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Abstract: The discovery of a 125 GeV scalar boson at the Large Hadron Collider in
2012 sparked at least as many questions as it answered. The Higgs boson is unique
in being the only known fundamental scalar particle, which makes it compelling
in a variety of contexts. As the field of Higgs physics has developed and aged,
this era-defining boson has crept into relevance throughout all areas of high-energy
physics.

This thesis looks at the Higgs boson and its potential properties in three different
regimes:

The first focuses on how measurements of Higgs interactions at particle colliders can
be used to discern and identify signs of new physics. A novel analysis method is
presented, which uses differential observables to constrain the effects of higher-energy
physics within the Standard Model Effective Field Theory framework. This approach
takes advantage of expected angular structures in the matrix elements to maximise
sensitivity and obtain competitive bounds on the anomalous Higgs-gauge couplings.

The second takes a more theoretical approach and looks at the potential high-
energy high-multiplicity behaviour of the Higgs. Multiparticle scalar production
is considered in an idealised non-perturbative limit by employing a semiclassical
treatment. Previous calculations of the semiclassical rate are consolidated and
extended.

The third investigates the potential role of the Higgs in the dynamics of the early
universe. A unified model is presented in which minimal additional field content leads
to the solution of five problems in fundamental physics. The available parameter
space for this model is within the reach of proposed future experiments.

These three areas of research all have the same physics at their core but are fuelled
by techniques and ideas from different fields. Together they form three small distant-
yet-connected pieces of the ever-growing network of Higgs-related investigations, or
Higgsaw.
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Chapter 1

Introduction

The focus of this thesis is the Higgs boson. What is it? How is it relevant to the
functioning of our universe?

This chapter introduces the Higgs boson as the heart of the Standard Model – our
best current model of the universe and its fundamental interactions. The Standard
Model (SM) is a particle physics theory; it aims to identify the most basic of building
blocks or particles in our universe and describe the way they interact with each other
such that its predictions agree with experimental data.

The Higgs boson, discovered2 at CERN in 2012, was the last piece of the SM puzzle.
Excitement surrounding its postulation and discovery has spawned a vast variety
of research areas under the umbrella term of ‘Higgs physics’. The remainder of this
thesis looks at three different ways the Higgs and its properties are being investigated
in very different contexts. These are just three small pieces of the ever-growing Higgs
jigsaw or, dare I say it, Higgsaw.

Note that throughout this thesis, natural units are used unless specified otherwise,
such that ~ = c = 1.

1.1 The Standard Model

This section summarises the Standard Model of particle physics, a theory developed
and extended over the last one hundred years into its modern form presented below.
For some notable works in its history, see Refs. [6–20]. For more modern textbook
perspectives, see Refs. [21–25].

2More precisely, CERN discovered a new scalar particle with properties that are thus-far proving
to be consistent with those expected of the Standard Model Higgs boson.
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The Standard Model is a quantum field theory (QFT) with gauge symmetry SU(3)c×
SU(2)L × U(1)Y . QFTs combine notions from quantum mechanics with the laws of
special relativity. On top of translation invariance, we require Lorentz invariance
in a four-dimension Minkowski spacetime and build Lorentz invariants from objects
in different unitary irreducible representations of the Poincaré group – the group of
symmetries of spacetime.

In the QFT framework, particles are understood as excitations of quantum fields. In
the Standard Model, these quantum fields come in different Poincaré representations
based on their mass and spin. The bosonic spin-0 and spin-1 fields are embedded into
Lorentz scalars and Lorentz four-vectors respectively, with gauge invariance imposed
in the latter case to give the required degrees of freedom. Fermionic spin-1

2 fields take
two different spinor representations, forming left- and right-handed Weyl spinors.
Conventionally, pairs of these Weyl 2-spinors are combined into Dirac 4-spinors,
which contain both left- and right-handed parts. These Dirac 4-spinors can be
combined with the gamma matrices1, γµ, to create Lorentz scalars and four-vectors.

The dynamics of a QFT are dictated by the theory’s Lagrangian density, L. Im-
posing the Poincaré and gauge symmetries, we can write all allowed renormalisable
Lagrangian terms built from our field building blocks and spacetime derivatives. The
result is the Standard Model Lagrangian2,

LSM =− 1
4F

µνFµν

+ iΨ̄ /DΨ
+ |DµH|2 − V (H)
− yijΨ̄iHΨj + h.c. (1.1.1)

where F µν is a gauge field strength tensor, Ψ is the Dirac spinor of a matter field and
H is the Higgs doublet. The covariant derivative, Dµ, and the Higgs potential V (H)
are defined and discussed in Sections 1.1.2 and 1.1.3, respectively. This Lagrangian
attempts to describe the behaviour of all known fundamental3 particles and three of
the four fundamental forces. The SM particle content is summarised in Table 1.1.

We now briefly look in turn at each part of the above Lagrangian, starting with the
propagation and self-interactions of force-mediating gauge bosons in Section 1.1.1.

1The γ-matrices satisfy the anticommutation relation {γµ, γν} = 2gµν , where gµν is the
Minkowski metric tensor.

2A small caveat here is a possible FF̃ term, which is expected to be present upon more careful
inspection of the SU(3)c vacuum. The apparent lack of such a term in the SM is called the strong
CP problem and is discussed further in Section 7.1.

3Here fundamental refers to fact that, as far as we know, these particles cannot be broken down
any further; they have no substructure.
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u c t γ

d s b g

νe νµ ντ W,Z

e µ τ h

Table 1.1: The particle content of the Standard Model. We have three
generations of quarks and leptons that make up the fermionic
matter in the top-left and bottom-left respectively. The
gauge bosons associated with the fundamental forces are
shown in the top-right. Finally, the scalar Higgs boson is in
the bottom-right corner.

We then look at the matter fields in Section 1.1.2 and how their transformations
under different gauge groups result in interactions. In Section 1.1.3 we look at the
scalar sector, where the Higgs field’s interactions with itself and the other SM fields
results in the dynamic generation of masses via the Higgs mechanism. Finally, we
comment on some shortcomings of the Standard Model, many of which are revisited
in more detail in Chapter 7.

1.1.1 The gauge sector

As mentioned previous, the Standard Model has the gauge structure of SU(3)c ×
SU(2)L×U(1)Y . Each of these three gauge groups comes with a spin-1 vector gauge
field that mediates the associated force. The SU(3)c gauge group gives rise to the
strong interactions, also known as Quantum Chromodynamics (QCD). The subscript
c refers to colour, the word we use to denote charge under this interaction. The
SU(2)L gauge group couples to weak isospin, which is only found in left-handed
fermions, hence the L subscript. Finally, the U(1)Y gauge group couples to a
quantity known as hypercharge. The three interactions associated with these groups
are not the three forces we generally discuss. This is because the Higgs mechanism,
described in Section 1.1.3, will cause the gauge symmetry of the SM to spontaneously
break down to SU(3)c × U(1)EM , where the resultant U(1)EM force is the familiar
electromagnetism; this will also cause the gauge bosons associated with the weak
force to acquire masses. Therefore, the gauge symmetry of the SM can be thought of
as the strong group, SU(3)c, and an electroweak sector SU(2)L ×U(1)Y → U(1)EM .

The spin-1 bosonic gauge fields are represented by four-vector potentials, like the
familiar electromagnetic four-potential Aµ, that transform in the adjoint representa-
tion of the corresponding gauge group. These potentials often come packaged in a
more useful structure known as the field strength tensor. For a general non-Abelian



16 Chapter 1. Introduction

SU(N) group, this field tensor is defined as,

Ga
µν = ∂µG

a
ν − ∂νGa

µ + gfabcGb
µG

c
ν , (1.1.2)

where repeated indices are summed, Ga
µ represents (N2 − 1) bosonic fields for the

(N2 − 1) generators of SU(N), fabc are the structure constants of SU(N) and g is
the interaction coupling strength. In QCD, g = gs and a runs from 1 to 8, giving
8 different gluons for the 8 generators of SU(3)c. For SU(2)L, the Gs are generally
swapped for W s and fabc is simply the Levi-Civita tensor, εabc. The value of a runs
from 1 to 3 giving three weak bosons, {W 1,W 2,W 3}. The W 1 and W 2 bosons mix
to form the W± bosons. The W 3 boson mixes with B, the boson of U(1)Y , via the
Higgs mechanism to give A, the photon of electromagnetism and Z, the neutral weak
boson. In the case of Abelian gauge symmetries like U(1)EM , where fabc = 0, the
definition in Eq. 1.1.2 reduces to,

Fµν = ∂µAν − ∂νAµ, (1.1.3)

which is the familiar expression for the electromagnetic field strength tensor. The
lack of the final fabcGb

µG
c
ν term for U(1) field tensors means that Abelian gauge

bosons, such as the photon, are not classically self-interacting. These tensors are
useful because the contraction F a

µνF
aµν is a gauge-invariant Lorentz scalar. We

can now understand the first line in Eq. 1.1.1 as representing the dynamics and
self-interactions of the gauge fields.
Finally, note that a mass term like m2

aA
µAµ is not gauge invariant. As such, gauge

boson are required to be massless, unless their gauge symmetry is dynamically
broken, as in the case of the Higgs mechanism in Section 1.1.3.

1.1.2 The fermionic sector

The fermionic spin-1
2 matter fields are conventionally denoted by Dirac spinors, Ψ.

The interactions of the gauge fields with the matter content of the Standard Model
are encoded in the covariant derivative [25],

Dµ = ∂µ − ig′BµY − igW a
µσ

a/2− igsGa
µt
a, (1.1.4)

where g′, g and gs are the coupling strengths of the U(1)Y , SU(2)L and SU(3)c inter-
actions respectively. Each gauge boson is accompanied by an appropriate generator,
ta. For the SU(2)L group, these generators are proportional to the Pauli matrices,
σa/2. The U(1)Y generator is the identity and fields transform with different hyper-
charges, Y . This covariant derivative is introduced to make the term DµΨ covariant,
such that Ψ̄ /DΨ ≡ Ψ̄γµDµΨ is gauge invariant.
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The definition of the covariant derivative changes according to the gauge group
representation of the field upon which it acts. The gauge transformations of the
fields in the SM can be described by three numbers: the SU(3)c representation, the
SU(2)L representation and the charge Y under U(1)Y .

The matter content of the SM can be arranged into five different multiplets per
generation, as well as the scalar Higgs doublet, H. The representations and charges
of these fields is shown in Table 1.2. Note that the matter multiplets are in either the
fundamental (N) or trivial (1) representation of each non-Abelian group, SU(N).
Consider, for example, Q, which has representation {3,2,1

6}. It is a doublet (2) of
SU(2)L, consisting of the left-handed parts of the up and down quark fields,

Q =
uL
dL

 , (1.1.5)

where each of these two entries is also a triplet (3) of SU(3)c, for example,

uL =


urL

ubL

ugL

 , (1.1.6)

where the superscripts denote the 3 different QCD colours: red, blue and green.
Finally, Q transforms under U(1)Y with a hypercharge of 1

6 , and there is a similar
Q multiplet for the other two generations: (c, s) and (t, b). Similarly, L is a left-
handed SU(2)L doublet consisting of a neutrino1 and a left-handed charged lepton,
L = (νe eL). We can now understand the second line in Eq. 1.1.1 as describing the
dynamics and gauge interactions of the fermions.

Note that only left-handed fields transform non-trivially under SU(2)L, hence the
L subscript. This means that we run into complications if we want our fermions
to be massive. Dirac mass terms appear in the Lagrangian as −mΨ̄Ψ, which when
written in terms of the left- and right-handed parts becomes,

−mΨ̄Ψ = −mΨ̄LΨR + h.c. (1.1.7)

It is therefore a problem if the left- and right-handed parts of a field have different
gauge interactions. This is the case for all SM fermions and thus SM Dirac mass
terms are not gauge invariant. Once again, we seek a dynamic generation of masses:
enter the Higgs mechanism.

1Note that in the standard model, neutrinos are considered massless and left-handed; there are
no right-handed neutrinos. This is in conflict with recent observations, see Section 7.2.
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Field SU(3)c SU(2)L U(1)Y
Q 3 2 1

6

uR 3 1 2
3

dR 3 1 −1
3

L 1 2 −1
2

eR 1 1 −1
H 1 2 1

2

LH RH

uL uR

dL dR

νL

eL eR

Table 1.2: The Standard Model (SM) field multiplets and their rep-
resentation/charge under the three unbroken gauge groups.
The first generation of the SM matter content is also shown,
with its right-handed (RH) and left-handed (LH) parts
grouped into these five multiplets: the Q,L doublets and
the uR, dR, eR singlets. Note the absence of a RH neutrino
field, which does not exist in the SM. The representation
and charge of the Higgs doublet is also shown, as a reference
for Section 1.1.3.

1.1.3 The Higgs mechanism

The final ingredient of the Standard Model is the Higgs field. The following descrip-
tion of the Higgs mechanism [13,14,26–28] is largely inspired by texts like Ref. [25].
The discovery of the Higgs, its production and its decays, are discussed in Chapter 2.
We introduce the Higgs field as an SU(2)L doublet of two complex scalar fields, with
hypercharge Y = 1

2 ,

H =
φ+

φ0

 = 1√
2

φ1 + iφ2

φ3 + iφ4

 , (1.1.8)

where φi are real scalar fields. This doublet has four degrees of freedom. The
dynamics of the Higgs and the Higgs mechanism are encoded in the final two lines
of Eq. 1.1.1. The Higgs potential,

V (H) = µ2H†H + λ(H†H)2, (1.1.9)

is such that for µ2 < 0 the potential has a minimum at non-zero |H| =
√
H†H. The

Higgs doublet develops a non-zero vacuum expectation value (VEV),

〈H〉 = |H| = v√
2

=
√
−µ2

2λ , (1.1.10)

where the value of v has been measured to be v ≈ 246 GeV. This non-zero vacuum
state of the Higgs field is not invariant under the electroweak group, SU(2)L×U(1)Y ,
which is spontaneously broken as a result.

Note that since we have 4 degrees of freedom, the requirement in Eq. 1.1.10 in
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fact defines an S3 surface of degenerate states. Gauge transformations correspond
to moving between different states on this surface. Excitations along these flat
directions don’t cost energy and correspond to three massless Goldstone modes. On
the other hand, excitations in the radial direction feel a pseudo-quadratic potential,
resulting in a massive particle: the Higgs boson.

We choose φ3 to be the radial direction, without loss of generality, such that φ3 = v+h,
where h is the real radial perturbation corresponding to the Higgs boson. We can
then use gauge transformations to go to the unitary gauge, where,

H = 1√
2

 0
v + h

 , (1.1.11)

and the Goldstone modes φ1, φ2, φ4 have been entirely gauged away. Recalling the
covariant derivative in Eq. 1.1.4 and keeping in mind the representation of the Higgs
doublet, {1,2,1

2} (as shown in Table 1.2), we see that,

|DµH|2 = 1
2(∂µh)2 + 1

4g
2(v + h)2W+

µ W
−µ + 1

8(v + h)2(g2 + g′2)ZµZµ , (1.1.12)

where the more familiarW± and Z bosons have been identified as linear combinations
of the pre-breaking bosons,

W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ), Zµ = gW 3

µ − g′Bµ√
g2 + g′2

= cWW
3
µ − sWBµ , (1.1.13)

where cW = cos θW , sW = sin θW and θW is the angle of rotation of Zµ with respect
to the two original bosons, W 3 and B. We can now see that the |DµH|2 term gives
interactions between the Higgs boson, h, and the weak bosons. Furthermore, the v2

part of (v + h)2 gives the weak bosons mass terms1,

M2
W = g2v2

4 , M2
Z = M2

W

c2
W

. (1.1.14)

The complimentary orthogonal boson to Z,

Aµ = sWW
3
µ + cWBµ, (1.1.15)

has no coupling to the Higgs, does not acquire mass, and is identified as the photon.
As a consequence, the electromagnetic coupling strength is related to the weak
coupling strength via the same electroweak rotation angle e = gsW = g′cW . Similarly,
one finds that the electric charge of a field is connected to its hypercharge and third

1Note that this ratio of weak boson masses is a prediction specific to the model where the Higgs
field is a doublet of SU(2)L. The ratio changes for other representations, see for example Ref. [29].
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weak isospin component, I3, via the relation,

QEM = I3 + Y, (1.1.16)

where the two entries of a weak doublet have I3 = (1
2 ,−

1
2). This retrospectively

explains the superscripts on the Higgs doublet entries, H = (φ+, φ0).

In summary, the Higgs potential prefers a non-zero VEV, which spontaneously breaks
electroweak gauge symmetry. Three of the four electroweak generators are broken,
with the corresponding Higgs degrees of freedom acting as the longitudinal modes
of the associated gauge bosons and giving them masses. The remaining unbroken
direction is a linear combination of theW 3 and B, which we identify as the generator
of electromagnetism, so that the remaining unbroken subgroup is U(1)EM and the
photon remains massless. The one remaining Higgs degree of freedom is the real
Higgs boson. Using the unitary gauge expression in Eq. 1.1.11 and the potential in
Eq. 1.1.9 we can identify the resultant mass of the Higgs boson,

m2
h = 2λv2 = −2µ2. (1.1.17)

We now consider the final line in the SM Lagrangian in Eq. 1.1.1, which describes
the Yukawa interactions of the Higgs field with two fermion fields. To maintain
gauge invariance, we require that one of the fermion fields is a SU(2)L doublet and
that the other is an SU(2)L singlet. Consider for example, the term,

− ydd̄RH†Q+ h.c. = −mdd̄d−
yd√

2
hd̄d, (1.1.18)

which upon substituting the Higgs doublet in the unitary gauge gives us a down
quark mass and hdd interactions. We can identify the down mass as md = ydv/

√
2,

where yd is the Yukawa coupling. The masses of the other lower-doublet-entry fields
follow suit. For up-type fields we require the conjugate Higgs doublet H̃ ≡ iσ2H∗

and corresponding terms like −yuūRH̃Q.

We have now seen that the Higgs mechanism successfully provides the required
masses in the Standard Model. Note that while the gauge boson masses are theoret-
ically fixed by the procedure, the fermion masses are dictated by the free Yukawa
parameters, which span a large range of values. That there is no apparent theoretical
motivation for the observed set of values makes many uncomfortable and is known
as the flavour problem.

As one final remark, we note that since there are 3 generations of quarks, the quark
Yukawa couplings form two 3×3 complex matrices, one for the up sector and one for
the down sector, yuij, ydij. These matrices need not be diagonal. In other words, the
weak interaction flavour basis can be rotated with respect to the mass basis. Suppose
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that the unitary matrices UL and DL rotate the mass eigenstates into the flavour
eigenstates. For the neutral current Z interactions these rotations arise in cancelling
pairs, such as U †LUL = 1. On the other hand, charged current W± interactions mix
the up and down sectors and thus give generation-changing interactions parametrised
by the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix, V ≡ U †LDL. The CKM
matrix can be specified by three angles and a phase. The phase, δCKM, is important
in discussions of CP violation in Chapter 8.

1.1.4 Problems with the Standard Model

The Standard Model Lagrangian in Eq. 1.1.1 (almost) successfully describes the
dynamics of all known fundamental particles and their interactions via three of the
four fundamental forces: the strong force, the weak force and electromagnetism. The
SM famously fails to give a particle description of gravitational interactions, which
remain best-described by Einstein’s more macroscopic theory of general relativity.
Various attempts to combine the two theories exist, the most notable of which is
string theory. Other problems with the Standard Model exist, including:

• Hierarchy problem: the large separation in scales between the Higgs mass
mh ≈ 125 GeV and the Planck scale MP ∼ 1018 GeV, see Section 1.2.2.

• Strong CP problem: the lack of observable CP violation in the strong
sector despite CP-violating terms being allowed by the SM symmetries, see
Section 7.1.

• Neutrino masses: recent observations in neutrino oscillations point to massive
neutrinos in contrast to the massless neutrinos in the SM, see Section 7.2.

• Baryon asymmetry: naively, SM interactions require that matter and anti-
matter be produced in equal measure, yet the universe appears to be dominated
by matter, see Section 7.3.

• Dark matter: observations in cosmology are inconsistent with the known
matter content of the universe and point to the existence of a new matter
content, see Section 7.4.

• Dark energy: as well as dark matter, observation of accelerated cosmological
expansion and closure of the universe requires a new unknown form of energy
with properties distinctly different to matter [30]. Dark energy is not considered
in this thesis.
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• Flavour problem: the masses of the fermions in the standard model enter in
an ad hoc way via Yukawa couplings to the Higgs. The range of fermion masses
is immense, from the sub-MeV electron to the 173 GeV top quark. There seems
little theoretical motivation for this hierarchy of scales. A popular solution is
presented in Section 7.2.1. For more information on the flavour problem, see
for example Ref. [31].

The hierarchy problem is explained in Section 1.2 as part of our discussion on
the properties of the Higgs. Some of the other problems are discussed further in
Chapter 7.

1.2 More on the Higgs

We have seen that the Higgs field is introduced to spontaneously break electroweak
gauge symmetry and generate particle masses. Before we move on to the bulk of the
thesis, it will be helpful to take a look at two more consequences of introducing the
Higgs, namely the Goldstone equivalence principle and the Higgs hierarchy problem.

1.2.1 The Goldstone equivalence principle

In Section 1.1.3, we saw how the three massless Goldstone bosons could be gauged
away and reinterpreted as the longitudinal modes of the weak bosons. The purely
transverse massless gauge bosons ‘eat’ the Goldstone bosons to gain mass and a
third polarisation. Hence, the longitudinal modes of W± and Z account for 3 of
the 4 Higgs degrees of freedom, with the fourth manifesting itself as the real Higgs
boson.

At high energies, the longitudinal polarisations of the massive gauge bosons exhibit
behaviour resembling their Goldstone origins. In fact, it can be shown that absorp-
tion/emission amplitudes for longitudinal vectors and Goldstone scalars are identical
up to a factor,

M(X → Y + VL) =M(X → Y + φGB)× (1 +O(MW/E)) , (1.2.1)

which approaches unity in the high-energy limit [21]. The idea that the longitudinal
modes can be treated as simpler Goldstone scalars in high-energy processes is known
as the Goldstone equivalence principle [32, 33]. This can help simplify calculations
of high-energy amplitudes.

It is worth noting that so far we have assumed that the Higgs and Goldstone bosons
are packaged into an SU(2)L Higgs doublet. This leads to inherent correlations
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Figure 1.1: Quadratically-diverging diagrams contributing to Higgs
mass corrections in Eq. 1.2.2. There are two topologies
for scalar Higgs loops via self-interaction. These topolo-
gies also exist for weak vector boson loops. Finally, any
fermion, f , that couples to the Higgs contributes via a
fermion loop. Given that a fermion’s Higgs couplings is
proportional to its mass, the top quark gives the leading
fermionic contribution.

between weak boson and Higgs interactions. Such correlations are used to assess
bounds on new physics effects in Chapter 3. However, one can also consider a model
in which the discovered scalar boson degree of freedom is entirely unassociated with
the three Goldstone modes, such that many of these correlations vanish. This is
often associated with whether or not electroweak symmetry is linearly-realised1. As
such, the strength of bounds calculated in Chapter 3 will depend on whether or
not this assumption is made. This distinction will be mentioned in the text where
necessary.

1.2.2 The hierarchy problem

Here we specifically discuss the Higgs hierarchy problem. Hierarchy problems oc-
cur in quantum field theories when there are scales of vastly different magnitudes.
Parameters of the theory receive corrections to their bare values via renormalization.
These corrections can be large unless a symmetry is present to restrict their beha-
viour. The mass of the Higgs is a parameter with no such symmetric restrictions
and experiences very large corrections in the absence of new physics2. Requiring a
large bare mass to cancel the large corrections and give the smaller observed physical
mass is known as fine tuning.

Consider the one-loop corrections to the Higgs mass, δm2
h, which come from self-

interactions, gauge loops and fermion loops, with the relevant Feynman diagrams
shown in Fig. 1.1. These diagrams are quadratically divergent, yielding a one-loop
correction,

δm2
h = m2

h −m2
h0 ≈

3Λ2

8π2v2

[
m2
h + 2M2

W +M2
Z − 4m2

t

]
, (1.2.2)

1For more information on how such a scenario might function, see Ref. [34]
2There is a subtlety here regarding whether or not the Standard Model is treated in isolation,

as will be explained below.
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where only the four heaviest species where included, mh0 is the bare mass and Λ
is the cut-off or scale of new physics. We see that the corrections to the square
mass are proportional to the square masses of any coupling particle. Suppose there
is no new physics up to Λ = MP , such that m2

h/Λ2 ∼ 10−34. In order to obtain
the observed Higgs mass, we would require an enormous bare mass, differing to the
corrections by one part in 1034 [22].

We see that the physical mass is highly-sensitive to the parameters of the theory; a
minute change tom2

h0 would have an enormous affect onm2
h = m2

h0 +δm2
h. To get the

desired value we must fine-tune our parameters. Such large and tuned parameters
are generally seen as unnatural. This fine-tuning is necessary because mh � Mp:
this is the hierarchy problem.

There is a subtlety in this statement: if the bare Higgs mass is truly a free parameter
that can only be inferred by Higgs measurements, as it strictly is in the Standard
Model, then there is no hierarchy problem1. The problem arises when we acknowledge
that the Standard Model isn’t the UV complete theory of the universe. In the
complete theory, one expects the Higgs bare mass to be predictable via other more
fundamental UV parameters. Now the question of why the bare parameter is so
finely-tuned to its corrections becomes a valid concern. As such, any new UV theory
should address the size of the bare mass or have a mechanism to limit the size of its
corrections.

As previously mentioned, such large corrections can be restricted by symmetries.
The masses of fermions and gauge bosons get corrections proportional to their masses.
This arises due to symmetries that are restored in the massless limit: chiral symmetry
in the case of fermions and gauge symmetry in the case of gauge bosons. This limits
corrections to a logarithmic cut-off dependence, for example, for the electron [36],

δme = me log (Λ/me) . (1.2.3)

Since the Higgs mass is sensitive to all coupled high scales, naturalness would require
that it should be of the order of the scale of new physics. This suggests that a natural
theory requires new physics at the TeV scale. This motivated many extensions to
the Standard Model, such as supersymmetry (see, for instance, Ref. [37]) and extra
dimensions (see for example, Ref. [38]). In supersymmetry, for example, contributions
from particles are cancelled by the opposite-sign contributions of their superpartners.
Lack of direct observations of new fundamental particles at the Large Hadron Collider
limit the applicability of this solution [39].

An alternative philosophy, known as the anthropic principle [40], says that the

1For a good discussion on these ideas, see Ref. [35].
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possible model space is scanned in different parts of the universe. Development of
life required mh � MP and so it is only natural that we live in a patch where this
is true. Perhaps there is a landscape of vacua as postulated in string theory and we
simply live in a patch where the conditions are right (see, for example, Ref. [41]).

The hierarchy problem and its potential resolutions is a recurring theme in this thesis.
In Part II we look at scalar multiparticle production. It has been suggested that
the scale where this behaviour begins could behave as a cut-off to the Higgs mass
contributions, acting as a change in phase of the theory [4, 42, 43]. In Part III, we
discuss the recently-developed relaxion mechanism [44], which dynamically selects
the Higgs VEV via the cosmic evolution of a new scalar particle, the relaxion.

1.3 Remainder of the thesis

The remainder of this thesis is divided into three distinct parts, corresponding to
research done in different areas of Higgs physics. Each part has its own background
chapter that lays the appropriate foundations for the subsequent discussions. Sim-
ilarly, each part ends with a section presenting part-specific conclusions. These
conclusions are combined and summarised in the Chapter 9, the final chapter of this
thesis.

Note that definitions introduced in each part are specific to said part; several letters,
Greek and Latin, are repurposed in different contexts. As an example, ai denote
the nine V h angular moments in Part I; a is a coherent state variable in Part II;
and a(x) is an axion field in Part III. These parts address different physics and so
conflicts of notation are avoided.

Part I starts in Chapter 2 with a look at particle colliders and effective field theories
(EFT). We briefly discuss the experimental aspects of colliders, summarise the various
Higgs production and decay channels, and introduce the Standard Model Effective
Field Theory (SMEFT). We then build on this information in Chapter 3, where we
present a differential analysis technique that can be used to constrain new physics
effects on Higgs interactions.

In Part II we turn to the more theoretical investigation of multiparticle production
and the behaviour we might expect of the Higgs at high energies as a fundamental
scalar particle. We begin in Chapter 4 by describing a regime in which few high-
energy scalar bosons could decay into many softer scalars. In Chapter 5, we develop
the coherent state formalism, starting in quantum mechanics before moving to
quantum field theory. This formalism is key in the semiclassical method employed
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in Chapter 6, which allows us to calculate the multiparticle production rates non-
perturbatively.

Finally, in Part III we take a more cosmological outlook and look at the role the
Higgs field may have had in the evolution of our universe. We begin in Chapter 7 by
summarising some problems in fundamental physics and some potential solutions.
These solutions are then combined in Chapter 8, where we present a unified solution
to five beyond-the-Standard-Model (BSM) puzzles. At the core of this solution is a
relaxion model, which gives a dynamic explanation for the Higgs vacuum expectation
value via a coupled cosmic evolution.

As mentioned previously, we wrap up this thesis in Chapter 9 by summarising the
conclusions presented in each part.



Part I

The Higgs at Colliders





Chapter 2

Probing Higher-Energy Physics

We currently find ourselves in a transition of strategy. Our most advanced tool for
probing high energy physics – the Large Hadron Collider – has achieved its ‘main’ goal
in discovering the Higgs boson [45,46], yet there have been no further direct signs of
new physics. In this chapter, we comment on how higher integrated luminosities will
allow us to explore more subtle signs of new physics, such as differential observables.
We briefly discuss the LHC itself, review conventional resonance searches and then
move on to discussing these differential observables. We finish by explaining how
new higher-energy physics effects can be parametrised using effective field theory
(EFT) techniques. This chapter provides the idealogical foundations for Chapter 3,
where we propose and utilise a technique for constraining such new physics effects
using data from current and future colliders.

2.1 Observables at colliders

2.1.1 The Large Hadron Collider

Since the start of its first run in 2009, CERN’s Large Hadron Collider (LHC) has
been the most relevant tool in the search for new high-energy physics. Bunches of
protons from two beams are accelerated by superconducting magnets around a 27 km
ring under the French-Swiss border and collide at the highest energies ever achieved.
The collisions are analysed using complex detectors placed at different points along
the ring. The two detectors most relevant to our discussions are ATLAS (A Toroidal
LHC ApparatuS) and CMS (Compact Muon Solenoid). A schematic description of
these detectors is presented below and shown in Fig. 2.2. Run 1 of the LHC, which
ended in 2014, was conducted with a centre of mass energy (CME) of 7-8 TeV and
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was, via results from ATLAS and CMS, responsible for the discovery of the Higgs
boson [45,46].

Previous colliders included the Tevatron at FermiLab (USA) and LEP (Large
Electron-Positron collider) at CERN. The Tevatron was a proton-antiproton col-
lider while LEP was an electron-positron collider. Hadron colliders such as the LHC
and Tevatron have their advantages and disadvantages over lepton colliders like LEP:

• Composite vs fundamental: There are several advantages to using fun-
damental particles, such as leptons. Firstly, it means we know our initial
conditions with much greater certainty: the energy of the collision is just the
CME of the two initial particles, whose identity we know. Protons, on the
other hand, are composite particles with complex partonic distributions. We
are forced to infer the partons and energy in a collision from the detected decay
products. We have a collision of two composite particles resulting in a collision
of two possibly-different partons with different energy. Furthermore, in the
case of composite particles, the partons will only carry a fraction of the initial
CME. In lepton colliders, only a relatively small amount of energy is lost as
initial state radiation. On the other hand, hadron colliders need not scan over
energy ranges as the composite nature if the initial states leads to collisions
with naturally varying energies.

An advantage of composite particles over fundamental particles is that there
is a large variety of possible initial states, unlike lepton colliders, which have a
fixed initial state and quantum numbers. Protons can lead to interactions with
any parton, be it quark, antiquark or gluon. This opens up the the possibility
for resonant production of different spin and charge states. Hence, hadron
colliders give accessibility to a larger variety of final states. This can also be a
disadvantage, as the polarisation of the initial states is no longer controllable.

• QCD: Hadrons are bound by strong interactions and thus every constituent
parton is charged under the QCD SU(3)C gauge group. This leads to a plethora
of possible strong interactions and emissions. Leptons do not experience strong
interactions, at least at tree-level, and thus give much cleaner collisions, with
less hadronic production and thus lower backgrounds. Initial state radiation
is also reduced.

• Synchrotron radiation: Charged particles undergoing acceleration, such as
particles in a circular collider, experience loss of energy through synchrotron
radiation. For a given beam energy, the loss per cycle is ∆E ∝ R−1m−4 for
collider radius R and particle mass m. This explains the desire for such large
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colliders. Protons are of order 2000 times more massive than electrons and
thus allow us to reach much higher energies for a given radius. For example,
the LHC repurposed the LEP tunnel at CERN and achieved far higher beam
energies: 13 TeV vs. 209 GeV. As such, most new resonances have been
discovered first at hadron colliders.

Precision electroweak measurements at LEP and the Tevatron constrained the Higgs
mass to be in the range 115-140 GeV [47, 48]. With the Higgs boson predicted to
be right around the corner, the LHC was the most efficient way to increase beam
energies. The higher-mass hadronic initial states allow for lower energy loss by
synchrotron radiation per cycle for the same collider radius. This allowed us to find
the Higgs boson but comes at a cost of less clean events and lesser knowledge of
initial conditions.

An important property of a collider is its estimated integrated luminosity. This is
essentially a measure of how much data the collider will collect. One can obtain the
real number of expected events, N , for a process of cross section σ and integrated
luminosity L,

N = Lσ(ŝ), (2.1.1)

where the cross section often varies with partonic centre-of-mass energy,
√
ŝ. Run 1 of

the LHC accumulated approximately 20 fb−1, where 1 fb = 10−43 m2. Run 2, which
operated at 13 TeV CME and concluded in December 2018, accumulated around
150 fb−1. Run 3 aims to collect 300 fb−1. The future high luminosity (HL-LHC) run
is estimated to achieve an integrated luminosity of 3000 fb−1 = 3 ab−1 [49]. The
various bounds discussed in Chapter 3 are calculated using the HL-LHC’s expected
luminosity of = 3 ab−1.

As mentioned above, the composite nature of hadrons and strong interactions result
in very complex collision pictures at the LHC. It is of paramount importance to find
ways to separate the physics of interest, the signal, from the background. A schematic
diagram of a proton-proton collision is given in Fig. 2.1. Various constituent partons
from the initial hadrons may interact, carrying different fractions of the hadronic
momentum. Initial state partons experience initial state radiation, for example by
emission of gluons. Events of interest will generally feature a hard interaction and
subsequent decay products, which will experience final state radiation. All partons
eventually reach lower energies and undergo hadronisation. The hadrons produced
can themselves decay further. Such collimated sprays of hadronic activity are known
as jets. The key to analysing such complex events is finding ways to distinguish
between the final states produced by the signal process and the final states produced
by other processes.
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Figure 2.1: A schematic diagram of a hard proton-proton collision
at the LHC, taken with permission from Ref. [50]. The
hard interaction of interest is the red blob in the centre.
Particles from initial- and final-state radiation are in blue
and red, respectively. These can decay and emit a variety
of particles. Further activity can be expected in the form
of an underlying event, in purple. All strongly-interacting
particles eventually reach lower energy scales, hadronise
and undergo further decay, as shown in green.

In practice, we are only able to detect a fraction of the activity shown in Fig. 2.1.
Many particles, fundamental or otherwise, are very unstable. They decay before
reaching the detector and thus are never directly observed. Instead, their presence is
inferred from detection of their more stable decay products. We generally translate
our central hard process of interest into a set of demands for the accessible final-
state content. Before moving on to potential observables, let us briefly discuss the
information we can expect to obtain about a given event.

The structure of a general detector, such as ATLAS or CMS, is sketched in Fig. 2.2.
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Figure 2.2: A schematic diagram of a general hadron collider detector,
such as the LHC, inspired by Ref. [51]. The tracks and
behaviour of some common stable final-state particles are
sketched in yellow. Note that in reality, some of these paths
are curved by magnetic fields. The innermost layer is not
shown above but consists of vertex detectors, which are
used to assess the geometric origin of these tracks. For
more information on the different layers, see the text.

The various layers lead to characteristic signatures for different stable final-state
particles, via charged tracks and energy deposits. The different layers allow meas-
urements of certain properties of these particles, which can be used to constrain the
possible mother particles:

• Vertex detectors: Vertex detectors in the innermost layer allow for detection
of displaced secondary vertices. This is of great importance in b-tagging.
Generally, the original parton responsible for a jet cannot be determined. The
one exception is the b quark. A b quark is expected to decay into hadrons, one
of which will have b content, in the primary vertex. The relatively long-lived
B meson will then itself decay, giving a displaced vertex.
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• Tracking chamber: This part of the detector traces out the trajectories of
charged particles. Use of magnetic fields means that the momentum and charge
of the charged particle can be inferred from the curvature and direction of the
trajectory, respectively. Energy loss and mass can also be inferred.

• Electromagnetic calorimeter (ECAL): This layer is used to measure the
energies of electrons, positrons and photons. These particles cause electromag-
netic showers in the ECAL via bremsstrahlung and pair production.

• Hadronic calorimeter (HCAL): This layer is similar to the ECAL but
measures the energies of high-energy hadrons. In analogy to the electromag-
netic showers in the ECAL, high-energy hadrons entering the HCAL trigger
showers of further hadrons.

• Muon chamber: This part of the detector is used to detect muons. Muons
are not stopped by the calorimeters and have a long enough lifetime to reach
this layer. As in the tracking chamber, the momentum can be inferred from
the curvature induced by a magnetic field.

It should be noted that these detector layers can only detect particles in a certain
range of polar angles (or pseudo-rapidity1). Rather intuitively, particles moving close
to parallel with the collision axis are generally harder to detect than those moving
in a more perpendicular direction.

Another important note concerns data taking. The LHC’s large luminosities and
cross sections result in an event rate of around 1 GHz, with each event requiring
around 1 Mb of storage memory and only 1 event in 106 being of interest [51]. For
this reason, the LHC detectors use an advanced multilevel trigger system in attempt
to filter out the less important events and make data taking feasible. This also means
that new signal searches may require new trigger designs. For more information, see
Ref. [51].

In summary, the LHC allows us to reach higher energies than ever before. A plethora
of information can be obtained from the various layers in the detectors about the
stable final-state particles. This information, in turn, can be used to infer details of
the original harder interaction.

1Pseudo-rapidity, η, is connected to the polar angle, θ, by the relation η = ln cot(θ/2) and
varies from [−∞,+∞]. A pseudo-rapidity of zero corresponds to a trajectory perpendicular to
the beam axis in the lab frame. Pseudo-rapidities are useful quantities as their differences are
frame-invariant.
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2.1.2 Resonance: physics at an attainable energy scale

The conventional method of new physics discovery is looking for resonances. New
high-mass particles are generally unstable and will quickly decay into other particles.
Hence, their production and subsequent decay appears as a resonance. The probab-
ility density for the process X → Y ∗ → Z via the unstable state Y ∗ is given by the
Breit-Wigner function,

f(E) = k

(E2 −m2)2 +m2Γ2 , (2.1.2)

where m and Γ are the mass and decay width of the intermediate particle, and
k is some constant depending on m and Γ. This function gives a peak at the
particle’s mass with a width proportional to Γ. From a QFT perspective, this can
be understood as coming from the propagator of the unstable particle, ∼ (E2−m2 +
imΓ)−1, in the amplitudeM, which one then multiplies by its complex conjugate
to obtain |M|2 and later the cross section σ(E) ∝ f(E).

By looking at how the number of events for certain processes vary with energy (or
invariant mass) we are able to see resonances and use them to infer the unstable
particle’s mass and width. This is how most high-mass fundamental particles are
discovered.

After LEP and Tevatron constrained the Higgs mass, mh, to be expected in the
range1 115-140 GeV, the LHC was built in the hope of reaching the energy required
to probe the Higgs resonance. As we now know, it was successful in finding a scalar
resonance in this range with properties in line with those expected of the SM Higgs
boson.

In looking for the Higgs boson, all necessary production and decay channels were
considered. The key to a good discovery channel is an appropriately high rate2 and
or a clean distinguishable final-state topology with low backgrounds. The dominant
Feynman diagrams for the two initial discovery modes are shown in Figs. 2.3a
and 2.3b. The diphoton channel gives two high-energy photons, which leave big
deposits in the ECAL (see Fig. 2.2) and no track in the tracking chamber. The 4-
lepton channel gives 4 isolated leptons, with one pair reconstructing the weak boson
mass. These are both relatively-clean and identifiable topologies, leading to greater
confidence and lower uncertainties. Compare this to the decay mode with the highest

1The more precise bound from LEP was mh > 114.4 GeV at 95% CL. Tevatron excluded
the ranges 100 GeV < mh < 103 GeV and 147 GeV < mh < 180 GeV at 95% CL. Precision
measurements of electroweak observables at LEP and Tevatron also gave an upper bound: mH < 280
GeV. Furthermore, Tevatron saw a 3σ excess in the range 115 GeV < mh < 140 GeV. See
Refs. [47, 48].

2Note that the rate of a process is affected by both the production rate and decay branching
ratio. These are shown in Tables 2.1 and 2.2.
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Figure 2.3: The dominant Feynman diagrams for the two initial dis-
covery modes of the Higgs boson. The branching ratios
for these decay modes aren’t the largest, but their signa-
tures are cleaner and more distinct, making them easier
to identify. In both channels, production is dominated by
so-called gluon fusion. The Higgs couples most-strongly to
the top quark due to its preferential coupling to massive
particles, but other fermions also contribute to the loop.
Other production and decay modes are listed in Tables 2.1
and 2.2, with current signal strengths shown in Fig. 2.5.

branching ratio, h → bb̄, whose efficiency as an initial resonance discovery mode
was hindered by its more chaotic jet signature and high backgrounds. However, this
mode is becoming more relevant with improvements in jet substructure algorithms
(see BDRS [52] in Appendix A.2) and b-tagging.

An example plot of the Higgs resonance at mh ≈ 125 GeV for the diphoton channel
at ATLAS is shown in Fig. 2.4 [53]. The dominant Higgs production mode for
the diphoton and 4-lepton channels is gluon fusion, as seen in Fig. 2.3a. Another
production mode, known as Wh/Zh associated production or Higgs-strahlung, was
less important for the initial resonance discovery but lepton tagging makes it the
most sensitive channel for the h→ bb̄ decay mode. Crucially, associated production
provides access to the hWW and hZZ couplings. This mode is the focus of the
differential analysis in Chapter 3. The dominant production and decay modes,
as well as the associated inclusive cross sections and branching ratios, are shown
in Tables 2.1 and 2.2 for a Higgs boson with mass mh = 125 GeV. Furthermore,
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Figure 2.4: Results published by the ATLAS collaboration [53] for the
Higgs resonance in the diphoton channel (see Fig. 2.3a).
We see a clear deviation from the background at the Higgs
massmh ≈ 125 GeV. This is the Higgs resonance. For more
information on this plot, please see the original publication,
Ref. [53].

current results from ATLAS for the signal strengths of different combinations of
these production and decay modes are shown in Fig. 2.5. For more information on
the various modes, see Refs. [25, 54].

The key limitation to resonance searches is that one must be able to reach the
necessary energies to probe the resonance. With Run 2 concluded, we have still
not seen any direct signs of new physics within the energy reach of the LHC. It is
possible that we will see no further resonances until we build a new higher-energy
collider, such as the proposed Future Circular Colliders (FCC) [56–58]. Even then,
we may see nothing; the next new physics scale could be well out of reach for the
foreseeable future. In such a case we must turn to more indirect searches.
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Production mode Cross section/pb
Gluon fusion 44

Vector boson fusion 3.7
Wh associated production 1.4
Zh associated production 0.87
tt̄h associated production 0.51

Table 2.1: Inclusive Higgs production cross sections for a Higgs mass
mh = 125 GeV and a centre of mass energy

√
s = 13 TeV.

Values are taken from the Higgs Working Group [54] and
carry an uncertainty of order 1-10%. As mentioned in the
text, gluon fusion is the dominant production mechanism.
For a summary of these production mechanisms see Ref. [25].

2.1.3 Differential observables: physics at an unattainable
energy scale

We are now forced to consider the scenario in which the next new physics energy
scale, Λ, is much larger than the reach of the Large Hadron Collider. Although
we are not able to directly see the associated resonances, we can look for more
subtle clues. The presence of new physics may well affect the high-energy tails of
distributions or indirectly impact the value of some observables.

At earlier stages of the LHC’s runtime, the integrated luminosity was relatively low.
The best way to look for the small deviations expected due to new physics at a distant
scale was via total rate information [59,60]. With data scarce, looking differentially in
kinematic variables would result in insufficient statistics to draw strong conclusions.
But this is beginning to change. With Run 2 collecting around 150 fb−1 and the
high luminosity HL-LHC aiming to collect 3 ab−1, looking differentially is becoming
a very valid approach. The era of high luminosity is upon us.

