduce that so(4) = so(3) & so(3).

Show also that so(3,1) = sl(2,C).

For every x € R* we can construct an hermitian 2 x 2 matrix

H =g+ zjo; = <£B0+$3 $1+2:E2)’

T — ?:iL'Q o — I3

Show that the length n**x,x, = 2} — 237 — 23 — 23 is just det H, that thus that the map
H — H' = KHK', with K € SL(2,C) induces a linear map z, — z,, = A ”(K)z"
which preserves n*”z,x,. Show further that this mapping is two-to-one, and thus that
SO(3,1) = SL(2,C)/Z,. Explain why there is an SU(2) C SL(2,C) which covers the
SO(3) C SO(3,1).

[This problem shows that SL(2,C) is the covering group for the Lorentz group, just
as SU(2) is the covering group for the rotation group. Similar arguments may be used
to show that SO(4) = SU(2) ® SU(2)/Zs, while SO(2,2) = SL(2,R) ® SL(2, R)/Z>.]

Show that for a LH Weyl spinor the generator of Lorentz transformations S, =

i'(&#al, — 61,0#.), while for a RH spinor S, = ﬁ(0u5v —0,0,). Deduce that for a Dirac

spinor S, = [V, Wl

Show that if the matrices v, satisfy the Clifford algebra {v,,7,} = n*, so do the
matrices U'v,U provided that U is unitary.

Show that the matrix U = %(i _11) transforms the Weyl representation into the Dirac
0 —o;
0')-

(o4

representation vy = ((1) 701), v = ( Show further that in the Dirac representation
0123 = (01

v° = iyVyly2y3 = L0)s While S;; is the same as in the Weyl representation.



3.6

(i) Confirm that if v, are any matrices satisfying the Clifford algebra {v,,7.} = 2n*,
for some real metric tensor 7,,, then S, = [y, .| satisfies the algebra

[Syws Spol = 1(NMupSve + Mo Sup — NuoSve — MupSus)-

[Hint: use the fact that VYo = %([’m%] + {’Y,“ "})]

(ii) Show that if ’yL = P~, P for some P such that P? = 1, then if A = exp((w"S,,)
is a Lorentz transformation, AT = PA~'P. Deduce that if under this transformation

Y — A, ) )
b =9'P — YA

and thus that 19 is a Lorentz scalar.
(iii) Show that [y,,w?’S,,] = iw,,7", and thus (by exponentiation) that

Aty A = A v,

where A/ =4, —w,” +.... Deduce that Vv, is a Lorentz vector.

[For Euclidean spaces we may take P = 1, while for spaces with metric (+ — — —...)
we generally choose P = 7y, so that for spatial indices %T = —v;, and %T v =—72 =1]
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