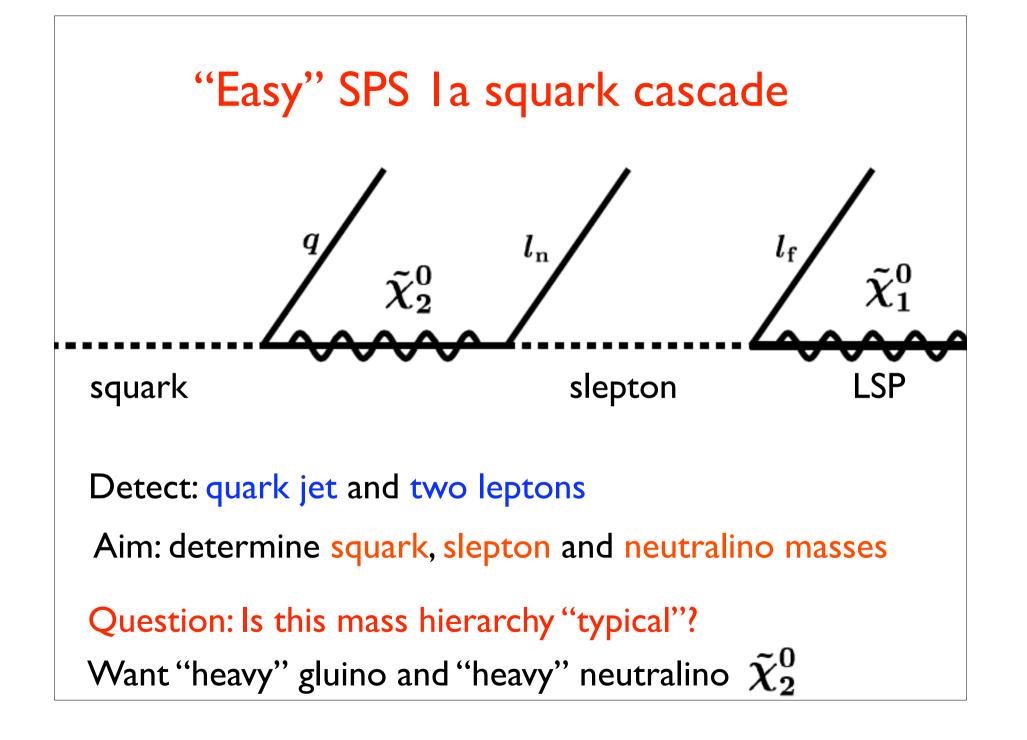
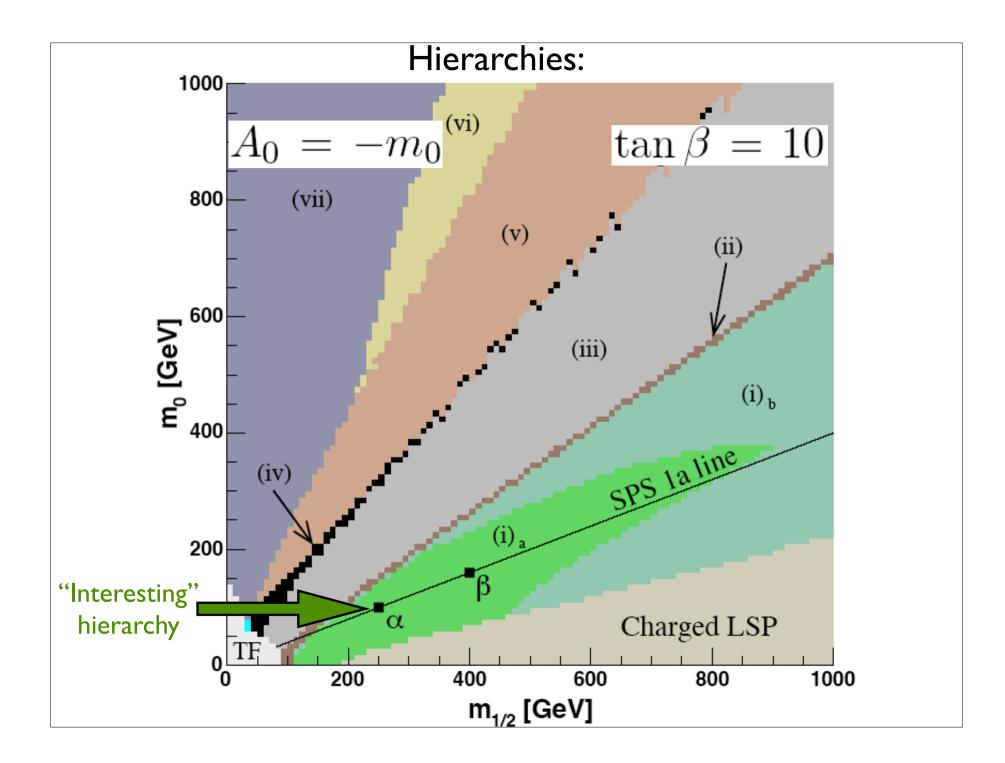
Ambiguities in super-particle mass determinations