Differential searches open up a wealth of analytic opportunity. Variation in new
physics (NP) effects with different kinematic parameters gives key information for
constraining the possible interactions responsible. This information would be entirely
missed in a total-rate analysis. Furthermore, there are some NP contributions that
simply vanish if not studied differentially. Consider the schematic case of a process
with square amplitude |M|2,

|M|2 ∼ |M|2SM + 2Re(M∗
SMMBSM), |M|2Int ≡ 2Re(M∗

SMMBSM) ∝ cos θ,
(2.1.3)

where θ is some kinematic angle. The total rate is related to the integral of this
square amplitude over this angle. The NP interference effect, |M|2Int, vanishes
upon integration. Looking differentially allows us to resurrect [61] these effects
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Decay mode BR
bb̄ 58%

WW ∗ 21%
gg 8.8%
ττ 6.3%
cc̄ 2.9%
ZZ∗ 2.6%
γγ 0.23%
Zγ 0.15%
µµ 0.022%
Γtot 4.1 MeV

Table 2.2: Branching ratios for the dominant decays modes of the Higgs
boson and the total decay width, Γtot, shown for a Higgs
massmh = 125 GeV. Each of these values has an uncertainty
of around 3-10%. Values taken from the Higgs Working
Group [54]. This table is inspired by Ref. [25], where one
can find a more in depth discussion of these decay modes.

that would otherwise be missed. Generally, one finds that different types of new
physics interactions contribute to different differential structures. By carrying out a
differential analysis, one can in theory obtain bounds on the contributions from the
different underlying interactions. This is exactly the problem we tackle in Chapter 3.

With the view that the next NP scale is not directly accessible, one must decide
how to parametrise the NP effects on the lower-energy accessible observables and
interactions. Ideally, said parametrisation should be model-independent and make
only minimal assumptions on the mechanics at the higher-energy new physics scale.
This is where we turn to Effective Field Theory (EFT) descriptions and, in particular,
the Standard Model Effective Theory (SMEFT).

2.2 Effective field theories

Different physics dominates at different scales. If one had to consider physics at all
scales for any given problem, making any sort of accurate physical prediction would
be a daunting (if not impossible) task indeed.

The ‘decoupling’ of scales – the idea that only physics at the scale of the problem
is relevant – has been key in the development of our understanding of physics. The
predictive power of Newton’s theory of gravitation, for example, was not affected by
his lack of knowledge of quantum inter-atomic interactions within the massive body;
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Figure 2.5: Results published by the ATLAS collaboration [55] for the
cross section × branching ratio (normalised to SM) of dif-
ferent combinations of production and decay modes of the
Higgs boson. We see that different production mechanisms
better probe different decay modes. Associated V H pro-
duction, for example, provides much smaller uncertainties
on the bb̄ channel than vector boson fusion (VBF). For
more information, see the original publication, Ref. [55].

nor were predictions of large-scale planetary motion affected by the planet-surface
topography.

In the context of high energy physics this is both a blessing and a curse. The
decoupling means we can build a highly predictive quantum field theory (QFT)
without knowing the full particle content of the universe. Heavier particles that
cannot be produced on-shell at the scale of interest have a negligible effect on the
result of calculations, generally giving contributions proportional to powers of the
ratio of the two scales. However, it also makes it harder to discover new physics and
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particles, as we do not see their effects until we approach their energy scale.

Conventionally, this is the wisdom employed in the construction of particle colliders:
higher-energy collisions equates to probing shorter length scales. The search for
resonances generally motivates us to construct a less-precise higher-energy machine
rather than concentrate on improving the precision of lower-energy experiments,
hence the existence of the Large Hadron Collider (LHC). Of course, it will be rather
a long time before we get a significant upgrade in energy from the LHC, such as
the proposed Future Circular Collider (FCC) [56–58]. As such, much of this chapter
focuses on information we can get from improved luminosity and thus statistics at
the LHC and high-luminosity LHC (HL-LHC).

Effective theories take advantage of the separation of scales1 [62]. If we are studying
physics at the scale m, we can ignore physics at E � m and E � m, by sending
masses to infinity and zero respectively. In the context of QFTs, we can absorb
the small affects of higher-energy physics into a tower of new higher-dimension non-
renormalisable operators. Consider the Lagrangian of a model with heavy particle
content ψH and light particle content ψL,

Lfull(ψH , ψL) = LH(ψH , ψL) + LL(ψL), (2.2.1)

with light-particle mass scale m and heavy-particle mass scale Λ. We can now
integrate out the heavy field content by the path integral,∫

DψH exp
[
i
∫
Lfull(ψH , ψL)

]
= exp

[
i
∫
Leff(ψL)

]
, (2.2.2)

where the new effective Lagrangian is now,

Leff(ψL) = LL(ψL) + δL(ψL). (2.2.3)

As it stands, Leff(ψL) is non-local. A key subtlety in the route to the effective field
theory (EFT), is the expansion of the new piece, δL(ψL), into an infinite tower of
operators of increasing dimension,

LEFT(ψL) = LL(ψL) +
∑
i

ci
Oi

Λdim(Oi)−4 . (2.2.4)

The expansion ensures that each individual term and thus interaction is local. In
practice, we work to some fixed order in the expansion and use these new local
interactions. The advantage of this expansion is that for a given process at fixed
order, only a certain number of the large set of operators will contribute. The

1There are exceptions to this general idea of separation of scales, notably the Higgs-fermion
Yukawa interactions. These interactions do not decouple as their sizes directly affect the size of
the scales via the Higgs mechanism.
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higher the dimension of the operator Oi, the smaller its contribution to lower-energy
observables. Our expansion and truncation relies on terms decreasing in importance
with expansion order; this ceases to be the case as we approach the heavy scale Λ.
The truncation modifies the high-energy behaviour of the theory and thus the EFT
is not valid at and above the heavy scale, which we refer to as the cut-off, Λ, of the
effective theory. Different UV completions above the cut-off scale generally require
different values of the so-called Wilson coefficients, ci, in the lower-scale effective
theory. In Section 2.3, we look at the Standard Model Effective Field Theory
(SMEFT), which we use in Chapter 3, including only the dimension-6 contributions.

EFTs are useful for a number of reasons. If the UV theory is known, we can trade the
full calculation of higher-energy physics for a number or new or modified interaction
vertices, which can greatly simplify calculations. If the UV theory is not known,
the presence of non-renormalisable interactions, which can be included in a model-
independent way, give us clues for the possible higher-energy physics. As Howard
Georgi puts it in his review on EFTs [63], when we don’t know what is going on at
high energies, EFTs allow us to “parametrise our ignorance in a useful way”. We
return to this idea in Sections 2.2.2 and 2.3. For more information on EFTs, readers
are referred to Ref. [63–65].

2.2.1 Fermi β decay

Let us first consider an example: the Fermi theory of β decay. Fermi proposed a
four-point fermion interaction to explain β decay, via the interaction term,

LFermi = GFOFermi ≈ GF [ψ̄pγµPLψn][ψ̄eγµPLψν ] ∼ GF ψ̄pψnψ̄eψν , (2.2.5)

where GF is the Fermi constant, PL = 1
2(1−γ5) is the left-handed projection operator

and ψp,n,e,ν denotes the spinors of the proton, neutron, electron and neutrino. This
term and corresponding interaction vertex give good predictions for weak interactions
at low energy, despite no involvement of the responsible W boson. This is because,
as we shall see, the leading effect of theW boson is absorbed into the Fermi constant.
In other words, the effect of higher-energy physics is approximated by leading order
corrections to the interactions of the lower-energy field content.

The operator, OFermi, in the Fermi interaction term in Eq. 2.2.5 is a dimension-6
operator. Equivalently, the Fermi constant has mass dimension −2. As such, the
term is non-renormalisable This is the first clue that there is higher-energy physics at
play. We now know that the higher-energy physics is the weak interaction, mediated
by the W boson.
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(a) Full weak theory

(b) Fermi theory

Figure 2.6: Feynman diagrams for the quark-level beta decay process.
The diagram in (a) involves W exchange and uses the full
electroweak theory vertex and propagator. The diagram
in (b) uses the simplified Fermi four-point interaction (see
Eq. 2.2.5). This is an effective vertex and as such is a valid
substitution for calculations at scales E < mW . We can
see that, pictorially, the substitution is like contracting the
W propagator to a point. This is also intuitive given that
the effective operators are local whereas the propagator is
non-local.

Consider β decay as the quark-level process u→ de+νe, assuming for simplicity that
we only have one lepton flavour and no CKM mixing. The tree-level amplitude for
this process, using the Feynman rules of the full electroweak theory, is given by,

iM =
(
−ig√

2

)2

[d̄γµPLu]−i(gµν − pµpν/m
2
W )

p2 −m2
W

[ν̄eγνPLe], (2.2.6)

with weak coupling g, exchange four-momentum pµ and projection operator PL =
1
2(1 − γ5) used to extract the left-handed part of the spinors. The contributing
tree-level Feynman diagram is shown in Fig. 2.6a.
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At scales much lower than the W mass, i.e. p2 � m2
W , this expression can be

expanded in powers of p2/m2
W � 1,

M = − g2

2m2
W

[d̄γµPLu][ν̄eγµPLe]
(
1 +O(p2/m2

W )
)
. (2.2.7)

We see that the leading order term is in fact the Fermi interaction term in Eq. 2.2.5.
Higher order terms are suppressed by powers of p2/m2

W � 1. The Feynman diagram
for this effective interaction is shown in Fig. 2.6b. The overall effect of the leading
order approximation can be thought of as contracting the W propagator to a point.

Note the 1/m2
W suppression, ensuring that the overall term is still dimension four, as

expected in Eq. 2.2.4. We see by comparison to Eq. 2.2.5, that we have the relation
GF ∼ g2/m2

W and so the size of the coupling for a non-renormalisable interaction
is an indication of the scale of new physics, Λ ∼ mW . It is also an indication of
when our effective theory will break down. As we near p2 ∼ m2

W we need more and
more orders in this expansion to maintain accuracy and the utility of these methods
breaks down. Above the new physics scale, p2 > m2

W , we find unnatural growth
and violation of unitarity. This is an artefact of our expansion truncation, which
modifies the high-energy behaviour of the theory.

In summary, the Fermi four-point interaction is an effective vertex, which simplifies
calculations of low-energy weak observables. The cut-off of the effective theory, Λ,
is the scale of new physics, which in this example is the W mass. As long as we stay
below this scale, we can trade complex propagators and Feynman rules for a simpler
point interaction. For more on β decay, see Ref. [22].

2.2.2 Top down vs bottom up

The example of the Fermi interaction as an effective operator nicely illustrates the
potential top down use of effective field theories. We started with the full electroweak
theory and integrated out theW boson to get a dimension-six operator that simplifies
calculations, provided we are at an appropriate scale. The same ideology is employed
in a variety of different contexts, such as the Heavy Quark Effective Theory (HQET)
used in flavour physics, in which the heavy b field components are integrated out to
simplify calculations of B meson decays (for a recent review see Ref. [66]).

In these top down scenarios, the known UV theory can be evolved down by renor-
malisation group equations (RGEs) from the UV to the scale of the new physics,
say mW , where we can then match with the effective theory. Upon matching, the
effective theory can be evolved down to the scale of interest. The large logarithms
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of the scale ratios from the RG running are absorbed into the scale-dependence of
the parameters.

Conversely, we can take a bottom up approach. In this approach, we have values for
various parameters, measured at some experimentally-available scale. We then use
the effective RGEs to evolve their values up to the scale of new physics, where they
can be compared to the values expected for any arbitrary UV-complete theory.

Our interest lies in this second approach. With no direct hints as to what the next
sector of new physics might be, EFTs provide a general model-independent way to
parametrise the effects of higher-energy physics on the physics at our available scales.
We can simply ignore the specifics in the UV. We list all the higher-dimensional
operators allowed by our symmetries and begin to constrain their Wilson coefficients
by experimental measurement of processes with which they interfere. The values of
the new effective couplings give an indication of the scale of new physics and can be
used to exclude potential UV models. The popular Standard Model Effective Field
Theory (SMEFT) is an example of the bottom up approach applied to the Standard
Model (SM).

2.3 SMEFT & the Warsaw basis

The fact that LHC has seen no direct signs of new physics suggests that the next new
physics may be at a scale Λ� mh. Therefore, as discussed in Section 2.2, it is useful
to parametrise our ignorance of this new physics by measuring its effects on our
accessible lower-energy physics. These new physics effects present themselves in the
form of new higher-dimension non-renormalisable operators (see Eq. 2.2.4). These
operators reliably describe the new physics effects below the scale Λ. The Standard
Model Effective Field Theory (SMEFT) offers a standardised parametrisation of new
physics effects due to higher-dimension effective operators. Working to dimension-6
and assuming that the discovered scalar boson is indeed the SM Higgs boson, we
define,

LSMEFT = LSM + L(6) = LSM +
∑
i

ci
Λ2Oi, (2.3.1)

where LSM is the regular SM Lagrangian (see Chapter 1) and the operators Oi
satisfy the symmetries of the Standard Model. The SMEFT takes a bottom up
approach to new physics: we simply use the SM fields to construct all possible
operators that satisfy the appropriate symmetries (including baryon and lepton
number conservation), and parametrise their presence by their Wilson coefficient, ci.

The operators appearing in Eq. 2.3.1, Oi, are defined in the unbroken phase, i.e.
before electroweak symmetry breaking. Ignoring flavour structure, the number of
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independent operators needed to fully describe the allowed dimension-6 operator
space is 59, as first shown in Ref. [67]. This is a reduction from the previously
established number of 80 in Ref. [68]. The 59 operators are generally presented
in eight classes: X3, H6, H4D2, X2H2, ψ2H3, ψ2XH, ψ2H2D and ψ4. Here,
X = Ga

µν ,W
a
µν , Bµν is a gauge field strength tensor, H is the unbroken Higgs doublet,

ψ = q, u, d, l, e is a fermion field and D is the covariant derivative [69]. For the full
set of 59 operators, see Table 2.3. This basis is called the Warsaw basis and is the
basis we will use in Chapter 31. For three generations of fermions, one finds a total
of 2499 hermitian operators: 1350 CP-even and 1149 CP-odd [69].

As mentioned, the operators in the Warsaw basis are defined in the unbroken phase.
In phenomenological calculations we generally refer to the broken-phase or mass basis
interactions. Therefore, we must know how the Wilson coefficients of the unbroken
Warsaw operators contribute to the broken-phase interactions. Fortunately, this has
been done in meticulous detail for all relevant interactions in Ref. [72]. For a given
lower-energy observable, we can find the relevant mass-basis interactions and see how
their coupling strengths depend on the unbroken Warsaw Wilson coefficients. This
is done for hV V/hV ff̄ interactions in Chapter 3, where we use a parametrisation
known as the BSM primaries [73]. The move to the mass basis involves some
subtleties such as shifts to the Higgs doublet definitions. For discussions on these
subtleties, see for example Refs. [69,74,75].

A further complication arises if we want to compare experimentally measured Wilson
coefficients to those predicted by UV theories. As touched upon in Section 2.2.2, we
match the two theories at the new physics scale, Λ. However, any measurements
will generally be made at a far lower scale ∼ mh � Λ. Hence, we must evolve the
coefficients ci(Λ) at the matching scale down to the experimental scale using the
renormalisation group equations (RGEs),

µ
dci
dµ

= 1
16π2γijcj, (2.3.2)

where µ is the scale and γij is the anomalous dimension matrix, which measures the
extent to which the operators mix upon evolution: a diagonal anomalous dimension
matrix corresponds to no mixing. We thus expect evolution of the form,

ci(µ1) = ci(µ2)− 1
16π2γijcj(µ2) log

(
µ2

µ1

)
, (2.3.3)

for µ2 > µ1. The anomalous dimension matrix is generally non-diagonal and there-
fore the operators do mix upon evolution. For more information on the anomalous

1Other basis choices exist, such as the SILH basis [70] or the HISZ basis [71].
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dimension matrix in SMEFT, see Refs. [69, 76]. In our study of hV V/hV ff̄ inter-
actions we neglect RG running as our measurements only span an energy range of
approximately 500-1500 GeV. Due to the loop suppression factor and logarithmic
dependence, this corresponds to a negligible factor of (1/16π2) log(1.5) ≈ 2× 10−3.
Of course, any UV theory predictions for ci(Λ) will still need to be evolved down to
scales µ ∼ mh before making comparisons.

With collider searches and effective theories introduced, we now move on to their
implementation in constraining hV V/hV ff̄ interactions.
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1 : X3 2 : H6 3 : H4D2

OG fABCGAνµ GBρν GCµρ OH (H†H)3 OH� (H†H)�(H†H)

O
G̃

fABCG̃Aνµ GBρν GCµρ OHD
(
H†DµH

)∗ (
H†DµH

)
OW εIJKW Iν

µ W Jρ
ν WKµ

ρ

O
W̃

εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

4 : X2H2 6 : ψ2XH + h.c. 7 : ψ2H2D

OHG H†H GAµνG
Aµν OeW (l̄pσ

µνer)σ
IHW I

µν O(1)
HL (H†i←→D µH)(l̄pγ

µlr)

O
HG̃

H†H G̃AµνG
Aµν OeB (l̄pσ

µνer)HBµν O(3)
HL (H†i←→D I

µH)(l̄pσ
Iγµlr)

OHW H†HW I
µνW

Iµν OuG (q̄pσ
µνTAur)H̃ GAµν OHe (H†i←→D µH)(ēpγ

µer)

OHW̃ H†H W̃ I
µνW

Iµν OuW (q̄pσ
µνur)σ

IH̃ W I
µν O(1)

HQ (H†i←→D µH)(q̄pγ
µqr)

OHB H†H BµνB
µν OuB (q̄pσ

µνur)H̃ Bµν O(3)
HQ (H†i←→D I

µH)(q̄pσ
Iγµqr)

O
HB̃

H†H B̃µνB
µν OdG (q̄pσ

µνTAdr)H GAµν OHu (H†i←→D µH)(ūpγ
µur)

OHWB H†σIHW I
µνB

µν OdW (q̄pσ
µνdr)σ

IHW I
µν OHd (H†i←→D µH)(d̄pγ

µdr)

O
HW̃B

H†σIH W̃ I
µνB

µν OdB (q̄pσ
µνdr)H Bµν OHud + h.c. i(H̃†DµH)(ūpγ

µdr)

8 : (L̄L)(L̄L) 8 : (R̄R)(R̄R) 8 : (L̄L)(R̄R)

Oll (l̄pγµlr)(l̄sγ
µlt) Oee (ēpγµer)(ēsγ

µet) Ole (l̄pγµlr)(ēsγ
µet)

O(1)
qq (q̄pγµqr)(q̄sγ

µqt) Ouu (ūpγµur)(ūsγ
µut) Olu (l̄pγµlr)(ūsγ

µut)

O(3)
qq (q̄pγµσ

Iqr)(q̄sγ
µσIqt) Odd (d̄pγµdr)(d̄sγ

µdt) Old (l̄pγµlr)(d̄sγ
µdt)

O(1)
lq (l̄pγµlr)(q̄sγ

µqt) Oeu (ēpγµer)(ūsγ
µut) Oqe (q̄pγµqr)(ēsγ

µet)

O(3)
lq (l̄pγµσ

I lr)(q̄sγ
µσIqt) Oed (ēpγµer)(d̄sγ

µdt) O(1)
qu (q̄pγµqr)(ūsγ

µut)

O(1)
ud (ūpγµur)(d̄sγ

µdt) O(8)
qu (q̄pγµT

Aqr)(ūsγ
µTAut)

O(8)
ud (ūpγµT

Aur)(d̄sγ
µTAdt) O(1)

qd (q̄pγµqr)(d̄sγ
µdt)

O(8)
qd (q̄pγµT

Aqr)(d̄sγ
µTAdt)

5 : ψ2H3 + h.c. 8 : (L̄R)(R̄L) + h.c. 8 : (L̄R)(L̄R) + h.c.

OeH (H†H)(l̄perH) Oledq (l̄jper)(d̄sqtj) O(1)
quqd (q̄jpur)εjk(q̄

k
sdt)

OuH (H†H)(q̄purH̃) O(8)
quqd (q̄jpT

Aur)εjk(q̄
k
sT

Adt)

OdH = Oyd (H†H)(q̄pdrH) O(1)
lequ (l̄jper)εjk(q̄

k
sut)

O(3)
lequ (l̄jpσµνer)εjk(q̄

k
sσ

µνut)

Table 2.3: The Warsaw basis [67,69,74,75] consists of 59 independent
baryon-number-conserving dimension-6 operators. Each is
constructed from Standard Model fields and their derivatives.
The operators are presented in the notation of Ref. [77], with
the one exception that the operators are labelled with Oi
in place of the original Qi, to be consistent with internal
notation. The subscripts p, r, s, t are flavour indices, and
σI are Pauli matrices. Operators relevant to the study in
Chapter 3 are highlighted in blue.



Chapter 3

A Differential Analysis of the
SMEFT V h Mode

3.1 Introduction

The data being collected by the LHC is the first record of interactions of the Higgs
and other Standard Model (SM) particles at the sub-attometre (multi-TeV) scale.
As long as beyond SM (BSM) physics is significantly heavier than the mass of
electroweak particles, these interactions can be described in a model independent way
by the Standard Model Effective Field Theory (SMEFT) Lagrangian. The SMEFT
Lagrangian is thus a statement of the laws of nature at the most fundamental scale
ever probed. The measurement of (or constraints on) the SMEFT parameters [1,
67, 70,73,76,78–104] may well turn out to be the main legacy of the LHC after the
Higgs discovery.

It is thus of great importance to maximally exploit all the data that the LHC can
provide us. Constraining the SMEFT parameters can be a rather subtle task; it
is important to extract the full multi-dimensional differential information available
in a process. This is because the effect of new dimension-6 vertex structures is
often more pronounced in certain regions of phase space, the most common example
being the growth of EFT rates at high energies. In fact, for many processes, the
effect of certain vertices is lost completely unless we use a more complex differential
analysis. Consider, for example, the operators whose contributions do not interfere
with the SM amplitude at the inclusive level [105]. These operators can generate
large differential excesses [1, 106–109] in certain regions of the phase space, which
are cancelled by corresponding deficits in other regions. These effects are lost unless
a sophisticated study is carried out to isolate the appropriate phase space regions.
Sometimes, in order to resurrect these interference terms one must go even beyond
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differential distributions with respect to a single variable and use multidimensional
distributions. More generally, using the full differential information enlarges the
list of observables and lifts flat directions in EFT space that can otherwise remain
unconstrained. In order to optimally reconstruct the SMEFT Lagrangian, it is
thus essential to systematically and completely extract all the available differential
information.

Experimental measurements are often communicated via presenting only a few in-
tuitively chosen distributions. As such, there is a large reduction in differential
information. To estimate this, consider a three body final state where the phase
space in the centre of mass frame can be completely described by four variables:
an energy variable and three angles. For a given energy, taking for instance 10
bins for each of the angular variables results in 1000 units of data to capture the
entire information contained in this process, at this level of experimental precision.
However, often individual angles are analysed in isolation and the correlations con-
tained in the full set of data are projected onto only 30 units of data, i.e. 10 for
each angle, resulting in a loss of accessible information in the search for new physics
contributions.

Interestingly, for many important processes, the multi-differential data (i.e. the
1000 units of data in the above example) contain redundant information. We argue,
that with an understanding of the underlying theoretical structure of process, the
number of physical quantities required to completely characterise the full differential
distribution can be drastically reduced. We utilise the fact that for some of the most
important processes in Higgs and electroweak physics, the full angular distribution
at a given energy can be expressed as a sum of a fixed number of basis functions
(if we limit ourselves to a certain order in the EFT expansion). The reason for this
is that only a finite number of helicity amplitudes get corrections up to the given
EFT order, see for instance Ref. [110, 111]. Therefore, the coefficients of these basis
functions, the so-called angular moments [112–115], and their energy dependence,
contain the full differential information available in a process. The effect of EFT
operators on differential distributions can thus be summarised by their contribution
to these angular moments. That is to say, the angular moments can be used to
construct any possible differential distribution. As a result, an analysis utilising
these angular moments has the potential to reach maximal sensitivity in probing
EFT coefficients.

While similar approaches have been used for some isolated studies in Higgs and
flavour physics [106,113–120], we believe the suitability of these techniques in globally
constraining the SMEFT Lagrangian have not been sufficiently recognised.

These methods would complement other techniques that aim to employ a maximum-
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information approach, for example the matrix element method [121–124] or machine
learning techniques that have recently gained popularity [125–129]. One advantage of
this approach over other multivariate techniques is its more physical and transparent
nature. The angular moments described above can be directly related to physical
experimental quantities than the abstract neural network outputs used in machine
learning approaches. Another important distinction of the methods proposed here
from some multivariate approaches such as the matrix element method, is that the
extraction process of the angular moments is hypothesis-independent; for example it
is independent of any assumptions about whether electroweak symmetry is linearly
or non-linearly realised.

In this chapter we will show how these angular moments can be extracted and mapped
back to the EFT Lagrangian. While we will focus on Higgs-strahlung at the LHC as a
first example, this approach can be extended to all the important Higgs/electroweak
production and decay processes, namely weak boson fusion, Higgs decay to weak
bosons and diboson production. For the Higgs-strahlung process at the partonic
level there are 9 angular moments, although only a smaller number of these are
measurable at the LHC for our final states of interest. We will see that extracting all
the experimentally-available angular moments can simultaneously constrain all the
possible hV V ∗/hV ff (V ≡ Z/W±, ff ≡ ff̄/f f̄ ′) tensor structures. An essential
prerequisite for our methods to be applicable is that the final angular distributions
measured by the experiments should preserve, to a large extent, the initial theoretical
form of EFT signal governed by the angular moments. To truly establish the
usefulness of our methods, we therefore carry out a detailed and realistic collider
study. In particular we include differentially1 QCD NLO effects that can potentially
improve partonic contributions to the EFT signal, reducing scale uncertainties. Our
final results (see Section 3.6), despite these effects, show a marked improvement in
sensitivity compared to existing projections for most of the EFT couplings.

The chapter is divided as follows. In Section 3.2, we write the most general Lag-
rangian for the pp → V (``)h(bb̄) process at Dimension 6 in SMEFT and list the
relevant operators in the Warsaw basis. Section 3.3 is dedicated to deriving the most
general angular moments for the pp→ V h processes in the SMEFT. In Section 3.4,
we discuss the method of moments, which forms the backbone of this analysis. In Sec-
tion 3.5, we detail the collider studies that we undertake for the pp→ V h processes.
Finally, the results and conclusions are presented in Section 3.6.

1Refers to full NLO treatment rather than using a K-factor.



52 Chapter 3. A Differential Analysis of the SMEFT V h Mode

3.2 The pp→ V (``)h(bb̄) process in the
dimension 6 SMEFT

We want to study the process pp → V (``)h(bb̄) where `` denotes `+`−(`+ν, `−ν̄)
for V = Z (V = W±). The EFT corrections to pp → V (``)h(bb̄) are either due
to corrections to the V ff , hbb̄ and hV V/hZγ vertices1, or due to the new hV ff

contact terms. In the unitary gauge all these corrections are contained in the
following Lagrangian [73,130],

∆L6 ⊃δĝhWW

2m2
W

v
hW+µW−

µ + δĝhZZ
2m2

Z

v
h
ZµZµ

2 + δgWQ (W+
µ ūLγ

µdL + h.c.)

+δgWL (W+
µ ν̄Lγ

µeL + h.c.) + ghWL

h

v
(W+

µ ν̄Lγ
µeL + h.c.)

+ghWQ

h

v
(W+

µ ūLγ
µdL + h.c.) +

∑
f

δgZf Zµf̄γ
µf +

∑
f

ghZf
h

v
Zµf̄γ

µf

+κWW

h

v
W+µνW−

µν + κ̃WW

h

v
W+µνW̃−

µν + κZZ
h

2vZ
µνZµν

+κ̃ZZ
h

2vZ
µνZ̃µν + κZγ

h

v
AµνZµν + κ̃Zγ

h

v
AµνZ̃µν + δĝhbb̄

√
2mb

v
hbb̄, (3.2.1)

where for brevity we have only included the first generation for the couplings involving
W±, Z bosons, so that f = uL, dL, uR, dR, eL, eR, ν

e
L; and F = Q(L), the first

generation quark (lepton) doublet. We assume that the above Lagrangian is extended
to the other generations in such a way that the couplings δgZ,Wf and ghZf,Wf are
flavour diagonal and universal in the interaction basis. This allows us to impose
strong constraints on them [131, 132], as we are no longer required to distinguish
between the light quarks (u, d, s). It is well motivated theoretically and can be
obtained, for instance, by including the leading terms after imposing Minimal Flavour
Violation [133]). If we limit ourselves to only universal corrections, the contact terms
above must be replaced by hVµ∂νV

µν 2. The above parametrisation can be used
even for non-linearly-realised electroweak symmetry (see for example [134]). For
such a non-linearly-realised scenario, all the above couplings should be thought of
as independent.

If electroweak symmetry is linearly realised, the above vertices arise in the unit-
ary gauge from electroweak-invariant operators containing the Higgs doublet. For
instance, the operators of the Warsaw basis [67] in Table 3.1, give the following

1The hZγ vertex only exists at loop-level in the SM.
2Note that ∂µhVνV

µν is equivalent to this vertex and the hVµνV
µν vertices via integration by

parts.
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OH� = (H†H)�(H†H) O(3)
HL = iH†σa

↔
DµHL̄σ

aγµL

OHD = (H†DµH)∗(H†DµH) OHB = |H|2BµνB
µν

OHu = iH†
↔
DµHūRγ

µuR OHWB = H†σaHW a
µνB

µν

OHd = iH†
↔
DµHd̄Rγ

µdR OHW = |H|2WµνW
µν

OHe = iH†
↔
DµHēRγ

µeR OHB̃ = |H|2BµνB̃
µν

O(1)
HQ = iH†

↔
DµHQ̄γ

µQ OHW̃B = H†σaHW a
µνB̃

µν

O(3)
HQ = iH†σa

↔
DµHQ̄σ

aγµQ OHW̃ = |H|2W a
µνW̃

aµν

O(1)
HL = iH†

↔
DµHL̄γ

µL Oyb = |H|2(Q̄3HbR + h.c).

Table 3.1: Dimension-6 operators in the Warsaw basis that contribute
to the anomalous hV V ∗/hV f̄f couplings in Eq. 3.2.1. See
Table 2.3 for the full set of 59 Warsaw basis operators. Other
details regarding the notation can be found in [67].

contributions to these vertices,

δgWf = g√
2
v2

Λ2 c
(3)
HF + δm2

Z

m2
Z

√
2gc2

θW

4s2
θW

,

ghWf =
√

2g v
2

Λ2 c
(3)
HF ,

δĝhWW = v2

Λ2

(
cH� −

cHD
4

)
,

κWW =2v2

Λ2 cHW ,

κ̃WW =2v2

Λ2 cHW̃ ,

δgZf =−
gYfsθW
c2
θW

v2

Λ2 cWB −
g

cθW

v2

Λ2 (|T f3 |c
(1)
HF − T

f
3 c

(3)
HF + (1/2− |T f3 |)cHf )

+ δm2
Z

m2
Z

g

2cθW s
2
θW

(T3c
2
θW

+ Yfs
2
θW

),

δĝhZZ = v2

Λ2

(
cH� + cHD

4

)
,

ghZf =− 2g
cθW

v2

Λ2 (|T f3 |c
(1)
HF − T

f
3 c

(3)
HF + (1/2− |T f3 |)cHf ),

κZZ =2v2

Λ2 (c2
θW
cHW + s2

θW
cHB + sθW cθW cHWB),

κ̃ZZ =2v2

Λ2 (c2
θW
cHW̃ + s2

θW
cHB̃ + sθW cθW cHW̃B),
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κZγ = v2

Λ2 (2cθW sθW (cHW − cHB) + (s2
θW
− c2

θW
)cHWB),

κ̃Zγ = v2

Λ2 (2cθW sθW (cHW̃ − cHB̃) + (s2
θW
− c2

θW
)cHW̃B),

δĝhbb̄ =− v2

Λ2
v√
2mb

cyb + v2

Λ2 (cH� −
cHD

4 ), (3.2.2)

where we have used (mW ,mZ , αem,mb) as our input parameters. In the equations
for δgW,Zf above, the term,

δm2
Z

m2
Z

= v2

Λ2 (2tθW cWB + cHD
2 ), (3.2.3)

makes explicit the contribution to the shift in the input parameter, mZ , due to the
above operators.

The pp → W±(`ν)h(bb̄) process directly constrains the couplings δĝhWW , κWW and
ghWQ, whereas the pp→ Z(l+l−)h(bb̄) process constrains the couplings δĝhZZ , a linear
combination of κZZ and κZγ, and the following linear combination of the contact
terms [101],

ghZp = ghZuL − 0.76 ghZdL − 0.45 ghZuR + 0.14 ghZdR . (3.2.4)

This linear combination arises by summing over the polarisations of the initial quarks
as well as including the possibility of both up and down-type initial-state quarks,
weighted by their respective PDF luminosities. For example, the lower value PDF
for the down quark in the proton is reflected in the lower contribution of ghZdL in the
linear combination versus ghZuL . The precise linear combination changes very little
with energy.

For the case of linearly-realised electroweak symmetry, the CP -even couplings in-
volved in W±h production can be correlated to those involved in Zh production,
as the same set of operators in Table 3.1 generate all the anomalous couplings (see
Eq. 3.2.2). To derive these correlations, we can trade the 13 CP -even Wilson coef-
ficients above for the 13 independent (pseudo-)observables δĝhbb̄, δg

Z
f (7 couplings),

ghWQ, δĝhWW , κWW , κZγ and κγγ, the coefficient of h
2vAµνA

µν 1. This can be done
using the expressions in Eq. 3.2.2 and the corresponding expression for κγγ,

κγγ = 2v2

Λ2 (s2
θW
cHW + c2

θW
cHB − sθW cθW cHWB). (3.2.5)

Since we have more coupling equations than Wilson coefficients, the rest of the
1This analysis is in the spirit of Ref. [73] but with a different choice of primary/independent

observables. Indeed, we include in our list the anomalous Higgs couplings, ghWQ and κZZ , rather
than the anomalous triple gauge couplings (TGC) δκγ and δgZ1 . As we will see, the bounds on the
anomalous Higgs couplings are comparable or better than those expected for the TGCs.
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anomalous couplings can then be expressed as functions of these independent ones;
for example we obtain,

δĝhZZ =δĝhWW −
(
κWW − κγγ − κZγ

cθW
sθW

)
s2
θW

c2
θW

+
(√

2cθW (δgZuL − δg
Z
dL

)− ghWQ

) s2
θW√

2gc2
θW

,

κZZ = 1
c2
θW

(κWW − 2cθW sθWκZγ − s
2
θW
κγγ) . (3.2.6)

Some of the couplings on the right-hand side of the above equations can be measured
extremely precisely. For instance, the two couplings, κZγ and κγγ, can be bounded
very strongly (below per-mille level) by measuring the h → γγ/γZ branching ra-
tios [76, 131] 1. In addition, the Z-coupling deviations, δgZf , are constrained at the
per-mille level by LEP data [132]. As we will see later, studying W±h production at
high energies would allow us to constrain ghWQ at the per-mille level. On the other
hand, the couplings κV V and δĝhV V can be constrained at most at the 1-10% level.
Thus, one can safely ignore the strongly-constrained couplings to obtain the direct
relationships,

δĝhZZ ≈ δĝhWW −
s2
θW

c2
θW

κWW ,

κZZ ≈
κWW

c2
θW

, (3.2.7)

which hold up to a very good approximation. We will utilise these relationships in
order to combine our results from W±h and Zh modes to obtain our final bounds
on the CP -even vertices.
As well as the CP -even couplings there are four CP -odd couplings, including those
corresponding to h

2vAµνÃ
µν and h

2vAµνZ̃
µν . The latter two couplings are, however,

not precisely measurable as in the CP -even case 2. Thus an analogue of the above
procedure to correlate κ̃WW and κ̃ZZ is not possible.
Finally, we have the correlation,

ghZf =2δgZf +
2gYf t2θW
cθW

(
κWW − κγγ − κZγ

cθW
sθW

)

−
(

2(δgZuL − δg
Z
dL

)−
√

2
cθW

ghWQ

)
(T3 + Yf t

2
θW

), (3.2.8)

1This might seem surprising, as the branching ratios themselves are not constrained at this
level. Recall, however, that the SM h→ γγ/γZ rates are loop suppressed, so that even an O(10%)
uncertainty in the branching ratios translate to per-mille level bounds on these couplings.

2The CP odd interactions won’t interfere with the SM interactions and so won’t show in rate
information.
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Beam Axis

Plane of pp-Vh
Plane of V-ll

In Vh CoM
In ll CoM

Figure 3.1: Diagram showing the angles that can completely charac-
terise our final state. Note the use of two different frames
of reference: the CoM frame of the V h system (in which ϕ
and Θ are defined) and the CoM frame of V (in which θ
is defined). The Cartesian axes {x, y, z} are defined by the
V h centre-of-mass frame, with z identified as the direction
of the V -boson; y identified as the normal to the plane of
V and the beam axis; x defined so that it completes the
right-handed set.

which can also be translated to a correlation between the coupling ghZp in Eq. 3.2.4
and those in the right-hand side above.

The operators in Table 3.1 also contribute to anomalous Triple Gauge Couplings
(TGCs) as follows,

δgZ1 = 1
2s2

θW

δm2
Z

m2
Z

,

δκγ = 1
tθW

v2

Λ2 cHWB , (3.2.9)

where δgZ1 and δκγ appear in the dimension-six Lagrangian as,

∆L6 ⊃ igδgZ1 cθW [Zµ(W+νW−
µν −W−νW+

µν) + ZµνW+
µ W

−
ν ]

+ igδκγsθW (Aµν − tθWZ
µν)W+

µ W
−
ν , (3.2.10)
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and we have used the correlation δκZ = δgZ1 − t2θW δκγ , which holds at the dimension-
six level [76,135]. Using the above equations together with Eq. 3.2.2 and Eq. 3.2.5
we can obtain the following correlations between the TGCs and the Higgs couplings
to gauge bosons,

ghWQ =
√

2cθW
(
δgZuL − δg

Z
dL
− gcθW δg

Z
1

)
, (3.2.11)

κWW =δκγ + κγγ + κZγ
cθW
sθW

. (3.2.12)

While Wh production at high energies constrains ghWQ, the linear combination in
the right-hand side of Eq. 3.2.11 is precisely the EFT direction constrained by
high-energy WZ production. This connection between Wh and WZ production is
a consequence of the Goldstone boson equivalence theorem (see Section 1.2.1) as
explained in Ref. [136]. In Section 3.6.2 we will use the above relations to compare
our bounds with TGC bounds obtained from double gauge boson production.
With the relevant modified and new vertices discussed we move to calculating the
matrix element for the process and decompose the resulting expression into angular
observables.

3.3 Decomposition into angular observables

In this section we come to the central topic of this work and discuss how the
full angular distributions in the pp → V (``)h(bb̄) processes, at a given energy,
can be expressed in terms of a finite number of basis functions, both in the SM
and Dimension-6 (D6) SMEFT. The corresponding coefficients of these functions
are the so-called angular moments for these processes. We start at the level of
ff → V (``)h(bb̄) and then discuss the experimental subtleties that arise in the
extraction of these angular moments for pp→ W±(`ν)h(bb̄) and pp→ Z(`+`−)h(bb̄).
In our analysis, we will require the two b-jets arising from the Higgs decay to form a
fat jet. As such, we will effectively consider the three-body final state of two leptons
and the fat jet in this section.

3.3.1 Angular moments at the ff → V h level

The helicity amplitude formalism is the most convenient way to arrive at the full
angular and energy dependence of the ff → V (``)h(bb̄) amplitude. Starting at the
2→2 level, f(σ)f̄(−σ)→ V h, these helicity amplitudes are given by,

Mλ=±
σ = σ

1 + σλ cos Θ√
2

GV

mV√
ŝ

1 +
(
ghV f

gVf
+ κ̂V V − iλˆ̃κV V

)
ŝ

2m2
V

,
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Mλ=0
σ = −sin Θ

2 GV

1 + δĝhV V + 2κ̂V V + δgZf + ghV f

gVf

(
−1

2 + ŝ

2m2
V

), (3.3.1)

where,

κ̂WW =κWW ,

κ̂ZZ =κZZ + Qfe

gZf
κZγ,

ˆ̃κZZ =κ̃ZZ + Qfe

gZf
κ̃Zγ, (3.3.2)

and GZ,W = gg
Z
f

cθW
, g

2
√

2 . The helicities of the Z-boson and initial-state fermions are
λ = ±1 and σ = ±1, respectively; gZf = g(T f3 − Qfs

2
θW

)/cθW and gWf = g/
√

2;
√
ŝ

is the partonic centre-of-mass energy. The above expressions hold both for quark
and leptonic initial states. In Eq. 3.3.1 above, we have kept only the terms with
leading powers of

√
ŝ/mV both for the SM and D6 SMEFT (the subdominant terms

are smaller by, at least, factors of m2
V /ŝ). We have, however, retained the next-to-

leading EFT contribution for the λ = 0 mode, as an exception, in order to keep
the leading effect amongst the terms proportional to δĝhV V . The full expressions for
the helicity amplitudes including the SMEFT corrections can be found in Ref. [137].
The above expressions assume that the momentum of the initial fermion, f , is in the
positive z-direction of the lab frame. The expressions for the case where the anti-
fermion, f̄ , has momentum in the positive z-direction can be obtained by making the
replacement σ → −σ. Note that we have not included the effect of a V ff coupling
deviation (δgVf in Eq. 3.2.1). This effect will be incorporated at the end of this
section.

It is worth emphasising that for both the SM and D6 SMEFT, only contributions up
to the J = 1 helicity amplitude appear. For the SM, this is because the ff → V h

process is mediated by a spin-1 gauge boson. For the D6 SMEFT, in addition to
diagrams with spin-1 exchange, there is also the contribution from the contact term
in Eq. 3.2.1. This contact term is exactly the vertex that would arise by integrating
out a heavy spin-1 particle. Therefore, even in the D6 SMEFT, only contributions
up to J = 1 exist. This will no longer be true at higher orders in the EFT expansion,
where higher-J amplitudes will also get contributions.

At the 2→ 3 level, the amplitude can be most conveniently written in terms of ϕ and
θ, the azimuthal and polar angle of a leptonic daughter particle of the gauge boson,
V , in the V rest frame as defined in Fig. 3.1. For consistency, this daughter particle
is chosen to be the negatively-charged lepton for V = W−, Z and the neutrino for
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V = W+. Under these definitions, the amplitude reads,

A(ŝ,Θ, θ, ϕ) = −ig
V
`

ΓV
∑
λ

Mλ
σ(ŝ,Θ)dJ=1

λ,1 (θ)eiλϕ̂, (3.3.3)

where gV` is defined below Eq. 3.3.1, ΓV is the V -width, and dJ=1
λ,1 (θ̂) are the Wigner

functions,
dJ=1
±1,1 = τ

1± τ cos θ√
2

, dJ=1
0,1 = sin θ, (3.3.4)

with lepton helicity τ . We have assumed a SM amplitude for the V -decay; modific-
ations due to a V `` coupling deviation will be included at the end of this section.
For V = W±, we always have τ = −1. We can now obtain the squared amplitude
with the full angular dependence using Eqs. 3.3.1 to 3.3.4,

∑
τ

|A(ŝ,Θ, θ, ϕ)|2 =
∑
i

ai(ŝ)fi(Θ, θ, ϕ) , (3.3.5)

where we have summed over the final-lepton helicity. The nine functions, fi(Θ, θ, ϕ),
are obtained by squaring the sum of the three helicity amplitudes in the right-hand
side of Eq. 3.3.3, see also [103,138,139]. Explicitly, these are,

fLL =S2
ΘS

2
θ ,

f 1
TT =CΘCθ,

f 2
TT =(1 + C2

Θ)(1 + C2
θ ),

f 1
LT =CϕSΘSθ,

f 2
LT =CϕSΘSθCΘCθ,

f̃ 1
LT =SϕSΘSθ,

f̃ 2
LT =SϕSΘSθCΘCθ,

fTT ′ =C2ϕS
2
ΘS

2
θ ,

f̃TT ′ =S2ϕS
2
ΘS

2
θ , (3.3.6)

where Sα = sinα, Cα = cosα. The subscripts of the above functions denote the V -
polarisation of the two interfering amplitudes, with TT ′ denoting the interference of
two transverse amplitudes with opposite polarisations. The corresponding coefficients
ai are the so-called angular moments for this process, which completely characterise
the multidimensional angular dependence of this process at a given energy, ŝ. The
expressions for these angular moments in terms of the vertex couplings in Eq. 3.2.1
are given in Table 3.2. Note the factor,

εVRL =
(gVlR)2 − (gVlL)2

(gVlR)2 + (gVlL)2 , (3.3.7)
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where V = Z,W±, which arises in some moments from the sum over final lepton
helicity, τ , in Eq. 3.3.5.

It is worth emphasising an important conceptual point here. The cross-helicity
moment functions, i.e. the last six functions in Eq. 3.3.6, integrate to zero over
the full phase space of the V -decay products. This is to be expected, as the two
amplitudes corresponding to different helicities, at the level of the V -boson, cannot
interfere. If we look at the phase space of the decay products differentially, however,
the corresponding angular moments carry very useful information. For example, one
can verify from Table 3.2, that the leading contribution of the κZZ (κ̃ZZ) coupling is
to the moment a2

LT (ã2
LT ). As pointed out in Ref. [1], this effect can only be recovered

if we study the triple differential with respect to all three angles, i.e. an integration
over any of the three angles makes the basis functions f 2

LT and f̃ 2
LT vanish. This is

an example of an ‘interference resurrection’ study, see also Refs. [106–109], where
interference terms absent at the inclusive level are ‘recovered’ by analysing the phase
space of the decay products differentially.

It is possible that not all of these angular moments will be relevant or observable for a
given initial and final state. Before considering in detail the case of the pp→ V (ll)h
process, let us briefly comment on which of these angular moments are accessible
to lepton colliders. For the e+e− → Z(`+`−)h process in lepton colliders, all nine
angular moments can be measured1. However, three of them, namely a1

TT , a1
LT and

ã1
LT , are suppressed by the factor of |εZRL| = 0.16, which is accidentally small due to

the numerical closeness of the couplings gZlL and gZlR .

3.3.2 Angular moments for the pp→ Z(``)h(bb̄) process

Our process of interest requires an initial quark-antiquark pair, qq̄′. For the Zh
mode, q = q′. The first thing to note about the LHC is that the direction of the
quark, q, is not always in the same direction in the lab frame. The expressions in
Table 3.2 are for the case where the quark moves in the positive z-direction. For
the other case, where the momentum of the antiquark, q̄, is in the z-direction, as
stated below Eq. 3.3.3, one can obtain the corresponding expressions for the angular
moments by making the substitution σ → −σ. The angular moments a1

TT , a1
LT and

ã1
LT thus vanish once we average over both these possibilities.

We are therefore left with six moments. At high energy, aLL dominates over all other
moments in the SM, as it is the only term independent of γ =

√
ŝ/(2mV ); all other

1In Section 3.3.2 we see that ignorance over which of the initial partons, q and q̄, is moving in
the positive z direction leads to some moments averaging to zero. Knowledge of the e+ and e−
directions at lepton colliders could reduce this cancellation.
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aLL
G2
V
4

[
1 + 2δĝhV V + 4κ̂V V + 2δgVf + g

h
V f

g
V
f

(−1 + 4γ2)
]

a1
TT

G2
V σε

V
RL

2γ2

[
1 + 4

(
g
h
V f

g
V
f

+ κ̂V V

)
γ2
]

a2
TT

G2
V

8γ2

[
1 + 4

(
g
h
V f

g
V
f

+ κ̂V V

)
γ2
]

a1
LT −G

2
V σε

V
RL

2γ

[
1 + 2

(2ghV f
g
V
f

+ κ̂V V
)
γ2
]

a2
LT −G

2
V

2γ

[
1 + 2

(2ghV f
g
V
f

+ κ̂V V
)
γ2
]

ã1
LT −G2

V σε
V
RL

ˆ̃κV V γ

ã2
LT −G2

V
ˆ̃κV V γ

aTT ′
G2
V

8γ2

[
1 + 4

(
g
h
V f

g
V
f

+ ˆκV V
)
γ2
]

ãTT ′
G2
V
2

ˆ̃κV V

Table 3.2: Expressions for the angular moments as a function of the
different anomalous couplings in Eq. 3.2.1 up to linear order.
Contributions subdominant in γ =

√
ŝ/(2mV ) are neglected,

with the exception of the next-to-leading EFT contribution
to aLL, which has been retained in order to keep the leading
effect of the δĝhV V term. The factor εVRL is defined in text and
GV = ggVf

√
(gVlL)2 + (gVlR)2/(cθWΓV ), ΓV being the V -width.

The SM part of our results can also be found in [140].

SM terms go as γ−1 or γ−2. The largest BSM contribution at high energies is also to
aLL, from the linear combination ghZp (see Eq. 3.2.4) that arises from averaging over
the initial-state flavour and polarisation [101]. The contribution due to ghZp grows
quadratically with energy and this coupling can thus be measured very precisely, as
we will see in Section 3.6. This was also discussed in detail in Ref. [101].

Once ghZp has been precisely measured, we can use the remaining information in the
angular moments to constrain the coupling δĝhZZ and the linear combinations,

κp
ZZ =κZZ + 0.3 κZγ
κ̃p
ZZ =κ̃ZZ + 0.3 κ̃Zγ , (3.3.8)

that enter, respectively, the CP -even and odd angular moments at the pp →
Z(``)h(bb̄) level. The coefficient of κZγ and κ̃Zγ above arise by appropriately av-
eraging Eq. 3.3.2 over the initial-state flavours and polarisations. Recall, however,
that there is a very strong bound on κZγ (see Section 3.2) so that the above linear
combination effectively reduces to only κZZ to a very good approximation.

Consider now the angular moment a2
TT and the contribution to aLL sub-dominant
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Figure 3.2: (a) Weighted ϕ-distributions for two different Monte-Carlo
samples for the Zh mode with the EFT couplings, κZZ
and κ̃ZZ , respectively, turned on. The events used include
showering and hadronisation and are those passing all se-
lection cuts (see Section 3.5 for details). To show the effect
of the angular moments a1

LT and ã1
LT , we take the weight of

each event to be the sign of sin(2θ) sin(2Θ). We then show
the histogram with respect to ϕ and obtain the expected
shapes for the two samples; (b) Regular ϕ-distributions for
a Monte-Carlo sample for the Wh mode with a non-zero
value for the EFT coupling κWW . We see the effect of
the angular moment aTT ′ , the only angular moment that
survives after integrating over θ and Θ, and averaging over
the two solutions. Again, the events used are those passing
all cuts. The angular moment ã1

LT can also be extracted in
Wh production but its effect can only be seen in a weighted
distribution like in (a).
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in γ, which is unconstrained even after the strong bound on ghZp. First of all, the
total rate of the pp→ Z(l+l−)h(bb̄) process depends only on the two moments aLL
and a2

TT as all other non-vanishing moments are coefficients of cross-helicity terms
that vanish upon integration over ϕ, see Eq. 3.3.6. The rate itself can constrain a
linear combination of δĝhZZ and κp

ZZ . Additionally, these two moments also carry the
information of the joint distribution of the events with respect to (θ,Θ), which, along
with the total rate, can in principle be used to constrain δĝhZZ and κp

ZZ simultaneously.
We find in our final analysis, however, that the joint (θ,Θ) distribution in the events
surviving our cuts is not very effective in simultaneously constraining these couplings.
The main reason for this is that the Θ-distribution gets distorted with respect to
the original theoretical form due to the experimental cuts necessary for our boosted
Higgs analysis. In particular, we require phT > 150 GeV, which eliminates forward
events. Another effect that could further distort the distribution is radiation of hard
jets1. As θ and Θ appear in a correlated way in the amplitude, these effects also
deform the θ-distribution, but to a smaller extent. For this reason, as discussed in
Section 3.4.2, we will isolate aLL and a2

TT using only the θ-distribution in our final
analysis, in order to obtain better bounds.

Much more reliable are the ϕ distributions, which preserve their original shape to
a large extent. Consider, for example, the moments a2

LT and ã2
LT , which contribute

terms to the square amplitude,
∑
τ

|A(ŝ,Θ, θ, ϕ)|2 ⊃ 1
4a

2
LT sin(2θ) sin(2Θ) cos(ϕ) + 1

4 ã
2
LT sin(2θ) sin(2Θ) sin(ϕ).

(3.3.9)

In Fig. 3.2a we show the ϕ distributions corresponding to a sample in which these
two moments are enhanced, for events that include the effect of jet radiation and pass
all experimental cuts to be described in Section 3.5. By multiplying event weights
by the sign of sin(2θ) sin(2Θ) we recover the expected sinusoidal and cosinusoidal
ϕ-dependences despite all these effects.

The information for the ϕ-dependence is carried by the angular moments a2
LT and aTT ′

in the CP -even case, which can be measured to constrain the linear combination
κp
ZZ , assuming again that ghV f is already precisely constrained. Among these, as

identified in Ref. [1], the leading contribution is from a2
LT , as it is larger relative to

aTT ′ by a factor of γ, see Table 3.2. This moment provides the strongest bound on
the linear combination κp

ZZ in our analysis but can only be accessed by looking at

1This could have the effect of changing the kinematics from 2→ 2 to 3→ 2 or so on. If required,
this effect can be mended by applying an active boost of the HZ system to be on the collision axis,
or by requiring that the transverse momentum of all the final-state particles, excluding additional
jets, is small compared to the hard scale of the event. The latter is preferable compared to a jet
veto as it avoids jet reconstruction uncertainties [136].
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the joint distribution of (θ,Θ, ϕ). A standard analysis that integrates over any of
these three angles would miss this effect completely.

Finally the CP -odd coupling, κ̃p
ZZ , cannot be constrained without using ϕ informa-

tion contained in ã2
LT and ãTT ′ . Again, the leading effect contained in ã2

LT is highly
non-trivial and can only be accessed by utilising the triple differential distribution
with respect to (θ,Θ, ϕ).

Before moving to the next subsection, we would like to comment that the distortion
of the distribution due to experimental cuts and jet radiation does not invalidate our
analysis. That is to say, while these effects perhaps reduce our sensitivity compared
to the idealised case, as we will discuss later, these effects will already be factored
into our uncertainty estimates. Moreover, our final analysis does not depend too
much on the precise shape of the Θ-distribution, as we rely more on the θ and
especially ϕ distributions.

3.3.3 Angular moments for the pp→W (``)h(bb̄) process

Much of the discussion in the previous section is also relevant here. Once again,
averaging over the initial quark-antiquark direction causes the angular moments a1

TT ,
a1
LT and ã1

LT to vanish. The high-energy amplitude is again dominated by aLL both
in the SM and EFT. In the EFT case, the contribution from ghWQ can be strongly
constrained due to its quadratic growth. The discussion about the distortion of the
Θ-distributions and its effect on extracting the moments aLL and a2

TT also holds for
this case.

The main difference from pp → Z(``)h(bb̄) arises in the ϕ-distributions. A com-
plication arises from the fact that the neutrino four momentum is experimentally
inaccessible. Imposing energy and momentum conservation and assuming an on-shell
W -boson yields two possible solutions for the neutrino four momentum, i.e. two
solutions for the z-component of the neutrino momentum in the lab frame, the pT
being equal for both solutions (see Appendix A.1 for a brief derivation). While Θ, θ
and the final-state invariant mass converge for the two solutions, especially at high
energies [108], the values of ϕ for the two solutions do not converge, and in fact are
related to each other as ϕ2 = π − ϕ1 to a very good approximation. In our analysis,
we average over Θ, θ and the final-state invariant mass, but keep both ϕ solutions
with equal weight. This has the consequence that the functions cosϕ and sin 2ϕ
vanish when averaged over these two possibilities, resulting in the vanishing of the
moments a1

LT , a2
LT and ãTT ′ (see Eq. 3.3.6).

In Figs. 3.3a to 3.3c we show, for the three angles, a scatter plot between the true and
reconstructed values obtained after our collider analysis described in Section 3.5. For
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(a)

(b)

(c)

Figure 3.3: In the W±(lν)h(bb̄) process, the ambiguity in the z mo-
mentum of the neutrino leads to two possible values of
each of the three angles. Plots (a) and (b) above show the
scatter plot for the mean of the solutions for Θ and θ vs
the true value. Plot (c) includes two solutions for ϕ (shown
in red and blue) in a scatter plot vs the true value.
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Θ and θ, we use for the reconstructed value the mean of the two solutions, whereas
for ϕ, we populate the scatter plot with both solutions. It is clear from Fig. 3.3c that
we have ϕ1 + ϕ2 = π to a very good approximation. While Figs. 3.3a to 3.3c show
that the angles can be reconstructed quite well, the procedure is not exact, as we
have assumed that the W boson is on-shell and did not properly take into account
radiation of additional hard jets. In fact, for some rare events the virtuality of the
W -boson is so high that no real solutions exist for the neutrino pz, if we assume an
on-shell W -boson; we neglect such events in our analysis.

In Fig. 3.2b we show the ϕ-distribution for EFT events that finally survive the
collider analysis discussed in Section 3.5. We again see the expected cos(2ϕ) shape
corresponding to aTT ′ , which is the only moment that survives integration over
the other two angles and averaging over the two solutions (see also Ref. [141]).
The difference in the true and reconstructed distributions at ϕ = ±π/2 is related
to fact that we discard events where the neutrino four momentum solutions are
complex [108].

So far we have not considered the effect of V ff , V ll and hbb coupling deviations
due to D6 operators. All these coupling deviations are like δĝhV V in Eq. 3.2.1, in that
they simply rescale the SM coupling and thus all SM distributions. Their effect can
therefore be incorporated by making the replacement in Table 3.2 and elsewhere,

δĝhV V → δĝhV V + δĝhbb + 2δgVf
gVf

+ 2δgVl
gVl

. (3.3.10)

Of the above couplings, while the δgVf,l couplings are very precisely constrained to
be close to zero1, the effect of δĝhbb cannot be ignored.

3.4 Method of angular moments

3.4.1 Basic idea

As we have seen in Section 3.3, the squared amplitudes for our processes can be
decomposed into a set of angular structures, fi(Θ, θ, ϕ), whose contributions are
parametrised by the associated coefficients, the so-called angular moments, ai. We
would like to extract these coefficients in a way that best takes advantage of all the
available angular information. In principle, this can be done by a full likelihood
fit, but here we use the method of moments [112, 114, 115]. This method has its
advantages – especially if the number of events is not too large [115]. This method

1These constraints come from W,Z decays.
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involves the use of an analogue of Fourier analysis to extract the angular moments.
Essentially, we look for weight functions, wi(Θ, θ, ϕ), that can uniquely extract the
coefficients, ai, i.e.,

π∫
0

dθ

π∫
0

dΘ
2π∫
0

dϕ
∑
i

(aifi)wj sin θ sin Θ = aj,

⇒
π∫

0

dθ

π∫
0

dΘ
2π∫
0

dϕfiwj sin θ sin Θ = δij. (3.4.1)

Assuming that the weight functions are linear combinations of the original basis
functions,

wi = λijfj, (3.4.2)

we can use Eq. 3.4.1 to show that the matrix λij = M−1
ij , where,

Mij =
π∫

0

dθ

π∫
0

dΘ
2π∫
0

dϕfifj sin θ sin Θ. (3.4.3)

For the set of basis functions in Eq. 3.3.6, the resulting matrix is given by,

M =



512π
225 0 128π

25 0 0 0 0 0 0
0 8π

9 0 0 0 0 0 0 0
128π
25 0 6272π

225 0 0 0 0 0 0
0 0 0 16π

9 0 0 0 0 0
0 0 0 0 16π

225 0 0 0 0
0 0 0 0 0 16π

9 0 0 0
0 0 0 0 0 0 16π

225 0 0
0 0 0 0 0 0 0 256π

225 0
0 0 0 0 0 0 0 0 256π

225



, (3.4.4)

where we have organised the basis functions in the order in which they appear in
Eq. 3.3.6.

It is convenient to go to a basis such that Mij and thus its inverse λij, are diagonal.
This can be achieved by an orthogonal rotation,

f̂1 = cos βfLL − sin βf 2
TT ,

f̂3 = sin βfLL + cos βf 2
TT , (3.4.5)

by an angle,
tan β = −1

2(5 +
√

29). (3.4.6)

In the new fully-orthogonal basis, ~̂f = {f̂1, f
1
TT , f̂3, f

1
LT , f

2
LT , f̃

1
LT , f̃

2
LT , f8, f9}, the
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rotated matrix M → M̂ reads,

M̂ = diag
(64π

225 ξ+,
8π
9 ,

64π
225 ξ−,

16π
9 ,

16π
225 ,

16π
9 ,

16π
225 ,

256π
225 ,

256π
225

)
, (3.4.7)

with ξ± = (53± 9
√

29). This is the matrix λ̂−1
ij , so that the weight functions in the

rotated basis are,
wi = M̂−1

ij fj. (3.4.8)

We are now able to convolute our event distributions with these weight functions to
extract values for the coefficients, âi, in the new basis, which can then be rotated
back if we are interested in the moments in the original basis.

3.4.2 Alternative weight functions for aLL and a2
TT

The above algorithm to extract the moments systematically generates the set of
weight functions, but this set is not unique. For instance, a function proportional
to cos 2ϕ can also be the weight function for fTT ′ . As we mentioned in Section 3.3,
the Θ distribution suffers distortions to its original shape due to experimental cuts
and other effects. For this reason, the extraction of aLL and a2

TT using the weight
functions derived above does not give optimal results. To avoid this, we can use
weight functions only involving θ to extract these two moments.

Let us integrate Eq. 3.3.5 over the Θ and ϕ to keep only the θ dependence,∫
dϕdΘ sin Θ

∑
τ

|A(ŝ,Θ, θ, ϕ)|2 = a′LLf
′
LL(θ) + a2′

TTf
2′
TT (θ)

= a′LL sin2 θ + a2′
TT (1 + cos2 θ), (3.4.9)

where a′LL and a2′
TT are related to the original moments aLL and a2

TT as follows,

a′LL = 8π
3 aLL, a2′

TT = 16π
3 a2

TT . (3.4.10)

Now, following the steps in Section 3.4.1, we carry out a rotation,

f̂ ′1 = cos β′f ′LL − sin β′f 2′
TT ,

f̂ ′3 = sin β′f ′LL + cos β′f 2′
TT , (3.4.11)

to diagonalise the matrix in Eq. 3.4.3. In this case, the angle of rotation is given by
tan β′ = 1. In this basis, the weight functions are proportional to f̂ ′1 and f̂ ′3, given
by,

ŵ′1(θ) = f̂ ′1(θ)3(
√

61− 9)
16 ,
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ŵ′3(θ) = f̂ ′3(θ)3(
√

61 + 9)
16 . (3.4.12)

Convoluting the observed distribution with these weight functions yields â′1 and
â′3, which can be rotated back to give a′LL and â2′

TT and finally aLL and â2
TT using

Eq. 3.4.10. Using these alternative weight functions is equivalent to using only the
information in the θ-distribution to extract these two moments and ignoring the
distorted Θ distribution. This will improve the final bounds we obtain in Section 3.6.

For clarity, we denote the final set of weight functions by Wi,

~W = {ŵ′1, w2, ŵ
′
3, w4, w5, w6, w7, w8, w9}. (3.4.13)

In other words, the first and third weight functions have been integrated (such that
they only depend on θ) and rotated, as described above; the remaining seven weight
functions are unchanged from those defined in Eq. 3.4.8.

3.4.3 Extraction of angular moments and uncertainty
estimate

For our simulated samples, which are generated following the procedure detailed in
Section 3.5, the convolution in Eq. 3.4.1 becomes a simple summation over all the
events in our sample,

αi(M) = N̂

N

N∑
n=1

Wi(Θn, θn, ϕn) . (3.4.14)

In order to also take energy dependence into account, we have split the events into
bins of the final-state invariant mass, with M being the central value of a given
bin. Here, N = N(M) is the number of Monte-Carlo events in the sample and
N̂ = N̂(M) the actual number of events expected, both in the particular invariant-
mass bin for a given integrated luminosity. Note that, as such, the set αi in Eq. 3.4.14
is proportional to the set {â′LL, a1

TT , â
2′
TT , a

1
LT , a

2
LT , ã

1
LT , ã

2
LT , aTT ′ , ãTT ′}, normalised

such that ∑i αif̂i now yields the distribution of the actual number of events expected
at a certain integrated luminosity and not the squared amplitude integrated over
the full phase space as in Eq. 3.3.5. For a sufficiently-large number of events, N , the
weight functions, Wi, converge to a multivariate Gaussian distribution with a mean
and covariance matrix given by,

W̄i = 1
N

N∑
n=1

Wi(Θn, θn, ϕn) ,

σij = 1
N − 1

N∑
n=1

[
Wi − W̄i

] [
Wj − W̄j

]
. (3.4.15)
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We find that if we keep increasing N , as soon as it is large enough (say 100), the W̄i

and σij approach fixed values. In the orthonormal basis, involving the functions f̂i,
we find a covariance matrix that is nearly diagonal.

Assuming a diagonal covariance matrix, the angular moments in the orthonormal
basis converge to Gaussians with mean and standard deviation given by,

αi ± δαi = N̂W̄i ±
√
N̂σii . (3.4.16)

As a cross-check, we also computed the second term above, δαi, by splitting our
Monte-Carlo sample into parts with N̂ events each and computing αi in each case;
the standard deviation of the αi obtained matches the second term above very closely.
This way of estimating the error also shows that any deformation of the original
angular distribution due to experimental or QCD effects (see Section 3.3.2), has been
already factored into our uncertainty estimate. To estimate the uncertainty on the αi
one must also consider the fact that, N̂ , the expected number of events in the given
bin, itself fluctuates statistically. Moreover, there are systematic uncertainties in the
value of αi we obtain in this way. These two effects result in additional uncertainties
on the mean value above. Adding all these errors in quadrature we obtain, for the
uncertainty in each moment, αi,

Σi =

√√√√√√


√
N̂

N̂


2

+ κ2
syst

α2
i + σii , (3.4.17)

where κsyst represents the percentage systematic error, which we take to be 0.05 in
this work.

3.5 Collider simulation

In this section, we give a explanation of the methodology used to create and analyse
our samples. A summary of the overall architecture is presented in Section 3.5.1;
the specific subtleties associated with the Zh and Wh channels are addressed in
Section 3.5.2 and Section 3.5.3 respectively. The packages (written in small caps),
algorithms and tools (written in bold) mentioned throughout this section are briefly
elaborated upon in Appendix A.2, which acts somewhat like a glossary.

3.5.1 Summary of the process

In this study, we take into account next-to-leading order (NLO) QCD effects. This
leads to a slight complication of the workflow, as certain new packages and tools
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are needed to extend leading order (LO) tools to NLO capability. A pictorial
representation of our workflow or ‘stack’ is shown in Fig. 3.4, with the LO tools
shown in black and any extra packages needed to extend to NLO shown in blue.

The process begins with the model. Our model, with its new SMEFT vertices,
is defined in FeynRules [142], which generates a Universal FeynRules Output
(UFO) file. Such UFO files can be used as inputs for event generators. In order
to work at NLO, we must use FeynRules in conjunction with NLOCT [143].
NLOCT computes the UV and R2 counterterms, which are required for the one-
loop calculations, and adds them to the UFO. When required, we manually insert
the R2 terms in the NLO model as the usage of the publicly available NLOCT
version is restricted to renormalisable interactions only.

We then feed our UFO file, along with NNPDF2.3 [144] parton distribution functions
(PDFs) into the MadGraph (MG5_aMC@NLO [145]) environment. Within this
framework, we generate events and perform various other helpful functions. When
it comes to the NLO calculations, real emission corrections are performed following
the FKS subtraction method [146], whereas virtual corrections are done using
the OPP reduction technique [147]. Furthermore, the MC@NLO formalism [148]
takes care of the matching between the LO matrix element and parton shower
via the MLM merging scheme [149], thus avoiding double counting. Extension
to NLO requires that we use MadSpin [150] to specify the decays of the heavy
bosons and retain spin information at tree-level accuracy. The parton showering
itself is implemented within the framework using Pythia8 [151, 152]. The output
of this complex framework of interfaced tools is a High Energy Physics Monte Carlo
(HEPMC) file, which stores information about the showered events.

The event information is read into an analysis script, which implements the various
demands and selection cuts required to best isolate the desired signal. In our study,
this includes triggering, lepton isolation and jet algorithms (implemented within
FastJet [153]). Events surviving the desired criteria are stored in a ROOT file for
further analysis.

It has been shown in Ref. [101] that a multivariate analysis (MVA) is more effective
for our purposes than a simple cut-and-count analysis. We use the TMVA [154]
package within the ROOT framework to perform a BDT analysis. The BDT
training non-linearly selects optimal cuts for various input parameters, in order to
best separate background and signal. During the analysis, we use 50% of the samples
for training and always ensure that there is no overtraining by requiring that the
Kolmogorov-Smirnov statistic is at least O(0.1) [155]. After applying the BDT
classification, we obtain our final ROOT file, which now contains MVA information.
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This file is the input for the method of moments analysis, which is described in
Section 3.4 and used to obtain bounds in Section 3.6.

We now focus on the specifics of applying the above workflow to our two channels
of interest: pp→ Zh and pp→ W±h, with the Higgs decaying to a pair of b-quarks
and the Z/W decaying leptonically. In other words, for the Zh (Wh) process, we
study the `+`−bb̄ (`νbb̄) final states, where ` = e, µ, τ . The qq̄ → Zh and qq̄′ → W±h

processes are generated at NLO QCD, whereas the gg → Zh channel is generated
at LO (which is at one loop). The following analyses are performed at 14 TeV
centre-of-mass energy and the predictions are shown for the High Luminosity Large
Hadron Collider (HL-LHC) projected integrated luminosity of 3 ab−1.

3.5.2 The Zh channel

First we outline the generations of the signal and background samples for the pp→
Zh → bb̄`+`− analysis. While generating the signal samples, i.e. qq̄ → Zh, we
use the aforementioned NLO model file and interface it with Pythia8. We choose
dynamic renormalisation and factorisation scales, µF = µR = mZh. We choose
NNPDF2.3@NLO as our parton distribution function (PDF) for the NLO signal
samples. As mentioned above, for the NLO signal samples we use MadSpin [150]
to decay the heavy bosons. This step is done at LO and hence we correct for the
branching ratios following the Higgs working group recommendations.

In generating the background samples we follow Refs. [1, 101]. All background
samples are generated at LO with NNPDF2.3@LO as the PDF. The dominant
backgrounds are the Zbb̄ and the irreducible SM Zh production. For the Zbb̄

production, we consider the tree-level mode as well as the gg → ZZ mode at
one-loop. Furthermore, we consider reducible backgrounds like Z+ jets where the
light jets are misidentified as b-tagged jets (c-jet misidentification is not considered
separately), and the fully-leptonic decay of tt̄. An example Feynman diagram for
each of these signal and background processes is shown in Figs. 3.5a to 3.5d.

Our signal process involves the decay of a Higgs boson to a bb̄ pair, which will become
jets. Rather than performing a standard resolved analysis, where one would consider
two separate narrow b-tagged jets, here we require a fat jet with its jet parameter
R = 1.2. We utilise a modified1 version of the BDRS algorithm [52] in order to
maximise sensitivity. This procedure helps us in maximising the signal by retaining
extra radiations and in discriminating electroweak-scale resonant signals from strong

1Our slight modification is the use of the filtered cone radius Rfilt = max(0.2, Rbb̄/2) rather
than the standard Rfilt = min(0.3, Rbb̄/2) used in the original paper [52]. This modification was
shown to be effective in Refs. [156,157].
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Figure 3.4: A basic outline of the workflow for creating our samples,
including the packages used and their role in the process, as
summarised in the text. Blue boxes indicate packages and
parts of the process that are only necessary when working
at next-to-leading order (NLO). Red boxes indicate input
and output files for the various processes. For a brief
description of each of these technologies, see Appendix A.2.
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(a) The signal: pp→ Zh→ bb̄`+`−

(b) pp→ Zbb̄

(c) gg → ZZ (one loop)

(d) gg → Zh (one loop)

Figure 3.5: Example Feynman diagrams for each of the signal and
background processes considered for the Zh channel (see
Section 3.5.2). In each diagram the possible isolated leptons
are coloured in blue and the possible b-jet activity is in
red. Note that the leading contributions for gg → ZZ and
gg → Zh, in (c) and (d) respectively, are from one-loop
diagrams. The Z+jets process has essentially the same
diagrams as the Zbb̄ process in (b), but with, for example,
c quarks instead of b quarks, which are later misidentified
as b quarks.
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QCD backgrounds, see also [156,157]. As with the other techniques mentioned, see
Appendix A.2 for more details. Finally, we require the hardest-two-filtered subjets
to be b-tagged with tagging efficiencies of 70%. Moreover, the misidentification rate
of light subjets faking as b-subjets is taken as 2%.

One of our goals is to look for new physics effects in high-energy bins. It is therefore
imperative to generate the signal and background samples with certain generation-
level cuts in order to improve statistics:

• For the qq̄ → Zh samples generated at NLO, we require a cut on the pT of the
Higgs boson, pT,h > 150 GeV.

• The Zbb̄ and tt̄ samples are generated with the following cuts: pT,(j,b) > 15
GeV, pT,` > 5 GeV, |yj| < 4, |yb/`| < 3, ∆Rbb̄/bj/b` > 0.2 1, ∆R`` > 0.15,
70 GeV < m`` < 110 GeV, 75 GeV < mbb̄ < 155 GeV and pT,`` > 150 GeV.
The Zbb̄ sample is generated upon merging with an additional matrix element
(ME) parton via the MLM merging scheme [149].

• For the Z+ jets samples, we do not impose any invariant mass cuts in the jets.
Furthermore, the sample is merged with three additional partons.

Since the backgrounds are generated at LO, we use flat K-factors to bring them at
a similar footing to the signal. For the tree-level Zbb̄, one-loop gg → ZZ, one-loop
gg → Zh and Z+ jets, we respectively use K-factor values of 1.4 (computed within
MG5_aMC@NLO), 1.8 [158], 2 [159] and 1.13, computed within MCFM [160–162].

As mentioned earlier, we opt for a multivariate analysis over a simple cut-based
analysis. Thus, in this work we do not revisit the cut-and-count analysis and delve
directly into the multivariate formulation. In preparation for the BDT optimization,
we begin with some basic requirements and cuts:

1. We start by constructing fatjets with cone radii of R = 1.2. Furthermore, we
require these fatjets to have pT > 80 GeV and to lie within a rapidity, |y| < 2.5.
We employ FastJet [153] in constructing the jets.

2. We then isolate the leptons (e, µ) upon demanding that the total hadronic
activity deposited around a cone radius of R = 0.3 can at most be 10% of its
transverse momentum. The leptons are also required to have pT > 20 GeV and
have rapidity, |y| < 2.5. In our setup, every non-isolated object is considered to
be part of the fatjet construction. Before performing the multivariate analysis,

1Recall that ∆R =
√

(∆φ)2 + (∆y)2, where ∆φ and ∆y are respectively the separation in
azimuthal angle and rapidities of the two objects.
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we require each event to have exactly two oppositely charged same flavour
(OSSF) isolated leptons.

3. We apply loose cuts on certain kinematic variables. We require the invariant
mass of the leptons to be in the range 70 GeV < m`` < 110 GeV, the transverse
momentum of the di-lepton system, pT,`` > 160 GeV. We also require ∆R`` >

0.2, pT,fatjet > 60 GeV, the reconstructed Higgs mass, 95 GeV < mh < 155
GeV, ∆Rbi,`j

> 0.4 (i = 1, 2) and /ET < 30 GeV. We also require that there
is at least one fat jet with at least two B-meson tracks, there are exactly two
mass-drop subjets and at least three filtered subjets. We also require that the
hardest two filtered subjets are b-tagged.

Owing to the smallness of the Z+ jets and tt̄ backgrounds compared to Zbb̄, we
train our boosted decision tree (BDT) upon only considering the NLO Zh and
the tree-level Zbb̄ samples. We use the following variables to train the BDT:

• pT of both isolated leptons.

• ∆R between the b-subjets and the isolated leptons (four combinations), between
the isolated leptons and also between the two b-subjets in the fatjet.

• The reconstructed dilepton mass and its pT .

• The ∆φ separation between the fatjet and the reconstructed dilepton system.

• The missing transverse energy, /ET .

• The mass of the Higgs fatjet and its transverse momentum.

• pT of the two b-tagged filtered subjets and the ratio of the pT of these b-tagged
subjets.

• The rapidity of the reconstructed Higgs fatjet.

During our training process, we do not require variables that are 100% correlated
but retain every other variable. Given that one of our final variables of interest is
the reconstructed Zh invariant mass, we refrain from using it as an input variable.

For the BDT analysis, we use 50% of the samples for training and always ensure that
there is no overtraining by requiring that the Kolmogorov-Smirnov statistic is
at least O(0.1) [155]. After optimising the cut on the BDT variable, one finds that
there are around 463 qq̄ → Zh (SM) and 820 Zbb̄ events at 3 ab−1, which amounts
to the SM qq → Zh (SM) over rest of the background (B) ratio, SM/B ∼ 0.56.
Using the same training, we have respectively 44, 7 and 57 Z+ jets, gg → ZZ and
gg → Zbb̄ background events after the BDT cut. This yields SM/B ∼ 0.5.
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3.5.3 The Wh channel

For the W±h → bb̄`ν analysis, we follow a very similar methodology as before.
The dominant backgrounds are the irreducible SM W±h and the reducible W±bb̄

channels. We also consider the fully and semi-leptonic tt̄ events, W±+ jets and Z+
jets, where Z → `+`−. An example Feynman diagram for each of these processes is
shown in Figs. 3.6a to 3.6c.

The W± samples, like the Z samples, are generated at NLO QCD. We use the same
PDF choice as for the Zh samples and the scales are chosen to be µF = µR = mWh.
The backgrounds are generated with the same PDF choice at LO. The scales chosen
for the background generation are mW for the Wbb̄ and W+ jets samples and 2mt

for the tt̄ samples.

The W±bb̄ samples are generated upon merging with an additional parton as de-
scribed above. Unlike the Zh channel, the W±h channel only has quark-initiated
production modes. For the Zh channel, it was quite simple to reduce the tt̄ back-
ground by imposing a lower cut on /ET . For the W± study, the signal itself contains
a final state with a neutrino and hence demanding a cut on /ET will not only reduce
the tt̄ backgrounds but also a significant fraction of the signal.

As in the Zh case, we impose some generation-level cuts:

• The signal samples are generated with pT,h > 150 GeV and the invariant mass
of the Wh system, mWh > 500 GeV to improve statistics in the high-energy
bins.

• The background samples are generated with: pT,(j,b) > 15 GeV, pT,` > 5 GeV,
|yb/`| < 3, |yj| < 5, ∆Rbb̄ > 0.1, ∆Rb` > 0.2 and 70 GeV mbb̄ < 155 GeV. The
W±bb̄ samples are generated upon merging with an additional parton, whereas
the W±+jets samples are merged with up to two additional partons.

For the tree-level W+bb̄, W−bb̄, tt̄, W++jets, W−+jets and Z+ jets, we respect-
ively use K-factor values of 2.68, 2.49, 1.35, 1.23, 1.18 and 1.13, computed within
MCFM [160–162].

We separate the Wh analysis into two parts depending on the charge of the isolated
lepton. For the analysis, we require one isolated charged lepton. In contrast to the
Zh analysis, the W±h has a known ambiguity in the form of the pz component of
the neutrino momentum. We deal with this by requiring that the invariant mass of
the neutrino and the isolated lepton peaks around the W -boson mass. This gives us
two solutions to pz,ν and we demand that the solutions are always real. We discard



78 Chapter 3. A Differential Analysis of the SMEFT V h Mode

(a) The signal: W±h→ bb̄`ν

(b) pp→W±bb̄

(c) pp→ tt̄ semi-leptonic (fully leptonic)

Figure 3.6: Example Feynman diagrams for each of the signal and
background processes considered for the Wh channel (see
Section 3.5.3). In each, the vertexW+ → `+ν (W− → `−ν̄)
is generically labelled as W → `ν to cover both cases. In
each diagram a possible isolated lepton is coloured in blue
and the possible b-jet activity is in red. The W+jets pro-
cess has essentially the same diagrams as the Wbb̄ process
in (b) but with, for example, c quarks instead of b quarks,
which are later misidentified as b quarks. The Z+jets pro-
cess has essentially the same diagrams as the Zbb̄ process
in Fig. 3.5b but with, for example, c quarks instead of b
quarks, which are later misidentified as b quarks; it also
must have one missed lepton to match the desired signature
for the Wh channel, as must the fully-leptonic tt̄ process
in (c).
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events where complex solutions are encountered. We construct two invariant masses
for the Wh system for the two neutrino pz solutions, mfatjet`ν1,2 .

Before implementing the BDT analysis, as in the Zh case, we make some basic
demands and cuts. As before we have a number of fatjets/subjets requirements
and search for isolation leptons. We apply the loose cuts: pT,fatjet > 150 GeV,
95 GeV < mh < 155 GeV, mfatjet`ν1,2 > 500 GeV and ∆Rbi,`

> 0.4.

For the BDT analyses (one for W+h and another for W−h), we train the samples
upon considering the SM Wh sample as the signal and the Wbb̄, semi-leptonic and
fully-leptonic tt̄ samples as backgrounds. Owing to multiple backgrounds, we impose
relative weight factors to these backgrounds which are defined as 1/Lgen, where Lgen

is the generated luminosity that depends on the production cross-section, including
the K-factors, and the number of Monte Carlo generated events. Besides, NLO
samples also contain negative weights for certain events, which we include while
training the BDT samples. We also find that the effect of including the weight factor
in our training is small, owing to the very small number of signal events having
negative weights (less than 4% percent).

We optimise the BDT analysis for W+h (W−h) and find 1326 (901) events for the
signal and 4473 (3476) W+bb̄ (W−bb̄) events at 3 ab−1. The number of surviving
events for tt̄, W+ jets and Z+ jets are much smaller. Ultimately, we find SM/B ∼
0.28 (0.24) for W+h (W−h).

3.6 Analysis and results

In this section we describe how we obtain our final sensitivity estimates and present
our main results. We consider only the interference contribution in this study, which
in any case is expected to be dominant piece below the EFT cut-off. There is no
conceptual hurdle in also including the squared terms, as Eq. 3.3.5 is still equally
valid; the reasons for their omission are purely practical. We first consider the
contact terms, ghV f , which can be very precisely constrained in the high-energy bins
due to their quadratic growth relative to the SM terms. Once these couplings are
very precisely constrained, we will turn to the lower-energy bins, where there are a
sufficient number of events to carry out an angular moment analysis to constrain
the other couplings. All the results presented in this section are for an integrated
luminosity of 3 ab−1.
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3.6.1 Bounds on contact terms

As already discussed, at high energies the EFT deviations are dominated by the
contribution of the contact interactions, ghV f , to aLL. Since this contribution grows
quadratically with energy relative to the SM V h contribution, it can be very-precisely
constrained by probing high-energy bins. Unfortunately, some of the bins providing
maximum sensitivity have too few events for an angular moment analysis. We thus
constrain these couplings simply using the final state invariant mass distribution.
Following Ref. [101], where this procedure was carried out for the Zh mode, we
construct a bin-by-bin χ2 function; the SM events are used as the expected number
and the SMEFT events are used as the observed number. To ensure that we do not
violate EFT validity, we neglect any event with a final-state invariant mass above
the cut-off. The cut-off is evaluated for a given value of the anomalous couplings, by
setting the Wilson coefficients in Eq. 3.2.2 to unity1. For an integrated luminosity
of 3 ab−1, we obtain the sub-per-mille level bounds at the one sigma level,

|ghWQ| <6× 10−4,

|ghZp| <4× 10−4. (3.6.1)

3.6.2 Angular moment analysis

Now that ghWQ and ghZp are strongly constrained from the higher energy-bins, we turn
to the lower-energy bins with enough events to perform an angular moment analysis
to constrain the other couplings. Ideally, we should also marginalise over the effect
of contact terms in the lower bins. However, as we will see, the expected bounds
on the contact terms are almost two orders of magnitude smaller than that of the
other couplings, and thus their effect is negligible in the lower-energy bins. We will
therefore ignore them in further analysis. We first split our simulated events into 200
GeV bins of the final-state invariant mass. To obtain the angular moments, we first
convolute the events in each energy bin with the weight functions using Eq. 3.4.14.
Given that the CP -even and odd couplings contribute to a mutually-exclusive set
of angular moments, we construct two separate bin-by-bin χ2 functions as follows,

χ2(δĝhV V , κp
V V ) =

∑
ij

(
αEFTi (Mj)− αSMi (Mj)

)2

(Σi(Mj))2 ,

χ̃2(κ̃p
V V ) =

∑
ij

(
α̃EFTi (Mj)− α̃SMi (Mj)

)2

(Σi(Mj))2 , (3.6.2)

1The resultant cut off is usually significantly larger than our invariant mass values and therefore
largely irrelevant.
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where κp
V V , κ̃

p
V V are the same as κWW , κ̃WW for V = W± and defined in Eq. 3.3.8

for V = Z. In the above equation, we include only the CP -even (CP -odd) angular
moments in χ2 (χ̃2); the index i indicates the different moments and Mj labels
the invariant-mass bins. The squared error in the denominator is computed using
Eq. 3.4.17 on the background sample (which includes the SM V h contribution),
where N̂ in this case is the total number of background events in the j-th bin.

Once again, the contributions due to κp
V V and κ̃p

V V grow with energy and one must
be careful about EFT validity. For a given value of the coupling we estimate the
cut-off Λ using Eq. 3.2.2 with all the Wilson coefficients set to unity. We ignore
any event that has final-state invariant mass above 1500 GeV, a value smaller than
the cut-off corresponding to the size of the couplings we will eventually constrain.
The most sensitive bins for the analysis of the contact term, on the other hand, are
bins higher than 1500 GeV. The contribution due to ĝhV V does not grow with energy
with respect to the SM and thus the bounds on this coupling are dominated by
contributions from the lowest-energy bins in our analysis.

We now discuss the results for the Zh and W±h modes separately, before presenting
our combined bounds. The individual bounds are important as they do not assume
Eq. 3.2.7, which has been derived assuming that electroweak symmetry is linearly
realised. In fact, the independent measurement of couplings involving the Z and
W can be used to verify Eq. 3.2.7 as a prediction of linearly-realised electroweak
symmetry.

As a final note, the calculations used to obtain our results use the rescaled moments,
αi, defined in Eq. 3.4.14 and used in Eq. 3.6.2. These are simply proportional
to the unscaled set {â′LL, a1

TT , â
2′
TT , a

1
LT , a

2
LT , ã

1
LT , ã

2
LT , aTT ′ , ãTT ′}. In the remaining

sections we use the unscaled names to make referencing tables, checking parametric
dependencies and understanding helicity origins easier. These properties are, of
course, unchanged by the rescaling.

The Zh mode

Following the discussion in Section 3.3.2, for the CP -even case we include the
moments proportional to â′1, â′3, a2

LT and aTT ′ in our χ2 (see Eq. 3.6.2). Recall that
â′1 and â′3 are integrated linear combinations of the original angular moments aLL
and a2

TT defined in Section 3.4.2. The bound obtained for the two CP -even couplings
is shown in Fig. 3.7a. To show the power of our method we show the progression of
the bounds obtained as the differential information used is gradually increased. The
bound obtained, if one uses only the total rate to constrain a linear combination of
the two couplings, δĝhZZ and κp

ZZ , is shown by the two dashed lines. Next, we include
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Figure 3.7: (a) Bounds at 65% CL on the CP -even anomalous coup-
lings from Zh production with 3 ab−1 integrated luminos-
ity, assuming that the contact term has been very precisely
constrained (see Eq. 3.6.1). We show the improvement of
the bounds as more and more differential information is
included in the fit. The dashed lines show the bound just
from the total rate. The purple region includes differential
information at the level of the Z-boson four momentum,
such as the final-state invariant mass distribution and Θ-
distribution. Finally, the red region includes information
from all the angular moments, including the cross-helicity
interference terms. The blue band shows the bound from
the h → ZZ → 4l rate, using the results of Ref. [49].
The bars show the bounds on one of the couplings when
the other coupling is 0. The green bar shows the bound
obtained using the Matrix Element Likelihood Analysis
(MELA) in Ref. [163] and assuming δĝhZZ = 0. (b) Same
as in (a) but for the W±h mode where there is no bound
from MELA.
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distributions of the final-state invariant mass and other differential information at
the level of the Z-boson four momentum (i.e. the decay products of the Z-boson are
treated inclusively)1 and obtain the excluded region shown in purple. The analysis at
this stage is comparable to a regular SMEFT analysis that includes a few standard
differential distributions. Finally, we include the effects of the angular moments
a2
LT and aTT ′ , and obtain our final bound shown in red. The main improvement in

sensitivity in the final bounds comes from a2
LT , the effect of which can be captured

only by a careful study of the joint (Θ, θ, ϕ) distribution, as pointed out in Ref. [1].
While this is clearly something beyond the scope of a regular cut-based analysis,
as one would need to take into account all the correlations of the final-state phase
space, the angular moment approach captures it effortlessly.

We show also the projected bounds from the h → ZZ → 4l process in Fig. 3.7a.
The blue band shows the bound from the h → ZZ → 4l rate, whereas the green
bar is the bound obtained using the Matrix Element Likelihood Analysis (MELA)
framework [163]. As far as κp

ZZ is concerned, we see that the bound obtained from
Zh production using our methods surpass the other existing projections shown in
Fig. 3.7a 2. In the horizontal direction, our bounds might seem redundant once the
h→ ZZ → 4l process is taken into account. However, if one allows for hbb coupling
deviations our bounds become the measurement of a truly independent effect (see
Eq. 3.3.10).

The CP-odd coupling, κ̃p
ZZ , is constrained using the function χ̃2 in Eq. 3.6.2, which

includes the moments ã1
LT and ãTT ′ . We obtain the one-sigma-level bound,

|κ̃p
ZZ | < 0.03. (3.6.3)

The W±h mode

As discussed in Section 3.3.3, the relevant angular moments for this mode in the CP -
even case are aLL, a2

TT and aTT ′ . Instead of the first two moments, we use the linear
combination â′1 and â′3 described in Section 3.4.2. Again, we show the progression
of the bounds at different stages of inclusion of differential information. The dashed
lines show bounds from the total rate and the purple region shows the bound obtained

1For this bound, we include only the angular moments â1 and â3 (i.e. the rotated aLL and
a2
TT ), extracted using the weights in Section 3.4.1, as these are the only moments that survive

integration over θ and ϕ. These two angles are inaccessible if the decay products of the Z-boson
are treated inclusively.