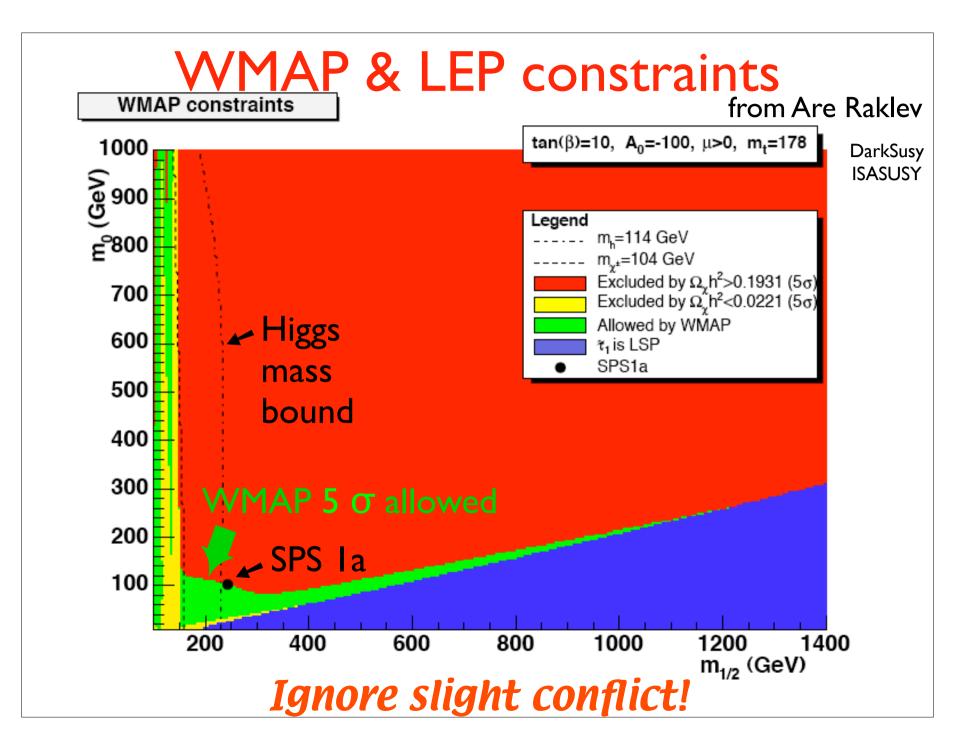
based on: B. K. Gjelsten, D. J. Miller, P. Osland JHEP 12 (2004) 003 [hep-ph/0410303], hep-ph/0501033