2A bound using the matrix element method for pp → Zh may potentially match our bounds
but the results in Ref. [163] are unfortunately not comparable to ours as these studies include high-
energy phase space regions, where the EFT contribution is many times that of the SM. Therefore,
the methodology used to obtain these bounds violates our assumption of O(1) Wilson coefficients.
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by including only the angular moments, aLL and a2
TT , that encapsulate the differential

information at the level of the Z boson, treating its decay products inclusively. Our
final bound, also including the effect of a1

LT and aTT ′ , is shown in red. We show also
the projected bounds from the h → WW → 2l2ν decay rate in blue, to which our
bounds are complementary (recall again that, what our bounds actually probe is a
linear combination also involving hbb̄ coupling deviations, see Eq. 3.3.10). In this
case there is no competing bound on κWW from the h → WW mode, presumably
because the neutrinos in the final state make much of the differential information
inaccessible in this case. Our bound on κWW from the pp→ W±h process is therefore
likely to be the best possible bound on this coupling.

Again, the CP odd coupling, κ̃WW , is constrained by including the moment ãLT1 in
the function χ̃2 in Eq. 3.6.2. We obtain the one-sigma-level bound,

|κ̃WW | < 0.04. (3.6.4)

We see that we obtain bounds of similar size from the pp → Wh and pp → Zh

processes on the respective anomalous couplings. The fact that the couplings can be
independently measured is very important, as we can then use these measurements
to test the correlations in Eq. 3.2.7, which in turn tests whether or not electroweak
symmetry is linearly realised. An alternative approach would be to use the correla-
tions to combine the bounds from Wh and Zh production as we show in the next
subsection.

Combination of Zh and Wh modes

In Fig. 3.8, we show the bounds obtained after combining the results using the
correlations in Eq. 3.2.7, thus assuming electroweak symmetry is linearly realised.
Again, we show the bounds obtained at various levels of inclusion of differential
data. The dashed lines show the bound just from the total rate, the purple region
includes differential information at the level of the Z/W -boson four momentum and
the red region is our final bound including all angular moments. The blue band
shows the bound from a combination of the h → WW → 2l2ν and h → ZZ → 4l
rates. The green bar shows the MELA bound from Ref. [163] on κZZ , assuming
δĝhZZ = 0, translated to this plane.

Comparison with bounds from WZ and WW production

If electroweak symmetry is linearly realised, bounds on κWW and ghWQ can also be
extracted from double gauge boson production using Eqs. 3.2.11 and 3.2.12. For
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Figure 3.8: Bounds at 65% CL on the CP -even anomalous couplings,
with 3 ab−1 integrated luminosity, after combining results
from Zh and Wh production using Eq. 3.2.7 and assum-
ing that the contact terms have been very-precisely con-
strained (see Eq. 3.6.1). Again, we show the progression
of the bounds as more and more differential information is
included in the fit. The dashed lines show the bound just
from the total rate in both processes. The purple region
includes differential information at the level of the Z/W -
boson four momentum. The red region is our final bound
and includes information from all the angular moments.
The blue band shows the bound from a combination of the
h → WW → 2l2ν and h → ZZ → 4l rates. The bars
show the bounds on one of the couplings when the other
coupling is 0. The green bar shows the bound implied by
the bound on κZZ , using the Matrix Element Likelihood
Analysis (MELA) in Ref. [163] and assuming δĝhZZ = 0.
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instance,WZ production at high energies constrains precisely the linear combination
of Z-pole couplings and TGCs that appears in the right-hand side of Eq. 3.2.11 at
the sub-per-mille level [136]. This bound is of the same size as the one obtained in
Eq. 3.6.1 in this work. Combining the two bounds will thus yield a significantly-
improved bound compared to each individual bound. This is also true for Eq. 3.2.12,
where the least-constrained coupling in the right-hand side, δκγ , can be bounded at
the level of a few percent in WW production [164]. This is comparable to our bound
on κWW in Figs. 3.7b and 3.8 once we marginalise over δĝhWW . This last statement
uses the fact that the Z couplings to quarks appearing in the right-hand side of
Eq. 3.2.12, which also affect WW production, are measured more precisely at the
per-mille level [132].

Alternatively, the fact that the left and right hand sides of Eqs. 3.2.11 and 3.2.12
can be measured with similar precision, in double gauge boson and Higgs-strahlung
processes, means that one can actually verify Eq. 3.2.11 as a test of linearly-realised
electroweak symmetry at the HL-LHC.

3.6.3 Summary

The precise measurement of Higgs boson properties will be one of the legacies of the
LHC’s scientific achievements. Potential deformations of the Higgs boson’s couplings
to other particles compared to Standard Model predictions can be cast into limits
on Wilson coefficients of effective operators originating in the SMEFT framework.
To obtain predictive limits on the highly-complex system of SMEFT operators, it is
necessary to measure Higgs interactions in various production and decay channels.
Studying the Higgs boson’s couplings to massive gauge bosons, i.e. the W and Z
bosons, is key in establishing the nature of its embedding in the scalar sector.

We proposed a novel method to probe the full structure of the Higgs-gauge boson
interactions in Higgs-associated production. Using the helicity-amplitude formalism
and expanding the squared matrix elements into angular moments, the whole process
can be expressed in terms of nine trigonometric functions. This is true not only in
the SM but also in the D6 SMEFT. Extracting the coefficients of these functions,
the so-called angular moments, is a powerful and predictive way of encapsulating
the full differential information of this process. Since differential information can
encode signatures of EFT operators in subtle ways, maximally mining the differential
information is essential to obtain the best possible bounds on the EFT operators.
The actual interpretation of the measurement relies now on a shape analysis of a small
number of trigonometric functions. Strong constraints can be obtained, provided
experiments publicise measurements of these functions. We therefore encourage
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the experimental collaborations to provide such measurements for various Higgs
production processes1.

The success of this method relies on whether the theoretical form of the original
angular distribution can be preserved despite effects like experimental cuts, showering
and hadronisation. In this study, we carried out a detailed collider simulation of
the Higgs-strahlung process, including these effects, before applying the method
of angular moments. The results we find are encouraging, indicating that a shape
analysis using the trigonometric basis functions can set the most sensitive limits on
effective operators within the SMEFT framework. While the high-energy behaviour
of the process results in the strongest possible bounds on the hV ff contact terms
(see Eq. 3.6.1), the full angular moment analysis leads to the strongest reported
bounds on the hVµνV µν (see Figs. 3.7a, 3.7b and 3.8) and hVµνṼ µν (see Eqs. 3.6.3
and 3.6.4) terms.

There are plans to extend this method to various other Higgs/electroweak production
and decay processes such as weak boson fusion, the h→ ZZ → 4` decay and diboson
production. One can then perform a full global fit including this enlarged set of
observables to obtain the best possible bounds on the SMEFT Lagrangian.

1The provision of measurements of the moments and basis functions will allow for an ideal
approach to perform hypothesis testing for effective operators. As such it will improve on current
initiatives of using so-called simplified cross section measurements [165] in global fits.
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The Higgs at High Energies





Chapter 4

Multiparticle Production

We now move away from collider phenomenology to more formal calculations regard-
ing the behaviour of interacting massive scalar bosons, such as the Standard Model
Higgs boson, at high energies. In this context, ‘high energies’ refers to energies higher
than those currently probable by experiments. While Part I focused on perturbative
interactions of the Higgs with other SM particles, Part II (Chapters 4 to 6) focuses
on the non-perturbative effects we might expect due to the Higgs’ self-interacting
potential.

4.1 Introduction

There is a renewed interest among particle theorists in re-examining our understand-
ing of basic predictions of quantum field theory in the regime where production of a
very large number of elementary massive bosons becomes energetically possible. Spe-
cifically, in quantum field theoretical models with microscopic massive scalar fields
at weak coupling, λ � 1, the regime of interest is characterised by few → many

particle production processes,

X → n× φ , (4.1.1)

at ultra-high centre of mass energies
√
s� m. In these reactions,X is the initial state

with a small particle number, generally 1 or 2, and the final state is a multiparticle
state with n ∝

√
s/m � 1 Higgs-like neutral massive scalar particles. For the

initial states X being the 2-particle states, the processes in Eq. 4.1.1 correspond to
a particle collision.

If X is a single particle state |1∗〉 with the virtuality p2 = s, Eq. 4.1.1 describes its
decay into n-particle final states. The authors of [43] conjectured that the partial
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width of X to decay into n relatively soft elementary Higgs-like scalars can become
exponentially large above a certain energy scale s & E2

∗ . This scenario is called
Higgsplosion [43]. It allows all super-heavy or highly-virtual states to be destroyed
via rapid decays into multiple Higgs bosons1.

The aim of this part is to provide a comprehensive review of the semiclassical calcu-
lation of few→ n-particle processes in the limit of ultra-high particle multiplicity, n.
The underlying semiclassical formalism was originally developed by Son in Ref. [168],
and generalised to the λn� 1 regime in [169,170]. We will give a detailed justifica-
tion of the formalism and its derivation, and show its application to non-perturbative
calculations in the weakly-coupled high-multiplicity regime.

Scattering processes at very high energies with n� 1 particles in the final state were
studied in depth in the early literature [171–181], and more recently in [182–184].
These papers largely relied on perturbation theory, which is robust in the regime
of relatively low multiplicities, n � 1/λ. However, in the regime of interest for
Higgsplosion, n & 1/λ� 1, perturbative results for n-particle amplitudes and rates
can no longer be trusted. Perturbation theory becomes effectively strongly-coupled
in terms of the expansion parameter λn & 1. This calls for a robust non-perturbative
formalism. Semiclassical methods [168,185,186] provide a way to achieve this in the
large λn regime [169, 170]. It is for this reason that the semiclassical method is at
the centre of much of these notes.

We consider a real scalar field φ(x) in (d + 1)-dimensional spacetime, with the
Lagrangian,

L = 1
2(∂µφ)2 − 1

2m
2φ2 − Lint(φ), (4.1.2)

where Lint is the interaction term. The two simplest examples are the φ4 model in
the unbroken phase, with Lint = (λ/4)φ4, and the model with the spontaneously
broken Z2 symmetry,

L = 1
2 ∂

µh ∂µh −
λ

4
(
h2 − v2

)2
. (4.1.3)

The classical equation for the model in Eq. 4.1.3 is the familiar Euler-Lagrange
equation,

∂µ∂µh + λh (h2 − v2) = 0 . (4.1.4)

As in Refs. [43,170], we are ultimately interested in the scalar sector of the Standard

1Ref. [166] recently expressed concerns about locality of the Quantum Field Theory in such a
scenario. These concerns were largely addressed by Ref. [167], which stresses that quantum fields
are defined as operator-valued distributions acting on test functions that are localized in finite
regions of space-time. The effects of these test functions is briefly mentioned in Sections 6.1.1
and 6.5.
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Model, for which we use a simplified description in terms of the model in Eq. 4.1.3.

We will concentrate on the simplest realisation of Higgsplosion where X is a single-
particle state |1∗〉. In high-energy 2 → n scattering processes, the highly-virtual
state 1∗ would correspond to the s-channel resonance created by two incoming
colliding particles. For example in the gluon fusion process, gg → h∗ → n× h, the
highly-virtual Higgs boson h∗ is created by the two initial gluons before decaying
into n Higgs bosons in the final state. In this example, the 1∗ → n decay rate of
interest corresponds to the h∗ → n× h part of the process. We will not discuss the
complete 2 → n scattering in this work1. This part focuses on explaining how the
semiclassical calculation of the n-particle decay rates works. We consider the method
itself and its applications, rather than its potential phenomenological implications.
The calculation we present is aimed to develop a theoretical foundation for the
phenomenon of Higgsplosion [43].

If Higgsplosion can be realised in the Standard Model, its consequences for particle
theory would be quite remarkable. Higgsplosion would result in an exponential
suppression of quantum fluctuations beyond the Higgsplosion energy scale and have
observable consequences at future high-energy colliders and in cosmology, some of
which were discussed in [4,42,187–189]. However, of course, the formalism we review
is general and not limited to Higgsplosion nor its applications.

This part consists of three chapters. We begin, in this chapter, by recalling the
known results for multiparticle scattering rates via tree-level perturbation theory.
In Chapter 5 we move on to summarising the basics of coherent states in quantum
mechanics and quantum field theory respectively. The coherent state formalism in
quantum field theory (for reviews and some applications see [186, 190–192]) forms
much of the foundation for the semiclassical method in question. Its summary helps
provide context, familiarity and referenceable results for the method’s derivation,
which is presented at the start of Chapter 6.

The remainder of Chapter 6 focuses on the application of the method. With the
necessary tools reviewed, we begin to calculate the rate for the 1∗ → n process
semiclassically in Section 6.2. The resulting set-up is ideal for using the thin-wall ap-
proach, which we develop in Sections 6.2.1 and 6.2.2. In particular, in Section 6.2.1
we recover tree-level results discussed in Section 4.2 along with the prescription
for computing the quantum corrections. These quantum contributions to the mul-
tiparticle rate are computed in Section 6.2.2 using thin-walled singular classical

1In particular, we will not attempt to apply the semiclassical approximation for the initial states
that are not point-like, for example contributions to scattering processes dominated by exchanges
in the t-channel. This is beyond the scope of this work.



94 Chapter 4. Multiparticle Production

solutions. In Section 6.3 we compare the semiclassical method in quantum field
theory that we rely upon and use in this work to Landau and Lifshitz’ WKB cal-
culation of quasi-classical matrix elements in quantum mechanics [193], and discuss
the similarities and differences between these two methods. In Section 6.4 we con-
sider multiparticle processes in less than four spacetime dimensions and provide a
successful test for the semiclassical results. Finally, we present our conclusions in
Section 6.5.

4.2 First glance at classical solutions for
tree-level amplitudes

In later chapters of this part, we will compute the amplitudes and corresponding
probabilistic rates for processes involving multiparticle final states in the large λn
limit non-perturbatively using a semiclassical approach with no reference to perturba-
tion theory and without artificially separating the result into tree-level and ‘quantum
corrections’ contributions. Their entire combined contribution should emerge from
the unified semiclassical algorithm. Before beginning our review of the semiclassical
formalism [168,169,186], it is worth setting the scene for its application in this com-
putation. In this introductory section our aim is to recall the known properties of the
tree-level amplitudes and their relation with certain classical solutions. We will also
discuss the ways to analytically continue such classical solutions by complexifying
the time variable in Section 4.2.2.

4.2.1 Classical solutions for tree-level amplitudes

Let us begin with tree-level n-point scattering amplitudes computed on the n-particle
mass thresholds. This is the kinematic regime where all n final state particles are
produced at rest. These amplitudes for all n are conveniently assembled into a
single object – the amplitude generating function – which at tree-level is described
by a particular solution of the Euler-Lagrange equations. The classical solution,
which provides the generating function of tree-level amplitudes on multi-particle
mass thresholds for the model in Eq. 4.1.3, is given by [173],

h0(z0; t) = v

(
1 + z0 e

imt/(2v)
1− z0 e

imt/(2v)

)
, m =

√
2λv , (4.2.1)
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where z0 is an auxiliary variable. It is easy to check by direct substitution that the
expression in Eq. 4.2.1 satisfies the time-dependent ODE,

∂2
t h + λh (h2 − v2) = 0 , (4.2.2)

for any value of the parameter z0. Since the expression for h0(z0; t) is uniform in
space, it automatically satisfies the full Euler-Lagrange equation (Eq. 4.1.4). In fact,
the configuration in Eq. 4.2.1 is the unique non-trivial solution of Eq. 4.1.4 with only
outgoing waves.

It then follows that all 1∗ → n tree-level scattering amplitudes on the n-particle
mass thresholds are given by the differentiation of h0(z0; t) with respect to z0,

A1→n = 〈n|Sh(0)|0〉 =
(
∂

∂z0

)n
h0

∣∣∣∣∣
z0=0

. (4.2.3)

The classical solution in Eq. 4.2.1 is uniquely specified by requiring that it is a
holomorphic function of the complex variable z(t) = z0 e

imt,

h0(z) = v + 2v
∞∑
n=1

(
z

2v

)n
, z = z(t) = z0 e

imt , (4.2.4)

so that the amplitudes in Eq. 4.2.3 are given by the coefficients of the Taylor
expansion in Eq. 4.2.4 with a factor of n! from differentiating n times over z,

A1→n =
(
∂

∂z

)n
h0(z)

∣∣∣∣∣
z=0

= n!
( 1

2v

)n−1
= n!

(
λ

2m2

)n−1
2

. (4.2.5)

The connection between the classical solution h0(z0; t) in Eq. 4.2.1 and the 1 → n

tree-level amplitudes in Eq. 4.2.5 is nontrivial, but it can be verified that Eq. 4.2.5 is
the correct answer following the elegant formalism pioneered by Brown in Ref. [173],
for a recent review see section 2 of Ref. [182]. The approach of [173] focuses on
solving classical equations of motion and bypasses the summation over individual
Feynman diagrams. In the following sections we will see how these (and also more
general solutions describing full quantum processes) emerge from the semiclassical
approach of [168] which we shall follow. For now we just note the feature of the
tree-level expressions expressions in Eq. 4.2.5 that is of greatest interest to us – the
factorial growth of n-particle amplitudes, An ∼ λn/2n!.

Next, we would like to draw the reader’s attention to the fact that the classical
solution in Eq. 4.2.4 is complex-valued, in spite of the fact that we are working with
the real-valued scalar field theory model in Eq. 4.1.3. The classical solution h0 that
generates tree-level amplitudes via Eq. 4.2.5 does not have to be real. In fact it
is manifestly complex and this is a consequence of the fact that this solution will



96 Chapter 4. Multiparticle Production

2 Son’s formalism

The classical solution describing the generating function of tree-level amplitudes on multi-
particle mass thresholds is given by

hcl(t) = v

✓
1 + z0 eiMht/(2v)

1 � z0 eiMht/(2v)

◆
. (2.1)

We now perform the Wick rotation from the real Minkowski time t to the Euclidean time
tEucl = it. To use the same notation for the imaginary time variable as in [4] we will use the
variable ⌧ defined as

⌧ := � tEucl = � it . (2.2)

The sign convention in (2.2) where ⌧ is identified with the negative of the Euclidean time,
implies that the early time t ! �1 corresponding to the incoming states maps to ⌧ ! +1.
In this limit the classical solution approaches the vacuum hcl ! v with exponential accuracy,
i.e. the corrections are O(e�Mh⌧ ).

In terms of the Wick rotated time variable tau, the classical solution (2.1) corresponds to a
singular domain wall,

hcl(⌧) = v

 
eMh(⌧�⌧1)/2 + e�Mh(⌧�⌧1)/2

eMh(⌧�⌧1)/2 � e�Mh(⌧�⌧1)/2

!
= v cotanh

✓
Mh

2
(⌧ � ⌧1)

◆
. (2.3)

3 Thin wall critical bubbles
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Figure 4.1: Time evolution contour on the complex time plane tC. Plot
(a) shows the contour obtained after deforming the the
evolution along the real time axis −∞ < t < +∞ where
the early-time ray −∞ < t < 0 is rotated by π/2 into the
ray along the vertical axis, ∞ > τ > τ0(x) and ending at
the singularity surface of the solution τ0(x). Plot (b) shows
a refinement of this contour: (1) rather than touching the
singularity, the contour surrounds it; (2) at late times,
the contour approaches t → +∞ along the ray with an
infinitesimally small positive angle δ to the real time axis.

emerge as an extremum of the action in the path integral using the steepest descent
method. In this case, the integration contours in path integrals are deformed to
enable them to pass through extrema (or encircle singularities) that are generically
complex-valued.

It makes sense however to consider whether one can avoid explicitly deforming
the fields as functional integration variables in the functional integral and instead
analytically continue the time variable. Such an approach can simplify the calculation
if it allows the saddle-point field configuration to be real-valued, even if only for part
of its time evolution path. Thus let us consider field configurations that depend on
the complexified time tC. We promote the real time variable t into the variable tC
that takes values on the complex time plane,

t −→ tC = t+ iτ , (4.2.6)

where t and τ are real-valued. We will deform the time-evolution contour from the
real time axis −∞ < t < +∞ to the contour in the complex tC plane (depicted in
Fig. 4.1) in such a way that the initial time, t = −∞, maps to the imaginary time,
Im tC = τ = +∞. This corresponds to the (−t)× eiπ = τ rotation,

at early times, −∞ < t < 0 : t→ iτ. (4.2.7)

We also note that τ corresponds to minus the Euclidean time tE defined by the
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standard Wick rotation t → −itE. The rationale for choosing this slightly bizarre
looking ‘down-up-right’ analytic continuation on the complex plane of tC – i.e. the
contour shown in Fig. 4.1 – will be discussed at the end of this section. First we
would like to explain the analytic structure of the field configurations relevant to us
with a simple example of the classical solution in Eq. 4.2.1.

Expressed as a function of the complexified time variable, tC, the classical solution
in Eq. 4.2.1 reads,

h0(tC) = v

(
1 + eim(tC−iτ∞)

1 − eim(tC−iτ∞)

)
, (4.2.8)

where τ∞ is a constant,
τ∞ := 1

m
log

(
z0

2v

)
, (4.2.9)

and parametrises the location (or the centre) of the solution in imaginary time. If
the time-evolution contour of the solution in the tC plane is along the imaginary time
axis with real time t = 0, the field configuration in Eq. 4.2.8 becomes real-valued,

h0(tC = iτ) = v

(
1 + e−m(τ−τ∞)

1 − e−m(τ−τ∞)

)
, (4.2.10)

and singular at τ = τ∞.

For future reference it will be useful to define the profile function of τ

h0E(τ) = v

(
1 + e−mτ

1 − e−mτ

)
, (4.2.11)

so that Eq. 4.2.10 becomes h0(tC = iτ) = h0E(τ − τ∞). By construction, h0E(τ)
is a real-valued function of its argument, is x-independent, and is a solution of the
Euclidean-time analogue of the equation of motion (Eq. 4.2.2),

− ∂2
τh0E(τ) + λh0E(τ) (h2

0E(τ)− v2) = 0 . (4.2.12)

The expression on the right-hand side of Eq. 4.2.10 has an obvious interpretation in
terms of a singular domain wall, located at τ = τ∞, that separates two domains of
the field h(τ,x) as shown in Fig. 4.2. The domain on the right of the wall τ � τ∞

has h = +v, and the domain on the left of the wall, τ � τ∞, is characterised by
h = −v. The field configuration is singular at the position of the wall, τ = τ∞, for
all values of x, i.e. the singularity surface is flat (or uniform in space). The thickness
of the wall is set by the inverse mass 1/m.
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h(⌧)

2 Son’s formalism

The classical solution describing the generating function of tree-level amplitudes on multi-
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implies that the early time t ! �1 corresponding to the incoming states maps to ⌧ ! +1.
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Figure 4.2: Singular classical solution (Eq. 4.2.10). This configuration
defines a uniform-in-space flat singular domain wall located
at imaginary time τ = τ∞.

4.2.2 More on the analytic continuation in time

In the previous section we reviewed two important general features of the classical
solution (Eq. 4.2.4) describing simple tree-level scattering amplitudes:

1. The classical solution is complex-valued in real time;

2. It has a singularity on the complex plane located at a point (t, τ) = (0, τ∞),
where τ∞ is a free parameter (a collective coordinate).

We have also noted that the analytic continuation of h0 to the imaginary time,
tC = iτ , gives a manifestly real-valued scalar field configuration in Eq. 4.2.10 or
equivalently Eq. 4.2.11. As a result, the classical solution is real-valued along the
two vertical parts of the red contour in Fig. 4.1. This fact turns out to be a general
feature of all saddle-point solutions that will be relevant for our scattering problem,
and is a consequence of the initial-time boundary condition, which will be derived
in Eq. 6.1.64,

lim
t→−∞

h(x) = v +
∫ ddk

(2π)d/2
1√
2ωk

a∗k e
ikµx

µ

. (4.2.13)

Notice that the ∼ eiωkt terms appearing on the right hand side are not accompanied
by the opposite-sign frequencies – the latter are not allowed in this expression. Hence,
when analytically continued to the imaginary time t = iτ , the above equation gives,

lim
τ→+∞

h(x) = v+ ∼ a∗k e
−ωkτ , (4.2.14)

which amounts to a real-valued field configuration that is well-behaved at large τ .
Time evolving this initial condition along the first (downwards) part of the contour
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in Fig. 4.1 results in a real-valued classical solution along the Euclidean time axis
τ ≤ ∞.

The obvious question is then why should not we just remain in the Euclidean time
and define the entire contour as

∫−∞
+∞ dτ instead of the ‘up-down-right’ zig-zag contour

in Fig. 4.1. The reason is that the final-time boundary conditions are also specified
for our problem. As we will show in Eq. 6.1.65, in general (i.e. for the saddle-point
solution giving a dominant contribution to the functional integral representation for
the scattering rate, in the regime where λn is not small) these boundary conditions
state:

lim
t→+∞

h(x) = v +
∫ ddk

(2π)d/2
1√
2ωk

(
ck e

−ikµx
µ

+ b∗k e
ikµx

µ)
. (4.2.15)

The coefficients ck and b∗k for both positive and negative frequencies are non-vanishing
in the general case, which is incompatible with any naive continuation of the complete
solution to τ → −∞, as it will diverge,1

h→ v + O(e−mτ ) + O(emτ ) . (4.2.16)

In general, ck 6= bk, giving a genuinely complex-valued field configuration in Minkowski
time.

To implement Section 4.2.2 it is thus unavoidable that the final part of the contour
should be along the real time axis – the time variable cannot run to infinite values in
any other direction if we are to avoid exponentially-divergent field configurations. On
the first two vertical parts of the contour in Fig. 4.1, the solution and its Euclidean
action are real-valued quantities. However, on the real-time part of the contour, the
classical solution is a complex field.

Finally, the contour should also encounter the singularity of the solution, as shown
in Fig. 4.1 a or b. This ensures that the contour cannot be continuously deformed
and shifted away to infinite values of |tC| in the upper-right quadrant of the complex
plane. If this were possible, we could keep the contour at infinite values of τ ,
which would contradict the boundary condition in Eq. 4.2.16. We will see later on
that encountering the singularity of the solution on its time evolution trajectory is
precisely what allows for the jump in the energy E carried by the solution. The
energy changes from E = 0 carried by the configuration in Eq. 4.2.13 at early times
to E > 0 computed at late times from Section 4.2.2.

1In this respect the simple configuration h0E(τ) in Eq. 4.2.11 is an exception of the general
rule in Section 4.2.2, as it can be written in the form limτ→±∞ h0E(τ) = ±v + O(e−m|τ |) and it
appears that only the decaying exponents are present at large positive or large negative values of τ .
However, this is an accidental simplification specific to this particularly simple solution describing
tree-level amplitudes (i.e. λn� 1 limit) on the mass thresholds.
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A brief summary of the analytic continuation discussion above consists of the fol-
lowing steps. The starting point for the formalism is the functional integral over
real-valued fields in Minkowski spacetime. The saddle-point (a.k.a. steepest des-
cent) field configurations always turn out to be complex-valued functions in real
time. This fact by itself does not at all contradict the original requirement that
the fields we are integrating over in a real scalar field theory are real by definition.
The steepest descent saddle-point is simply not on the real-field-valued functional
contour and in order to pass through it, one simply deforms the functional integ-
ration field variables into complex fields. The main point instead is whether this
approach can be simplified by also analytically continuing the time variable for the
fields. The answer is ‘yes’, but only in so far as the standard Wick rotation t→ iτ

is allowed. We showed that this can be achieved on the first two (vertical) parts of
the time-evolution contour in Fig. 4.1. The steepest descent field configurations on
these parts of the contour are real and well-defined in the τ → ∞ limit. We have
thus avoided complex-valued fields and actions on the saddle point – but only for
part of the time-evolution contour. We further explained that the last part of the
contour cannot be rotated into the imaginary time direction and must remain real or
at least run parallel to the real-time axis (we neglect the infinitesimal angle δ in this
discussion). This is forced on us by the final-time boundary condition (Section 4.2.2)
for the saddle point field. On this final right-most part of the contour in Fig. 4.1, the
saddle-point field configuration cannot be made real and remains complex. This does
not in any way present an obstacle or an ambiguity for using the steepest descent
method. It is more of a technical point to keep in mind: on this final segment
of the time evolution, the fields h(x) in the functional integration measure Dh(x)
should be analytically continued to allow the integration contour to pass through
complex-valued saddle-point field configurations. Incidentally, it will turn out in
our calculation that classical action contributions on this part of the time-evolution
contour will simply amount to certain boundary terms that will be easy to account
for. This summary concludes our discussion of the analytic continuation. We will
return to its implementation in Section 6.1.3. Until then we will be following instead
the original first-principles formulation in real Minkowski time.

We now move on to reviewing the semiclassical formalism, starting with a brief
discussion of coherent states in quantum mechanics, which form the foundation for
the coherent state representation used heavily in later sections.



Chapter 5

The Coherent State Formalism

5.1 Coherent states in quantum mechanics

Much of this section is basic quantum mechanics, but we review it nonetheless to
ensure that our conventions are clear from the beginning. Furthermore, many of
the more complex and notation-heavy equations presented in Section 5.2 can be
understood as analogous to the more simple relations discussed here. Thus the
formulae below provide a useful reference for the more advanced calculations to
come. We begin with a brief summary of coherent states in quantum mechanics,
using the familiar canonical example of the quantum harmonic oscillator.

5.1.1 Review of the quantum harmonic oscillator

Consider the 1D quantum harmonic oscillator, with Hamiltonian, Ĥ0,

Ĥ0 = p̂2

2 + 1
2ω

2q̂2, (5.1.1)

where p̂ and q̂ are the momentum and position operators respectively, satisfying the
usual commutation relation, [q̂, p̂] = i. The angular frequency of the oscillator is
denoted by ω. Note that we set ~ = 1 and choose a unit mass m = 1 in this quantum
mechanical example.

In quantum mechanics, one seeks the energy spectrum of this system. This is usually
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done using the so-called raising and lowering operators, α̂ and α̂†,1

α̂ =
√
ω/2 (q̂ + ip̂/ω) α̂† =

√
ω/2 (q̂ − ip̂/ω), (5.1.2)

which satisfy the commutation relation,

[α̂, α̂†] = 1, (5.1.3)

and enable the Hamiltonian to be rewritten as,

Ĥ0 = ω(α̂†α̂ + 1/2) = ω(n̂+ 1/2). (5.1.4)

We find that the stationary states are eigenstates, |n〉, of the operator n̂ = α̂†α̂,
which is commonly referred to as the occupation number operator, with integer
eigenvalues n ≥ 0. Using the Schrödinger equation, we see that unique energy levels
are uniformly separated by intervals ∆E = En − En−1 = ω, with a ground state
energy E0 = ω/2:

Ĥ0|n〉 = En|n〉 En = ω(n+ 1/2) n ∈ Z ≥ 0. (5.1.5)

A simple consequence of the commutation relations for α̂† and α̂ is that,

α̂†|n〉 =
√
n+ 1|n+ 1〉 α̂|n〉 =

√
n|n− 1〉, (5.1.6)

and so α̂† increases the energy of a state by ω where α̂ decreases it in equal measure.
Given the “vacuum” state, |0〉, for which α̂|0〉 = 0, one can generate the full spectrum
using the raising operator,

|n〉 = (α̂†)n√
n!
|0〉. (5.1.7)

5.1.2 Coherent states as eigenstates of the lowering
operator

With the energy spectrum and associated states found, we now want to find ei-
genstates of the lowering operator α̂. These eigenstates are known as coherent
states [194–196].

We note that the states |n〉 form a complete set (since they are the eigenstates of

1In this section we use Greek letters α̂ and α̂† to denote the lowering/raising operators. The
complex-number-valued eigenvalue of α̂ is denoted by Latin letter a, and its complex conjugate is a∗.
When dealing with the QFT generalisation starting from Section 5.2, we will use a more compact
notation with Latin letters denoting both the operator-valued expressions and their eigenvalues.
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the Hermitian operator Ĥ0) and thus any state |ψ〉 can be written as,

|ψ〉 =
∞∑
n=0

ψn|n〉 =
∞∑
n=0

ψn
(α̂†)n√
n!
|0〉 , with ψn ∈ C. (5.1.8)

From this we can see that an eigenstate of the raising operator is not possible as the
lowest n component in the decomposition will not be present after acting with α̂†.
However, one can find eigenstates of the lowering operator,

α̂|ψ〉 =
∞∑
n=0

ψnα̂|n〉 =
∞∑
n=0

ψn+1
√
n+ 1 |n〉 := a |ψ〉 , for ψn+1

√
n+ 1 = aψn,

(5.1.9)
where a is the eigenvalue of state |ψ〉 under the action of operator α̂. In other words,
by iterating the second equation above, we find,

ψn = an
ψ0√
n!

→ |ψ〉 = ψ0

∞∑
n=0

(aα̂†)n

n! |0〉 = ψ0 e
aα̂
†
|0〉. (5.1.10)

These eigenstates of the lowering operator are known as coherent states and will
prove to be a powerful tool in the functional integral QFT framework. We treat ψ0

as an optional normalisation, which we set to 1 in accordance with coherent state
convention, despite the state’s subsequently non-unit norm. In preparation for the
calculations to follow, where many independent sets of coherent states can appear
in a single expression it is useful to clearly define a coherent state in terms of one
Latin letter a,

|a〉 = eaα̂
†
|0〉 α̂|a〉 = a|a〉 〈a| = 〈0|ea

∗
α̂ 〈a|α̂† = a∗〈a|. (5.1.11)

Note that stars simply indicate a complex conjugate. It is important to distinguish
between:

• the quantum state |a〉 which lives in a Hilbert space,

• the raising and lowering operators α̂† and α̂, which have hats and act on states
in this space,

• the complex number a, which is the eigenvalue associated with the action of
operator α̂ on state |a〉, and a∗ which is the complex conjugate of the eigenvalue
a.

With this in mind, one can introduce any number of coherent states |b〉, |c〉, ..., with
eigenvalues {b, c, ...} under the same single set of operators: α̂† and α̂. For example,

|b〉 = ebα̂
†
|0〉 α̂|b〉 = b|b〉. (5.1.12)
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Hence we established a one-to-one correspondence between a complex number z ∈ C
and a coherent state |z〉, defined via,

|z〉 = ezα̂
†
|0〉 . (5.1.13)

The set of coherent states {|a〉} obtained by the complex number z spanning the
entire complex plane is known to be an over-complete set. Mathematically, this is
the statement that,

1 =
∫ dz∗dz

2πi e−z
∗
z|z〉〈z| , (5.1.14)

where the 2-real-dimensional integral is over the complex plane z ∈ C . The over-
completeness of the set manifests itself in the presence of the exponential factor
e−z

∗
z on the right hand side. We will derive Eq. 5.1.14 in the following section, see

Eq. 5.1.18 below.

The transition to QFT in Section 5.2 will be achieved by generalising the simple
1-dimensional QM example considered so far, to an infinite number of dimensions
(i.e. infinite number of coupled harmonic oscillators). Hence we will need an infinite
set of creation and annihilation operators α̂k and α̂†k, and correspondingly a set of
coherent states {|a〉}k parametrised by complex-valued functions a(k) ≡ ak where
k is the momentum variable.

5.1.3 Properties of coherent states in quantum mechanics

We now discuss some of the useful properties of coherent states, which form the basis
of many more complex derivations. As the eigenstates of the lowering operator, one
might ask how coherent states are changed by application of the raising operator. It
follows directly from the definition, |a〉 = eaα̂

†
|0〉, that

α̂†|a〉 = ∂

∂a
|a〉. (5.1.15)

Next we need the inner product of two coherent states,

〈b|a〉 = 〈0|eb
∗
α̂eaα̂

†
|0〉 = eb

∗
a. (5.1.16)

The expression on the right-hand side was obtained using the Baker-Campbell-
Hausdorff (BCH) relation,

eÂeB̂ = e[Â,B̂]eB̂eÂ, (5.1.17)

which is valid so long as the commutator [Â, B̂] ∈ C.

Since a is just a complex number, for a given set of raising and lowering operators
there is an infinite set {|a〉} of coherent states: one for every point in the complex
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plane. Accounting for their non-unit norm, the analogue of the completeness relation
for coherent states is,

1 =
∫ da∗da

2πi e−a
∗
a|a〉〈a| :=

∫
d(a∗, a) e−a

∗
a|a〉〈a|. (5.1.18)

The identity in Eq. 5.1.18 is often called the over-completeness relation due to
the non-trivial exponential factor in the integral, with the basis of coherent states
described as over-complete. Also note that Eq. 5.1.16 implies that coherent states
are not orthogonal either.

Using the relations in Eqs. 5.1.16 to 5.1.18, one can write quantum-mechanical objects
in a coherent state representation, where they appear as functions of one or more
of the complex coherent state variables. We define the coherent-state representation
of the state |ψ〉 as 〈a|ψ〉 = ψ(a∗), from which we find that the inner product of two
states,

〈ψA|ψB〉 =
∫
d(a∗, a) e−a

∗
aψ∗A(a)ψB(a∗), (5.1.19)

where ψ∗A(a) is just [ψA(a∗)]∗. Similarly, we define the matrix element of an operator
Â between two coherent states as 〈b|Â|a〉 = A(b∗, a). The action of such an operator
on an arbitrary state |ψ〉 can be written as,

(Âψ)(b∗) =
∫
d(a∗, a) e−a

∗
aA(b∗, a)ψ(a∗). (5.1.20)

Furthermore, one can write the matrix element for the product of two operators as,

(AB)(b∗, a) = 〈b|ÂB̂|a〉 =
∫
d(c∗, c) e−c

∗
cA(b∗, c)B(c∗, a). (5.1.21)

The above logic is used extensively in the rest of this section and Section 5.2.

A quantity which will prove to be useful is the coherent state representation of a
position eigenstate, 〈q|a〉. We rewrite the raising operator in the coherent state
exponent in terms of the original position and momentum operators, q̂ and p̂,

〈q|a〉 = 〈q| eaâ
†
|0〉 = 〈q| e

a
√
ω/2

(
q̂−
ip̂

ω

)
|0〉 = e

a
√
ω/2

(
q−

1
ω

d

dq

)
〈q|0〉 , (5.1.22)

where the operators are now in their position-space representations: q and −id/dq. It
is well-known in quantum mechanics that the vacuum state is a Gaussian distribution
centred at the origin of the potential well, q = 0,

〈q|0〉 = ψ0(q) = Ne−(q/q0)2
/2 = Ne−ωq

2
/2, (5.1.23)

where N is a normalisation constant and q0 =
√

1/ω. We now make the substitution
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y = q/q0 and use another BCH-like relation,

eÂ+B̂ = e−[Â,B̂]/2eÂeB̂, (5.1.24)

to show that,
〈q|a〉 = N exp

(
−1

2a
2 − 1

2ωq
2 +
√

2ωaq
)
. (5.1.25)

In quantum field theory, where the lowering operator is instead understood as an
annihilation operator for quanta of the field, the analogous operator to position q̂
will be the real scalar quantum field itself: φ̂.

Finally, consider the action of a time evolution operator, Û0(t) = e−iĤ0t, on a coherent
state1,

Û0(t) |a〉 = e−iĤ0teaα̂
†
|0〉 = e−iĤ0t

∞∑
n=0

an
(α̂†)n

n! |0〉

=
∞∑
n=0

an e−iĤ0t |n〉 1√
n!

=
∞∑
n=0

(ae−iωt)n |n〉 1√
n!

=
∞∑
n=0

(ae−iωt)n (α̂†)n

n! |0〉 = |ae−iωt〉 .

(5.1.26)

We see that time evolution operators simply shift the phase of the coherent state
variable associated with the coherent state. This property will be useful in computing
the scattering S-matrix operator Ŝ in Section 5.2.2.

5.2 Coherent state formalism in QFT and the
S-matrix

In this section we develop the coherent state formalism for the functional integral rep-
resentation of the S-matrix in quantum field theory, which is an important ingredient
in the formulation of the semi-classical method for computing multiparticle produc-
tion rates. We begin with the nuances associated with the move from quantum
mechanics (QM) to quantum field theory (QFT), where the concept of coherent
states is somewhat more abstract. We then explore their use in the calculation of
amplitudes via path integrals. Sections 5.2.1 and 5.2.2 outline the coherent-states-
based approach for writing matrix elements in QFT that was originally presented in
Refs. [186,191,192], and in a slightly different formulation, called the holomorphic

1The subscripts on Û0 and Ĥ0 are used to remind us that the Hamiltonian is that of the simple
harmonic oscillator, it will play the role of the free part of the Hamiltonian in interacting models,
in particular the QFT settings considered in the following section.
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representation, in the textbook [190]. In Section 6.1 we will use the results derived
here for matrix elements to efficiently implement the phase space integration and thus
write down formulae for probabilistic rates for multiparticle production following the
semiclassical formalism of Ref. [168].

5.2.1 QFT in d+ 1 dimensions as the infinite-dimensional
QM system

In Section 5.1 we discussed coherent states as eigenstates of the lowering operator
for the quantum harmonic oscillator (QHO). Now we instead discuss the real scalar
quantum field in d + 1 dimensions, which has many mathematical parallels to the
harmonic oscillator.

A free real scalar field is described by the Klein-Gordon Lagrangian, which can be
manipulated into a Klein-Gordon Hamiltonian H0,

H0 =
∫
ddxH0 , where H0 = 1

2π
2 + 1

2 |∇φ|
2 + m2

2 φ2. (5.2.1)

Here φ(x) is the scalar field, π(x) is the momentum conjugate to the field, and
∇ denotes a spatial derivative in d dimensions. The conjugate momentum field
π = ∂tφ = φ̇ is just a change in variable associated with the Legendre transformation
linking the Lagrangian and Hamiltonian formalisms. The final term is a mass term;
this mass will later be set to unity. When transitioning from classical field theory
to quantum field theory, the fields φ and π gain operator status. We will always
be in the quantum regime and so their hats are omitted. Finally, note that x now
represents a (1, d)-vector x = (t,x).

The above Hamiltonian already looks similar to that of the QHO but with the so-
called generalised coordinate now being a field φ rather than a position q. This is
made more obvious if we integrate the spatial derivative by parts,

H0 = π2

2 + 1
2φ(m2 −∇2)φ, (5.2.2)

and so our frequency ω2 = (m2−∇2) is no longer a constant parameter. In a Fourier
expansion, the Laplacian, −∇2, will bring out a factor of the squared d-dimensional
momentum k2. We thus expect a dispersion relation: ω2

k = m2 + k2. For every
d-momentum, k, there is an associated harmonic oscillator with frequency, ωk, which
we can solve by introducing raising and lowering operators, â†k and âk, as shown in
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Section 5.11,
Ĥ0 =

∫
ddk ωk â

†
k âk + V . (5.2.3)

Here, V is analogous to the ground-state energy in the QHO and can be thought
of as the energy of the vacuum. We ignore this term in the rest of this work by
assuming the normal ordering prescription : H0 : as is standard.

The usual interpretation of the free quantum field is that it consists of an infinite
number of harmonic oscillators. The raising and lowering operators can now be rein-
terpreted as creation and annihilation operators: the operator â†k creates a quantum
of the field with d-momentum k, whereas operator âk annihilates it. Considering the
parallels with the QHO it should not be surprising that they obey the commutation
relation,

[âk, â
†
p] = (2π)d/2 δ(k− p). (5.2.4)

Inverting the definitions of the creation and annihilation operators and accounting
for their momentum-space representation, one obtains the definition of the scalar
field operator in terms of Fourier modes,

φ̂(x) =
∫ ddk

(2π)d/2
1√
2ωk

(âk e
−ikx + â†k e

+ikx), (5.2.5)

where kx = k0t−k·x. An on-shell field satisfies the Klein-Gordon equation, implying
k0 = ωk =

√
m2 + k2. The coefficients of the modes are the creation and annihilation

operators in the quantum theory2.

In analogy with QM, a coherent state in QFT is a common eigenstate of all annihil-
ation operators, with eigenvalues dependent on the momentum k of the annihilation
operator. We follow the notational rationale put forward in Section 5.1, by labelling
the coherent state |{a}〉, and denoting its eigenvalue under operator âk as ak,

âk|{a}〉 = ak|{a}〉 ∀k. (5.2.6)

When converting from QM to QFT we have to take into account that we have moved
from one oscillator to an infinite set, indexed by a free d-dimensional momentum k.
The curly braces in the state label, |{a}〉, serve as a constant reminder. Therefore,

1As already mentioned, to avoid overly-complicated notation in QFT, we will now use Latin
letters for both the creation/annihilation operators and for their eigenvalues, see Eqs. 5.2.5 and 5.2.6.

2We use a non-relativistic normalisation for the integration measure in Eq. 5.2.5. In the

relativistic normalisation, φ̂(x) =
∫ ddk

(2π)d/2
1

2ωk
(âke

−ikx + â†ke
+ikx) and one rescales âk and â†p

such that [âk, â
†
p] = (2π)d/22ωkδ(k− p).
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in terms of the vacuum, our coherent state can be written as,

|{a}〉 = e
∫
dk akâ

†
k |0〉. (5.2.7)

To avoid notational clutter, we use dk to represent the d-dimensional momentum
integration measure,

dk := ddk. (5.2.8)

The Fourier transformation of the field operator is defined via,

˜̂
φ(k) := ˜̂

φ(t,k) :=
∫ ddx

(2π)d/2
e−ik·x φ̂(t,x), (5.2.9)

so that the Fourier transform of the free field in Eq. 5.2.5 becomes simply a linear
combination of the annihilation and creation operators with positive and negative
frequencies,

˜̂
φ(k) = 1√

2ωk
(âk e

−iωkt + â†−k e
iωkt). (5.2.10)

In exact analogy to the operator-valued expressions for the Fourier-transforms in
Eqs. 5.2.9 and 5.2.10 we can also define the Fourier transform of the c-valued scalar
field φ(x),

φ̃(k) = 1√
2ωk

(ak e
−iωkt + a∗−k e

iωkt). (5.2.11)

where in this case the annihilation and creation operators are substituted by the
complex-valued eigenfunction ak and it complex conjugate a∗k as per Eq. 5.2.6. Note
that [φ̃(k)]∗ = φ̃(−k) because φ(t,x) ∈ R.