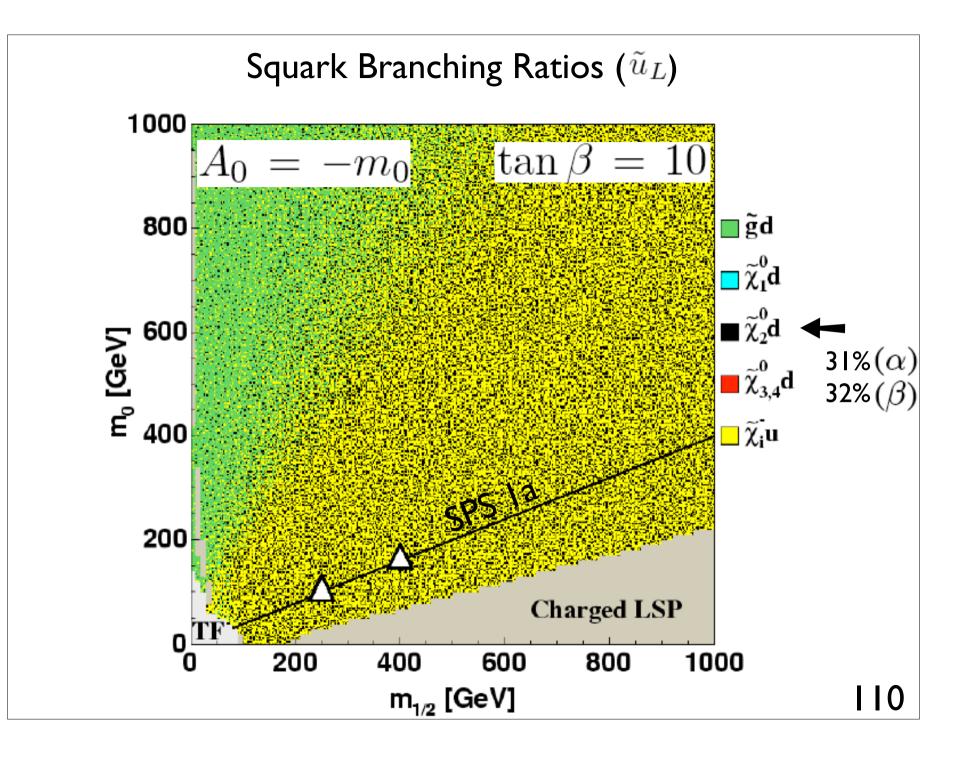
LHC-ILC

Per Osland, CERN / University of Bergen

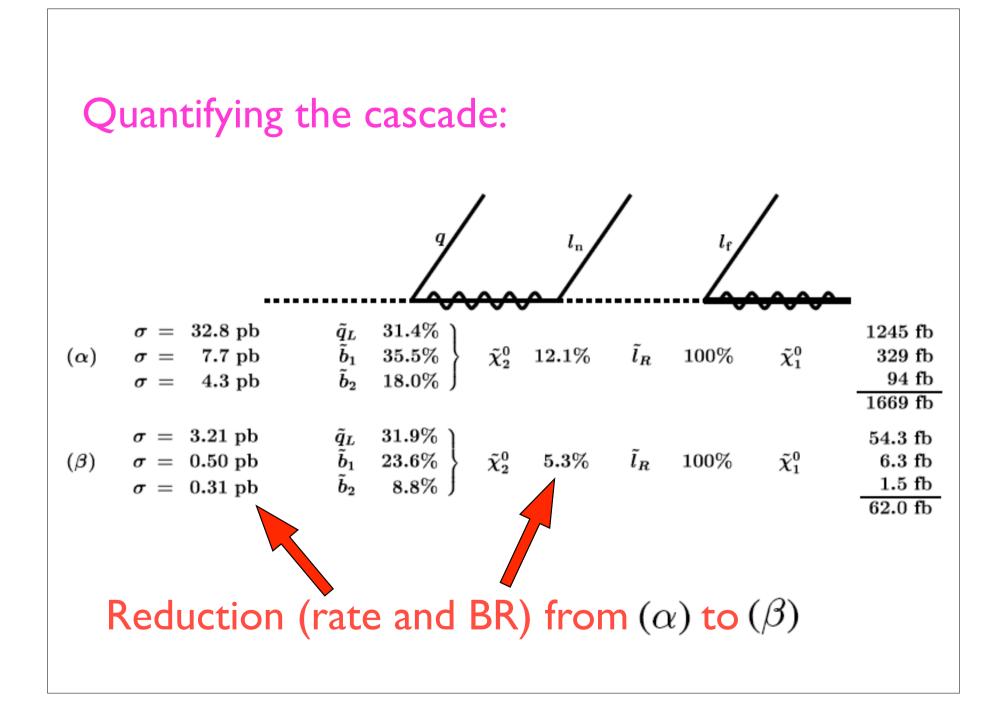

Assume Supersymmetry realized at the LHC/ILC

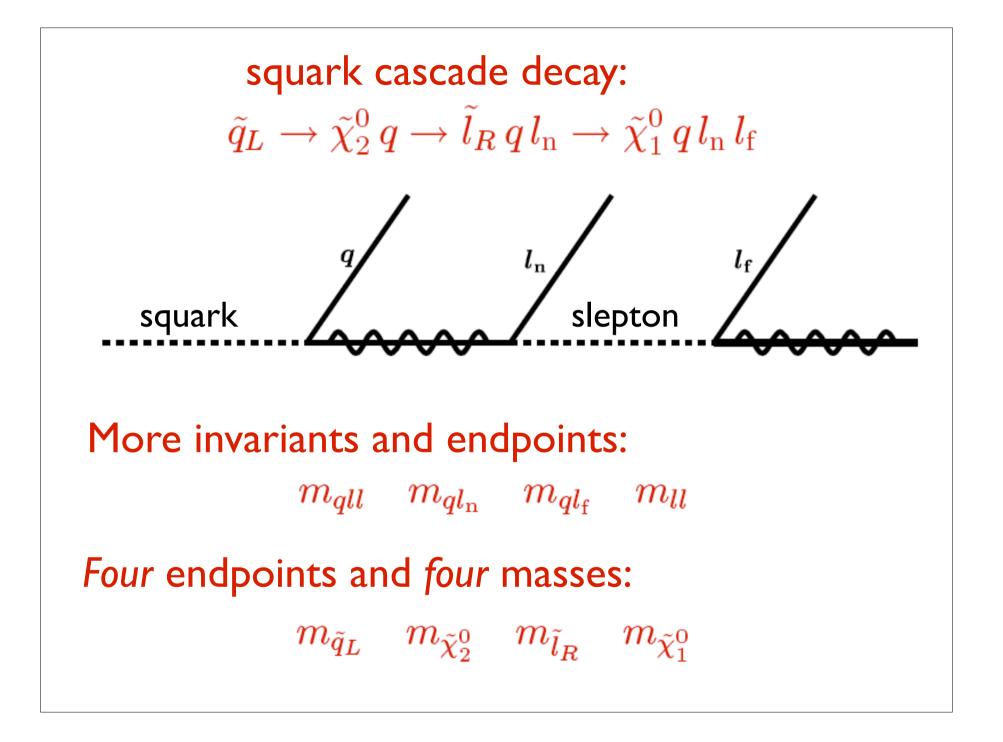

LHC: determine mass differences up to high values


ILC: can determine LSP mass with high precision


Synergy:

ILC provides more precision of masses determined at the LHC, and can resolve ambiguities in such mass measurements




SPS Ia (line)
$$m_0 = -A_0 = 0.4 m_{1/2}$$

 $\tan \beta = 10, \quad \mu > 0$

Two particular points on the line:

 $(\alpha): m_0 = 100 \text{ GeV}, \quad m_{1/2} = 250 \text{ GeV}$

$$(\beta): m_0 = 160 \text{ GeV}, \qquad m_{1/2} = 400 \text{ GeV}$$

B.C.Allanach et al, hep-ph/0007009 (conditions rephrased):

$$(m_{ll}^{\max})^2 = \frac{\left(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}_R}^2\right) \left(m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2\right)}{m_{\tilde{l}_R}^2}$$

one case

mass ratios of adjacent sparticles in chain

$$(m_{qll}^{\max})^{2} = \begin{cases} \frac{\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{\chi}_{2}^{0}}^{2}} & \text{for } \frac{m_{\tilde{q}_{L}}}{m_{\tilde{\chi}_{2}^{0}}^{2}} > \frac{m_{\tilde{\chi}_{2}^{0}}}{m_{\tilde{\chi}_{1}^{0}}^{2}} \frac{m_{\tilde{\chi}_{1}^{0}}}{m_{\tilde{\chi}_{1}^{0}}^{2}} & (1) \\ \frac{\left(m_{\tilde{q}_{L}}^{2} m_{\tilde{l}_{R}}^{2} - m_{\tilde{\chi}_{2}^{0}}^{2} m_{\tilde{\chi}_{1}^{0}}^{2}\right)\left(m_{\tilde{\chi}_{2}^{0}}^{2} - m_{\tilde{l}_{R}}^{2}\right)}{m_{\tilde{\chi}_{2}^{0}}^{2} m_{\tilde{l}_{R}}^{2}} & \text{for } \frac{m_{\tilde{\chi}_{2}^{0}}}{m_{\tilde{\chi}_{1}^{0}}^{2}} > \frac{m_{\tilde{l}_{R}}}{m_{\tilde{\chi}_{1}^{0}}^{2}} & (2) \\ \frac{\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{l}_{R}}^{2}\right)\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{l}_{R}}^{2}} & \text{for } \frac{m_{\tilde{l}_{R}}}{m_{\tilde{\chi}_{1}^{0}}} > \frac{m_{\tilde{l}_{R}}}{m_{\tilde{\chi}_{2}^{0}}^{2}} & (2) \\ \frac{\left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{l}_{R}}^{2}\right)\left(m_{\tilde{l}_{R}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)}{m_{\tilde{l}_{R}}^{2}} & \text{for } \frac{m_{\tilde{l}_{R}}}{m_{\tilde{\chi}_{1}^{0}}} > \frac{m_{\tilde{q}_{L}}}{m_{\tilde{\chi}_{2}^{0}}^{2}} & (2) \\ \left(m_{\tilde{q}_{L}}^{2} - m_{\tilde{\chi}_{1}^{0}}^{2}\right)^{2} & \text{otherwise } & (4) \end{cases}$$

$$\begin{array}{l} \text{for} \quad \frac{m_{l_R}}{m_{\tilde{\chi}_1^0}} > \frac{m_{\tilde{q}_L}}{m_{\tilde{\chi}_2^0}} \frac{m_{\tilde{\chi}_2^0}}{m_{\tilde{l}_R}} \quad (3) \\ \text{otherwise} \quad (4) \end{array}$$

$$(m_{ql(\text{high})}^{\text{max}}, m_{ql(\text{high})}^{\text{max}}) = \begin{cases} (m_{ql_n}^{\text{max}}, m_{ql_f}^{\text{max}}) & \text{for} & 2m_{\tilde{l}_R}^2 > m_{\tilde{\chi}_1^0}^2 + m_{\tilde{\chi}_2^0}^2 > 2m_{\tilde{\chi}_1^0} m_{\tilde{\chi}_2^0} & (1) \\ (m_{ql(\text{eq})}^{\text{max}}, m_{ql_f}^{\text{max}}) & \text{for} & m_{\tilde{\chi}_1^0}^2 + m_{\tilde{\chi}_2^0}^2 > 2m_{\tilde{l}_R}^2 > 2m_{\tilde{\chi}_1^0} m_{\tilde{\chi}_2^0} & (2) \\ (m_{ql(\text{eq})}^{\text{max}}, m_{ql_n}^{\text{max}}) & \text{for} & m_{\tilde{\chi}_1^0}^2 + m_{\tilde{\chi}_2^0}^2 > 2m_{\tilde{\chi}_1^0} m_{\tilde{\chi}_2^0} > 2m_{\tilde{l}_R}^2 & (3) \end{cases}$$

three cases

$$\begin{split} \text{where} \qquad & (m_{ql_n}^{\max})^2 = \frac{\left(m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_2^0}^2\right)\left(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}_R}^2\right)}{m_{\tilde{\chi}_2^0}^2} \\ & (m_{ql_f}^{\max})^2 = \frac{\left(m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_2^0}^2\right)\left(m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2\right)}{m_{\tilde{l}_R}^2} \\ & (m_{ql(eq)}^{\max})^2 = \frac{\left(m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_2^0}^2\right)\left(m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2\right)}{\left(2m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2\right)} \end{split}$$