As in QM, we can find an inner product of two coherent states,

〈{b}|{a}〉 = e
∫
dk b∗kak , (5.2.12)

the over-completeness relation reads,

1 =
∫
d({a∗}, {a})e−

∫
dk a∗kak |{a}〉〈{a}|, (5.2.13)

and for the inner product between the eigenstate of the field φ̃k and the coherent
state we have,

〈φ|{a}〉 = N exp
(
−1

2

∫
dk aka−k −

1
2

∫
dkωkφ̃(k)φ̃(−k) +

∫
dk
√

2ωkakφ(k)
)
.

(5.2.14)
Here N is some constant normalisation factor irrelevant for our purposes. The
expression in Eq. 5.2.14 is the generalisation of the quantum mechanical overlap
formula (Eq. 5.1.25) to the QFT case at hand, which corresponds to an infinite
number of QM oscillator degrees of freedom. We note that the states 〈φ| and |{a}〉
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in the expression in Eq. 5.2.14 are defined as the eigenstates of the operators φ̂
and â respectively; with both operators taken at the same time t, which we take
to be t = 01. Hence the Fourier components of the field φ̃(k) are given by the
spatial Fourier transform (see Eq. 5.2.9) of φ(t,x) at t = 0. For completeness of our
presentation, the formula in Eq. 5.2.14 is derived in Appendix B.1.

5.2.2 Application to path integrals and amplitude
calculation

We now consider an interacting quantum field theory in d+ 1 dimensions with the
Hamiltonian H. The object central to scattering theory is the S-matrix. Given an
initial state, |φi(ti)〉, the S-matrix defines the probability amplitude of arriving at a
final state, |φf (tf )〉.

In the interaction picture, where we split the Hamiltonian into the free part H0, and
the interacting part V ,

Ĥ = Ĥ0 + V̂ , (5.2.15)

the S-matrix Sfi is defined as,

Sfi = 〈φf |Ŝ|φi〉 = lim
tf ,ti→±∞

〈φf | eiĤ0tf Û(tf , ti)e−iĤ0ti |φi〉 , (5.2.16)

where |φf〉 and |φi〉 are free states, i.e. eigenstates of the free Hamiltonian Ĥ0,
prepared at the times t = tf and t = ti respectively. The S-matrix operator,
appearing on the right-hand side of Eq. 5.2.16,

Ŝ = lim
tf ,ti→±∞

eiĤ0tf Û(tf , ti)e−iĤ0ti , (5.2.17)

implements the time-evolution of the interaction-picture-state |φi〉 from ti to tf where
it is contracted with the final state |φf〉. The operator U(tf , ti) in Eq. 5.2.17 is the
time-evolution operator for the Heisenberg fields,

Û(tf , ti) = T exp
(
− i

tf∫
ti

Ĥdt
)
, (5.2.18)

with T denoting a time-ordered product. Given that the fields in the interaction
picture are free fields, one has,

|φ(t′)〉 = e−iĤ0(t′−t) |φ(t)〉 , (5.2.19)

1The operators φ̂ and â are defined in a theory with the HamiltonianH0, and it is straightforward
to time-evolve them from t = 0 to any t with e±iH0t. This will be done in Eq. 5.2.29 in the next
section, but in Eq. 5.2.14 we use t = 0.
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which explains the eiĤ0tf and e−iĤ0ti factors in Eq. 5.2.17.

In the infinite future and past, the initial and final particles are sufficiently separated
in the d-dimensional space so as not to experience interactions (apart from the effects
accounted for by UV renormalisation of fields and parameters of the theory). Thus,
by taking the limit limtf ,ti→±∞, the free Hamiltonian eigenstates in Eq. 5.2.16 are a
good approximation to the actual initial and final states.

Of course, for a non-interacting theory, Ŝ is simply the identity operator. More
generally, Ŝ = 1 + iT̂ and we define the matrix element,M, by the relation,

〈φf |Ŝ − 1|φi〉 = 〈φf |iT̂ |φi〉 = (2π)4δ(d+1)
(∑

kf −
∑

ki
)
iM, (5.2.20)

where the delta function simply enforces momentum conservation.

We now want to express the S-matrix (see Eq. 5.2.17) in the basis of coherent states.
The kernel of the S-matrix is given by,

S(b∗, a) := lim
tf ,ti→±∞

〈{b}|eiĤ0tf Û(tf , ti)e−iĤ0ti |{a}〉 . (5.2.21)

Eq. 5.1.26 implies that the free evolution operators simply shift the phase of the
coherent states, giving,

S(b∗, a) := lim
tf ,ti→±∞

〈{be−iωtf}|Û(tf , ti)|{ae−iωti}〉 . (5.2.22)

Note that |{ae−iωti}〉 refers to a coherent state much like |{a}〉 but with ak →
ake

−iωkti for all k.

The derivation of the S-matrix kernel will closely follow that presented in [191,192].
Using the completeness relation,

1 =
∫
dφf |φf〉 〈φf | , (5.2.23)

and similarly for φi, we can re-write Eq. 5.2.22 as,

S(b∗, a) = lim
tf ,ti→±∞

∫
dφfdφi 〈{be−iωtf}|φf〉 〈φf |Û(tf , ti)|φi〉 〈φi|{ae−iωti}〉 . (5.2.24)

We recognise 〈φf |Û(tf , ti)|φi〉 as the Feynman path integral,

〈φf |Û(tf , ti)|φi〉 =
∫
Dφ eiS[φ]

tf
ti , (5.2.25)

over the fields satisfying the boundary conditions,

φ(ti) = φi, φ(tf ) = φf , (5.2.26)
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where S[φ]tfti is the action,

S[φ]tfti =
tf∫
ti

dt
∫
ddxL(φ). (5.2.27)

Inserting the projections of the initial and final states in the coherent state basis
(see Eq. 5.2.14), we arrive at the following result,

S(b∗, a) = lim
tf ,ti→±∞

∫
dφf dφi e

Bi(φi;a)+Bf (φf ;b∗)
∫
Dφ eiS[φ]

tf
ti . (5.2.28)

Here the boundary terms, exp[Bi(φi; a)] = 〈φi|{ae−iωti}〉 and exp[Bf(φf ; b∗)] =
〈{be−iωtf}|φf〉, are given by (cf. Eq. 5.2.14),

Bi(φi; a) = −1
2

∫
dk aka−ke

−2iωkti − 1
2

∫
dkωkφ̃i(k)φ̃i(−k) +

∫
dk
√

2ωkakφ̃i(k)e−iωkti ,

Bf (φf ; b∗) = −1
2

∫
dk b∗kb∗−ke

2iωktf − 1
2

∫
dkωkφ̃f (k)φ̃f (−k) +

∫
dk
√

2ωkb
∗
kφ̃f (−k)eiωktf .

(5.2.29)

In these expressions, φ̃i(k) and φ̃f(k) are the d-dimensional Fourier transforms of
the boundary fields, φi(x) = φ(ti,x) and φf (x) = φ(tf ,x), so that,

φ̃i(k) =
∫
dx e−ik·x φ(ti,x),

φ̃f (k) =
∫
dx e−ik·x φ(tf ,x),

(5.2.30)

where, in analogy with Eq. 5.2.8, the d-dimensional coordinate integration measure
is defined as,

dx := ddx . (5.2.31)

Thus in comparison to the simple overlaps in Eq. 5.2.14 at t = 0, the boundary terms
in Eq. 5.2.29 contain the dependence on ti or tf via the phase factors accompanying
the a and b∗ in Eq. 5.2.29, as well as in the definitions of the boundary fields in
Eq. 5.2.30.

Before concluding this section, we mention a particularly useful property of the
coherent state basis for scattering theory: it allows one to circumvent the LSZ
reduction formulae. The kernel, A(b∗, a) = 〈b|Â|a〉, of any operator Â in the coherent
state representation is the generating functional for the same operator in the Fock
space,

〈q1...qm|Â|p1...pn〉 = ∂

∂b∗q1

...
∂

∂b∗qm

∂

∂ap1

...
∂

∂apn
A(b∗, a)|a=b∗=0, (5.2.32)

where |p1...pn〉 is an n-particle state with particle d-momenta pi, i = 1, . . . , n. This
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formula follows immediately from the definition of the coherent state in Eq. 5.2.7,
since

∂

∂ap1

...
∂

∂apn
e
∫
dk akâ

†
k |0〉|a=0 = |p1...pn〉 . (5.2.33)

Applying this to the S-matrix operator we find,

〈q1...qm|S|p1...pn〉 = ∂

∂b∗q1

...
∂

∂b∗qm

∂

∂ap1

...
∂

∂apn
S(b∗, a)|a=b∗=0. (5.2.34)

The left-hand side is just the S-matrix element for the n→ m process. Hence, we
can calculate any scattering amplitude directly from the kernel of the S-matrix by
simply differentiating with respect to coherent state variables. Thus the coherent
state representation allows one to bypass the LSZ reduction formulae, by simply
differentiating the path integral for the kernel of the S-matrix. This coherent state
formulation is of course equivalent to the LSZ procedure1, but gives a more direct
route for semiclassical applications, given the exponential nature of S(b∗, a).

1In our derivation we have neglected the Z factors arising from the wave-function renormalisa-
tion. Of course they can be painstakingly restored, but this will not be required for our applications
of the semiclassical approach.





Chapter 6

The Semiclassical Method

6.1 The semiclassical method for multi-particle
production

In this section we review the semiclassical method of Son [168] for calculating
probabilistic rates or cross sections for the processes given in Eq. 4.1.1. There are
two types of initial states X that are of particular interest,

Scattering : |X(
√
s)〉 = |2〉 → |n〉 ⇒ cross section σn(

√
s) , (6.1.1)

Resonance : |X(
√
s)〉 = |1∗〉 → |n〉 ⇒ partial width Γn(s) . (6.1.2)

For the 2-particle initial state, the n-particle production process in Eq. 6.1.1 is
characterised by the cross section σn(

√
s); for the single-particle state of virtuality

p2 = s in Eq. 6.1.2, the relevant quantity is the partial decay width Γn(s). Final
states contain a large number n & 1/(coupling constant) � 1 of elementary Higgs-
like scalar particles of mass m.

As we already mentioned in the Introduction, this work concentrates primarily on the
process shown in Eq. 6.1.2 to simplify the presentation. Formally, the processes in
Eqs. 6.1.1 and 6.1.2 can both be treated simultaneously in the semiclassical approach
of Son [168], where the initial state X is approximated by a local operator O(x)
acting on the vacuum state. In |2〉 → |n〉 scattering with n large, the original 2
particles exchange large momentum and thus come within a short distance of one
another. This justifies a description with a local operator source1.

1The effect of smearing of the local operator would be important in the description of 2→ n
processes in order to account for the effect of a finite impact parameter between the two incoming
particles in the collision and to maintain unitarity in the asymptotic high-energy regime,

√
s→∞,

with fixed coupling constant λ = fixed� 1.
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We will use the notation |1∗〉 → |n〉 for the process in Eq. 6.1.2, where |1∗〉 denotes a
highly-virtual particle that, for example, can be produced as an intermediate state in
a high-energy collision, and |n〉 denotes an n-particle final state. We are interested
in the regime of high-multiplicity (n� 1) in a weakly coupled theory (λ� 1) with
λn held at a fixed value that we ultimately take to be large.

Our discussion in this section follows the construction in [168] and also borrows from
Refs. [186,192,197,198].

6.1.1 Setting up the problem

Consider a real scalar field φ(x) in (d + 1)-dimensional spacetime, with the Lag-
rangian,

L(φ) = 1
2(∂µφ)2 − 1

2m
2φ2 − Lint(φ), (6.1.3)

where Lint is the interaction term. The two simplest examples are the φ4 model
in the unbroken phase, with Lint = λ

4φ
4, and the theory in Eq. 4.1.3 with the

spontaneously-broken Z2 symmetry,

L = 1
2 ∂

µh ∂µh −
λ

4
(
h2 − v2

)2
. (6.1.4)

The theory in Eq. 6.1.4 has a non-zero vacuum expectation value 〈h〉 = v and we
introduce the shifted field of mass m =

√
2λ v,

φ(x) = h(x)− v , m =
√

2λ v . (6.1.5)

Our considerations in this section are general and the expressions that follow, unless
stated otherwise, will be written in terms of the manifestly VEV-less field φ with
the Lagrangian in Eq. 6.1.3. If the VEV is non-zero, as in the model in Eq. 6.1.4,
the φ field is defined by subtracting the VEV from the original field via Eq. 6.1.5.

Our main goal is to derive the probability rate or the ‘cross section’ for the process
where a single highly-virtual off-shell particle is produced as an intermediate state
in a high-energy collision, or alternatively a few energetic on-shell particles in the
initial state |φi〉, produce an n-particle final state with n� 1. Most importantly, this
probability rate should be written in a form suitable for a semiclassical treatment. In
other words, the functional integral representation for the multiparticle rate should
be calculable by some appropriate incarnation of the steepest descent method.

We begin by specifying the initial state. Instead of using the coherent state |{a}〉
as we have done in the previous section, we now assume that the initial state is
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prepared by acting with a certain local operator Ô(x) on the vacuum,

|φi〉 = Ô(x) |0〉 . (6.1.6)

We will see that the operator Ô(x) will act as a local injection of energy (or more
precisely the virtuality characterising the off-shell state |φi〉) into the vacuum state
|0〉 at the spacetime point x. From now on, and without loss of generality, we will
place the operator insertion point x at the origin, x = 0.

In a general local QFT, any field O(x) that is sharply defined at a point x is in fact
an operator-valued distribution. In order to define an operator one has to smear the
field with a test function that belongs to an appropriate set of well-behaved smooth
functions with finite support in spacetime [199]. This implies that O(x) in Eq. 6.1.30
should be averaged with a test function g(x). The operator localised in the vicinity
of a point x is,

Og(x) =
∫
d4x′ g(x′ − x)O(x′) , (6.1.7)

and the prescription in Eq. 6.1.6 for defining the initial state should be refined [167]
using,

|φi〉 = Og(0) |0〉 =
∫
d4x′ g(x′)O(x′) |0〉 . (6.1.8)

This gives a well-defined state in the Hilbert space. For the rest of this section we
will ignore the averaging of the operators with the test functions. Their effect can
be recovered from the distribution-valued rate Rn(

√
s = E) that we will concentrate

on from now on and refer the reader to [167] for more details on the topic of the
operator smearing.

For a given final state, |φf〉, one can isolate the parts with the desired energy and
multiplicity using projection operators P̂E and P̂n on states with the fixed energy
E and particle number n. The probability rate Rn(E) for a transition between the
initial state and the final state with the energy E and particle number n is given by
the square of the matrix element of the S-matrix with the projection operators P̂E
and P̂n,

〈φf |P̂EP̂nŜ|φi〉 = 〈φf |P̂EP̂nŜ Ô|0〉 , (6.1.9)

integrated over the final states phase space,
∫
dφf |φf〉 〈φf |, to give

Rn(E) =
∫
dφf 〈0|Ô†Ŝ†P̂EP̂n|φf〉 〈φf |P̂EP̂nŜÔ|0〉

= 〈0|Ô†Ŝ†P̂EP̂nŜÔ|0〉 .
(6.1.10)

It is clear that neither the initial state |φi〉 = Ô |0〉 nor the final state 〈φf | in the
matrix element in Eq. 6.1.9 are states of definite energy. The projection operator
P̂E resolves this problem by projecting onto the fixed energy states. This applies to
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both, the initial and the final states, since the energy E is conserved in the transition
amplitude and hence is the same in the initial and the final states. This implies that
P̂EÔ |0〉 selects the initial state with the energy equal to E that is injected into the
vacuum state by the operator P̂EÔ at the point x = 0 – in agreement with what we
have already stated above.

The particle number, on the other hand, is not a conserved quantity, it is computed
only for asymptotic free states and is equal to n in the final state 〈φf | P̂n. In the
initial state we want to have the particle number ni to be small, 1 or 2, to correspond
a scattering process ‘few → many’. The selection of ni is achieved by a judicious
choice of the operator O in the definition of the initial state. We will see below that
the requirement that the semiclassical approximation is applicable to the functional
integral representation of the transition rate in Eq. 6.1.10 will allow for the operators
of the form,

Ô = j−1 ejφ(0) , (6.1.11)

where j is a constant. To select the single-particle initial state 〈0|φ(0), the limit j → 0
will ultimately be taken in the computation of the probability rate in Eq. 6.1.10,
along with the semiclassical limit λ → 0.1 Eq. 6.1.11 defines the local operator
used by Son in [168], which we too will use (we will have more to say about this
prescription in Section 6.1.2).

To proceed with the determination of the multiparticle rate in Eq. 6.1.10, we need
expressions for the projection operators P̂E and P̂n. This is where the coherent states
formalism is useful. The kernel of P̂E is given by,

PE(b∗, a) := 〈{b}|P̂E|{a}〉 =
∫ dξ

2π exp
[
−iEξ +

∫
dk b∗kake

iωkξ
]
. (6.1.12)

To derive this expression, consider applying the delta function,

δ(Ĥ0 − E) =
∫ dξ

2π e
i(Ĥ0−E)ξ , (6.1.13)

to the coherent state |{a}〉,

δ(Ĥ0 − E) |{a}〉 =
∫ dξ

2π e
−iEξ |{aeiωξ}〉 (6.1.14)

and then convoluting this with the state 〈{b}|. Using Eq. 5.2.12 we find,

〈{b}|δ(Ĥ0 − E)|{a}〉 =
∫ dξ

2π exp
[
−iEξ +

∫
dk b∗kake

iωkξ
]
, (6.1.15)

1We will explain in Section 6.1.2 in the discussion below Eq. 6.1.29 that the j → 0 limit should
be taken such that j/λ ∼ 1 to guarantee that the number of initial particles is ∼ 1 while the
number of final state particles is n ∼ 1/λ.
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which is equivalent to Eq. 6.1.12.

Using the same line of reasoning we also get the kernel of the projection operator
P̂n,

Pn(b∗, a) := 〈{b}|P̂n|{a}〉 =
∫ dη

2π exp
[
−inη +

∫
dk b∗kake

iη
]
. (6.1.16)

As seen in Eq. 5.1.21, the kernel of a product of two operators is the convolution of
their individual kernels, such that the combined energy and multiplicity projector is
given by,

PEPn(b∗, a) =
∫
d({c∗}, {c}) e−

∫
dk c∗kckPE(b∗, c)Pn(c∗, a)

=
∫
d({c∗}, {c}) dξ2π

dη

2π e
−iEξ−inη exp

[∫
dk
(
−c∗k(ck − ak e

iη) + b∗kcke
iωkξ

)]
=
∫
d({c}) dξ2π

dη

2π e
−iEξ−inηδ({c} − {aeiη}) exp

[∫
dk b∗kcke

iωkξ
]

=
∫ dξ

2π
dη

2π exp
[
−iEξ − inη +

∫
dk b∗kake

iωkξ+iη
]
,

(6.1.17)

where the delta function δ({c}−{aeiη}) is shorthand for an infinite product of delta
functions for the infinite set {c} such that, after integration, ck → ake

iη for all k.
The expression on the last line of Eq. 6.1.17 can also be derived instantly without
considering the convolution of two individual kernels, by inserting the product of
the two delta functions into the overlap 〈{b}|{a}〉.

After inserting the coherent state (over-)completeness relation (see Eq. 5.2.13), the
last line of our expression for the rate in Eq. 6.1.10 gives,

Rn(E) =
∫
d({b∗}, {b})e−

∫
dk b∗kbk 〈0|Ô†Ŝ†|{b}〉〈{b}|P̂EP̂nŜÔ|0〉

=
∫
d({b∗}, {b})e−

∫
dk b∗kbk

× [SO(b∗, 0)]∗

× PEPnSO(b∗, 0),

(6.1.18)

where we have identified the two matrix elements as kernels of product operators in
the coherent state formalism.

Given that Ô = Ô[φ̂(0)], we can simply absorb it into the path integral during the
derivation of S(b∗, a) seen in Section 5.2.2,

SO(b∗, a) = lim
tf ,ti→±∞

∫
dφfdφie

Bi(φi;a)+Bf (φf ;b∗)
∫
DφO[φ] eiS[φ]

tf
ti . (6.1.19)

As in Section 5.2.2, the functional integral satisfies the boundary conditions in
Eq. 5.2.26. The definitions of Bi(φi; a) and Bf (φf ; b∗) are given in Eq. 5.2.29.
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We now turn to the incorporation of the projection operators. Following the logic
used in deriving the product kernel PEPn(b∗, a) in Eq. 6.1.17, we deduce,

PEPnSO(b∗, a) =
∫
d({c∗}, {c})e−

∫
dk c∗kckPEPn(b∗, c)SO(c∗, a)

=
∫
d({c∗}) dξ2π

dη

2π e
−iEξ−inηδ({c∗} − {b∗eiωkξ+iη})SO(c∗, a)

=
∫ dξ

2π
dη

2π e
−iEξ−inηSO(b∗eiωkξ+iη, a).

(6.1.20)

We now have all the ingredients needed to write the master equation for R(n,E).
Combining Eqs. 6.1.18 and 6.1.20, we find,

R(n,E) =
∫
d({b∗}, {b}) dξ2π

dη

2π
× exp

[
−iEξ − inη −

∫
dk b∗kbk

]
× [SO]∗(b, 0)
× SO(b∗eiωkξ+iη, 0),

(6.1.21)

where we have set a = 0 to reduce the coherent state |{a}〉 to the vacuum as required
by Eq. 6.1.18. Making changes of variable,

b∗k → b∗ke
−iωkξ−iη, ξ → −ξ, η → −η, (6.1.22)

gives,

R(n,E) =
∫
d({b∗}, {b}) dξ2π

dη

2π
× exp

[
iEξ + inη −

∫
dk b∗kbke

iωkξ+iη
]

× [SO]∗(b, 0)
× SO(b∗, 0).

(6.1.23)

Inserting the definition of SO(b∗, 0) and the choice of operator Ô in Eq. 6.1.19 finally
yields the master equation for R(n,E) in the form given in [168], which we write
below specifying all integration variables in the functional integrals (and dropping
factors of 1/(2π) and 1/j):

R(n,E) = lim
tf ,ti→±∞

∫
dξdη db∗k dbk dφi(x) dφf (x)Dφ(x, t) dϕi(x) dϕf (x)Dϕ(x, t)

× exp
[
iEξ + inη −

∫
dk b∗kbke

iωkξ+iη + Ξ
]
,

(6.1.24)



6.1. The semiclassical method for multi-particle production 121

with the functional Ξ = Ξ(φi, φf , φ;ϕi, ϕf , ϕ; b∗k, bk; ti, tf ) defined by,

Ξ =Bi(φi; 0) +Bf (φf ; b∗) + [Bi(ϕi; 0)]∗ + [Bf (ϕf ; b∗)]∗

+ iS[φ]tfti − iS[ϕ]tfti + jφ(0) + jϕ(0).
(6.1.25)

Eqs. 6.1.24 and 6.1.25 specify the multi-dimensional (functional and ordinary) integ-
ral we need to compute or estimate in order to determine the rate for multiparticle
production processes. We will do so by method of steepest descent, i.e. the semi-
classical approximation, and its validity will be justified in the following section by
bringing the large parameter (the equivalent of 1/~ in the simple WKB method) out
in front of all terms appearing in the exponent in Eqs. 6.1.24 and 6.1.25.

It will be useful to keep in mind the explicit forms of the four boundary terms. These
follow from Eq. 5.2.29 and are given below,

Bi(φi; 0) =− 1
2

∫
dkωkφ̃i(k)φ̃i(−k),

Bf (φf ; b∗) =− 1
2

∫
dk b∗kb∗−ke

2iωktf − 1
2

∫
dkωkφ̃f (k)φ̃f (−k) +

∫
dk
√

2ωkb
∗
kφ̃f (k)eiωktf ,

[Bi(ϕi; 0)]∗ =− 1
2

∫
dkωkϕ̃i(k)ϕ̃i(−k),

[Bf (ϕf ; b∗)]∗ =− 1
2

∫
dk bkb−ke

−2iωktf − 1
2

∫
dkωkϕ̃f (k)ϕ̃f (−k)

+
∫
dk
√

2ωkbkϕ̃f (−k)e−iωktf .

(6.1.26)

Recall that tildes denote the spatial Fourier transformations of the fields defined in
Eq. 5.2.30.

6.1.2 Application of steepest-descent method

Discussion of the validity of steepest descent/semiclassical approach

In quantum mechanics, steepest descent methods are very useful, as one often obtains
integrals of exponentials with a 1/~ prefactor in the exponent. The key to the validity
of the method is that one can consider the ~→ 0 limit. Of course ~ is a dimensionful
parameter and one needs to identify the appropriate large dimensionless factor in
front of the functions in the exponent that goes as 1/~.

In quantum field theory, the semiclassical approximation in the simplest scenarios
is achieved by rescaling all fields in the action S such that S ∝ 1/λ where λ is
the coupling constant. The relevant limit is the weak-coupling limit λ → 0. This
reasoning holds for instanton calculations of Green functions and amplitudes in



122 Chapter 6. The Semiclassical Method

gauge theories [200, 201]. In this case one rescales the gauge fields Aµ → gAµ,
where g is the gauge coupling and, as a result, the microscopic action of the theory
S = 1

g
2
∫
d4x trFµνF µν ∝ 1

g
2 , which is the equivalent of 1/λ. If scalar fields are also

present in the theory, then one rescales them with
√
λ and the relevant terms in the

action scale as 1/λ, which is taken to be ∝ 1/g2 in the common weak-coupling limit
λ→ 0 , g2 → 0.

The main lesson concerning the applicability of the steepest descent approximation
to the multiple integrals we want to evaluate, is that one needs to arrange for all
relevant terms appearing in the exponent of the integrand to contain the same large
multiplicative factor. By relevant terms we mean the terms that have a potential to
influence the saddle-point solution, which will provide the dominant contribution to
the integral. To be on the safe side, we can demand that all terms in the exponent
contain this large factor. Once this is achieved, we search for an extremum of the
function in the exponent – called the stationary solution or the the saddle-point
– and expand all the integration variables in the integrand around this extremum.
Following such an expansion, one would usually compute the integral by integrating
over the fluctuations around this extremum. This is equivalent to using a background
perturbation theory in the background of the saddle-point solution. In reality, to
obtain the leading-order result, it is sufficient to just compute the exponent of the
integrand on the saddle-point configuration. The leading-order corrections come from
integrating over quadratic fluctuations around the saddle-point. These are Gaussian
integrals and determine the prefactor in front of the exponent. Each subsequent
order in fluctuations is suppressed by an extra power of (large parameter)−1/2 � 1
on general dimensional grounds.

In our case we have, a priori, three large dimensionless parameters, 1/λ, n and E/m.
The first one is an internal parameter of the theory, while the second and the third
are process-dependent – they arise from specifying the final state to contain n� 1
particles at high energies E � m. In a sense, the entire rationale for developing the
coherent state approach that led to the expression for the rate in the form shown
in Eq. 6.1.24 was to pull the dependence on n and E from the final state into the
exponent of the rate. Essentially, the quantity in the exponent on the second line
of Eq. 6.1.24 can be thought of as an effective action which depends on three large
parameters, 1/λ, n and E. Most important for the validity of the steepest descent
approach, is that no n- and E-dependence appears elsewhere, in particular not in
the integration variables: the number of integrations (functional and ordinary ones)
is fixed and independent of n, E or λ.
Now, for the application of the steepest descent method we need to have just one
large parameter. For that reason the appropriate semiclassical limit is defined where
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n and 1/λ are of the same order, such that their ratio is held fixed in the limit
n→∞. Indeed, it is easy to see that n = λn/λ is ∼ 1/λ for λn = fixed. Similarly
we have to hold n ∝ E/m. Thus the steepest descent approximation to the integral
in Eq. 6.1.24 is justified in the weak-coupling – large-n – high-E semiclassical limit:

λ→ 0 , n→∞ , with λn = fixed , ε = fixed . (6.1.27)

Here ε denotes the average kinetic energy per particle per mass in the final state,

ε = (E − nm)/(nm) . (6.1.28)

Holding ε fixed implies that in the large-n limit we are raising the total energy
linearly with n. Note that there is no E →∞ appearing in the limit in Eq. 6.1.27.
The variable E/(nm) is traded for ε using Eq. 6.1.28 and held fixed.

We further note that the perturbation theory in the background of the saddle-
point solution has conceptually-different conclusions from the usual perturbation
theory in a trivial background. Even though the perturbative corrections in both
cases are suppressed by powers of λ, in the case of the steepest descent method,
these corrections cannot be enhanced by powers of n. As we mentioned already, in
our approach n and E/m are large parameters of the same order as 1/λ, and the
hypothetical contribution ∼ λn cannot appear as a perturbative order-λ correction –
it should instead be a part of the leading-order result. This is different from the usual
perturbation theory in which n can arise as a combinatorial enhancement of the
order-λ perturbative corrections. So it should not come as a surprise that the steepest
descent, or equivalently the semiclassical method, is a non-perturbative computation,
with controlled corrections in the semiclassical limit that are suppressed by powers
of 1/n, λ and m/E.

We now finally discuss the scaling of the exponent in Eq. 6.1.24 with the large
parameter. For the semiclassical method to be applicable, all terms in the exponent
must be the same order in 1/λ in the limit in Eq. 6.1.27. To achieve this we rescale
the fields and coherent state variables, as well as the source j coming from the
operator O insertion by 1/

√
λ,

{φ, ϕ, b∗k, bk, j} →
1√
λ
{φ, ϕ, b∗k, bk, j}. (6.1.29)

Taking into account that n ∼ E ∼ 1/λ, we see that the entire exponent in Eq. 6.1.24
now scales as 1/λ in the limit in Eq. 6.1.27 as required for the validity of the steepest
descent approach. However, this scaling implies that the source term in the operator
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in Eq. 6.1.11 used to produce the initial state is j/
√
λ and,

|φi〉 = e
j√
λ

φ(0)√
λ |0〉 = e

j√
λ
φ(0)rescaled |0〉 . (6.1.30)

This is somewhat problematic as the operator in terms of the rescaled φ now explicitly
depends on λ. The initial state is some semiclassical state with the mean particle
number 〈ni〉 ∼ j/λ rather than being a single-particle state. As noted in the original
papers [168,197] that were developing this approach, this is the consequence of the
non-semiclassical nature of the initial state with a single particle or with few highly
energetic particles rather than a large number of soft ones. The resolution of the
problem proposed in [168,186,197] is to continue applying the semiclassical i.e. the
steepest descent approach to the integral in Eq. 6.1.24 with the source j/

√
λ where

j is a constant, and only after establishing the saddle-point equations take the limit
j → 0. In this case we effectively return to the single-particle initial state with
j/λ ∼ 1, but at the same time, the semiclassical method continues to be justified. Of
course, this line of reasoning is not a proof, but at least it provides an unambiguous
procedure for computation. Furthermore, in this limit one ends up with an operator
O that does not depend on λ (or on ~ in quantum mechanics). In the quantum
mechanical case, it is known that the analogous semiclassical computation – using the
Landau WKB formulation – gives the semiclassical exponent of the rate, W = logR,
which does not depend on the form of the operator used, in so far as the operator
does not depend on ~ explicitly.

Perhaps the most important existing verification of this procedure is that, following
it, Son has successfully reproduced in [168] the known results for the multiparticle
rate at tree-level [179] and in the resummed one-loop approximation [176,177,179]
with no use of perturbation theory. It was also demonstrated in [180] based on a few
calculable examples for 1→ n and 2→ n processes, that the semiclassical exponent
W = logR does not depend on the construction of the initial state and that the
multiparticle amplitudes should be the same – at the level of the exponent – for all
few-particle initial states.

These computations were carried out in the regime of relatively low multiplicities
where the fixed value of λn in Eq. 6.1.27 is taken to be small. This is the regime
where the comparison of the semiclassical method results [168, 180] with the tree-
level and leading-order loop corrections in ordinary perturbation theory [176, 177,
179] is meaningful. Of course the real usefulness of the semiclassical approach
lies in applying it to the opposite regime of high multiplicities, where the rescaled
multiplicity λn is taken to be large. This is the non-perturbative regime where
currently no other predictions for the multiparticle rates are known in QFT in
4 dimensions. Nevertheless, the semiclassical approach in the large λn limit can
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still be successfully tested in (2 + 1) dimensions against the known RG-resummed
perturbative results [202] in a regime where both approaches are valid. This was
shown in [169] and will be reviewed in Section 6.4.

From now on, we will take the j → 0 prescription as a constructive approach
for applying the semiclassical method to the calculation of the 1 → n processes
following [168]. In summary: the semiclassical formalism is fully self-consistent for
computing the multi-particle rate in Eq. 6.1.24 with the initial state defined by
Eq. 6.1.30. To obtain the result for the probability rate of the 1→ n processes we
will take the limit j → 0 after writing down the saddle-point equations that will
follow from extremising the exponent in Eq. 6.1.24 in the next section.

Finding the saddle-point

With all terms in the exponent in Eq. 6.1.24 being of the same order with respect
to the large semiclassical parameter 1/λ, we are ready to proceed with deriving the
equations for its extremum. It is no longer necessary to use the rescaled fields in
Eq. 6.1.29, as we are primarily interested in the leading-order semiclassical expression
for the rate. Hence we will use the integral representation of the rate in the original
form in Eq. 6.1.24. We also note that the saddle-point trajectory in the steepest
descent method allows φ(x) to be complex, so from this point on we will have to take
a little more care with the relationships between φ and φ∗ in position and momentum
space.

Applying the steepest descent approach to the integral in Eq. 6.1.29, we search for
an extremum of,

W = iEξ + inη −
∫
dk b∗kbke

iωkξ+iη + Ξ(φi, φf , φ;ϕi, ϕf , ϕ; b∗k, bk). (6.1.31)

In principle, we should look for all extrema of this expression and then select the
one which gives the dominant (i.e largest) contribution to Rn(E) – normally, this
would be the one with the maximal value of W . More generally, one would sum over
the contributions to Rn(E) ∝ eW from all extrema. In what follows we will end up
selecting a particular stationary point solution: the one with the highest symmetry
between φ and ϕ components, whose contribution gives the lower bound to the total
rate Rn(E).

The extrema or saddle-points are solutions of the equations δχW = 0, where the set
χ = {ξ, η, φ(x, t), φi(x), φf(x), ϕ(x, t), ϕi(x), ϕf(x), b∗k, bk} denotes all integration
variables.

Following Ref. [168] we will look for a saddle-point solution for which ξ and η are
purely imaginary (this corresponds to deforming the integration contours in ξ and
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η to pass through this complex saddle-point configuration – the standard practice
required in steepest descent). Keeping with Son’s notation we change variables,

ξ = −iT, η = iθ, (6.1.32)

and treat T and θ as real variables. We now vary W ,

W = ET − nθ −
∫
dk b∗kbke

ωkT−θ + Ξ(φi, φf , φ;ϕi, ϕf , ϕ; b∗k, bk), (6.1.33)

with respect to,

χ = {T, θ, φ(x, t), φi(x), φf (x), ϕ(x, t), ϕi(x), ϕf (x), b∗k, bk} ,
δW

δχ
= 0. (6.1.34)

Variations with respect to variables in Eq. 6.1.32, T and θ, give the equations for
the E and n,

∂TW : E =
∫
dkωkb

∗
kbke

ωkT−θ (6.1.35)

∂θW : n =
∫
dk b∗kbke

ωk−θ. (6.1.36)

Next we obtain the saddle-point equations for φ, φ̃i, φ̃f and b∗k,

δW

δφ(x) : δS

δφ(x) = ijδd+1(x) (6.1.37)

δW

δφ̃i(−k)
: i∂ tiφ̃i(k) + ωkφ̃i(k) = 0 (6.1.38)

δW

δφ̃f (−k)
: i∂ tf φ̃f (k)− ωkφ̃f (k) +

√
2ωk b

∗
−ke

iωktf = 0 (6.1.39)

δW

δb∗k
: − bke

ωkT−θ − b∗−ke
2iωktf +

√
2ωk φ̃f (k)eiωktf = 0. (6.1.40)

The first terms in Eqs. 6.1.38 and 6.1.39 come from the boundary contributions to
the action S from total derivatives,

SBoundary[φi, φf ] = 1
2

tf∫
ti

dt
∫
ddx ∂t(φ ∂tφ) = 1

2

∫
ddx (φf∂tφf − φi∂tφi), (6.1.41)

as explained in Appendix C.1 in more detail. The other terms arise rather straight-
forwardly from the rest of the expression in Eq. 6.1.33

Unsurprisingly, equations analogous to Eqs. 6.1.37 to 6.1.40 exist for ϕ, ϕ̃i, ϕ̃f and
(b∗k)∗. Note that, a priori, there is no need for bk and b∗k to be complex conjugates, nor
is there any constraint on the complex phases of ξ and η. Nevertheless, there exists
a saddle-point for which (bk)∗ = b∗k, and ξ and η are purely imaginary (and thus T
and θ are purely real). We focus on this scenario, as Son does [168]. With these
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assignments in mind, the final group of saddle-point equations give the equations
for the remaining field variables, ϕ, ϕ̃i, ϕ̃f and bk,

δW

δϕ(x) : δS

δϕ(x) = −ijδd+1(x) (6.1.42)

δ

δϕ̃i(−k) : − i∂ tiϕ̃i(k) + ωkϕ̃i(k) = 0 (6.1.43)

δW

δϕ̃f (−k) : − i∂ tf ϕ̃f (k)− ωkϕ̃f (k) +
√

2ωk bke
−iωktf = 0 (6.1.44)

δW

δbk
: − b∗keωkT−θ − b−ke

−2iωktf +
√

2ωk ϕ̃f (−k)e−iωktf = 0. (6.1.45)

It is not difficult to see that these equations (Eqs. 6.1.42 to 6.1.45) are satisfied by,

ϕ(t,x) = [φ(t,x)]∗ −→ ϕ̃(k) = [φ̃(−k)]∗, (6.1.46)

if φ satisfies its saddle-point equations (Eqs. 6.1.37 to 6.1.40). We will focus on
solutions for which Eq. 6.1.46 holds from here on, which implies that we only need
to solve the field equations (Eqs. 6.1.37 to 6.1.40), and then trade the Lagrange
multiplied variables T and θ for the final state energy and multiplicity, E and n,
using Eqs. 6.1.35 and 6.1.36. For a discussion on more general saddle points, see
Appendix C.2.

Let us consider what the saddle-point equations imply for our scalar field, φ(x).
Eq. 6.1.37 gives the classical field equations with a singular point-like source at the
origin x = 0. We are searching for classical solutions in a (d+ 1)-dimensional theory
that become free fields at t→ ±∞ and thus the classical field in these limits must
be a superposition of plane waves.
Solving Eq. 6.1.38 gives φ̃i(k) ∼ eiωkti with no e−iωkti components allowed. Using
Eq. 5.2.11 to recover the coefficient in front of eiωkti we find,

φ̃i(k) = 1√
2ωk

a∗−k e
iωkti , ti → −∞. (6.1.47)

This is the behaviour of φ̃(t,k) in the infinite past. The coefficient a∗−k is an arbitrary
Fourier component. Rearranging Eq. 6.1.40 gives the behaviour in the infinite future,

φ̃f (k) = 1√
2ωk

(bke
ωkT−θ−iωktf + b∗−ke

iωktf ), tf → +∞, (6.1.48)

which, as one would expect, satisfies Eq. 6.1.39. Thus Eqs. 6.1.38 to 6.1.40 have
simply provided boundary conditions at ti and tf for the solution φ(x) of the Euler-
Lagrange equation in Eq. 6.1.37. Both boundary conditions correspond to a complex-
valued saddle-point solution for φ(x), since the first condition (see Eq. 6.1.47) has
a∗k = 0, while the second boundary condition (see Eq. 6.1.48) contains the factor
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eωkT−θ accompanying bk that prevents the coefficients of e±iωktf from being complex
conjugates of each other.

We can now compute the energy and the particle number on the saddle-point solution
from its t → ±∞ asymptotics in Eqs. 6.1.47 and 6.1.48. At t → −∞ the energy
and the particle number are vanishing since the corresponding solution contains only
the eiωkt harmonics. On the other hand at t→ +∞, using the free-field solution in
Eq. 6.1.48, we find,

E =
∫
dk ωk b

∗
k bk e

ωkT−θ , n =
∫
dk b∗k bk e

ωkT−θ . (6.1.49)

These are precisely the saddle-point equations in Eqs. 6.1.35 and 6.1.36. The energy
of course is conserved by regular solutions at t < 0 and at t > 0 and changes
discontinuously from 0 to E at the singularity at the origin t = 0 = x induced by
the δ-function source in Eq. 6.1.37.

In other words, E and n are the energy and multiplicity of the solution φ for t > 0.
In the absence of the source, one expects the energy of the field to be conserved.
Indeed, energy is conserved individually in the regions t < 0 and t > 0, where
solutions contain no singularities and there is no source. However, at t = 0, the
point source will give a discontinuous jump in energy. This can be seen by looking at
Eq. 6.1.37. The left-hand side reduces to an Euler-Lagrange term and so we have a
second-order partial differential equation with a point source. We know from Green’s
function theory that we should expect the solution, φ, to have a discontinuity in its
first derivative in some direction at x = 0. Suppose that this direction is the time
direction such that by integrating Eq. 6.1.37 over the region −ε ≤ t ≤ ε for small ε,

+ε∫
−ε

dt
δS[φ]
δφ(x) =

[
∂L

∂(∂tφ)

]+ε

−ε
= (∂tφ)+ε − (∂tφ)−ε = δφ̇(0,x) = ijδd(x), (6.1.50)

with a dot indicating a time derivative, φ̇ = ∂tφ. This gives an energy jump,

δE =δ
(1

2

∫
ddxφ̇2

)
= 1

2

∫
ddx([φ̇(+ε,x)]2 − [φ̇(−ε,x)]2)

=1
2

∫
ddx(φ̇+ − φ̇−)(φ̇+ + φ̇−) =

∫
ddxφ̇(0,x)δφ̇(0,x) = ijφ̇(0),

(6.1.51)

where φ̇(0,x) is strictly the mean of the t = ±ε values and the last step follows from
Eq. 6.1.50. Recall that the early-time asymptote in Eq. 6.1.47 has only positive
frequency components and thus has zero energy. Therefore, the energy associated
with the saddle-point field configuration undergoes a discontinuous jump from 0 to
E = δE = ijφ̇(0), when crossing t = 0.



6.1. The semiclassical method for multi-particle production 129

The j → 0 limit

After having found the defining equations for the saddle-point, we now want to take
the j → 0 limit in order to obtain the rate for the 1∗ → n processes, as explained in
Section 6.1.2.

Taking this limit amounts to more than just setting the source term to zero in the
non-linear equations shown in Eqs. 6.1.37 and 6.1.42. In fact, the solutions of the
Euler-Lagrange equations without the source term must now become singular at the
point x = 0 in order to ensure the jump in energy from E = 0 at t < 0 to E 6= 0
at t > 0. This singular behaviour of the saddle-point solution is not an additional
requirement, but a direct consequence of the saddle-point equations, which require
the asymptotic behaviour shown in Eqs. 6.1.47 and 6.1.48, with the jump in energy by
E in Eq. 6.1.49. It follows from Eq. 6.1.51 that the late-time energy is E = ijφ̇(0).
For E to be fixed and non-vanishing, as is required for the scattering process of
interest, we must require φ̇(0) → ∞. In other words, the classical solution at the
point x = 0, as well as its derivative, are singular to ensure that,

E = ijφ̇(x)|x=0 = fixed , for j → 0 with φ̇(x)|x=0 →∞ . (6.1.52)

With these considerations in mind, we now take the limit j → 0 in the saddle-point
equations and in the exponent of the rate in Eqs. 6.1.25 and 6.1.33.

Evaluation of integrand at saddle-point

With the saddle-point equations found, we move onto imposing the saddle-point
behaviour on the exponent of the rate in Eq. 6.1.24. The function in the exponent
can be written as (cf. Eqs. 6.1.25 and 6.1.33),

W = ET − nθ + iS[φ] − iS[ϕ] (6.1.53)

+ Bi(φi; 0) + Bf (φf ; b∗) + [Bi(ϕi; 0)]∗ + [Bf (ϕf ; b∗)]∗ −
∫
dk b∗kbk e

ωkT−θ.

We now show that the sum of the terms appearing on the second line in Eq. 6.1.53
is vanishing when evaluated on the saddle-point solution for φi and φf given in
Eqs. 6.1.47 and 6.1.48, in the limit ti → −∞ and tf → +∞. Indeed,

Bi(φi; 0) = −1
2

∫
dkωkφ̃i(k)φ̃i(−k) = lim

ti→−∞

(
−1

4

∫
dk a∗−k a

∗
k e

2iωkti

)
= 0,
(6.1.54)
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since only the negative frequency plane wave components are present in φ̃i. We now
evaluate the boundary term Bf (φf ; b∗) at tf in the tf → +∞ limit,

Bf (φf ; b∗) =− 1
2

∫
dk b∗kb∗−ke

2iωktf − 1
2

∫
dkωkφ̃f (k)φ̃f (−k) +

∫
dk
√

2ωkb
∗
kφ̃f (k)eiωktf

→ 0 − 1
2

∫
dk

ωk

2ωk
2bke

ωkT−θb∗k +
∫
dk
√

2ωk b
∗
k

1√
2ωk

bke
ωkT−θ

= 1
2

∫
dk bkb

∗
k e

ωkT−θ, (6.1.55)

and similarly, for [Bi(ϕi; 0)]∗ we have the same result,

[Bi(ϕi; 0)]∗ = 1
2

∫
dk bkb

∗
k e

ωkT−θ. (6.1.56)

This implies that the sum of the boundary terms on the second line in Eq. 6.1.53 is
vanishing, as already stated,

Bi(φi; 0) + Bf (φf ; b∗) + [Bi(ϕi; 0)]∗ + [Bf (ϕf ; b∗)]∗ −
∫
dk b∗kbk e

ωkT−θ = 0.
(6.1.57)

Thus the expression in Eq. 6.1.53, evaluated on the saddle-point solution, simplifies
to,

W = ET − nθ + iS[φ] − iS[φ]∗ , (6.1.58)

where we have identified iS[ϕ] = iS[φ]∗ on our saddle-point solution.