Finally:
$$(m_{qll(\theta>\frac{\pi}{2})})^2 = \left[\left(m_{\tilde{q}_L}^2 + m_{\tilde{\chi}_2^0}^2\right)\left(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{l}_R}^2\right)\left(m_{\tilde{l}_R}^2 - m_{\tilde{\chi}_1^0}^2\right) - \left(m_{\tilde{\chi}_2^0}^2 m_{\tilde{l}_R}^4 m_{\tilde{\chi}_1^0}^2 + 2m_{\tilde{\chi}_2^0}^2\right)\sqrt{\left(m_{\tilde{\chi}_2^0}^2 + m_{\tilde{l}_R}^2\right)^2\left(m_{\tilde{l}_R}^2 + m_{\tilde{\chi}_1^0}^2\right)^2 - 16m_{\tilde{\chi}_2^0}^2 m_{\tilde{l}_R}^4 m_{\tilde{\chi}_1^0}^2 + 2m_{\tilde{l}_R}^2\left(m_{\tilde{q}_L}^2 - m_{\tilde{\chi}_2^0}^2\right)\left(m_{\tilde{\chi}_2^0}^2 - m_{\tilde{\chi}_1^0}^2\right)\right]\left(4m_{\tilde{l}_R}^2 m_{\tilde{\chi}_2^0}^2\right)^{-1} \qquad \text{one case}$$

 θ is opening angle between leptons in \tilde{l}_R rest frame

Over-all: 4×3 cases, denoted (1,1), (1,2), etc.

(9 of 12 are realized)

```
Complication I:
The two leptons can not be distinguished
For each event, form
             m_{ql(\text{low})} < m_{ql(\text{high})}
                                        well defined
Complication 2:
For some invariants, there are multiple cases:
endpoint formula depends on mass ratios
Complication 3:
```

Multiple squark masses; widths

Complication 4:

Endpoints not always linearly independent

Inverting endpoint formulas

Endpoint formulas can be inverted Complications: nonlinear (rational, sqrt) m_{gll}^{\max} four cases several cases (mass regions) $m_{ql(\text{low})}^{\text{max}}, m_{ql(\text{high})}^{\text{max}}$ three cases **Example:** $m_{\tilde{\chi}_1^0}^2 = \frac{(b^2 - d^2)(b^2 - c^2)}{(c^2 + d^2 - b^2)^2} a^2$ Region (1,1): $m_{o^{II}}^{\max}$ $m_{\tilde{l}_R}^2 = \frac{c^2(b^2 - c^2)}{(c^2 + d^2 - b^2)^2}a^2$ $m_{ql(\text{low})}^{\text{max}}, m_{ql(\text{high})}^{\text{max}}$ $m_{\tilde{\chi}_2^0}^2 = \frac{c^2 d^2}{(c^2 + d^2 - b^2)^2} a^2$ $m_{\tilde{q}_L}^2 = \frac{c^2 d^2}{(c^2 + d^2 - b^2)^2} (c^2 + d^2 - b^2 + a^2)$ $a = m_{ll}^{\max}$, $b = m_{gll}^{\max}$, $c = m_{gl(\text{low})}^{\max}$, $d = m_{gl(\text{high})}^{\max}$.

Inverting endpt formulas, cont

- If 4 endpts & 4 masses, (if linear) unique solution
- May have more endpts, system overconstrained
- Endpts have (different) uncertainties
- Use inversion formulas for start point of fit
- Composite formulas: multiple solutions!

LHC simulation

- ISAJET 7.58 defines low-energy model
- PYTHIA 6.2 with CTEQ 5L: Monte Carlo sample
- ATLFAST 2.60 simulates ATLAS detector
- precuts:
 - $-\,$ At least three jets, satisfying: $p_T^{\rm jet} > 150, 100, 50~{\rm GeV}$
 - $E_{T,\text{miss}} > \max(100 \text{ GeV}, 0.2M_{\text{eff}})$ with $M_{\text{eff}} \equiv E_{T,\text{miss}} + \sum_{i=1}^{3} p_{T,i}^{\text{jet}}$

- Two isolated opposite-sign same-flavour leptons (e or μ), satisfying $p_T^{\rm lep}>20,10~{\rm GeV}$

SM background: 95% tt

Aim: determine/study expected accuracy

Extraction of masses

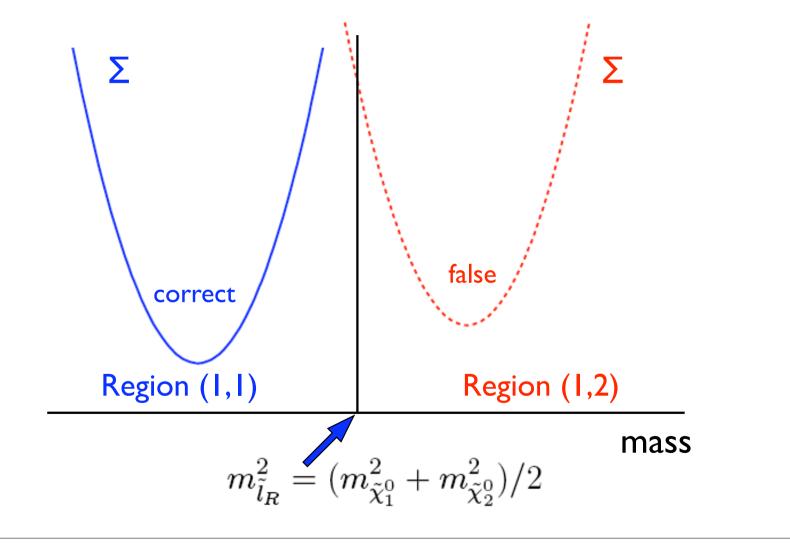
- simulate 10,000 ATLAS 'experiments'
- focus on statistical uncertainty
- each endpoint: gaussian distribution
- invert endpoint formulas, fit masses
- what is chance of finding correct minimum?

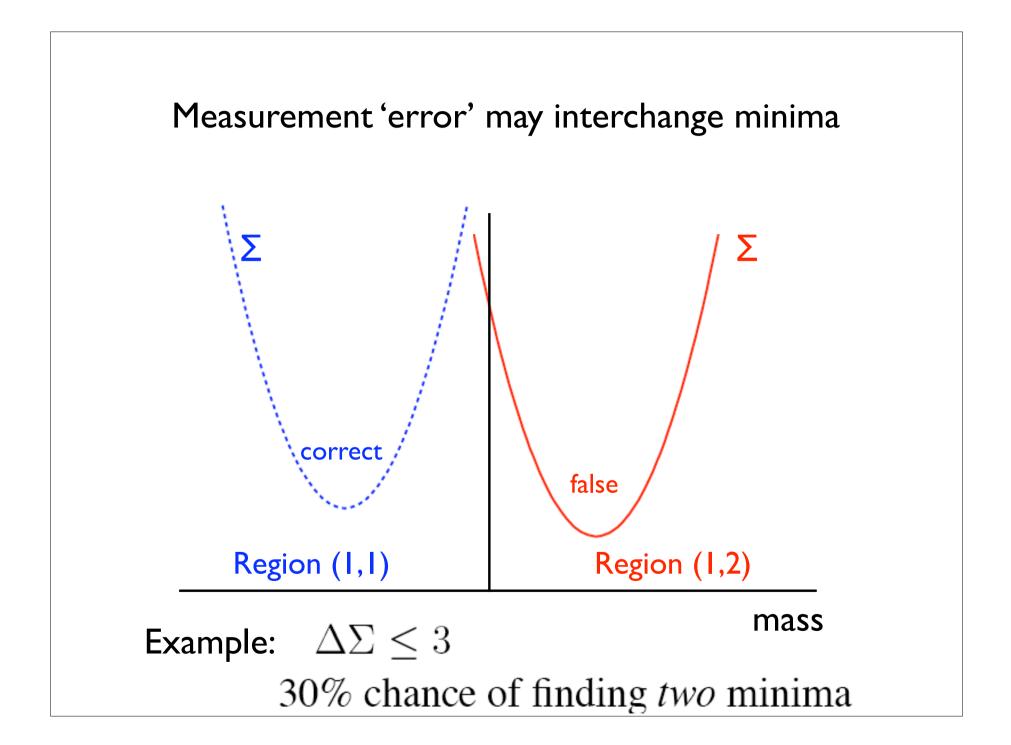
Following Allanach et al, each endpt E_i^{exp} taken as:

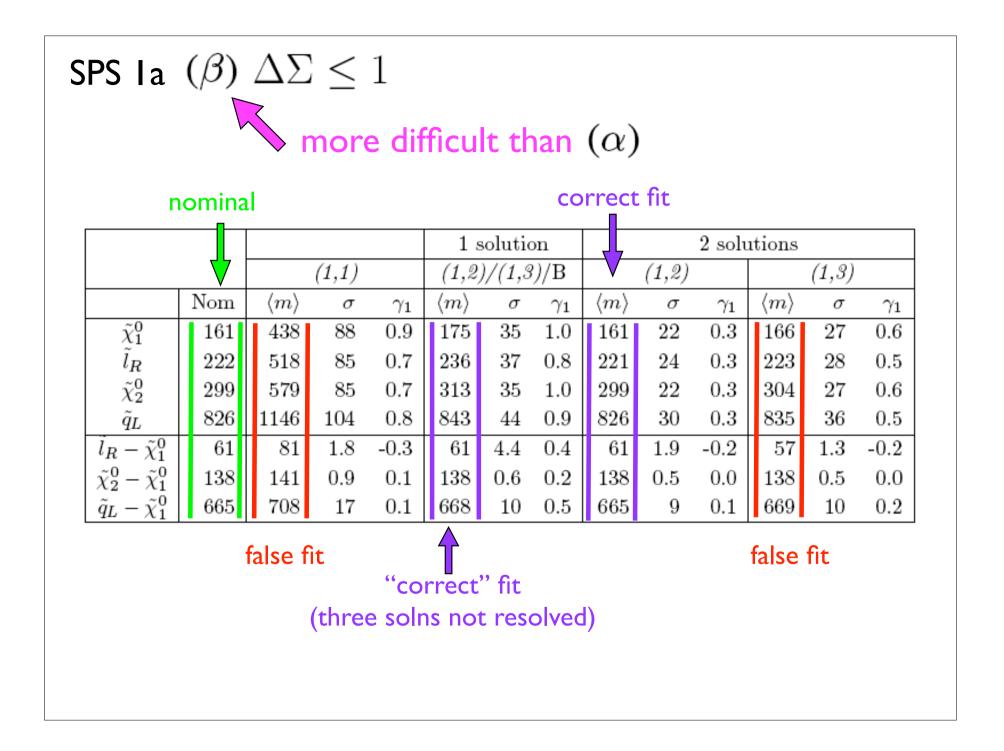
$$E_i^{\exp} = E_i^{\operatorname{nom}} + A_i \sigma_i^{\operatorname{stat}} + B \sigma_i^{\operatorname{scale}}$$