Ultimately, as soon as the saddle-point solution φ(x) is found for all values of t, we
obtain the saddle-point value of Rn(E) to exponential accuracy,

Rn(E) = eW (E,n), (6.1.59)

with,
W (E, n) = ET − nθ − 2ImS[φ]. (6.1.60)

Here the constant parameters T and θ are the solutions of the corresponding saddle-
point equations (Eqs. 6.1.35 and 6.1.36), and φ(x) is the solution of the sourceless
Euler-Lagrange equation, δS/δφ = 0, with the (initial and final) boundary conditions
in Eqs. 6.1.47 and 6.1.48.

It is also worth noting that the function W (E, n) in Eq. 6.1.60 is a function of E
and n and does not depend explicitly on the T and θ parameters. W (E, n) is in fact
the Legendre transformation of 2ImS(T, θ), where,

E = ∂ 2ImS
∂T

, n = −∂ 2ImS
∂θ

, (6.1.61)
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and,
∂W

∂E
= T, − ∂W

∂n
= θ. (6.1.62)

The relations in Eq. 6.1.61 defining E and n in terms of derivatives of the action of
the classical field are in fact equivalent to the already familiar equations for E and
n in Eq. 6.1.49 computed on the asymptotics of φ at t→ +∞.

Summary of the approach in Minkowski spacetime

After the somewhat lengthy derivations in the previous sections it is worth summar-
ising the resulting algorithm to compute the semiclassical rate [168] in the context
of the model in Eq. 4.1.3 with spontaneous symmetry breaking:

1. Solve the classical equation without the source-term,

δS

δh(x) = 0 , (6.1.63)

by finding a complex-valued solution h(x) with a point-like singularity at the
origin xµ = 0 and regular everywhere else in Minkowski space. The singularity
at the origin is selected by the location of the operator O(x = 0).

2. Impose the initial and final-time boundary conditions,

lim
t→−∞

h(x) = v +
∫ ddk

(2π)d/2
1√
2ωk

a∗k e
ikµx

µ

, (6.1.64)

lim
t→+∞

h(x) = v +
∫ ddk

(2π)d/2
1√
2ωk

(
bk e

ωkT−θ e−ikµx
µ

+ b∗k e
ikµx

µ)
. (6.1.65)

3. Compute the energy and the particle number using the t→ +∞ asymptotics
of h(x),

E =
∫
ddk ωk b

∗
k bk e

ωkT−θ , n =
∫
ddk b∗k bk e

ωkT−θ . (6.1.66)

At t→ −∞ the energy and the particle number are vanishing. The energy is
conserved by regular solutions and changes discontinuously from 0 to E at the
singularity at t = 0.

4. Eliminate the T and θ parameters in favour of E and n using the expressions
above. Finally, compute the function W (E, n)

W (E, n) = ET − nθ − 2ImS[h] (6.1.67)

on the set {h(x), T, θ} to obtain the semiclassical rate Rn(E) = exp [W (E, n)].
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Figure 6.1: Plot (a): The shape of the singularity surface τ = τ0(x)
of the field configuration h(x) is shown in blue. Plot (b)
shows the time evolution contour of Fig. 4.1 (a), depicted
in red, in the coordinate system (t, τ ; x).

6.1.3 Reformulation of the boundary value problem

To keep our discussion general, at the start of this section we do not necessarily
assume the existence of a spontaneously broken symmetry and return to a generic
QFT case with the scalar field denoted by φ(x). Then, at the end of this section,
we summarise the findings in the context of the theory of the scalar field h(x) with
the VEV. This follows the same presentational pattern as in the preceding section,
where Section 6.1.2 used a generic scalar φ(x) before presenting a summary at the
end in terms of h(x).

Extension to complex time

In Minkowski space, we require that φ is regular everywhere except for the singularity
at x = 0. Ref. [168] complexifies the time coordinate, allowing for imaginary times,
τ , so that a general complex time, tC, can be written as t + iτ . Now, t = 0 is a
(d+1)-plane in the (d+2)-dimensional (tC,x) space. As such, the point singularity at
(0,0) is in general extended to a d-dimensional singularity surface, A, parametrised
as (iτ0(x),x), with the constraint that τ0(0) = 0. This constraint ensures that the
correct Minkowski singularity structure is maintained. The time-evolution contour
on the complex time plane is shown in red in Figs. 4.1 and 6.1 (b). The d-dimensional
singularity surface is shown in blue in Fig. 6.1 (a) in the (d+1)-dimensional Euclidean
spacetime, and in the (t, τ,x) (d+ 2)-coordinates in Fig. 6.1 (b).

We now look for the field configuration that satisfies the field equation and is singular
on A. Following Ref. [168], we will search for the solution by breaking it into two
parts: φ1 and φ2. Each of these is a classical solution that satisfies one of the
boundary conditions in Eqs. 6.1.47 and 6.1.48. The first part satisfies the Euclidean
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asymptotics,
φ̃1(k) = 1√

2ωk
a∗−k e

−ωkτ → 0 , τ → +∞, (6.1.68)

whereas the second part satisfies the original Minkowski late-time limit,

φ̃2(k) = 1√
2ωk

(bke
ωkT−θ−iωkt + b∗−ke

iωkt) , t→ +∞. (6.1.69)

For a given x, we consider the time evolution of the solution along the contour C in
complex time, which has three distinct parts in red in Figs. 4.1 and 6.1 (b):

1. (i∞, iτ0(x)): contour begins at infinite Euclidean time and comes down to
meet the singularity surface, A.

2. (iτ0(x), 0): after point contact with A, return back to Minkowski time axis.
Note that for x = 0, this step vanishes as τ0(0) = 0.

3. (0,∞): travel along Minkowski-time axis to late times.

The first component, φ1, is defined on part (1) of the contour. It is a classical
solution, satisfying the initial-time boundary condition in Eq. 6.1.68 at τ = +∞
and is singular at τ = τ0(x). The solution φ1, and the Euclidean action evaluated
on it at this segment of the contour, are real-valued. Indeed, as we already noted
in Section 4.2.2, classical evolution of the real-valued initial condition in Eq. 6.1.68
along the τ axis results in a manifestly-real field configuration along the first segment
of the contour.

The second component, φ2, is a classical solution defined on the parts (2) and
(3) of the contour in Fig. 4.1. It is singular at τ = τ0(x), where it is equal to
φ1, and satisfies the final-time boundary condition in Eq. 6.1.69. As explained in
Section 4.2.2, the boundary condition in Eq. 6.1.69 requires that we keep the final
segment (3) of the contour along the Minkowski time axis t, and the solution is
necessarily complex-valued on this segment.

Both φ1 and φ2 can be obtained by starting from the boundary conditions in
Eqs. 6.1.68 and 6.1.69 respectively; evolving them forward and backward in time,
by solving the sourceless classical equations δS/δφ1,2 = 0; and formally matching
φ1(x) to φ2(x) at some a priori arbitrary surface A (defined as τ = τ0(x)) where
both φ1(x) and φ2(x) become singular. However, the combined field configuration
φ(x) = (φ1(x), φ2(x)) on the contour C is not yet the solution to the saddle-point
equations.

Note that there is a non-vanishing overlap in the range (0 ≤ τ ≤ τ0(x)) at t = 0,
where both φ1 and φ2 are defined. For a general surface A, the field configuration φ
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can still be discontinuous for all x at t = 0. However, we are interested specifically
in the case where φ is only discontinuous at x = 0, t = 0, which is the location of
the source term and is the only source of the singularity/discontinuity of the field.
That is, we require that,

φ1(0,x) = φ2(0,x), ∀x 6= 0. (6.1.70)

If we can choose the surface A such that this condition is satisfied, the combined
field φ(x) will be the solution to the saddle-point equations. Our next task is to
explain how this can be achieved by extremising the action S[φ] over the singular
surfaces. We will show that on the extremal surface, the requirement in Eq. 6.1.70
will be automatically satisfied, see Eq. 6.1.79 below.

The total action iS[φ], which (by standard convention) we write as the Euclidean
action with a minus sign, iS[φ] = −SE[φ], is the sum of the contributions from the
three parts of the contour defined above,

iS[φ] =− SE[φ] = −S(1)
E [φ1]− S(2)

E [φ2] + iS(3)[φ2]

=
∫
ddx

τ0(x)∫
+∞

dτ LE(φ1) +
∫
ddx

0∫
τ0(x)

dτ LE(φ2) + i
∫
ddx

+∞∫
0

dtL(φ2),

(6.1.71)

where L(φ) is the usual Lagrangian as defined in Eq. 6.1.3 and,

LE(φ) = 1
2(∂τφ)2 + 1

2 |∇φ|
2 + 1

2m
2φ2 + Lint = 1

2(∂τφ)2 + 1
2 |∇φ|

2 + V (φ), (6.1.72)

is its Euclidean counterpart. Note that though S
(1)
E and S

(2)
E are infinite on the

singularity surface, i.e. at τ = τ0(x), their sum can be finite (at least on some
surfaces) due to the differing integration directions for S(1)

E and S(2)
E in the vicinity

of the singularity.

The imaginary part of the Minkowski action appearing in the expression for the rate
in Eq. 6.1.67, becomes the real part of the Euclidean action,

ImS = 1
2i (S − S∗) = 1

2 (−iS + iS∗) = 1
2 (SE − S∗E) = ReSE . (6.1.73)

Extremisation over singularity surfaces

Here we will show that extremising the real part of the Euclidean action over all
appropriate singularity surfaces will single out the desired singularity surface (i.e.
that which satisfies the condition in Eq. 6.1.70) and consequently yield the solution
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to the original boundary-value problem. By “appropriate” we simply mean that
A must include the point τ = |x| = 0 as previously stated. This reduction of the
problem of finding the solution to the saddle-point equations to the extremisation
over singular surfaces is a key element in the approach of Ref. [168].

To set up the problem we take the following steps:

• Since φ is infinite on the singularity surface, we regularise it by setting φ1 =
φ2 = φ0 everywhere on A, with φ0 large but for now kept finite.

• Note that since φ1 and φ2 are different solutions (carrying different energies),
their form in the vicinity of A will be different. As such, we can denote the
difference

∂n(φ1 − φ2) = J(si), (6.1.74)

in terms of a function J(si) defined on A. Here ∂n is the derivative in the
direction normal to the singularity surface A, and si (with i = 1, . . . , d) are
coordinates on A, described by xµ = xµ(si).

• Since the source-term J(si) in Eq. 6.1.74 is distributed over the surface, it
follows that φ is actually the solution to,

δSE[φ]
δφ(x) = J(x) =

∫
A

dsiJ(si)δ(xµ − xµ(si)). (6.1.75)

In other words, the source term is zero except for points xµ(si) on the singularity
surface, where it is given by the distribution J(si).

With this framework in mind, we consider deforming the surface A→ A′ such that
xµ(si)→ xµ(si) + δxµ(si), with δxµ(si) = nµδx(si) and nµ a unit normal vector. To
match our boundary conditions we require that x = 0 is included in both A and A′,
i.e. δxµ|x=0 = 0.

We can now compute the variation of the real part of the action in Eq. 6.1.71 arising
from varying the surface A→ A′. It is given by the following simple formula [168]
(which is derived in Appendix C.3),

δReSE[φ] = 1
2

∫
A

ds
(
(∂nφ1)2 − (∂nφ2)2

)
δx(s). (6.1.76)

We now rearrange the expression in Eq. 6.1.76 to the form,

δReSE[φ] = 1
2

∫
A

ds[∂n(φ1 + φ2)][∂n(φ1 − φ2)]δx(s), (6.1.77)
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and recognising ∂n(φ1 − φ2) as J(s) in Eq. 6.1.74 and labelling φ = (φ1 + φ2)/2, we
arrive at,

δReSE[φ] =
∫
A

ds(∂nφ)J(s)δx(s). (6.1.78)

On the extremised surface we have δReSE[φ] = 0. Given that δx|xµ=0 = 0, this is
achieved by J(xµ) = j0δ(xµ). In other words, the source becomes infinitely localised
at x = 0 and it follows from Eq. 6.1.74 that,

∂n(φ1 − φ2) ∝ δ(d+1)(x), (6.1.79)

which satisfies the requirement in Eq. 6.1.70. In fact, as noted in [168], it follows
from Eq. 6.1.79 and the fact that φ1 = φ2 on A, that when A is the extremal surface,
the two parts of the solution coincide on the entire range of the common domain,
τ0(x) < τ < 0, with the exception of the point at the origin τ = 0 = x.
This concludes the proof that the boundary-value problem is solved by extremising
the real part of the Euclidean action over all singularity surfaces that include the
point τ = |x| = 0. The solution φ(x) is obtained from the two branches, φ1 and φ2

that are matched on the extremal singular surface. We also note that the matching
condition in Eq. 6.1.70 implies that the Euclidean action integrals are real-valued
(and positive) on both Euclidean segments (1) and (2) of the contour.

Summary of the surface extremisation approach in complex time

Here we summarise the steps involved in solving the boundary value problem ap-
proach via extremisation over singular surfaces [168] in the context of the (d + 1)-
dimensional model in Eq. 6.1.4 with SSB. Note that all our considerations are general
and that the expressions in the summary below can also be written in terms of the
manifestly VEV-less field φ with the Lagrangian in Eq. 6.1.3 using φ(x) = h(x)− v.

1. Select a trial singularity surface located at τ = τ0(x). The surface profile τ0(x)
is an O(d) symmetric function of x and is given by a local deformation of the
flat singularity domain wall at τ∞ with the single maximum touching the origin
(τ,x) = 0 as shown in blue in Fig. 6.1 (a). Minkowski space is the τ = 0 slice
of the (t, τ ;x) space; it intersects the singularity surface at a point located at
the origin. Hence in Minkowski space the singularity of the field configuration
h is point-like and located at t = 0 = τ and x = 0 as required.

2. Deform the time evolution contour such that the paths in the Feynman path
integral follow the contour on the complex plane (t, τ),

[(0,∞)→ (0, τ0(x))] ⊕ [(0, τ0(x))→ (0, 0)] ⊕ [(0, 0)→ (∞, 0)] , (6.1.80)
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as shown in Figs. 4.1 (a) and 6.1 (b).

3. Find a classical trajectory h1(τ,x) on the first segment, +∞ > τ > τ0(x), of
the contour in Eq. 6.1.80 that satisfies the initial-time (vanishing) boundary
condition in Eq. 6.1.64,

lim
τ→+∞

h1(τ,x) − v → 0 , (6.1.81)

and becomes singular as τ → τ0(x) so that h1(τ,x)|τ→τ0(x) ≡ φ0 → ∞.

4. Find another classical solution h2(τ,x) on the remaining part of the contour
in Eq. 6.1.64, that satisfies the final time boundary condition in Eq. 6.1.65,

lim
t→+∞

h2(t,x) − v =
∫ ddk

(2π)d/2
1√
2ωk

(
bk e

ωkT−θ e−ikµx
µ

+ b∗k e
ikµx

µ)
,

(6.1.82)
and require that at τ → τ0(x) the solution h2(τ,x) is singular and matches
with h1,

h2(τ0,x) = h1(τ0,x) = φ0 → ∞ . (6.1.83)

5. For the combined configuration h(x) to solve the classical equation in Eq. 6.1.63
on the entire contour in Eq. 6.1.80, including at τ = τ0(x), we need to extremise
the action,

iS[h] =
∫
ddx

 τ0(x)∫
+∞

dτ LE(h1) +
0∫

τ0(x)

dτ LE(h2) + i

∞∫
0

dtL(h2)

 (6.1.84)

over all singularity surfaces τ = τ0(x) containing the point t = 0 = x. This
determines the extremal surface τ = τ0(x).

6. Finally, determine the semiclassical rate by evaluating

W (E, n) = ET − nθ − 2ReSE[h] (6.1.85)

on the solution, using Eq. 6.1.84 for the action, and expressions for T and θ in
terms of of E and n found from Eq. 6.1.66 as before.

This is the general outcome of the semiclassical construction of Ref. [168]. One starts
with the two individual solutions satisfying the boundary conditions in Eqs. 6.1.81
to 6.1.83 and then varies over the profiles of the singular matching surface τ0(x) to
find an extremum of the imaginary part of the action in Eq. 6.1.84. On the extremal
surface, the field configurations and their normal derivatives match, ∂n(h1 − h2) = 0,
at all x except x = 0. This implies that h1 = h2 on the entire slice of the spacetime
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where they are both defined, i.e. for τ in the interval [0, τ0], except at the point
at the origin. Restricting to the Minkowski space slice, i.e. at τ = 0, this implies
h1(0,x) = h2(0,x), as it should be. It does not mean however that the real part of
the action in Eq. 6.1.84 vanishes, as the sum of the first two integrals can be viewed
as encircling the singularity of the solution at τ0.

In summary, the highly non-trivial problem of searching for the appropriate singular
field solutions h(x) is reduced to a geometrical problem – extremisation over the
surface shapes τ0(x) and accounting for the appropriate boundary conditions in
Eqs. 6.1.81 to 6.1.83. This formulation of the problem is now well-suited for using
the thin-wall approximation that will be described in Section 6.2.2 and will allow us
to address the large λn regime, following [169,170], where quantum non-perturbative
effects become important.

We proceed with the practical implementation of the steps 1-6 for the model in
Eq. 4.1.3 in the following sections.

6.2 Computation of the semiclassical rate

We will now concentrate on the scalar field theory model with a non-vanishing
vacuum expectation value (see Eq. 4.1.3) in 3+1 dimensions. Some of the material
presented below, such as the general aspects of the approach, the computation
of tree-level contributions, and the computation of quantum effects at λn � 1,
can be carried out in any scalar QFT with only minor modifications. The case
of the unbroken φ4 theory has already been addressed in Ref. [168], while we are
predominantly interested in the broken theory (see Eq. 4.1.3), where the applications
of the semiclassical method at small λn are new, though the resulting expressions
are closely related to those derived by Son in the unbroken theory.

In Sections 6.2.2 and 6.2.3 we focus on the λn � 1 regime (previously unexplored
in [168]), where quantum corrections provide the dominant contribution to the
multiparticle rate. The computation we will present follows [169] and is specific to the
model of the type shown in Eq. 4.1.3 with spontaneous symmetry breaking [170,185].
In this case, the singular domain wall semiclassical configuration corresponds to a
local minimum of the action (rather than a local maximum or a saddle-point) and
this will play a role in our construction.
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6.2.1 Setting up the computation

In this section, we will specify and solve the boundary conditions in Eqs. 6.1.81
and 6.1.82 at the initial and final times, deriving the coefficient functions b∗k and
bk e

ωkT−θ in Eq. 6.1.82. We will then determine the T and θ parameters and compute
the general expression for the exponent of the rate W (E, n) in Eq. 6.1.67.

In the limit ε = 0, the scattering amplitude is on the multiparticle threshold, the
final-state momenta are vanishing and one would naively assume that the classical
solution describing this limit is uniform in space. This is correct for the tree-level
solution but not for the solution incorporating quantum effects. In the latter case,
the correct and less restrictive assumption is that the presence of the singularity at
x = 0 deforms the flat surface of singularities near its location, as shown in Fig. 6.1.
From now on we will concentrate on the physical case where ε is non-vanishing and
non-relativistic, 0 < ε � 1. At the same time, the parameter λn is held fixed and
arbitrary. It will ultimately be taken to be large.

The initial-time boundary condition in Eq. 6.1.81 dictates that the solution h1(tC =
iτ,x) − v must vanish with exponential accuracy as e−mτ in the limit τ → ∞.
The final-time boundary condition in Eq. 6.1.82 of the finite-energy solution h2(x)
requires the solution to be singular on the singularity surface τ0(x). Following Son,
without loss of generality, we can search for h2 in the form,

h2(tC,x) = v

(
1 + eim(tC−iτ∞)

1 − eim(tC−iτ∞)

)
+ φ̃(tC,x) . (6.2.1)

The first term on the right-hand side is the x-independent field configuration h0(tC)
that we discussed in Section 4.2.1. It is an exact classical solution (see Eq. 4.2.8)
with the surface of singularities at tC = iτ∞, which is a 3-dimensional plane spanned
by x, as shown in Fig. 4.2. The second term, φ̃(tC,x), describes the deviation of the
singular surface from the τ∞-plane. This deviation, τ0(x)− τ∞, is locally non-trivial
around x = 0 and vanishes at x → ∞. There is no loss of generality in Eq. 6.2.1
because the configuration φ̃(tC,x) is so far completely unconstrained.

Now we can start imposing the boundary conditions in Eq. 6.1.82 at t → +∞ on
the expression in Eq. 6.2.1. On the final segment of the time evolution contour,
t(1 + iδ+) as t→ +∞, the first term in Eq. 6.2.1 can be Taylor-expanded in powers
of eimt(1+iδ+) and linearised (since δ+ is positive) giving,

lim
t→+∞

h0(x) − v = 2v emτ∞ eimt . (6.2.2)

For the second term in Eq. 6.2.1 we write the general expression involving the
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positive-frequency and the negative frequency components in the Fourier transform,

lim
t→+∞

φ̃(t,k) = 1√
2ωk

(
fk e

−iωkt + g−k e
iωkt

)
. (6.2.3)

We will now show that for the solution in the non-relativistic limit, ε � 1, the
boundary conditions in Eq. 6.1.82 will require that g−k = 0 and impose a constraint
on the coefficient function fk, so that,

g−k = 0 , (6.2.4)

fk=0 = n
√
λ

(2πm)3/2 e
−mτ∞ . (6.2.5)

To derive Eqs. 6.2.4 and 6.2.5 we proceed by combining the asymptotics in Eq. 6.2.3
with the Fourier transform of Eq. 6.2.2 and write down the full solution in Eq. 6.2.1
in the form,

lim
t→+∞

h2(t,k)− v = 1√
2ωk

(
fk e

−iωkt +
{
g−k + 2v

√
2ωk e

mτ∞ (2π)3/2 δ(3)(k)
}
eiωkt

)
.

(6.2.6)
Comparing with the the final-time boundary condition Eq. 6.1.82 we read off the
expressions for the coefficient functions,

bk e
ωkT−θ = fk (6.2.7)

b∗k = g−k + 2v
√

2memτ∞ (2π)3/2 δ(3)(k) . (6.2.8)

We will now make an educated guess that the parameter T will be infinite in the
limit ε→ 0. In fact we will soon derive that T = 3/(2mε), so this assumption will
be justified a posteriori. We can then re-write Eq. 6.2.7 as,

bk = f0 e
−ωkT eθ . (6.2.9)

In the limit where ε→ 0 (and thus T →∞) the factor e−ωkT can be thought of as
the regularisation of a momentum-space delta-function: it cuts-off all non-vanishing
values of k by minimising ωk, thus reducing k to zero. Therefore, we set fk to f0 in
the equation above.

Furthermore, since the function bk is proportional to the (regularised) delta-function,
its complex conjugate b∗k must be too. This implies that the coefficient function g−k

in Eq. 6.2.8 must be zero [168], which verifies Eq. 6.2.4, so that Eq. 6.2.3 becomes,

lim
t→+∞

φ̃(t,k) = 1√
2ωk

fk e
−iωkt . (6.2.10)

We have obtained the expression for the coefficient function bk (and its complex
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conjugate) and also obtained a symbolic identity involving the parameters T , θ and
the delta-function,

bk = f0 e
−ωkT eθ = 2v

√
2memτ∞ (2π)3/2 δ(3)(k) = b∗k . (6.2.11)

This symbolic identity should be interpreted as follows. In the limit of strictly
vanishing ε, all these terms are proportional to the delta-function. Away from this
limit, i.e. in the case of processes near the multiparticle threshold where 0 < ε� 1,
the function δ(3)(k) appearing in the third term above is not the strict delta-function,
but a narrow peak with the singularity regulated by ε. This can be derived by
allowing the surface τ∞ in the first term in Eq. 6.2.1 to not be completely flat at
small non-vanishing ε, but to have a tiny curvature 2ε/3� 1 [168], thus leading to
a regularised expression for δ(3)(k) in the final term in Eq. 6.2.6.

To proceed, we integrate the two middle terms in Eq. 6.2.11 over d3k,

f0 e
θ
∫
d3k e−ωkT = 2v

√
2memτ∞ (2π)3/2 . (6.2.12)

The integral on the left hand side of Eq. 6.2.12,

∫
d3k e−ωkT = 4πm3 e−mT

∞∫
0

dx x2 e−mT (
√

1+x2−1) , (6.2.13)

where x = k/m. Note that this integral is dominated by x ∼ mT , which at large T
allows us to simplify this as,

4πm3 e−mT
∞∫
0

dx x2 e−mTx
2
/2 = 4πm3 e−mT

√
π/2

(mT )3/2 . (6.2.14)

We can now solve Eq. 6.2.12 for f0 and find that at large T ,

f0 = 2√
λ

(T )3/2 emT−θ+mτ∞ . (6.2.15)

We can now compute the particle number n and the energy E in the final state
using Eq. 6.1.66 and the now known coefficient functions in Eq. 6.2.11 along with
Eq. 6.2.15. We find,

n =
∫
d3k b∗k bk e

ωkT−θ =
∫
d3k b∗k f0 = 4

λ
(2πmT )3/2 emT−θ+2mτ∞ , (6.2.16)

and

mnε = E −mn =
∫
d3k

k2

2m b∗k bk e
ωkT−θ

=
∫
d3k

k2

2m b∗k f0 = 4
λ

(2πmT )3/2 emT−θ+2mτ∞ 3
2T . (6.2.17)
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It turns out that it was sufficient to know just the value of fk at k = 0 to evaluate
the integrals above, due to the fact that b∗k and bk are sharply peaked at k = 0 as
dictated by Eq. 6.2.11.

Dividing the expression on the right hand side of Eq. 6.2.17 by the expression in
Eq. 6.2.16 we find,

T = 1
m

3
2

1
ε
. (6.2.18)

The second parameter θ is found to be,

θ = − log λn4 + 3
2 log 3π

ε
+ 2mτ∞ + 3

2
1
ε
. (6.2.19)

We now finally substitute these parameters into Eq. 6.1.85 for the ‘holy grail’ function
W (E, n), and find,

W (E, n) = ET − nθ − 2ReSE[h] = mn(1 + ε)T − nθ − 2ReSE[h]

= n log λn4 + 3n
2

(
1 + log ε

3π

)
− 2nmτ∞ − 2ReSE[h] . (6.2.20)

We also note that the expression for f0 found in Eq. 6.2.15 evaluated with T and θ
given by Eqs. 6.2.18 and 6.2.19, reproduces Eq. 6.2.5, which was our second constraint
on the general form of the solution h2(tC,x) in Eq. 6.2.1.

Before interpreting the expression in Eq. 6.2.20 for the ‘holy grail’ function, we would
like to separate the terms appearing on the right-hand side into those that depend
on the location and shape of the singularity surface τ0(x), and those that do not.
The first two terms in Eq. 6.2.20 have no dependence on the singularity surface;
the third term, 2nmτ∞, depends on its location at τ∞. The final term, 2ReSE, is
obtained by taking the real part of the three integrals appearing in Eq. 6.1.84. The
first two integrals are along the Euclidean time τ segments of the contour and are
real-valued,

2ReS(1,2)
E = 2

∫
d3x

− τ0(x)∫
+∞

dτ LE(h1) −
0∫

τ0(x)

dτ LE(h2)

 , (6.2.21)

while the remaining integral along the third segment of the contour appears to be
purely imaginary. This last statement is almost correct, as it applies to the bulk
contribution of the Minkowski-time integral

∫∞
0 dtL(h2), but not to the boundary

contribution at t→∞. The full contribution from the third segment of the contour
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is1,

2ReS(3)
E = 2 Re

− i ∞∫
0

dt
∫
d3x ∂t

(
φ̃ ∂th2

)
= −

∫
d3k b∗k bk e

ωkT−θ = −n . (6.2.22)

Accounting for the effect of the boundary contribution in Eq. 6.2.22 we can write
the expression for the rate in Eq. 6.2.20 in the form:

W (E, n) = n

(
log λn4 + 3

2 log ε

3π + 1
2

)
− 2nmτ∞ − 2ReS(1,2)

E (τ0) . (6.2.23)

This is a remarkable formula in the sense that the expression on the right-hand side of
Eq. 6.2.23 cleanly separates into two parts. The first part, n

(
log λn

4 + 3
2 log ε

3π + 1
2

)
,

does not depend on the shape of the singularity surface τ0(x) and coincides with
the known tree-level result for the scattering rate in the non-relativistic limit 0 <
ε � 1, as we will demonstrate below. The entire dependence of W (E, n) on τ0(x)
is contained in the last two terms in Eq. 6.2.23, which correspond to the purely
quantum contribution in the ε→ 0 limit.

The tree-level contribution to W is well-known; it was computed using the resum-
mation of Feynman diagrams by solving the tree-level recursion relations [179] and
integrating over the phase-space. In the model shown in Eq. 4.1.3, the tree-level
result to linear order in ε was derived in Ref. [183] and reads,

W (E, n;λ)tree = n (f1(λn) + f2(ε)) , (6.2.24)

where

f1(λn) = log
(
λn

4

)
− 1 , (6.2.25)

f2(ε)|ε→0 → f2(ε)asympt = 3
2

(
log

(
ε

3π

)
+ 1

)
− 25

12 ε . (6.2.26)

First, ignoring the O(ε) terms in the tree-level contribution, we see that the per-
turbative result is correctly reproduced by the first two terms in the semiclassical
expression on the right-hand side of Eq. 6.2.23,

W (E, n)tree = n

(
log λn4 − 1

)
+ 3n

2

(
log ε

3π + 1
)
. (6.2.27)

Schematically, the contribution n log λn ⊂ W tree comes from squaring the tree-level
1The expression in Eq. 6.2.22 for the boundary contribution to the Minkowski action is also in

agreement with the construction in [168] and [186].
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amplitude on threshold and dividing by the Bose symmetry factor, 1
n! (n!λn/2)2 ∼

n!λn ∼ en log λn, while the contribution 3
2n log ε comes from the non-relativistic n-

particle phase space volume factor ε
3n
2 ∼ e

3
2n log ε. 1

The apparent agreement between the first term in the expression on the right-hand
side of Eq. 6.2.23 and the result of an independent tree-level perturbative calculation
in Eq. 6.2.27, provides a non-trivial consistency check of the semiclassical formalism
that led us to Eq. 6.2.23.

Furthermore, it was shown in [168] that the tree-level results are also correctly
reproduced by the semiclassical result to O(ε) . It would also be interesting to
pursue such terms at the quantum level, but this is beyond the scope of this work.
We will neglect all O(ε) terms as they are vanishing in the ε→ 0 limit.

We can finally re-write the expression in Eq. 6.2.23 for the rate W (E, n) in the
form [168],

W (E, n) = W (E, n;λ)tree + ∆W (E, n;λ)quant , (6.2.28)

where the quantum contribution is given by

∆W quant = − 2nmτ∞ − 2ReS(1,2)
E

= 2nm |τ∞| + 2
∫
d3x

[ τ0(x)∫
+∞

dτ LE(h1) +
0∫

τ0(x)

dτ LE(h2)
]

(6.2.29)

= 2nm |τ∞| − 2
∫
d3x

[ +∞∫
τ0(x)

dτ LE(h1) −
0∫

τ0(x)

dτ LE(h2)
]
.

Here we have used the fact that τ∞ is manifestly negative (as the singularity surface
away at x 6= 0 is by construction assumed to be located at negative τ) to indicate
that −2nmτ∞ is a positive-valued contribution +2nm |τ∞|.

The problem of finding the singularity surface τ0(x) that extremises the expression
in Eq. 6.2.29 has a simple physical interpretation [168, 170, 185]: it is equivalent
to finding the shape of the membrane τ0(x) at equilibrium, which has the surface
energy ReS(1,2)

E and is pulled at the point x = 0 by a constant force equal to nm.
Note that even before the extremisation of Eq. 6.2.29 with respect to τ0(x), both
configurations h1(x) and h2(x) are tightly constrained. They are required to be
solutions of the classical equations; they have to have satisfy the correct boundary
conditions in time, and consequentially, their energy is fixed: h1 has E = 0 and h2

has E = nm (in the ε→ 0 limit). These conditions constrain the extremisation of
Eq. 6.2.29 with respect to τ0(x).

1We refer the interested reader to Refs. [179,183] for more details on the derivation ofW (E,n)tree

directly in perturbation theory.
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6.2.2 Computation of quantum effects at large λn

In this and the following sections we will closely follow the calculation in Ref. [169].
We view the saddle-point field configuration in the model in Eq. 4.1.3 as a domain
wall solution separating vacua with different VEVs (h → ±v) on different sides of
the wall. Our scalar theory with spontaneous symmetry breaking clearly supports
such field configurations. The solution is singular on the surface of the wall, which
has thickness ∼ 1/m. The effect of the ‘force’ nm applied to the domain wall is to
pull the centre of the wall upwards and gives it a profile τ0(x), as depicted in Fig. 6.1.
The Euclidean action on the solution characterised by the domain wall at τ0(x),
becomes a functional of the surface function, SE[τ0(x)]. The shape of the surface
will be straightforward to determine by extremising the action SE[τ0(x)], which we
will compute in the thin-wall approximation, over all surface profile functions τ0(x).
The validity of the thin-wall approximation will be be justified in the limit λn→∞.
The idea of using the thin-wall approximation in the large λn limit was pursued
earlier by Gorsky and Voloshin in Ref. [185], where it was applied to the standard
regular bubbles of the false vacuum. These were interpreted as intermediate physical
bubble states in the process 1∗ → Bubble→ n. Conceptually, this is different from
our approach, where the thin-wall solutions are singular points on the deformed
contours of the path integral in Euclidean time. In our setting they cannot be
interpreted as physical macroscopic states in real Minkowski time representing an
intermediate state in the 1∗ → n process.

From now on we concentrate on the large λn regime, where the semiclassical rate is
non-perturbative.

Classical fields and singularity surfaces

Our first task is to implement the realisation of the singular field configuration h(x)
in terms of domain walls with thin-wall singular surfaces. The h1 branch of the
solution is defined on the first part of the time-evolution contour, i.e. the imaginary
time interval +∞ > τ ≥ τ0(x). It is given by,

h1(τ,x) = h0E(τ − τ0(x)) + δh1(τ,x) . (6.2.30)

The first term on the right-hand side of Eq. 6.2.30 is the familiar singular domain
wall,

h0E(τ − τ0(x)) = v

(
1 + e−m(τ−τ0(x))

1 − e−m(τ−τ0(x))

)
, (6.2.31)
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with its centre (or position) at τ = τ0(x). This profile is similar to the one depicted
in Fig. 4.2. The field configuration interpolates between h = +v at τ � τ0(x) and
h = −v at τ � τ0(x), and is singular on the 3-dimensional surface τ = τ0(x). Since
τ0(x) depends on the spatial variable, the correction δh1(τ,x) is required in Eq. 6.2.30
to ensure that the entire field configuration h1(x) satisfies the classical equations.
The δh1 term vanishes on the singularity surface; in fact it is straightforward to
show that δh1 ∼ (τ − τ0(x))3 near the singularity surface by solving the linearised
classical equations for δh1 in the background of the singular h0 [168]. The initial-time
condition on h1 is

lim
τ→∞

h1(x) = v +O(e−mτ ) , (6.2.32)

which also guarantees that δh1(x) → 0 exponentially fast at large τ . Hence, in
computing the action integral of h1(x) in the thin-wall approximation, where the main
contribution comes from τ in the vicinity of τ0(x), it will be a good approximation
to neglect δh1(x) and use,

thin wall : h1(τ,x) ≈ h0E(τ − τ0(x)) . (6.2.33)

Now consider the second branch of the solution, h2(x). We search for solutions of
the form required by Eq. 6.2.1,

h2(tC,x) = h0(tC) + φ̃(tC,x) , (6.2.34)

The first term on the right-hand side of Eq. 6.2.34 is the classical configuration,
which is uniform in space and singular on the plane τ = τ∞,

h0(tC) = v

(
1 + eim(tC−iτ∞)

1 − eim(tC−iτ∞)

)
. (6.2.35)

In the previous section we derived the asymptotic form for the second term, φ̃(tC,x),
appearing on the right-hand side of Eq. 6.2.34: for the final part of the time-evolution
contour, where tC = t→ +∞ we have,

lim
t→+∞

φ̃(t,x) =
∫ d3k

(2π)3/2
1√
2ωk

fk e
−iωkt . (6.2.36)

This is in agreement with Eqs. 6.2.2 and 6.2.10 and its characteristic feature is that
it contains only the negative frequency components (at large t). The coefficients of
positive frequency components that were present in φ̃(t,x) at earlier times, closer
to the origin at t ∼ 0 become suppressed as the real time variable t grows and
ultimately disappear for a sufficiently large positive t. We are now going to assume
that the asymptotic expression in Eq. 6.2.36, which is valid in the mt � 1 regime
on or near the real time axis, in fact also continues to hold when φ̃(t+ iτ,x) moves
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Figure 6.2: Deformations of the time evolution contour in tC. Plot
(a) shows the original contour that touches the singularity
located at t = 0, τ = τ0(x). Plot (b) gives the resolved
contour, now surrounding the singularity with the vertical
segments of the contour shifted infinitesimally by ±iε and
descending to τ = −A. Plot (c) shows now a finite deform-
ation of the vertical part (2) of the contour to the right.
We use large shift values, −A � 1/m and B � 1/m to
justify the thin-wall approximation. Consecutive contour
segments are denoted (1), (12), (2) and (3).

in the τ direction, i.e. perpendicular to the real time contour at large fixed value of
t. More precisely, we expect that Eq. 6.2.36 generalises to the complex time variable
tC and holds as long as the real time coordinate t is large (t� 1/m),

lim
t→+∞

φ̃(tC,k) = 1√
2ωk

fk e
−iωktC = 1√

2ωk
fk e

ωkτ e−iωkt . (6.2.37)

As always, tC = t + iτ , and for concreteness we will take the τ component to be
negative, i.e. we will only need this expression for shifting downwards from the real
time contour at large t.

We now turn to the evaluation of the Euclidean action integrals appearing in
Eqs. 6.2.21 and 6.2.29. On the first segment of the contour, indicated as (1) in
Fig. 6.2 (a), the classical field configuration is h1(x), while on the segment (2) of the
contour in Fig. 6.2 (a), the field is h2(x), hence,

Fig. 6.2 (a) : −ReS(1,2)
E =

∫
d3x

 τ0(x)∫
+∞

dτ LE(h1) +
0∫

τ0(x)

dτ LE(h2)

 . (6.2.38)

The two individual integrals in Eq. 6.2.38 are singular at the integration limit
τ = τ0(x). However, their sum is expected to be finite, which is also known from
the Landau-WKB approach in quantum mechanics [203].

Instead of reaching the singularity and then cancelling the resulting infinite con-
tributions at τ → τ0(x), we advocate a more practical approach and deform the
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integration contour to encircle the singularity, as shown in the contour deformation
from Fig. 6.2 (a) to Fig. 6.2 (b). The contour is shifted infinitesimally by t = −ε in
the first integral in Eq. 6.2.38 and by t = +ε in the second. Since the integration
contour in Fig. 6.2 (b) passes on either side of the singularity at τ = τ0(x), the action
integrals and the solutions themselves are finite. One can extend the integration
contours down to τ = −∞ or to any arbitrary large negative value τ = −A. At
τ = −A, where τ is well below the final singularity surface τ∞, the two contours are
joined. As a result, the action integrals now read:

Fig. 6.2 (b) : −ReS(1,2)
E =

−A−iε∫
+∞−iε

dτ LE[h1] +
0+iε∫

−A+iε

dτ LE[h2] , (6.2.39)

where LE =
∫
d3xLE, and each of the two integrals in Eq. 6.2.39 is finite. The first

integral in Eq. 6.2.39 depends on the classical branch h1(x), and in the thin-wall
approximation (see Eq. 6.2.33) we will be able to evaluate it as the functional of the
surface τ0(x) using the h0E profile in Eq. 6.2.31.

The second integral in Eq. 6.2.39 is evaluated on the classical configuration h2(x).
It is given by Eq. 6.2.34, where the correction φ̃(tC,x) to the classical profile h0(tC)
in Eq. 6.2.35 is known at large values of t, see Eq. 6.2.37. To make use of these
expressions for h2(x) we continue shifting the contour to the right by a constant
value B as shown in Fig. 6.2 (c). The resulting contributions to the Euclidean action
from the integration contour in Fig. 6.2 (c) are given by the following integrals,

Fig. 6.2 (c) : −ReS(1,12,2)
E =

−A−iε∫
+∞−iε

dτ LE[h1] + i
∫

(12)

dt L[h2] +
0+iB∫

−A+iB

dτ LE[h2] .

(6.2.40)
An obvious consequence of the thin-wall approximation is that the middle integral
on the right hand side of Eq. 6.2.40 vanishes for A sufficiently far below τ∞ since
in this case we are sufficiently deep into the h2 = −v domain, the field configura-
tion is constant there and the action on the (12) segment of the contour vanishes,∫
(12) dt L[h2] = 0.

Next, we can readily evaluate the last integral in Eq. 6.2.40. It arises from segment
(2) of the contour in Fig. 6.2 (c), which is the integral over the imaginary time
component dτ and is situated at a fixed value of real time at Re tC = B � 1/m.
Hence we can use the asymptotic expression in Eq. 6.2.37 for φ̃(tC,x) on this segment
of the contour, so that the entire solution h2(x) is given by,

h
segment (2)
2 = v

(
e−imB−m(|τ |−|τ∞|) + 1
e−imB−m(|τ |−|τ∞|) − 1

)
+
∫ d3k

(2π)3/2
1√
2ωk

fk e
−ωk|τ | e−iωkB .