A, B picked from gaussian distribution, mean 0, width 1 One A for each endpoint, one B for m_{ll} , other B for endpoints involving jets

determine masses


Minimize:


$$\Sigma = [\mathbf{E}^{\exp} - \mathbf{E}^{\mathrm{th}}(\mathbf{m})]^T \mathbf{W} [\mathbf{E}^{\exp} - \mathbf{E}^{\mathrm{th}}(\mathbf{m})]$$


 ${f W}$ inverse error/correlation matrix

SPS Ia (α) $\Delta \Sigma \leq 1$							
	nominal correct fit false					false fit	
			(1,1)		(1,2)		
	Nom	$\langle m angle$	σ	γ_1	$\langle m angle$	σ	γ_1
$m_{ ilde{\chi}_1^0}$	96.1	96.3	3.8	0.2	85.3	3.4	0.1
$m_{\tilde{l}_R}$	143.0	143.2	3.8	0.2	130.4	3.7	0.1
$m_{ ilde{\chi}^0_2}$	176.8	177.0	3.7	0.2	165.5	3.4	0.1
$m_{ ilde q_L}$	537.2	537.5	6.1	0.1	523.2	5.1	0.1
$m_{ ilde{b}_1}$	491.9	492.4	13.4	0.0	469.6	13.3	0.1
$m_{\tilde{l}_R} - m_{\tilde{\chi}_1^0}$	46.9	46.9	0.3	0.0	45.1	0.7	-0.2
$m_{\tilde{\chi}^0_2} - m_{\tilde{\chi}^0_1}$	80.8	80.8	0.2	0.0	80.2	0.3	-0.1
$m_{\tilde{q}_L}^{\chi_2} - m_{\tilde{\chi}_1^0}^{\chi_1}$	441.2	441.3	3.1	0.0	438.0	2.7	0.0
$m_{\tilde{b}_1} - m_{\tilde{\chi}_1^0}$	395.9	396.2	12.0	0.0	384.4	12.0	0.1
Note:Three lightest masses are very correlated							

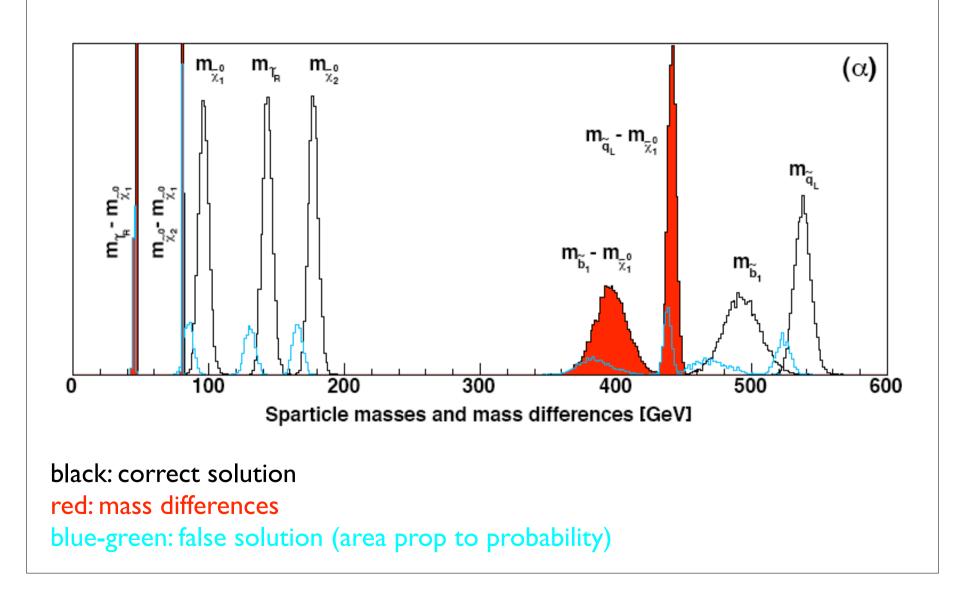
Problem due to compositeness of formulas: If masses are close to border of 'region', may find a similar-quality or better minimum in 'other' region

How likely is a false minimum?