(6.2.41)
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<latexit sha1_base64="Cz9tdM9k04LqHOa8U5rnpk+0Tuo=">AAAB63icdVDLSgMxFM3UV62vqks3wVYQhJJUsO2u4EKXFewD2qFk0kwbmmSGJFMopb/gxoUibv0hd/6NmbaCih64cDjnXu69J4gFNxahDy+ztr6xuZXdzu3s7u0f5A+PWiZKNGVNGolIdwJimOCKNS23gnVizYgMBGsH4+vUb0+YNjxS93YaM1+SoeIhp8SmUvFiUuznC6iEEMIYw5TgyhVypFarlnEV4tRyKIAVGv38e28Q0UQyZakgxnQxiq0/I9pyKtg810sMiwkdkyHrOqqIZMafLW6dwzOnDGAYaVfKwoX6fWJGpDFTGbhOSezI/PZS8S+vm9iw6s+4ihPLFF0uChMBbQTTx+GAa0atmDpCqObuVkhHRBNqXTw5F8LXp/B/0iqX8GUJ35UL9ZtVHFlwAk7BOcCgAurgFjRAE1AwAg/gCTx70nv0XrzXZWvGW80cgx/w3j4BUFiNxw==</latexit>

+v
<latexit sha1_base64="Cz9tdM9k04LqHOa8U5rnpk+0Tuo=">AAAB63icdVDLSgMxFM3UV62vqks3wVYQhJJUsO2u4EKXFewD2qFk0kwbmmSGJFMopb/gxoUibv0hd/6NmbaCih64cDjnXu69J4gFNxahDy+ztr6xuZXdzu3s7u0f5A+PWiZKNGVNGolIdwJimOCKNS23gnVizYgMBGsH4+vUb0+YNjxS93YaM1+SoeIhp8SmUvFiUuznC6iEEMIYw5TgyhVypFarlnEV4tRyKIAVGv38e28Q0UQyZakgxnQxiq0/I9pyKtg810sMiwkdkyHrOqqIZMafLW6dwzOnDGAYaVfKwoX6fWJGpDFTGbhOSezI/PZS8S+vm9iw6s+4ihPLFF0uChMBbQTTx+GAa0atmDpCqObuVkhHRBNqXTw5F8LXp/B/0iqX8GUJ35UL9ZtVHFlwAk7BOcCgAurgFjRAE1AwAg/gCTx70nv0XrzXZWvGW80cgx/w3j4BUFiNxw==</latexit>

−v
<latexit sha1_base64="bkG6my7dU9rG6RjOTpatGKlSZXs=">AAAB63icdVDLSgMxFM3UV62vqks3wVZwY0kq2HZXcKHLCvYB7VAyaaYNTTJDkimU0l9w40IRt/6QO//GTFtBRQ9cOJxzL/feE8SCG4vQh5dZW9/Y3Mpu53Z29/YP8odHLRMlmrImjUSkOwExTHDFmpZbwTqxZkQGgrWD8XXqtydMGx6pezuNmS/JUPGQU2JTqXgxKfbzBVRCCGGMYUpw5Qo5UqtVy7gKcWo5FMAKjX7+vTeIaCKZslQQY7oYxdafEW05FWye6yWGxYSOyZB1HVVEMuPPFrfO4ZlTBjCMtCtl4UL9PjEj0pipDFynJHZkfnup+JfXTWxY9WdcxYllii4XhYmANoLp43DANaNWTB0hVHN3K6Qjogm1Lp6cC+HrU/g/aZVL+LKE78qF+s0qjiw4AafgHGBQAXVwCxqgCSgYgQfwBJ496T16L97rsjXjrWaOwQ94b59TZI3J</latexit>

−v
<latexit sha1_base64="bkG6my7dU9rG6RjOTpatGKlSZXs=">AAAB63icdVDLSgMxFM3UV62vqks3wVZwY0kq2HZXcKHLCvYB7VAyaaYNTTJDkimU0l9w40IRt/6QO//GTFtBRQ9cOJxzL/feE8SCG4vQh5dZW9/Y3Mpu53Z29/YP8odHLRMlmrImjUSkOwExTHDFmpZbwTqxZkQGgrWD8XXqtydMGx6pezuNmS/JUPGQU2JTqXgxKfbzBVRCCGGMYUpw5Qo5UqtVy7gKcWo5FMAKjX7+vTeIaCKZslQQY7oYxdafEW05FWye6yWGxYSOyZB1HVVEMuPPFrfO4ZlTBjCMtCtl4UL9PjEj0pipDFynJHZkfnup+JfXTWxY9WdcxYllii4XhYmANoLp43DANaNWTB0hVHN3K6Qjogm1Lp6cC+HrU/g/aZVL+LKE78qF+s0qjiw4AafgHGBQAXVwCxqgCSgYgQfwBJ496T16L97rsjXjrWaOwQ94b59TZI3J</latexit>

−v
<latexit sha1_base64="bkG6my7dU9rG6RjOTpatGKlSZXs=">AAAB63icdVDLSgMxFM3UV62vqks3wVZwY0kq2HZXcKHLCvYB7VAyaaYNTTJDkimU0l9w40IRt/6QO//GTFtBRQ9cOJxzL/feE8SCG4vQh5dZW9/Y3Mpu53Z29/YP8odHLRMlmrImjUSkOwExTHDFmpZbwTqxZkQGgrWD8XXqtydMGx6pezuNmS/JUPGQU2JTqXgxKfbzBVRCCGGMYUpw5Qo5UqtVy7gKcWo5FMAKjX7+vTeIaCKZslQQY7oYxdafEW05FWye6yWGxYSOyZB1HVVEMuPPFrfO4ZlTBjCMtCtl4UL9PjEj0pipDFynJHZkfnup+JfXTWxY9WdcxYllii4XhYmANoLp43DANaNWTB0hVHN3K6Qjogm1Lp6cC+HrU/g/aZVL+LKE78qF+s0qjiw4AafgHGBQAXVwCxqgCSgYgQfwBJ496T16L97rsjXjrWaOwQ94b59TZI3J</latexit>

−v
<latexit sha1_base64="bkG6my7dU9rG6RjOTpatGKlSZXs=">AAAB63icdVDLSgMxFM3UV62vqks3wVZwY0kq2HZXcKHLCvYB7VAyaaYNTTJDkimU0l9w40IRt/6QO//GTFtBRQ9cOJxzL/feE8SCG4vQh5dZW9/Y3Mpu53Z29/YP8odHLRMlmrImjUSkOwExTHDFmpZbwTqxZkQGgrWD8XXqtydMGx6pezuNmS/JUPGQU2JTqXgxKfbzBVRCCGGMYUpw5Qo5UqtVy7gKcWo5FMAKjX7+vTeIaCKZslQQY7oYxdafEW05FWye6yWGxYSOyZB1HVVEMuPPFrfO4ZlTBjCMtCtl4UL9PjEj0pipDFynJHZkfnup+JfXTWxY9WdcxYllii4XhYmANoLp43DANaNWTB0hVHN3K6Qjogm1Lp6cC+HrU/g/aZVL+LKE78qF+s0qjiw4AafgHGBQAXVwCxqgCSgYgQfwBJ496T16L97rsjXjrWaOwQ94b59TZI3J</latexit>

Figure 6.3: The same complex-time evolution contour as in Fig. 6.2
(c). The boundary separating the domains h(x)→ +v and
h(x)→ −v for the classical solution in a thin-wall approx-
imation is shown as the dotted blue line. The singularity
of the solution is at the point t = 0, τ = τ0(x), as depic-
ted by a blue blob on the dotted line of the inter-domain
boundary.

Note that on this segment of the contour t = B, −A ≤ τ ≤ 0, hence 0 ≤ |τ | ≤ A

and 0 < |τ∞| � A. In the large λn limit, we will find in the following section that
in fact 0 � |τ∞|, and that the only non-trivial contribution in the thin-wall limit
on this segment of the contour will come from the first term on the right hand side
of Eq. 6.2.41. The location of the wall separating the two ±v domains of the field
configuration is depicted in Fig. 6.3. Recall that away from t = 0, the domain wall
is regular and not singular. The φ̃ term on its own cannot contribute to the action
integral since it contains only the negative frequencies. Furthermore, its overlap with
the h0 configuration at τ ≈ τ∞ is exponentially suppressed by e−m|τ |∞ � 1. Hence
we are left with,

thin wall : h2(τ,x) ≈ h0E(τ − τ∞) . (6.2.42)

This equation is applicable on segment (2) of the contour in Fig. 6.2 (c), where the
argument τ of both functions in Eq. 6.2.42 is understood as τ − iB.

Eqs. 6.2.33 and 6.2.42 give us the required precise implementation of the thin-
wall approximation that we will apply in what follows. In both cases, the field
configurations (h1 in Eq. 6.2.33 and h2 in Eq. 6.2.33) are approximated in the thin-
wall approach by the Brown’s solution profile h0E. The important difference between
the two cases, however, is that the domain wall in Eq. 6.2.33 is the x-dependent
surface τ0(x), while in the case of the h2 configuration in Eq. 6.2.42, the domain
wall is at τ∞ and is spatially-independent. As the result, the the first integral on the
right hand side of our expression for the action in Eq. 6.2.40, is a functional of the



150 Chapter 6. The Semiclassical Method

domain-wall surface τ0(x),

S
(1)
E =

+∞−iε∫
−A−iε

dτ LE[h1] = SE[τ0((x)] , (6.2.43)

while the the third integral in Eq. 6.2.40 is evaluated on the uniform in space solution
(see Eq. 6.2.42) and is a constant,

S
(2)
E = −

0+iB∫
−A+iB

dτ LE[h2] = − const . (6.2.44)

In both cases, on segment (1) and segment (2) of the contour, the field configurations
are regular, since, by construction, the contour avoids the singularity by the −iε
shift in the first integral and by the +iB shift in the second.

We now proceed to compute the integral in Eq. 6.2.44. This integral is evaluated on
the field configuration,

h2(τ + iB) = v

(
1 + e−m(τ−τ∞+iB)

1 − e−m(τ−τ∞+iB)

)
, (6.2.45)

and can be calculated exactly1, giving,

+∞+iB∫
−∞+iB

dτ
∫
d3xLE(h2) = µ

R∫
0

4πr2dr = µ
4π
3 R3 . (6.2.46)

Since the field is uniform in space, to ensure that the
∫
d3x is finite, we used the

finite volume regularisation with finite spatial radius R. The infinite-volume limit,
R→∞, will be taken at the end of the calculation, after combining the two action
integrals in Eqs. 6.2.43 and 6.2.46. The parameter µ appearing on the right-hand
side of Eq. 6.2.46 is the surface tension on the bubble solution in Eq. 6.2.45,

µ =
+∞+iε∫
−∞+iε

dτ

1
2

(
dh

dτ

)2

+ λ

4
(
h2 − v2

)2
 = m3

3λ . (6.2.47)

It can easily be checked (e.g. by use of the residue theorem) that the value of µ does
not depend on the numerical value of iB in the shift of the integration contour: any
value of iB 6= 0 that shifts the contour such that it does not pass directly through
the singularity at τ∞ will suffice. This shift-independence argument also applies to
the integral on the first segment of the contour where the shift is −iε.

Let us summarise our construction up to this point. We have derived the expression
1For simplicity we extend the integration limits along the vertical axis to ±∞. Given the

narrow width of the wall, any changes due to this extension are negligible.
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for the contribution of quantum effects in Eq. 6.2.29 to the semiclassical rate W in
Eq. 6.2.28, in the form,

1
2∆W quant = nm |τ∞| −

+∞+iε∫
−∞−iε

dτ LE(h1; τ0(x))
︸ ︷︷ ︸

≡SE [τ0(x)]

+ 4π
3 µR3 . (6.2.48)

We note that no extremisation of the rate with respect to the surface τ = τ0(x)
has been carried out so far. The expression in Eq. 6.2.48 is the general formula
equivalent to the expression in Eq. 6.2.29. It will be now extremised with respect to
the domain wall surface τ0(x). The constant term 4π

3 µR
3 will be cancelled with its

counterpart arising from the action integral in Eq. 6.2.48 before the infinite-volume
limit is taken.

Following from the discussion at the end of Section 6.2.1, the shape of the singular
surface, τ0(x), should be determined by extremising the function ∆W quant in the
exponent of the multiparticle probability rate. This is equivalent to searching for a
stationary (i.e. equilibrium surface) configuration described by the ‘surface energy’
functional, given by the right hand side of Eq. 6.2.48. Finding the stationary point
corresponds to balancing the surface energy of the stretched surface, given by the
integral SE[τ0(x)] in Eq. 6.2.48, against the force nm that stretches the surface τ0(x)
by the amount |τ∞|. The third term on the right hand side of Eq. 6.2.48 plays no
role in the extremisation procedure over τ0(x) and gives a positive-valued constant
contribution to 1

2∆W quant that will be cancelled against its counterpart in SE[τ0(x)].
The overall result will be finite, as expected in the infinite volume limit.

Extremal singular surface in the thin-wall approximation

The action SE[τ0(x)] can now be written as an integral over the domain-wall surface
τ0(x) in the thin-wall approximation. This is equivalent to stating that the action is
simply the surface tension of the domain wall µ, as computed in Eq. 6.2.47, multiplied
by the area. The 3-dimensional area of a curved surface in 3+1 dimensions has
infinitesimal element 4πµ r2

√
(dτ)2 + (dr)2. Hence, the action reads,

SE[τ0(r)] =
0∫

τ∞

dτ 4πµ r2
√

1 + ṙ2 ≡
0∫

τ∞

dτ L(r, ṙ) , (6.2.49)

where r = |x| and ṙ = dr/dτ . The integral depends on the choice of the domain wall
surface τ0(x) implicitly via the τ -dependence of r(τ) and ṙ(τ), which are computed
on the domain wall.
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Since L(r, ṙ) can be interpreted as the Lagrangian, one can introduce the Hamiltonian
function defined in the standard way1 as the Legendre transformation,

H(p, r) = L(r, ṙ) − p ṙ , (6.2.50)

where the momentum p, conjugate to the coordinate r, is

p = ∂L(r, ṙ)
∂ṙ

= 4π µ r2ṙ√
1 + ṙ2

. (6.2.51)

On a classical trajectory r = r(τ) that satisfies the Euler-Lagrange equations for
L(r, ṙ), the Hamiltonian is time-independent (dH/dτ = 0) and is given by the energy
E of said classical trajectory2. Hence, on a stationary point of SE[τ0(r)] with energy
E, we can rewrite the action as,

SE[τ0(r)]stationary = −τ∞E +
0∫

τ∞

dτ (L−H) = −Eτ∞ +
0∫
R

p(E) dr . (6.2.52)

In the equation above we have added and subtracted the constant energy of the
solution (E = H) and used the fact that L − H = pṙ. The lower and upper
integration limits are consequently set to r(τ∞) = R and r(0) = 0. The expression
above gives us the action functional SE[τ0(r)] on a trajectory r(τ), or equivalently
τ = τ0(r), which is a classical trajectory (i.e. an extremum of the action for a fixed
energy E). Equivalently, for the stationary point of the expression in Eq. 6.2.48 we
have,

1
2∆W quant = (E − nm)τ∞ −

0∫
R

p(E) dr + 4π
3 µR3 . (6.2.53)

Extremisation of this expression with respect to the parameter τ∞ gives E = nm,
thus selecting this energy for the classical trajectory as required,

1
2∆W quant

stationary = −
0∫
R

p(E) dr + 4π
3 µR3 , E = nm . (6.2.54)

To evaluate Eq. 6.2.54, we need to determine the dependence of the momentum of
the classical trajectory on its energy. To find p(E), we start by writing the expression

1In Euclidean space L = −K − V and H = −K + V , where K and V are the kinetic and
potential energies respectively.

2One should not confuse the energy of the classical trajectory r = r(τ) – which is essentially
the Euclidean surface energy of the domain wall – with the energy of the classical solutions h1 and
h2. Both energy variables are denoted as E, but the energy of the domain wall at the stationary
point will turn out to be E = mn, while the energy of the corresponding field configuration h1 was
E = 0.
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for the energy, E = L− pṙ, in the form,

E = 4πµ r2
√

1 + ṙ2 − 4π µ r2ṙ√
1 + ṙ2

= 4π µ r2√
1 + ṙ2

, (6.2.55)

and then compute the combination E2 +p2 using the above expression and Eq. 6.2.51,

E2 + p2 =
(
4πµ r2

)2
(

1
1 + ṙ2 + ṙ2

1 + ṙ2

)
=
(
4πµ r2

)2
. (6.2.56)

This gives the desired expression for the momentum p = p(E, r),

p(E, r) = − 4π µ

√√√√r4 −
(
E

4πµ

)2

, (6.2.57)

where we have selected the negative root for the momentum in accordance with the
fact that p(τ) ∝ ṙ (as follows from Eq. 6.2.51) and that r(τ) is a monotonically
decreasing function.

Substituting this into Eq. 6.2.54 we have,

1
2∆W quant = −

r0∫
R

p(E) dr + 4π
3 µR3 = −

R∫
r0

4π µ
√
r4 − r4

0 dr + 4π
3 µR3 . (6.2.58)

The minimal value of the momentum (and the lower bound of the integral in
Eq. 6.2.58) is cut off at the critical radius r0,

r2
0 = E

4πµ . (6.2.59)

Note that the contribution to the integral in Eq. 6.2.58 on the interval 0 ≤ r ≤ r0

will be considered in Section 6.2.3; let us temporarily ignore it.

The integral on the right-hand side of Eq. 6.2.58 is evaluated as follows,

R/r0∫
1

√
x4 − 1 dx =

[1
3 x

√
x4 − 1 − 2

3 iEllipticF[ArcSin(x),−1]
]x=R/r0

x=1

where the Mathematica function EllipticF[z,m] is also known as the elliptic integral
of the first kind, F (z|m). In the R/r0 →∞ limit, the integral simplifies to,

(−4πµr3
0)

R/r0∫
1

√
x4 − 1 dx→ − 4π

3 µR3 + 4πµr3
0
√

4π 1
3

Γ(5/4)
Γ(3/4)

= − 4π
3 µR3 + E3/2

√
µ

1
3

Γ(5/4)
Γ(3/4) . (6.2.60)
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Note that,

4πµr3
0 = E3/2

√
µ

1√
4π

= n
√
λn

√
3√

4π
. (6.2.61)

We see that the large volume constant term 4π
3 µR

3 cancels between the expressions
in Eq. 6.2.60 and Eq. 6.2.58, as expected. The final result for the thin-wall trajectory
contribution to the quantum rate is given by,

∆W quant = E3/2

√
µ

2
3

Γ(5/4)
Γ(3/4) = 1

λ
(λn)3/2 2√

3
Γ(5/4)
Γ(3/4) ' 0.854n

√
λn . (6.2.62)

We note that this expression is positive-valued, that it grows in the limit of λn→∞,
and that it has the correct scaling properties for the semiclassical result, i.e. it is of
the form 1/λ times a function of λn.

Our result in Eq. 6.2.62 and the derivation we presented, followed closely the con-
struction in [169, 170]. The expression in Eq. 6.2.62 is also in agreement with the
formula derived much earlier in Ref. [185], based on a somewhat different semiclas-
sical reasoning involving regular thin-wall bubble configurations in Euclidean and
Minkowski time.

Importantly, the thin-wall approximation is justified in the λn � 1 limit on the
extremal surface in the regime where r(τ) > r0, as originally noted in [185]. The
thin-wall regime corresponds to the spatial radius of the bubble (i.e. the spatial
extent of the O(3)-symmetric configuration at a fixed τ) being much greater than
the thickness of the wall, r � 1/m. For the classical configuration at hand, the
radius is always greater than the critical radius,

rm ≥ r0m = m

(
E

4πµ

)1/2

∝
(
λE

m

)1/2

=
√
λn � 1 , (6.2.63)

where we have used the value for the energy E = nm on our solution. Essentially,
our thin-wall approach is justified until we near the top of the deformation of the
singular surface, at t = τ = x = 0, where the spatial radius of the bubble decreases
towards zero.

6.2.3 Singular surfaces at r ≤ r0: beyond thin walls

What happens with the extremal surface in the regime 0 ≤ r(τ) ≤ r0? To address
this question, first let us determine the classical trajectory r(τ) – or equivalently
the wall profile τ = τ0(r) of the saddle-point solution – on which the rate W was
computed in Eq. 6.2.62. To find it, we simply integrate the equation for the conserved
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Figure 6.4: Extremal surface τ = τ0(r) of the thin-wall bubble solution
in Eq. 6.2.66. Solid line denotes the bubble wall profile of
the bubble radius r above the critical radius r0. The dashed
line corresponds to the branch of the classical trajectory
beyond the turning point at r0.

energy (see Eq. 6.2.55) on our classical solution,

E = 4π µ r2√
1 + ṙ2

, (6.2.64)

or, equivalently, the expression (r/r0)4 = 1 + ṙ2. One finds,
τ∫

τ∞

dτ = −
r∫

R

dr√(
r
r0

)4
− 1

, (6.2.65)

which after integration can be expressed in the form,

τ(r) = τ∞ + r0

(
Γ2(1/4)
4
√

2π
+ Im (EllipticF[ArcSin(r/r0),−1])

)
. (6.2.66)

This classical trajectory gives the thin-wall bubble classical profile for r0 < r(τ) <∞,
which is the result in Eq. 6.2.62 for the quantum contribution to the rate ∆W quant.
This trajectory is plotted in Fig. 6.4.

What happens when the radius of the bubble r(τ) approaches the critical radius
r0 in Eq. 6.2.59, where the momentum (see Eq. 6.2.57) vanishes? Recall that in
the language of a mechanical analogy we are searching for an equilibrium (i.e. the
stationary point solution) where the surface τ0(r) is pulled upwards (in the direction
of τ) by a constant force E = nm acting at the point r = 0. This corresponds to
finding an extremum – in our case the true minimum – of the expression in Eq. 6.2.48,
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which we rewrite now in the form,

1
2∆W quant = E |τ∞|︸ ︷︷ ︸

force×height

− µ
∫
d2+1Area︸ ︷︷ ︸

surface energy

. (6.2.67)

Sufficiently far away from the origin (where the force acts), the surface is nearly
flat and does not extend in the τ direction. As r approaches the origin from larger
values, the surface becomes increasingly stretched in the τ direction. At the critical
radius r0, the surface approaches the shape of a cylinder R1×S2, with R1 along the
τ direction.

Up to the critical point τc where r = r0, the force and the surface tension must
balance each other,

E |τ∞ − τc| −

 τc∫
τ∞

dτ 4πµ r2
√

1 + ṙ2 − 4π
3 µR3

 = 0 . (6.2.68)

The right-hand side was of course calculated in Eqs. 6.2.58 and 6.2.62. However,
when the critical point r0 is reached at τc, the balance of forces becomes trivial,

E |τc| − 4π µ r2
0 |τc| = 0 . (6.2.69)

Clearly, the branch of the classical trajectory shown as the dashed line in Fig. 6.4
is unphysical in the sense that it does not describe the membrane pulled upwards
with the force E = mn. Furthermore, the membrane surface does not satisfy the
boundary condition that τ0 = 0 at r = 0 since it currently does not even extend
to r < r0. The vanishing of the expression in Eq. 6.2.69 is the consequence of the
definition of the critical radius in Eq. 6.2.59. As soon as the radius r(τ) approaches
the critical radius r0, the radius freezes (since p ∝ dτr = 0); the two terms in
Eq. 6.2.69 become equal, E = µ 4π r2

0, and remain so at all times above the critical
time τc. The thin-wall profile becomes an infinitely stretchable cylinder, as shown
in Fig. 6.5 (a), giving no additional contribution to ∆W quant on top of Eq. 6.2.68.

The freely-stretched cylinder in Fig. 6.5 (a) is an idealised approximation to the
more realistic configuration that would be realised in practice in our mechanical
analogy. One can consider what this realistic mechanical solution would look like.
Let us define the quantity d(r),

d = τ + |τ∞| , 0 ≤ d ≤ |τ∞| . (6.2.70)

as the coordinate along the vertical axis in Ref. Fig. 6.5 measuring the height of the
surface stretched by the ‘force’ E|τ∞| as a function of r. At the base of the surface
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Figure 6.5: Stationary surface configuration obtained by gluing two
branches. Plot (a) shows the surface in the thin-wall ap-
proximation, which glues the original solution in Eq. 6.2.66
to the infinitely stretchable cylinder solution of Eq. 6.2.68.
Plot (b) depicts its more realistic implementation where
the infinite cylinder is replaced by a cone as a consequence
of allowing the surface tension µ to increase with |τ | in
the regime where the highly stretched surface effectively
becomes a 1-dimensional spring.

we have1 d ' 0. The surface wall profile is nearly flat in the τ direction. As d
increases from 0, the radius r(τ) grows smaller, following the profile of the thin-wall
solution contour in the lower part of Fig. 6.5. As r approaches the critical radius r0,
the surface becomes almost parallel to the d (or τ) direction. Such a surface behaves
more like a spring along the τ coordinate. For the strict thin-wall approximation,
the surface tension µ is assumed to be a constant. However, in the case of the spring,
it should instead be the Young’s elastic modulus, kYoung that takes a constant value.
Hence, for a highly-stretched surface in the τ direction, we should introduce some
dependence on d (see Eq. 6.2.70) into the surface tension via,

µ(d) = µ0 (1 + k̂ d) , (6.2.71)

where k̂ � 1 is a constant such that the product k̂d is dimensionless. In the
limit d → 0, the surface tension µ(d) → µ0, where µ0 = m

3

3λ is the same constant
contribution to the surface tension as we computed earlier in Eq. 6.2.47 in the strict
thin-wall case. The corresponding Young’s modulus of the stretched surface would
be kYoung = µ0 k̂. Eq. 6.2.71 describes a small deviation from the standard thin-wall
approximation, where the surface tension is now dependent on the stretching of the
surface. This expression can be thought of as the zeroth and first order terms in the

1Recall that the tip of the surface is at τ = 0, where d = |τ∞|, and that the surface’s base is at
a negative τ = τ∞ = −|τ∞|, which corresponds to d = 0.
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E|⌧1|
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2S3
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µ⇡2r3
0

Er0 = 4⇡µr3
0

1
2S3

r0

rthin wall
cl (⌧)

⌧

x

Figure 6.6: Surface obtained by ‘completing’ the thin-wall classical
solution rthin wall

cl with the upper half of a three-sphere S3
r0
,

of radius r0 in (x, τ), at 0 ≤ |x| ≤ r0. The force stretching
the surface is E = 4πµr2

0.

Taylor expansion of the function µ(τ + τ∞).

The result of this improvement of µ is that the balance between the two terms in
Eq. 6.2.69 continues to hold. However, for an adiabatic approximation of nearly
constant µ, with k̂d� 1, it is now in the form,(

E − µ(d) · 4π r(d)2
)
d = 0 , where d ≥ |τc| . (6.2.72)

For every infinitesimal increase in the vertical coordinate d above |τc|, the radius r(d)
becomes a little smaller than its value r0 at the base of the cylinder in Fig. 6.5 (a).
As a result, the cylinder gets narrower as d increases and turns into the cone-
like shape shown in Fig. 6.5 (b). The actual choice of the modification of the
surface tension expression, such as in Eq. 6.2.71, is of course determined by the field
configurations themselves; it can be seen as a part of the extremisation procedure.
For an adiabatically-slowly varying µ (such that the contribution from the cone to
W is negligible), the overall contribution ∆W quant is dominated by the surface at
r > r0 in the large λn limit. In this case we conclude that,

∆W quant = 1
λ

(λn)3/2 2√
3

Γ(5/4)
Γ(3/4) ' 0.854n

√
λn . (6.2.73)

Further discussion of r ≤ r0 region

Let us discuss the apparent loss of the classical strictly-thin-wall solution at r < r0

in a little more detail. An important point we want to emphasise is that in our
model with spontaneous symmetry breaking, the d-dimensional domain wall surface
separating two distinct vacuum domains at ±v, is a local minimum of the Euclidean
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action. The infinite extent of the surface, which reaches the boundary of space
(r → R or r →∞ when the cut-off R is removed), is important. It is different from
the Coleman’s bounce solution [204], which is known to be a local maximum, or more
precisely the saddle-point of the action. The bounce has a membrane of finite extent;
in the O(4)-symmetric case, it is the surface of the S3 spherical bubble separating
h ' ±v on the inside/outside of the sphere, and the radius of the bubble is the
negative mode for the bounce solution. However, in the case of the infinite domain
wall surface, the domain wall is a topologically-stable configuration and hence a
local minimum1. While the action on the wall with infinite extent in d dimensions
contains an infinite constant, S = 4π

3 R
3 → ∞, this contribution is subtracted in

our construction, as dictated by Eq. 6.2.48. The force being applied to the domain
wall in the τ -direction stretches and curves the surface of the wall to balance the
action of the force. The resulting stationary solution for the stretched surface in
this mechanical analogy is a stable solution when the required boundary conditions,
τ0(r = R) = τ∞ and τ0(r = 0) = 0, are satisfied.

We conclude that there must exist a stable classical solution for the domain wall
surface with the boundary conditions imposed at infinite and zero radii. But what
we have learned from Figs. 6.4 and 6.5 (a) is that this solution can be described by
the strict thin-wall configuration only for r > r0. At the values of r(τ) below the
critical radius r0, the solution corresponding to the minimum of the action requires
a deviation from the strict thin-wall limit. One approach to achieve this is to allow
for the τ -dependent surface tension, as we already explained. Alternatively, we can
continue using the thin-wall configurations with constant µ and attempt to complete
our solution at 0 ≤ r(τ) ≤ r0. We treat these completions as trial configurations
approximating the true minimal solution. The benefit of this approximation is that
it does not require any precise knowledge of how the deviation from the thin wall
regime is realised.

A simple completion of the solution is to add the surface of an upper half of the
three-sphere S3

r0 , of radius r0, to our thin-wall classical solution,

rthin wall
trial (τ) =

r
thin wall
cl (τ) : for r0 ≤ r <∞

1
2 S

3
r0(x, τ) : for 0 ≤ r ≤ r0 ,

(6.2.74)

as shown in Fig. 6.6. It is easy to deduce the contribution to the semiclassical rate
from the surface of 1

2 S
3
r0 ; it is given by,

(1/2) δW quant
1
2S

3 = Er0 − µπ2r3
0 = 4πµr3

0 (1− π/4) ' 0.1n
√
λn . (6.2.75)

1A recent discussion of domain walls and their stability can be found in the textbook [205].
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The force E is expressed in terms of the critical radius, as before, E = 4πµr2
0. The

extent of the S3
r0 half sphere in the τ -direction is r0, and the action of this surface is,

1
2 S[S3

r0 ] = 1
2 2π2r3

0 = π2r3
0 , (6.2.76)

which, together with the identity in Eq. 6.2.61, justifies the formula in Eq. 6.2.75.

The contribution in Eq. 6.2.75 should be added to the expression for ∆W quant in
Eq. 6.2.73 that came from the thin-wall classical solution at r > r0. We note that the
expression in Eq. 6.2.75 is positive, signalling that the force gives a slightly greater
contribution than the surface energy of the half-sphere, increasing the overall rate
in Eq. 6.2.75.

In general, the completion of the classical solution by the O(4)-symmetric thin-
wall surface in Eq. 6.2.75 does not give the minimum of the action but rather a
trial configuration. For the true minimum, the rate ∆W quant would only be larger.
For example a cone-like O(3)-symmetric completion, such as the one depicted in
Fig. 6.5 (b) would give an even larger contribution. However, to evaluate it, one
would be required to use a beyond-the-thin-wall description of the surface. For our
purposes, it is sufficient to approximate the true classical stationary point by the
thin-wall configuration in Eq. 6.2.74 with the rate given by Eq. 6.2.73 with a small
positive correction (see Eq. 6.2.75) arising from the O(4) completion of the classical
surface at 0 ≤ r ≤ r0. In total we have,

∆W quant = 0.854n
√
λn + δW quant > 1 · n

√
λn . (6.2.77)

Eq. 6.2.77 is the main result of this section. To be on the conservative side we can
always ignore the positive δW quant contribution and continue using the expression in
Eq. 6.2.73 for the contribution of quantum effects to the function W in the exponent
of the semiclassical rate. In summary, our result for the semiclassical approximation
to the rate reads,

Rn(E) = eW (E,n) , W ' n

(
log λn4 − 1

)
+ 3n

2

(
log ε

3π + 1
)

+ 0.854n
√
λn ,

(6.2.78)
reproducing the result in [169,170]. The expression in Eq. 6.2.78 was derived in the
near-threshold high-energy high-multiplicity limit,

λ→ 0 , n→∞ , with λn = fixed� 1 , ε = fixed� 1 , (6.2.79)

where final state particles are non-relativistic so that ε is treated as a fixed number
much smaller than one. The overall energy and the final state multiplicity are related
linearly via E/m = (1+ε)n ' n� 1. Clearly, for any small fixed value of ε one can
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choose a sufficiently large value of λn, such that the function W (λn, ε) in Eq. 6.2.78
is positive. These semiclassical expressions imply that at sufficiently large particle
multiplicities, the expression Rn(E) grows exponentially with n and consequentially
with the energy E.

6.3 Comparison with the Landau WKB method
in QM

The semiclassical approach in quantum mechanics (QM) is known as the WKB
method. It is commonly used and provides a powerful non-perturbative form-
alism for solving quantum mechanics problems. In their classic volume [203],
Landau and Lifshitz formulate the WKB approach using singular classical solutions
analytically-continued to complex space. In this sense the Landau WKB approach
in QM [193,203] has many similarities with the semiclassical approach in quantum
field theory [168] that we are using in this work. Considerations in early literature
of various generalisations of the Landau-WKB singular configurations approach to
multi-dimensional systems can be found in Refs. [185,186,206–209].

The main purpose of this section is to compare the the semiclassical approach in
quantum field theory, covered in Sections 6.1 and 6.2, to the Landau WKB in
quantum mechanics, and to discuss the differences between these two semiclassical
realisations.

6.3.1 Matrix elements in the Landau WKB formulation

Landau and Lifshitz consider a matrix element of some physical operator, Ô(q̂),
where q̂ is the position operator for a 1-dimensional quantum system with potential
U(q). Such a system is of course governed by the time-independent Schrödinger
equation,

− ~2

2m
d2

dq2 ψ(q) + U(q)ψ(q) = Eψ(q), (6.3.1)

where m is the mass and E is the energy associated with positional wavefunction
ψ(q). The matrix element of Ô between two states of energy E1 and E2 can be
written as,

O12 = 〈E1|Ô|E2〉 =
∞∫
−∞

ψ∗1(q) Ô(q̂)ψ2(q)dq. (6.3.2)
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E1

E2

q

U(q)

a1a2

Figure 6.7: Quantum mechanical potential U(q) with two energy ei-
genstates E2 > E1. The turning points are q = a1 and
q = a2 where U(qi) = Ei. The wavefunctions ψ1(q) and
ψ2(q) are given in Eqs. 6.3.3 and 6.3.4 in the classically
forbidden regions q < a1 and q < a2 to the left of the
potential barrier.

When the potential varies on length scales much larger than a wavelength, WKB
methods can be used to approximate the wavefunctions, ψi, for the states of energies
Ei by solving the Schrödinger equation by iterations in the small parameter ~. At
the leading WKB order the wavefunctions are given by [203],

ψ1(q) ' C1

2
√
|p1|

e
− 1

~

∣∣∣∫ q
a1
p1dq

∣∣∣
, for q < a1, (6.3.3)

ψ2(q) ' iC2

2
√
|p2|

e
+ 1

~

∣∣∣∫ q
a2
p2dq

∣∣∣
, for q < a2, (6.3.4)

where we have assumed the ordering of the energies, E1 < E2 to select the signs of
the roots in the exponents. In the above expressions pi denote the classical momenta,

pi =
√

(2m)(Ei − U(q)) , (6.3.5)

and C1,2 are constants. The expressions in Eqs. 6.3.3 and 6.3.4 are written in the
classically-forbidden regions, q < a1 and q < a2 for the wavefunctions ψ1(q) and
ψ2(q) respectively, where a1 and a2 are the turning points, U(ai) = Ei as shown
in Fig. 6.7. Importantly, the roots of the wavefunctions are selected in such a
way that the wavefunction ψ1 with the smaller energy, E1 < E2, has the negative-
valued exponent, while the wavefunction ψ2 with the higher energy has the positive
exponent.

These approximations (see Eqs. 6.3.3 and 6.3.4) break down in the vicinity of the
classical turning points q ' a1. Landau and Lifshitz explain how to avoid these
regions by deforming the integration contour into the upper half plane of complex
q, away from the classical turning points. Then it follows from Eqs. 6.3.2 to 6.3.4
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that the matrix element is dominated by the contribution from the singularity of
the potential: i.e. the point, q0, where U(q0)→∞,

O12 ' exp
−1

~

∣∣∣∣∣∣
q0∫
p1dq

∣∣∣∣∣∣ + 1
~

∣∣∣∣∣∣
q0∫
p2dq

∣∣∣∣∣∣
 . (6.3.6)

This WKB formula is often presented in the form [203],

O12 ' exp
−1

~
Im

 q0∫ √
2m(E2 − U(q))dq −

q0∫ √
2m(E1 − U(q))dq

 , (6.3.7)

which requires an additional clarification for selecting the sign of the imaginary part,
or equivalently of the square roots in Eq. 6.3.7.

The lower limits of the q integrations in the expressions in Eqs. 6.3.6 and 6.3.7 are
unimportant to the leading WKB accuracy as the dominant contributions come from
the vicinity of the singularity at q ∼ q0 near the upper limit of the integrals.

Notice that the WKB exponent has no dependence on the operator Ô. Indeed
the precise form of Ô may change the overall prefactor, but it does not affect the
bulk behaviour. The above estimate is derived for generic operators that contain
no explicit dependence on ~. Furthermore, the generic operators above should not
include ‘bad’ choices of Ô that would give an unusually small coefficient in front of
the exponent in Eq. 6.3.7. A simple example is Ô = constant, for which O12 vanishes
due to the orthogonality of ψ1 and ψ2.

It will be useful to summarise the characteristic features of the WKB result in
Eq. 6.3.6:

1. The WKB matrix element is dominated by the singularity of the potential,
U(q) → ∞ as q → q0. Since the energies E1,2 are finite, the singularity is
located in the classically forbidden region U(q) > E1,2, where the coordinates q
are analytically-continued on deformed contours and momenta p are complex-
valued.

2. For generic operators with no exponential dependence on ~, the leading order
WKB expression for their matrix elements in Eq. 6.3.6 does not depend on the
specific choice of the operator.

However, this is where the similarities between the QM WKB and the QFT
semiclassical methods end.

3. The sign prescription in the definition of the imaginary part in the WKB
exponent in Eq. 6.3.7 is fixed by the expression in Eq. 6.3.6. It is easy to
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verify that for every q in the classically forbidden region, the absolute value
of the complex momentum |p1| is always greater than |p2| since U(q)− E1 >

U(q)−E2 for the energy ordering E1 < E2. Hence the resulting matrix elements
computed using the WKB approximation in quantum mechanics (see Eqs. 6.3.6
and 6.3.7) are always exponentially suppressed, unlike what we saw in the QFT
calculation in the previous section.

Example: Landau-Lifshitz Section 51 Problem 1 [203].

Calculate the exponential factor of the matrix elements in the potential U(q) =
U0e

−αq.

Solution: U(q) becomes infinite only for q → −∞, hence the singularity is the point
q = q0 = −∞. Using Eq. 6.3.6 we write

O12 ' exp

−1
~

∣∣∣∣∣∣∣
−∞∫
a1

√
2m(U − E1) dq

∣∣∣∣∣∣∣ + 1
~

∣∣∣∣∣∣∣
−∞∫
a2

√
2m(U − E2) dq

∣∣∣∣∣∣∣


= exp

+1
~

−∞∫
a1

√
2m(U0e

−αq − E1) dq − 1
~

−∞∫
a2

√
2m(U0e

−αq − E2) dq

 ,

(6.3.8)

where a1 and a2 are the turning points, a1 > a2 > q0 = −∞, similar to what is
shown in Fig. 6.7. It is convenient to introduce the velocity variables v1 and v2 and
use them instead of the energies E1 and E2,

v2
1 = 2E1

m
, v2

2 = 2E2

m
, (6.3.9)

and rewrite the integrals on the right-hand side of Eq. 6.3.8 (i = 1, 2) as

1
~

−∞∫
ai

dq
√

2m(U0e
−αq − Ei) = mvi

~

−∞∫
ai

dq

√
2U0

m2v2
i

e−αq − 1 . (6.3.10)

Making the change of integration variables from q to y via,

y = −αq + log 2U0

m2v2
i

, (6.3.11)

the integral in Eq. 6.3.10 becomes

− m
~
vi
α

+∞∫
0

dy
√
ey − 1 = − 2m

~
vi
α

(√
ey0 − 1− Arctan

(√
ey0 − 1

))
|y0→∞

= − 2
√

2U0

~α
exp

[
α

2 |q0|
]
||q0|→∞ + πm

~α
vi . (6.3.12)
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Finally, we note that in the difference between the two integrals in Eq. 6.3.8 the
infinite terms cancel and we are left with the finite contribution coming from the
second term in Eq. 6.3.12 for i = 1, 2. The WKB result for the matrix element to
exponential accuracy reads,

O12 ' e−
πm
~α (v2−v1) . (6.3.13)

Since the velocities are ordered in the same way as the energies, v2 > v1, we conclude
that the matrix element is exponentially-suppressed. We also note that the exponent
in Eq. 6.3.13 is independent of the choice of the operator Ô(q).

This example confirms the general conclusion we already reached in item (3.) above:
that in quantum mechanics the WKB approximation, by construction, can only
result in exponentially-suppressed matrix elements and can never give exponentially-
growing probability rates. This is of course fully expected: given that ordinary
quantum mechanics with a Hermitian Hamiltonian is a unitary theory, probabilities
must be conserved and cannot exceed unity.

What is then the technical difference between the WKB formulation in quantum
mechanics and the semiclassical method in quantum field theory? Both formalisms
compute matrix elements of certain operators and both use singular complex-valued
configurations to find the dominant contributions. Nevertheless the field-theoretical
formulation does not have a built-in restriction to disallow positive-valued functions
W in the exponent of the semiclassical rate. This is evidenced by the function W in
our result (see Eq. 6.2.78), becoming positive at sufficiently-large values of λn. The
critical difference between the QM and QFT formulations is that in QFT we have
an entire surface of singularities rather than isolated singular point(s) in QM.

6.3.2 The role of the singular surface in QFT

For concreteness, when discussing the semiclassical method in quantum field theory
we will continue using the model in Eq. 4.1.3 with SSB, which in terms of the shifted
field φ(x) = h(x)− v in (d+ 1) dimensions has the Lagrangian description,

L(φ) = 1
2 ∂

µφ ∂µφ −
1
2m

2φ2 − λvφ3 − λ

4 φ
4 , (6.3.14)
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with the mass m =
√

2λv. It is also useful to denote the potential energy density as
V(φ), and its interacting part as Vint(φ),

V(φ) = 1
2m

2φ2 + λvφ3 + λ

4 φ
4 ,

Vint(φ) = λvφ3 + λ

4 φ
4 .

(6.3.15)

We recall that the classical trajectory φ(x) = h(x) − v used in the semiclassical
method in Sections 6.1 and 6.2 is infinite on a d-dimensional singularity surface in
(τ,x) that touches the origin x = 0 in Minkowski space. Correspondingly, the value
of the potential V(φ) also becomes infinite at the singularity, which is analogous to
the statement about the singularity of the potential U(q) in quantum mechanics,

QFT : lim
τ→τ0(x)

V(φ(x)) = ∞ ,

QM : lim
q→q0

U(q) = ∞ .
(6.3.16)

However, the potential in QFT is singular on the d-dimensional surface, τ = τ0(x),
found by extremising the Euclidean action over all appropriate shapes of trial singular
surfaces. In QM there are no spatial dimensions; q is a function of time only, q = q(τ),
and the potential U(q) is singular at a point1 q(0) ≡ q0. Hence, there are no surfaces
to extremise over in QM and consequently no dependence on the surface shape τ0(x)
or the value of |τ∞|, which were of critical importance in QFT, as manifested by
Eqs. 6.2.29 and 6.2.48,

1
2∆W quant = nm |τ∞| − SE[τ0(x)] + SE[flat] . (6.3.17)

In fact, the very reason why the contributions of quantum corrections to the rate
in the field theory case are not forced to be exponentially-suppressed is due to the
positive-valued contribution of the term nm |τ∞| on the right-hand side of Eq. 6.3.17.
It is easy to verify that the action integral of the surface stretched in the τ -direction
(cf. Eq. 6.2.49),

SE[τ0(r)] =
0∫

τ∞

dτ 4πµ r2
√

1 + ṙ2 =
∫
dr 4πµ r2

√
(dτ/dr)2 + 1 , (6.3.18)

is always greater in absolute value than the action of the flat surface (cf. Eq. 6.2.46),

SE[flat] = µ

R∫
0

4πr2dr = µ
4π
3 R3 , (6.3.19)

1Without loss of generality we can use translational invariance to set it at the time τ = 0.
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and the semiclassical exponent of the rate 1
2∆W quant in Eq. 6.3.17 can be positive

only because of the presence of the contribution nm |τ∞|, which is large and positive
in the high multiplicities limit λn � 1 thanks to the non-trivial stretching of the
surface |τ∞| 6= 0. As we already explained, this effect is impossible in ordinary
quantum mechanics.

Before concluding this section we would like to list the differences between the semi-
classical method we are using in the (d+ 1)-dimensional QFT model (see Eq. 6.3.14)
and a naive attempt to apply the same method to a quantum mechanical model
with the same Lagrangian in (0 + 1) dimensions.

1. As there are no spatial degrees of freedom in (0 + 1) dimensions, there is
no phase space to integrate over. Hence, one would need to compute just
the square of the matrix element. One can continue using the coherent state
representation for the final states, as in Eq. 6.1.18, but the integration over the
final states 1 =

∫
d({b∗}, {b})e−b

∗
b involves the ordinary rather than functional

integrals over b and b∗.

2. With no phase space for final states in QM, it is impossible to project simul-
taneously on states of fixed energy E and fixed occupation number n. In QM
unlike QFT, E and n are related,

En = nm(1 + εn) , (6.3.20)

where the quantity εn is fixed in a given QM model and is not a free parameter.
As a result, the non-relativistic limit ε � 1 that we used in QFT is not
something we are free to impose in QM. Therefore, one should impose only a
single projector, P̂E on the matrix elements in Eq. 6.1.18,

〈b| P̂EŜÔ |0〉 . (6.3.21)

One should also keep in mind that an anharmonic quantum potential with a
non-vanishing λ has energy levels En that are spaced more densely than the
energy states of the harmonic oscillator. Hence εn are negative-valued, and the
‘decays’ En → nm are kinematically forbidden in QM. In comparison, in QFT
such decays are only disfavoured by the vanishing phase space and become
possible after allowing for arbitrary small particle momenta in the final state,
leading to a small positive ε.

3. Importantly, in QM one should distinguish between projecting with P̂E on the
eigenstates of the full Hamiltonian with the potential U(q) given by V(φ) in
Eq. 6.3.15, and the projection on the eigenstates of the Hamiltonian of the
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harmonic oscillator. In QFT with d ≥ 2 spatial dimensions, the field solutions
of the Euler-Lagrange equations dissipate in space. Therefore, they become
solutions of free equations at early and late times t → ±∞. This is not the
case in QM. Energy eigenstates in the full quantum mechanical potential of an
anharmonic oscillator are trapped in the potential well and do not linearise1.
Hence, projecting onto the eigenstates of the harmonic oscillator Hamiltonian
H0 as we have done in Eq. 6.1.12 becomes problematic in QM.

4. In QM, the integral analogous to the one in Eqs. 6.1.24 and 6.1.25 over
{ξ, φi, φf , ϕi, ϕf , b∗, b}, is an ordinary non-functional integral. Only the (0 + 1)-
dimensional fields φ(t) and ϕ(t), playing the role of QM coordinates, are
functions. Hence, proceeding formally in QM, we can write down saddle-point
equations resulting from the steepest-descent approximation of the integral in
Eq. 6.1.24. However, we cannot expect that the solutions at asymptotic times
linearise and thus we cannot write down boundary conditions analogous to
Eqs. 6.1.47 and 6.1.48 for q(t). Furthermore, the energy E cannot be computed
from the late-time asymptotics in analogy to Eq. 6.1.49.

5. With no meaningful boundary-value problem in the (0 + 1)-dimensional QM
model, one cannot proceed to derive the formulae in Eqs. 6.2.29 and 6.2.48,
for quantum contributions to the semiclassical rate. As we have already noted
earlier, there is no analogue in QM of the QFT expression in Eq. 6.3.17, which
was instrumental in obtaining unsuppressed QFT rates due to a non-trivial
stretching of the singularity surface |τ∞| by the force nm.