Depends on cut $\Delta\Sigma$ (level of confidence)

SPS $Ia(\alpha)$

	# Minima	(1,1)	(1,2)
$\Delta \Sigma \le 0$	1.00	90%	10%
$\Delta\Sigma \leq 1$	1.12	94%	17%
$\Delta\Sigma\leq 3$	1.30	97%	33%
$\Delta\Sigma\leq\infty$	1.88	99%	88%


Example: $\Delta \Sigma \leq 3$ 30% chance of finding *two* minima

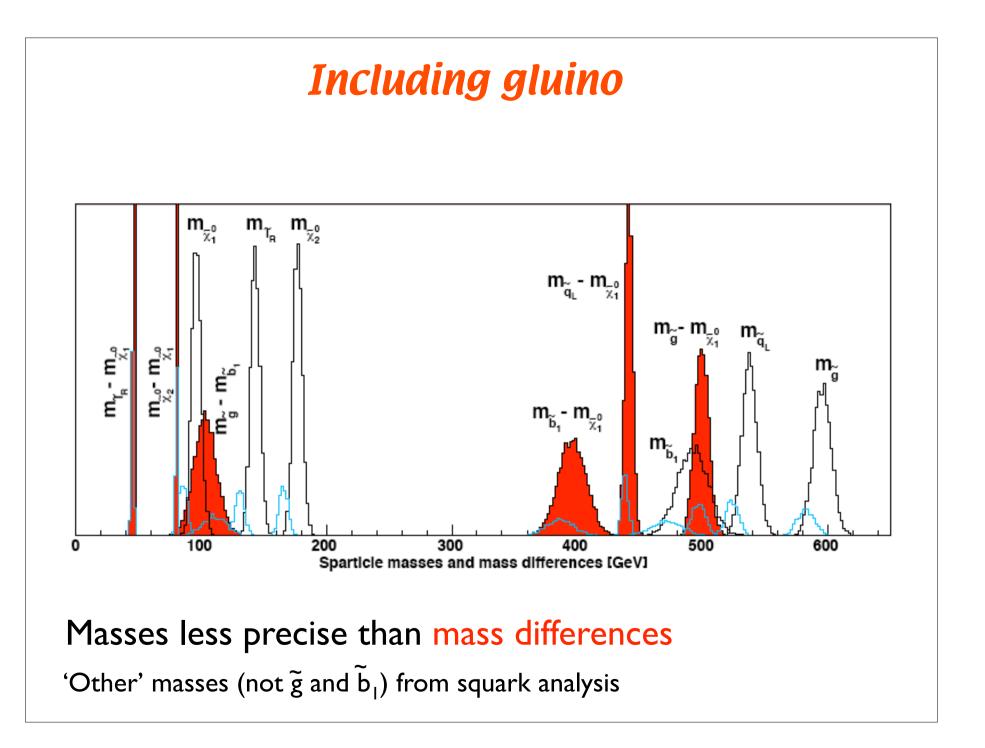
SPS Ia (β)

				1 sol		$2 \mathrm{sol}$
	# Min	(1,1)	(1, 2)	(1,3)	В	(1,2)&(1,3)
$\Delta \Sigma \le 0$	1.0	3%	60%	25%	12%	0%
$\Delta\Sigma \leq 1$	1.2	5%	52%	18%	12%	16%
$\Delta\Sigma\leq 3$	1.4	13%	46%	14%	12%	28%
$\Delta\Sigma \leq 99$	2.3	99%	41%	13%	12%	34%

non-negligible probability of finding wrong minimum non-negligible probability of finding more than one minimum

Masses and mass differences

LC input	("fixing"	LSP	mass)	
----------	-----------	-----	-------	--


SPS Ia (α)

		(1,1)		
	Nom	$\langle m \rangle$	σ	
$ ilde{\chi}_1^0$	96.05	96.05	0.05	
\tilde{l}_R	142.97	142.97	0.29	
$ ilde{\chi}_2^0$	176.82	176.82	0.17	
\tilde{q}_L	537.25	537.2	2.5	
$ ilde{b}_1$	491.92	492.1	11.7	

Masses in GeV

${\rm SPS}\,\,{\rm Ia}\,(\beta)$

		1 solution		2 solutions			
		(1,2)/(1,3)/B		(1, 2)	2)	(1,3	3)
	Nom	$\langle m \rangle$	σ	$\langle m angle$	σ	$\langle m \rangle$	σ
$ ilde{\chi}_1^0$	161.02	161.02	0.05	161.02	0.05	161.02	0.05
\tilde{l}_R	221.86	221.15	3.26	222.22	1.32	217.48	1.01
$ ilde{\chi}_2^0$	299.05	299.15	0.57	299.11	0.53	299.05	0.52
\tilde{q}_L	826.29	826.1	6.3	825.9	5.8	828.6	5.5

SPS Ia (a	()			
			(1,	1)
		Nom	Mean	RMS
	$m_{ ilde{\chi}_1^0}$	96.05	96.05	0.05
	$m_{\tilde{l}_R}$	142.97	142.97	0.29
	$m_{ ilde{\chi}_2^0}$	176.82	176.82	0.17
	$m_{ ilde q_L}$	537.2	537.2	2.5
	$m_{ ilde{b}_1}$	491.9	491.9	10.9
	$m_{ ilde{g}}$	595.2	595.2	5.5
	$m_{ ilde{g}}-m_{ ilde{b}_1}$	103.3	103.3	9.0

Mass values (all in GeV) from LHC+LC. Occurrences of (1,2) solutions are reduced to $\sim 1\%$, and left out.

Summary

- SPS Ia SUSY masses can be determined with precision 4-10 GeV
- Non-zero probability of fitting wrong minimum (could be off by 10-20 GeV)
- Gluino mass can be obtained using two b jets
- LC input on LSP mass (σ = 50 MeV) removes ambiguity
- LC input increases precision from 6 GeV (~15 GeV if wrong minimum) to 2.5 GeV