6.4 Semiclassical rate in (2+1) dimensions

Loop contributions to the multiparticle amplitudes at threshold in 1 and 2 spatial
dimensions are infrared divergent. In the (2+1)-dimensional theory at small but
non-vanishing ε, the terms of order (λ log ε)k appear at k loops in perturbation
theory. These terms were summed up using the renormalisation group technique

1One can of course always proceed with the WKB computation of matrix elements between
the energy eigenstates in a different QM model – one with a potential barrier as in Fig. 6.7. We
have analysed this situation in the example of U(q) = U0e

−αq considered in the previous section.
In this case, classical trajectories do indeed become free far away from the barrier at asymptotic
times. This however is different from our model in Eq. 6.3.14. Free states that are of interest for us
are analogues of particle states in QFT, i.e. those described by the harmonic oscillator potential
m2q2/2 in Eq. 6.3.14 rather than the states in the asymptotically-vanishing potential.
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in [202] in the limit where [179],

λ→ 0 , n = fixed , ε→ 0 with λ log ε = fixed . (6.4.1)

In this section we will explain that this resummation in fact provides a non-trivial
verification of the Higgsploding rate predicted in the 2+1 dimensional theory by the
semiclassical approach.

All our 4-dimensional QFT calculations in in Sections 6.1 and 6.2 can be straight-
forwardly generalised to any number of dimensions (d+ 1). Consider once more the
scalar QFT model in Eq. 4.1.3 with the VEV v 6= 0.

The expression W (E,N)d in the exponent of the multiparticle rate Rn(E) has the
same general decomposition into tree-level and quantum parts as before,

W (E, n)d = W (E, n;λ)tree
d + ∆W (E, n;λ)quant

d , (6.4.2)

where the tree-level expression in (d+ 1) dimensions reads (cf. Eq. 6.2.27),

W (E, n)tree
d = n

(
log λn4 − 1

)
+ dn

2

(
log ε

dπ
+ 1

)
, (6.4.3)

and the quantum contribution is given by,

∆W quant
d = 2nm |τ∞| + 2

∫
ddx

[ +∞∫
τ0(x)

dτ LE(h1) −
0∫

τ0(x)

dτ LE(h2)
]
, (6.4.4)

extremised over the singularity surfaces τ0(x) in complete analogy with Eq. 6.2.29.

For the rest of this section we we will consider the case of d = 2 spatial dimensions
and will concentrate on the contribution of the stationary surface to the quantity
1
2∆W quant

d=2 , which we write as,

1
2 ∆W quant

d = E |τ∞| − 2πµ

 R∫
r0

r
√

1 + ṙ dr −
R∫

0

r dr

 . (6.4.5)

The surface tension is µ = m3/λ as before and the critical radius in d = 2 is given
by r0 = E/(2πm). Proceeding with the evaluation of Eq. 6.4.5 on the classical
trajectory r(τ), analogously to the calculation in the previous section, we get,

1
2∆W quant

d = −
R∫
r0

2π µ
√
r2 − r2

0 dr + 2π µR2 . (6.4.6)
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In the Rm→∞ limit this becomes,

' n2λ

m

3
4π

(
log(Rm) + 1

2 + log
(2π

3
m

λn

)
+ O

(
1
Rm

λn

m

))
. (6.4.7)

Adopting the infinite volume limit, in which the limit Rm→∞ is taken first while
the quantity nλ

m
is held fixed, we can drop the R-independent and 1/R-suppressed

terms, leaving only the logarithmically divergent contribution,

1
2∆W quant

d ' 3
4π

n2λ

m
log(Rm). (6.4.8)

We see that all power-like divergent terms in mR have cancelled in the expressions
in Eqs. 6.4.6 and 6.4.8, but the logarithmic divergence remains. This result is not
surprising in d < 3 dimensions and is the consequence of the infrared divergences in
the amplitudes at thresholds due to the rescattering effects of final particles. In fact,
the appropriate coupling constant in the lower-dimensional theory is not the bare
coupling λ but the running quantity λt, where t is the logarithm of the characteristic
momentum scale in the final state. In our case we can set,

t = log(Rm), (6.4.9)

and treat R as the reciprocal of the average momentum scale in the final state, i.e.
Rm = 1/ε1/2.

The semiclassical result obtained in Eq. 6.4.8 encodes the effect of taking into account
quantum corrections to the scattering amplitudes into n-particle states near their
threshold, and implies,

An ' Atree
n exp

(
3n2λ t

4πm

)
. (6.4.10)

It is important to recall that the semiclassical limit is assumed in the derivation of
the above expression. As always, this is the weak-coupling large-multiplicity limit,
such that1

dimensionless running coupling : λ t

m
→ 0 and multiplicity : n→∞, (6.4.11)

with the quantity nλ t
m

held fixed (and ultimately large) and t = −1/2 log ε → 0.
This enforces the non-relativistic limit, which selects the amplitudes close to their
multiparticle thresholds.

It is important that it is the running coupling λt that is required to be small in
1Recall that in (2 + 1) dimensions, λ has dimensions of mass.
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the semiclassical exponent1. This implies that the semiclassical expression would in
general include unknown corrections,

An ' Atree
n exp

3n2λ t

4πm

1 +
∞∑
k=1

ck

(
λt

m

)k , (6.4.12)

parametrised by the sum ∑
k=1 ck

(
λt
m

)k
. Of course, there is a well-defined regime

corresponding to the small values of the effective coupling λt where these corrections
are negligible and the leading order semiclassical result in Eq. 6.4.10 is justified.

Remarkably, the semiclassical formula in Eq. 6.4.10 can be tested against an inde-
pendent computation of quantum effects in the (2 + 1)-dimensional theory, obtained
in [179, 202] using the renormalisation group (RG) resummation of perturbative
diagrams. The result is,

ARG
n = Atree

n

(
1 − 3λ t

2πm

)− n(n−1)
2

. (6.4.13)

This expression is supposed to be valid for any value of n in the regime where the
effective coupling λt is in the interval,

0 ≤ λ t

m
. 1 . (6.4.14)

Now, taking the large-n limit, the RG-technique-based result of [179,202] gives,

ARG
n = Atree

n exp
3n2λ t

4πm

1 +
∞∑
k=1

1
k + 1

(
3λt
2πm

)k . (6.4.15)

It is a nice test of the semiclassical approach that the leading-order terms in the
exponent in both expressions (see Eqs. 6.4.12 and 6.4.15) are exactly the same and
given by 3n2

λ t
4πm . An equally-important observation is that the subleading terms are of

the form ∑
k=1 ck

(
λt
m

)k
, which is suppressed in the semiclassical limit λt→ 0. There

is no contradiction between the two expressions in the regime where the semiclassical
approach is justified.

It thus follows that there is a regime in the (2 + 1)-dimensional theory where the
multiparticle amplitudes near their thresholds, and consequently the probabilistic
rates Rn(E), become large. In the case of the RG expression in Eq. 6.4.13, this is the
consequence of taking a large negative power −n2/2 of the term that is smaller than 1.

1For example, it is completely analogous to the instanton action Sinst = 8π2

g
2(t)

in Yang-Mills
theory, where the inclusion of quantum corrections from the determinants into the instanton
measure in the path integral ensures that Sinst in the exponent depends on the correct RG coupling
g2(t) and not the unphysical bare coupling g2

bare.



172 Chapter 6. The Semiclassical Method

This implies that there is room for realising Higgsplosion in this (2 + 1)-dimensional
model in the broken phase.

In the case of a much simpler model – the quantum mechanical anharmonic oscillator
in the unbroken phase – it was shown in Refs. [210, 211] that the rates remain
exponentially suppressed in accordance with what would be expected from unitarity
in QM.

6.5 Summary

In Chapters 4 to 6 we have provided a detailed derivation of the semiclassical
exponent for the multi-particle production rate in the Higgsplosion limit, along with
a review of the semiclassical method used to compute it. The derivation holds in the
high-particle-number λn � 1 limit, in the kinematic regime where the final-state
particles are produced near their mass thresholds. This corresponds to the limit,

λ→ 0 , n→∞ , with λn = fixed� 1 , ε = fixed� 1 . (6.5.1)

Combining the tree-level (see Eq. 6.2.27) and quantum effects (see Eq. 6.2.73) con-
tributions,

W (E, n) = W (E, n;λ)tree + ∆W (E, n;λ)quant , (6.5.2)

we can write down the full semiclassical rate,

Rn(E) = eW (E,n) = exp
[
n

(
log λn4 + 0.85

√
λn + 3

2 log ε

3π + 1
2

)]
, (6.5.3)

computed in the high-multiplicity non-relativistic limit in Eq. 6.5.1. This expression
for the multi-particle rates was first written down in the precursor of this work [170],
and was used in Refs. [42, 43] and subsequent papers to introduce and motivate the
Higgsplosion mechanism.

The energy in the initial state and the final-state multiplicity are related linearly
via,

E/m = (1 + ε)n . (6.5.4)

Hence, for any fixed non-vanishing value of ε, one can raise the energy to achieve
any desired large value of n and consequentially a large

√
λn. Clearly, at the

strictly-vanishing value of ε, the phase-space volume is zero and the entire rate in
Eq. 6.5.3 vanishes. Then, by increasing ε to positive but still small values, the rate
increases. The competition is between the negative log ε term and the positive

√
λn

term in Eq. 6.5.3; there is always a range of sufficiently-high multiplicities where
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Figure 6.8: Plots of the semiclassical rate Rn in Eq. 6.5.3 as a function
of n for values of the energy/virtuality E fixed at 190m and
at 200m. We chose λ = 1/8. There is a sharp exponential
dependence of the peak rate on the energy. The peak
multiplicities n ∼ 150 in these examples are not far below
the maximal values nmax = E/m allowed by kinematics.

√
λn overtakes the logarithmic term log ε for any fixed (however small) value of ε.

This leads to the exponentially-growing multi-particle rates above a certain critical
energy, which in the case described by the expression in Eq. 6.5.3 is in the regime of
Ec ∼ 200m. The associated semiclassical rates for Ec ∼ 190m, 200m are shown in
Fig. 6.8. We see that the multiplicity at which the rate peaks is not far below the
maximum kinematically-allowed value, E/m.

The expression for the multi-particle rate in Eq. 6.5.3 is a leading order semiclassical
approximation and should of course not be taken as anything more than a rough
estimate of the Higgsplosion rate. We have already emphasised that this result
is an approximation derived in the simplified scalar model (see Eq. 4.1.3) and in
the simplifying non-relativistic limit. Specifically, our result ∆W quant for quantum
contributions to W in Eq. 6.2.73 was derived on the multi-particle threshold, i.e. at
ε = 0. Hence the higher-order corrections in ε will be present in the expression for
the rate in the λn limit. Let us estimate these corrections following the discussion
in Section 5 of Ref. [170].

Denote these unknown corrections fλn;ε(λn, ε), so that

∆Wnew = λn

λ
fλn;ε(λn, ε) , (6.5.5)

and the now modified rate becomes,

Rn(E) ∼
εnr∫
0

dε
(
ε

3π

) 3n
2

exp
[
n
(
0.85
√
λn + log λn + fλn;ε(λn, ε) + c

)]
, (6.5.6)

where we have included the new correction ∼ nfλn;ε(λn, ε) and have also made
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explicit the fact that the 3n/2 log ε/(3π) factor in the exponent of the rate in Eq. 6.5.3
originated from the integration over the non-relativistic n-particle phase space with
a cut-off at εnr < 1. The constant c absorbs various constant factors appearing in
the original rate.

The integral above is of course meant to be computed in the large-n limit by finding
the saddle-point value ε = ε?. The main point of the exercise is to determine (1)
whether there is a regime where ε? � 1 so that our near-the-threshold approach is
justified, and (2) whether the saddle-point value of the rate itself is large. These
requirements should tell us something about the function fλn;ε.

Let us assume that the correction to our result has the form,

fλn;ε(λn, ε) = −a ε (λn)p , (6.5.7)

where a and p are constants. This function is supposed to represent the higher-order
in ε correction to our result in the small-ε, large-λn limit. The integral we have to
compute is,

Rn ∼ en (0.85
√
λn+ log λn+ c̃)

∫
dε en ( 3

2 log ε− a ε (λn)p) . (6.5.8)

Denoting the ε-dependent function in the exponent s(ε),

s(ε) = 3
2 log ε − a ε (λn)p , (6.5.9)

we can compute the saddle-point,

∂s(ε)
∂ε

= 0 ⇒ ε? = 3
2

1
a

1
(λn)p , (6.5.10)

and the value of the function s at the saddle-point,

s(ε?) = −3
2

(
p log λn + 1 − log 3

2a

)
. (6.5.11)

Combining this with the function in the exponent in front of the integral in Eq. 6.5.8
we find the saddle-point value of the rate,

Rn(ε?) ∼ exp
[
n
(

0.85
√
λn −

(3p
2 − 1

)
log λn + const

)]
. (6.5.12)

This is the value of the rate at the local maximum, and since the factor of
√
λn grows

faster than the − log λn term, the peak value of the rate is exponentially-large in the
limit of

√
λn→∞. It is also easy to verify that this conclusion is consistent within

the validity of the non-relativistic limit. In fact, the value of ε at the saddle-point is
non-relativistic,

ε? = 3
2

1
a

1
(λn)p → 0 , as λn→ ∞ . (6.5.13)
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We thus conclude that the appearance of the higher-order ε corrections to our result
in the form of Eq. 6.5.7 do not prevent the eventual Higgsplosion in this model at
least in the formal limit

√
λn→∞ where we have found that,

Rn(ε?) � 1 . (6.5.14)

The growth persists for any constant values of a and p. In fact, if a were negative,
the growth would only be enhanced. In Eq. 6.5.7 we have assumed that the function
goes as ε to the first power. The higher powers would not change the conclusion,
while the effect of ∼ ε0 is what is already taken into account in Eq. 6.2.73.

We now also recall from our earlier discussion that the expression for Rn(E) in
Eq. 6.5.3 is in fact a distribution-valued function. To obtain the proper n-particle
production rate one needs to account for the operator-smearing effect in the definition
of the initial state in Eq. 6.1.8. The result of this is that the Higgsplosion rate
becomes |g̃(p)|2Rn(

√
s) where g̃(p) is the momentum space Fourier transform of the

spacetime test function g(x′). This implies that the Higgsplosion rate can be written
in the form [167],

Rg(n,
√
s) = |g̃(

√
s)|2 Rn(

√
s) = |g̃(

√
s)|2 enF (λn,ε) , (6.5.15)

by dressing the leading order semiclassical result Rn(
√
s) with the smearing function

|g̃(
√
s)|2. This smearing will also ensure an acceptable behaviour of the physical

production rate at asymptotically high centre-of-mass energies for 2→ n processes,
in accordance with unitarity.

Finally, we note that our discussion concentrated entirely on a simple scalar QFT
model. If more degrees of freedom were included, for example the W and Z vector
bosons and the SM fermions, new coupling parameters (such as the gauge coupling
and the Yukawas) would appear in the expression for the rate along with the final
state particle multiplicities. As there are more parameters, the simple scaling proper-
ties of Rn in the pure scalar theory will be modified. Understanding how this would
work in practice and investigating the appropriate semiclassical limits is one (of the
admittedly many) tasks for future work on exploring realisations of Higgsplosion in
particle physics.





Part III

The Higgs in the Early Universe





Chapter 7

Problems & Solutions in
Fundamental Physics

With our discussion on the Higgs boson’s possible non-perturbative behaviour at
high energies concluded, we change pace and move on to looking at its cosmological
evolution. As we have noted in many parts of this thesis thus far, the Standard Model
is a very successful theory. However, there are several questions and observations
that, in its current state, it fails to answer. This motivates us to look for ways to
extend the SM in such a way as to address as many of these problems as possible.
Many proposed solutions to these problems involve considerations of how the physics
of the universe may change over the course of its cosmological evolution.

In this chapter, we briefly look at four of the current problems in fundamental physics
and give an example of a proposed solution for each. In Chapter 8, we present a
relaxion model [44], which aims to solve the four aforementioned problems, as well
as the hierarchy problem discussed in Section 1.2.2. Though other possible solutions
are mentioned, the example solutions presented in this chapter are chosen to be
the ones utilised in the model presented in Chapter 8. The exception is the strong
CP problem, for which two solutions are presented: the QCD axion [212] and the
Nelson-Barr mechanism [213–215]. The Nelson-Barr mechanism is indeed used in the
combined relaxion model, while the discussion of the QCD axion will prove useful
when explaining the relaxion mechanism in Section 8.2. Hence, this chapter lays the
necessary foundations for the discussions in Chapter 8.
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7.1 The strong CP problem

The strong CP problem concerns a CP-violating term in quantum chromodynamics
(QCD) that is allowed by the symmetries of the Lagrangian [212],

LstrongCP = θ
αs
8πGaµνG̃

µν
a , (7.1.1)

where G̃µν
a = εµναβGaαβ, Gaµν is the gluon field strength tensor and αs is the strong

coupling. The parameter θ dictates the size of this term and, consequentially, the
extent of CP violation. Without a mechanism to suppress its size, it causes a large
neutron electric dipole moment, dn.

In general, there are in fact two contributions to this CP violation: the GG̃ term
above and the phase of the quark mass matrix. The combined effect of these
contributions can be expressed by θ̄,

θ̄ = θ + Arg(detM), (7.1.2)

where θ is the size of the GG̃ term and M is the quark mass matrix. These two
contributions are in fact connected. The phase of the mass matrix can be changed
by chiral rotations of the fields, but due to the anomalous nature of the associated
chiral symmetry, this comes at the cost of producing a GG̃ term [212]. Therefore,
chiral rotations can be used to change the values of θ and Arg(detM) but their sum,
θ̄, remains constant. It is this combined quantity, θ̄, that is experimentally accessible.
Current experimental bounds on the neutron electric dipole moment [216–218] require
that θ̄ ≤ 10−9.

In the Standard Model there is no reason for the strong CP angle, θ̄, to be small.
This has motivated extensions that give a natural suppression to this term, such as
the axion and the Nelson-Barr mechanism considered below.

7.1.1 The QCD axion & ALPs

A popular solution to the strong CP problem is the axion or chiral solution [212,219,
220]. This solution involves the introduction of a new global chiral symmetry, U(1)PQ,
which is spontaneously broken and dynamically drives θ̄ to zero. A consequence of
the breaking is the presence of a new associated pseudo Nambu-Goldstone boson,
the axion a(x), with Lagrangian,

Laxion = 1
2(∂µa)2 + a(x)

fa

αs
8πGG̃, (7.1.3)
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where fa is the scale of the breaking. Note that the strong CP parameter is now a
dynamic quantity,

θ̄eff(x) = θ̄ + a(x)
fa

. (7.1.4)

As QCD becomes strongly-coupled at low energies, non-perturbative effects break
the axion shift symmetry and give it an effective potential,

Veff(a) = −muf
3
π cos(θ̄ + a(x)/fa), (7.1.5)

where mu is the up-quark mass and fπ is the decay constant of the pions [221].
Minimisation of this potential forces the axion VEV to,

〈a〉 = −faθ̄, (7.1.6)

such that θ̄eff = 0. This solves the strong CP problem.

Note that if the axion Lagrangian in Eq. 7.1.3 had an explicit mass term ∼ m2a2, the
minimum of the potential would be shifted and the strong CP problem would return.
This is why it is problematic for the relaxion discussed in Section 8.2 to be the QCD
axion. This restriction is lifted in some other models with axion-like particles (ALPs),
where the axion is of some new gauge group and not intended to solve the strong CP
problem. This is the case in the model we present in Chapter 8, where we have an
axion of a new gauge group with new field content. The associated non-perturbatively
generated potential gives the important backreaction (see Section 8.3.3) required for
the relaxion mechanism described in Section 8.2.

7.1.2 The Nelson-Barr mechanism

The Nelson-Barr (NB) mechanism [213–215] provides an alternative solution to the
strong CP problem. We assume CP is a good symmetry that is spontaneously broken
in such a way as to ensure a small θ̄eff while also maintaining an O(1) CKM phase.
If CP were to remain unbroken, this phase would vanish, which is in conflict with
observed CP violation in flavour physics [222].

Consider a NB sector inspired by Refs. [223, 224], with a new vector-like quark ψ
that extends the Standard Model ‘up’ sector, {u, c, t},

LNB =
[
yψi χ+ ỹψi χ

∗
]
ψuci + µψψψ

c + h.c. , (7.1.7)

where χ is a new complex scalar field, which gets a complex VEV and spontaneously
breaks CP. All couplings are real and ψ (ψc) are fundamental (anti-fundamental)
under SU(3)C and have hypercharges ±2/3. An additional Z2 symmetry is imposed
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under which χ, ψ and ψc are charged such that the terms χψψc and HQψc are
forbidden. This symmetry is also spontaneously broken when χ gets a VEV.

When χ gets a complex VEV 〈χ〉 = feiη, the Lagrangian for the expanded up sector
becomes,

Lup+NB = YijHQiu
c
j +Biψu

c
i + µψψc + h.c. , (7.1.8)

with Bi = f
[
yψi e

iη + ỹψi e
−iη
]
. As a result, the tree-level 4× 4 quark mass matrix for

the expanded sector reads,

Mu =
(µ)1×1 (B)1×3

(0)3×1 (vY u)3×3

 , (7.1.9)

and subsequently at tree level,

θ̄eff = Arg(det(Md)) + Arg(µ det(vY u)) = 0 . (7.1.10)

The only non-real values appear in B, which doesn’t contribute to the determinant.
If we look at the effective 3× 3 mass squared matrix and its diagonalization, we see
that in order to maintain a CKM phase δCKM ∼ O(1) we require yψi ∼ ỹψi ∼ yψ for
all i. The requirement that radiative corrections to θ̄eff are sufficiently small places
a model-dependent upper bound on yψ. With these conditions respected, the strong
CP problem is solved.

The Nelson Barr mechanism will be used in the model presented in Chapter 8 to solve
the strong CP problem. The new interactions will also be responsible for generating
the required rolling potential for the relaxion mechanism described in Section 8.2.

7.2 Neutrino masses

In the Standard Model, neutrinos, ν` appear as part of a left-handed SU(2)L doublet
paired with a charged lepton `,

L` =
ν`
`


L

. (7.2.1)

They are uncharged with respect to the strong SU(3)C and electromagnetic U(1)EM

symmetries and as such are only produced by weak interactions. In the SM, fermion
masses are generated by the Higgs mechanism, as described in Chapter 1. This
mechanism reduces part of a Yukawa interaction involving the Higgs doublet and a
fermion left-right pair into a mass term. Such a Yukawa term for leptons consists of
the left-handed doublet L` and a right-handed charged lepton field `R. However, the
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SM contains no such right-handed neutrino fields and thus neutrinos are expected
to be massless1.

A result of non-zero neutrino masses is a misalignment between flavour and mass
bases, such that neutrino flavour is not conserved in propagation. This gives rise
to neutrino oscillations [222, 225–227]. The frequencies of these oscillations are
proportional to the differences between the squared masses, ∆m2

ij = m2
i − m2

j .
Observations of neutrino oscillation by the Super-Kamiokande Collaboration [228]
and Sudbury Neutrino Observatory Collaboration [229,230] therefore provide strong
evidence for massive neutrinos.

The most common way to introduce neutrino masses is to add new field content in
the form of right-handed sterile neutrinos. Here, sterile refers to the fact that they
must have no SM gauge interactions: they are SM singlets. Many models involve the
introduction of sterile neutrinos but differ in the way they obtain the small masses
required by experimental bounds.

When adding N sterile neutrinos, ni, we have two possible mass terms,

− Lν,n ⊃MDijn̄iν` + 1
2Mnn̄n

c + h.c. , (7.2.2)

where nc is the charge conjugate sterile neutrino field. The first term is the familiar
Dirac mass term stemming from the Higgs mechanism, which introduces a coupling
between the SM neutrino fields and the new sterile fields. The second term is the
Majorana term, which forbidden for SM fields as it violates gauge invariance. The
sterile neutrinos are gauge singlets and evade this restriction.

The Dirac and Majorana components give a combined mass matrix for the neutrinos,
which can then be diagonalised to find the neutrino mass eigenstates in terms of the
weak eigenstates. This generally leads to three light neutrinos with masses∼M2

D/Mn

and N heavy neutrinos with masses ∼Mn, where it is assumed thatMn is some large
mass scale [231]. This behaviour has come to be known as the see-saw mechanism2

and can be found in many BSM models (see for example Refs. [222,232–234]). The
see-saw mechanism simultaneously explains the low observed neutrino masses and
the inaccessibility of the heavier neutrino states: the SM is a lower-energy effective
theory largely unaffected by the heavier states. For more on effective theories, see
Chapter 2.

In the model we present in Chapter 8, we introduce three sterile neutrinos to not only
provide neutrino mass but also facilitate spontaneous baryogenesis (see Sections 7.3.1

1Loop-level contributions to neutrino masses are strongly constrained by symmetries [225].
2The example shown is specifically a type 1 see-saw, involving the introduction of a fermionic

singlet. Other see-saw models with different field content in different representations exist. See, for
example, Ref. [232].
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and 8.3.2). This will ultimately place an upper bound on the Majorana mass, Mn,
such that a conventional see-saw mechanism is not possible; we will need to augment
it with some other scale-separating mechanism. We turn to a possible solution with
roots in flavour physics: the Froggatt-Nielsen mechanism [235].

7.2.1 The Froggatt-Nielsen mechanism

The Froggatt-Nielsen mechanism [235] was originally proposed as a solution to the
flavour problem. The flavour problem concerns the origin of the hierarchy in Yukawa
couplings in the quark and lepton sectors. The approach of Froggatt and Nielsen
involves the introduction of a new U(1)f flavour symmetry, which is broken when
the new flavon field, S, acquires a VEV. The flavon is generally a scalar SM singlet
with flavour charge −1.

All SM fermions have different charges under this new flavour symmetry such that
the SM Yukawa terms are interpreted as broken higher-dimensional effective oper-
ators. Consider, for example, the charged-lepton Yukawa interactions after flavour
symmetry breaking,

LFN ⊃ Υij

(
S

ΛFN

)qi+qj
L̄iHej → Υij(εFN)qi+qj L̄iHej, (7.2.3)

where εFN = 〈S〉/ΛFN, qi is the flavour charge of the ith species and ΛFN is some UV
scale associated with some heavy field content that has been integrated out. The
balancing of the different flavour charges of the fermions results in different powers
of the flavour symmetry-breaking parameter, εFN. This leads to an effective Yukawa
matrix, Yij = Υij(εFN)qi+qj . Therefore, if εFN is small, a large hierarchy of effective
Yukawa couplings is generated. For more thorough examples, see Refs. [31, 236].

As stated previously, we use the Froggatt-Nielsen mechanism in Chapter 8 to extend
the separation between the light and heavy neutrino states beyond the limitations
imposed by baryogenesis considerations in Section 8.3.2.

7.3 Baryon asymmetry

Baryon asymmetry refers to the fact that the universe seems to contain more matter
than antimatter. All Standard Model interactions produce matter and antimatter
in equal measure, so one would expect to see equal amounts of each. There is the
possibility that there are patches of the universe where matter dominates and patches
where antimatter dominates. However, such patches would exhibit high emissions
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from annihilations at their interfaces and thus the lack of such observations suggests
a patch size larger than the observable universe. Similarly, baryon asymmetry as an
initial condition of the universe does not work with our modern inflationary view
of cosmic evolution. The summary of baryogenesis presented here borrows aspects
from the review by Cline [237].

The baryon asymmetry is generally parametrised by the ratio η,

η = nB − nB̄
s

, (7.3.1)

where ni is the number density of species i and s is the entropy density. This ratio
is used so that η remains constant with the expansion of the universe. The value of
η has been inferred from Big Bang Nucleosynthesis [238] and the Cosmic Microwave
Background [239] to be ∼ 10−10. This is orders of magnitude larger than the value
expected for a baryon-symmetric homogeneous universe [240], ∼ 10−21.

Sakharov suggested a dynamic creation of this asymmetry: baryogenesis [241]. The
Sakharov conditions, which must be satisfied for baryogenesis to occur, are:

1. B number violation

2. C and CP violation

3. Loss of thermal equilibrium (in a CPT invariant theory)

B number violation occurs in the Standard Model due to the anomalous nature of the
B+L symmetry. The richer vacuum structure of non-Abelian gauge theories, such as
the SU(2)L group of the Standard Model, allow for multiple valid perturbative vacua.
Transitions between these stable vacua cause B number violation. Such transitions
can occur in two ways: either by tunnelling (instantons [242]) or by getting over
an energy barrier (sphalerons [243]). One finds that the probabilistic timescale of
tunnelling is much larger than the age of the universe. Sphalerons transitions are
highly-suppressed at low temperatures but become active at T & 100 GeV due to
availability of thermal energy. Models that produce a lepton asymmetry rely on
sphalerons to convert this asymmetry to a baryon asymmetry. This idea is called
Leptogenesis; for a review see Ref. [244].

CP violation exists in the SM via the CKM matrix. However, it can be shown
that this effect is too small to account for the observed asymmetry [245]. Similarly,
as discussed in Section 7.1, any strong CP violation is strongly constrained by
measurements of the neutron electric dipole moment.

The method of baryogenesis we employ in Chapter 8 evades the need for loss of
thermal equilibrium by spontaneously breaking CPT symmetry. This method is
dubbed spontaneous baryogenesis [246–249].
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7.3.1 Spontaneous baryogenesis

Spontaneous baryogenesis [246,247] is different to most other mechanisms of baryo-
genesis1 in that the baryon asymmetry is produced in equilibrium. The requirement
for departure from equilibrium is sidestepped by incorporating a temporary dynamic
violation of CPT invariance [240]. This ultimately has the effect of shifting the
chemical potentials of baryons relative to antibaryons, giving a non-zero asymmetry
in thermal equilibrium. For a recent review, see Ref. [249].

The key to this mechanism is the presence of some new scalar field, φ, that is
derivatively coupled to a matter current such as Jµ = ψ̄γµψ. In general, it can
couple to the currents of several species, giving the Lagrangian term,

LSB ⊃ −
∑
i

ci
∂µφ

f
Jµi , (7.3.2)

where the sum is over particle species and it is understood that this is an effective
operator from some physics at high-energy scale f . This term, when non-zero, will
violate CPT. Consider the case where φ varies with time but is spatially constant.
Recalling that J0

i is simply the difference in particle/anti-particle number densities,
ni − n̄i, we find,

ci
∂µφ

f
Jµi = ci

f
φ̇(ni − n̄i) . (7.3.3)

Considerations of the effect of this term on the stress-energy tensor (for details see
Ref. [249]) show that the coupling in Eq. 7.3.2 gives a contribution to the energy
density such that each particle (anti-particle) gets an additional energy of,

±∆Ei = ∓ci
f
φ̇ , (7.3.4)

which, in equilibrium, can be interpreted as a corresponding shift in chemical poten-
tial,

µ̂i ≡ ∆µi = −∆µ̄i = ci
f
φ̇ . (7.3.5)

In the limiting case of one baryonic species with degrees of freedom gB, we substitute
the Fermi-Dirac distribution for fermions into Eq. 7.3.1 to find a baryon asymmetry,

ηs = nB − n̄B ≈ gBµ̂B
T 2

6 ∼ φ̇
T 2

f
. (7.3.6)

Note the dependence on the field velocity φ̇. The scalar field φ in spontaneous baryo-
genesis models is generally rolling towards some minimum, where φ̇ will ultimately

1An example of a popular non-equilibrium mechanism is electroweak baryogenesis, in which a
sufficiently-first-order electroweak phase transition can provide out-of-equilibrium conditions and
allow the production of a baryon asymmetry. See Refs. [237,250].
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reach zero. One might therefore expect that the asymmetry to vanish too. However,
we recall that for this asymmetry to be communicated, we require B-violating pro-
cesses (specifically sphalerons) to be in thermal equilibrium. Hence, it is the value
of φ̇ at the sphaleron decoupling temperature, T = Tsph, that is of importance. The
value of η freezes at Tsph, leaving a residual baryon asymmetry regardless of any
further evolution of the field φ. As such, a temporary dynamic breaking of CPT has
generated a baryon asymmetry in thermal equilibrium.

Parts of these calculations are extended to more complex scenarios in Section 8.3.2,
where we explain how couplings of the relaxion to non-baryonic currents can still
translate into baryon asymmetries via considerations of B-L conservation. The model
presented in Chapter 8 will use a clockwork system and sterile neutrinos to generate
the required operator in Eq. 7.3.2.

7.4 Dark matter

Measurements of galactic rotation velocities [251–253] and gravitational lensing [254]
are in conflict with the gravitational behaviour we expect for the baryonic1 matter
content of the universe. In general there are two schools of thought for this problem:
either our theory of gravity is wrong or we have misunderstood the full matter content
of the universe. Considerations into the formation of large structures [255, 256],
observations in lensing [257], measurements of the Cosmic Microwave Background
(CMB) [258–260], investigations regarding Big Bang Nucleosynthesis (BBN) [261],
and recent observations of gravitational waves [262,263] have somewhat pushed the
scientific community in the direction of the latter.

We postulate that there is some source of matter that is not currently accounted
for, and that is crucial to binding cosmological structures. Constraints on the
contributions from Primordial Black Holes2 (PBHs) [265, 266], MAssive Compact
Halo Objects (MACHOs) [267, 268] and other astrophysical objects suggest that a
new particle source of matter is required for consistency with observation. We call
this new matter dark matter. For a more detailed account on the history of dark
matter, see the review in Ref. [269]. Current measurements suggest that dark matter
contributes five times more to the energy budget of the universe than regular baryonic

1In the context of dark matter and energy budgets, the term ‘baryonic’ is used a little loosely
to refer to any matter content from the Standard Model.

2Conventional studies of PBHs, concerning a single PBH mass, fail to account for the entire
dark matter quota. Some more recent studies suggest that some mass distributions could account
for all dark matter and evade current experimental constraints. See, for example, Ref. [264]
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matter [258–260]. Specifically, measurements point to a dark matter abundance,

ΩDMh
2 ' 0.12, (7.4.1)

where h is Hubble’s constant in units of 100 km s−1 Mpc−1.

Since the advent of dark matter, any new theory of the universe has been expected to
present a suitable candidate. In the twentieth century, developments in theories like
supersymmetry motivated a class of candidates with mass and coupling strengths
in line with the SM weak sector [270, 271]. The lack of such particle discoveries at
the Large Hadron Collider [272] and direct/indirect detection programmes [273,274]
has reignited interest into a wider array of possible candidates and generation mech-
anisms. The model presented in Chapter 8 uses a mechanism with origins in axion
physics to produce the required dark matter abundance via potential misalignment.

7.4.1 Misalignment dark matter

Misalignment dark matter production is a non-thermal production mechanism [240,
275]. It is traditionally seen in models with axions, axion-like particles (ALPs) or
other light scalar particles. Here, we consider the QCD axion already mentioned in
Section 7.1.1.

Recall that the axion has no explicit mass term and is thus massless at temperatures
greater than ΛQCD. As the temperatures lower, non-perturbative instanton effects
in QCD generate a cosine potential, giving mass to the axion. This potential is min-
imised by setting the QCD angle to zero. However, at high temperatures there is no
preferred angle. Therefore, as the universe cools and the non-perturbative potential
is activated, the axion may well be misaligned from the subsequent minimum. In
such a scenario, we expect the axion to roll towards the minimum and overshoot,
leading to cosmic oscillations of the axion field.

The oscillations of the axion field close to the potential minimum follow damped
harmonic motion but with some complications associated with the temperature
dependence of both the axion mass and Hubble friction [276],

φ̈+ 3H(T )φ̇+ma(T )φ = 0 , (7.4.2)

where φ is the perturbation of the field from the minimum. When the axion mass
exceeds the expansion rate of the universe, the damping decreases and the field
begins to oscillate with energy density,

ρa ∝
ma(T )
R3 , (7.4.3)
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where R is the scale factor. In other words, once the mass of the axion stabilises at
lower temperatures, T � ΛQCD, the energy density goes as R−3 and the oscillations
behave like cold1 non-relativistic matter [240], making the axion a suitable dark
matter candidate. We obtain a conserved number of axions per comoving volume,
from which one can calculate present day density.

The precise calculations of relic abundance associated with the misalignment mech-
anism vary from model to model but the conceptual basis is the same. In Chapter 8,
the light scalar of interest is the relaxion field, which is the light axion of a new
strong group. The details of how the misalignment is obtained and the resultant
contribution to the relic dark matter abundance are discussed in Section 8.3.3.

With the relevant problems and solutions discussed, we are ready to discuss the
“all-in-one” relaxion model [5] with a good contextual foundation. In this model, all
the aforementioned problems are addressed, as well as the Higgs hierarchy problem
described in Section 1.2.2.

1Note that this is in contrast to thermal production mechanisms, where light particles such
as axions would be produced with highly-relativistic velocities. Relativistic or ‘hot’ dark matter
candidates are disfavoured by simulations of structure formation [277].





Chapter 8

The All-in-one Relaxion

8.1 Introduction

Recently, particle physics research has been driven to a large extent by the ex-
pectation of physics beyond the Standard Model (BSM) at the TeV scale. As was
discussed in Chapter 7, there are many theoretical and observational reasons to
extend the Standard Model (SM) – such as Higgs mass naturalness, dark matter,
matter-antimatter asymmetry, neutrino masses and the strong CP problem. How-
ever, only the first of these issues necessarily requires TeV-scale new physics. In
fact, if Higgs mass naturalness is ignored and new physics scales far beyond the TeV
scale are allowed, the other issues can be solved by very minimal extensions of the
SM [278–283].

It is arguably far more challenging to find an explanation (apart from tuning or
anthropics) for a light Higgs mass with a high new physics scale. While conventional
wisdom says this is impossible, the recently-proposed cosmological relaxation (or
relaxion) models [44] aim to find just such an explanation. In these models the
rolling of the so-called relaxion field during inflation leads to a scanning of the the
squared Higgs mass from positive to negative values. Once the Higgs mass squared
becomes negative it triggers a backreaction potential that stops the scanning soon
after, at a value much smaller than the new physics scale.

We show in this chapter that the relaxion construction has many interesting built-in
features that can provide solutions to multiple other BSM puzzles in a way that
is completely different from the other examples referred to above. These features
are: spontaneous CPT violation during its rolling; spontaneous CP violation when
it stops; and oscillations about its stopping point after reheating. The spontaneous
CPT violation leads to spontaneous baryogenesis during the rolling of the relaxion
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after reheating [284]; the spontaneous CP violation leads to a Nelson-Barr solu-
tion [213, 285] of the strong CP problem [224, 286]; and the relaxion oscillations
generate the observed dark matter abundance [287]. The spontaneous baryogenesis
mechanism requires that baryons and/or leptons are charged under the relaxion shift
symmetry. In this work the relaxion shift symmetry is identified with a Froggatt-
Nielsen symmetry [235], under which three new right-handed (RH) neutrino states
(but no SM states) are charged. This satisfies the requirement of spontaneous baryo-
genesis while also giving an explanation for the smallness of neutrino masses.

Thus, we achieve a unified solution to five BSM puzzles, namely the lightness of the
Higgs boson in the absence of TeV scale new physics, dark matter, matter-antimatter
asymmetry, neutrino masses and the strong CP problem. Four of these puzzles were
discussed in Chapter 7. The lightness of the Higgs boson, also known as the hierarchy
problem, was discussed in Section 1.2.2.

We begin in Section 8.2 with an overview of the relaxion mechanism, which underpins
the motivation for the other parts of the model. We also outline the conditions
required for successful cosmic evolution of our combined model. In Section 8.3, we
look at the content of the model, the clockwork setup and the features of its three
non-trivial nodes. We then combine the constraints of each sector in Section 8.4
and discuss the available parameter space. Finally, our conclusions are presented in
Section 8.5.

8.2 The relaxion mechanism and evolution

In relaxion models, the Higgs mass squared parameter is promoted to a dynamical
quantity µ2(φ), which varies due to its couplings to the relaxion field, φ,

Vroll = µ2(φ)H†H + λH(H†H)2 − r2
rollM

4 cos φ
F
, (8.2.1)

with,
µ2(φ) = κM2 −M2 cos φ

F
. (8.2.2)

Here, H is the SM Higgs doublet, λH is its quartic coupling, M is the UV cut-off
of the Higgs effective theory and κ . 1 1. The origin of this rolling potential is
generally not discussed; in this model it can be generated by the Nelson-Barr sector
discussed in Section 8.3.4.

1The periodicity F is large such that the cosine is locally linear in φ. By expanding the cosine
terms about an arbitrary point, the polynomial terms of the original work [44] can be recovered
with g ∼M2/F .
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Figure 8.1: A pictorial representation of the relaxion field evolution
during inflation; not to scale. The backreaction is not
present until the relaxion crosses φ = φc, at which point
µ2(φ) becomes negative, triggering electroweak symmetry
breaking. This in turn triggers the backreaction and ul-
timately traps the relaxion field in a local minimum at
φ = φ0, such that the µ2(φ0) = µ2

SM. The relaxion field
will remain in this local minimum throughout the rest of
its cosmic evolution, as depicted in Fig. 8.2.

The rolling starts from a relaxion field value, φ < φc = −|F cos−1 κ|, such that
µ2 > 0. After crossing the point φ = φc, µ2 becomes negative, prompting electroweak
symmetry breaking. This in turn activates the backreaction potential, which induces
periodic ‘wiggles’ on top of the linear envelope,

Vbr = Λ4
c cos φ

fk
. (8.2.3)

Here, Λ4
c(φ) = mnv(φ)4−n, is an increasing function of the Higgs vacuum expectation

value (VEV), wherem is some mass scale. The wiggle height increases with evolution
of φ until the slope of the backreaction matches the slope of the rolling potential, at
φ = φ0,

r2
rollM

4/F ∼ Λ4
c(φ0)/fk . (8.2.4)

The rolling then stops and the relaxion halts in a local minimum1, such that the
Higgs square mass takes its Standard Model value µ2(φ0) = µ2

SM. This evolution is
depicted in Fig. 8.1.

1In reality, we expect the relaxion to be spread over several adjacent minima, allowing for
different patches of the universe with different µ2 values. After inflation these patches are expected
to be larger than the observable universe [44].
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This generates a large hierarchy between the Higgs VEV and the cut-off M . As
discussed in [44], the cut-off, M , cannot be raised to an arbitrarily high value
because of cosmological requirements. This stems from three required conditions for
successful relaxion evolution during inflation1:

1. The vacuum energy during inflation must not be dominated by the relaxion
potential. This translates into a bound on the Hubble scale of inflation,

Hi > rrollM
2/MP . (8.2.5)

2. We require that the evolution of the relaxion is dominated by classical rolling,
which places a complimentary bound on the inflationary Hubble scale,

Hi < (r2
rollM

4/F )1/3. (8.2.6)

3. For the rolling to stop we require that the slope of the barriers in the backre-
action can match the slope of the roll potential, see Eq. 8.2.4.

These conditions combine to give an upper bound on the cut-off,

M .

(
MP

rroll

)1/2 (Λ4
c

fk

)1/6

. (8.2.7)

The relaxion mechanism must be complemented by a new mechanism at the scale M
(e.g. supersymmetry [288] or Higgs compositeness [289]) to solve the full hierarchy
problem up to the Planck scale, MP .

Let us now discuss what happens after inflation. Suppose that in reheating, the tem-
perature exceeds some critical temperature, Tc, such that the backreaction vanishes.
The wiggles disappear and the relaxion enters a second phase of rolling. When the
universe cools below Tc again, the backreaction potential reappears and the rolling
eventually stops provided,

mφ . 5H(Tc) . (8.2.8)

This condition is obtained by demanding that the relaxion does not have enough kin-
etic energy to overshoot the barriers once the backreaction potential reappears [287,
290,291]. If satisfied, the relaxion enters a slow-roll-like regime with,

V ′(φ) = 5Hφ̇. (8.2.9)

It is this second phase of rolling that can lead to a generation of both the observed
dark matter abundance (discussed in Section 8.3.3) as well as the baryon asymmetry

1For a more detailed discussion of this evolution, see Ref. [44]



8.3. The all-in-one setup 195

(discussed in Section 8.3.2). We will see that in order for spontaneous baryogenesis
to be successful, the relaxion must still be rolling when the sphaleron processes de-
couple at T = Tsph. In other words, we require that the backreaction is activated at
a temperature lower than the sphaleron-decoupling temperature, Tc < Tsph. Further-
more, misalignment dark matter production can only occur once this backreaction is
present. As a result, we require that the temperature at which oscillation becomes
possible is lower than the critical temperature Tosc < Tc.
In summary, successful cosmic evolution of the relaxion is shown pictorially in Fig. 8.2
and described by the following steps:

1. The relaxion rolls down the rolling potential (Eq. 8.2.1) during inflation until
settling in a local wiggle minimum, such that µ2(φ) = µ2

SM (see Fig. 8.1).
Reheating raises the temperature to Tr > Tc, such that the backreaction
vanishes; a second phase of rolling commences.

2. The relaxion rolls as the universe cools to Tsph, when the sphalerons decouple,
freezing in a non-zero baryon asymmetry (see Section 8.3.2).

3. The universe cools further to Tc, when the backreaction is reactivated and the
wiggles reappear. It can be shown that the ‘distance’ rolled in the second phase
of rolling is shorter than the wiggle scale [287], such that the relaxion is still
in the same wiggle but misaligned from its original stopping point, provided it
doesn’t overshoot (see Eq. 8.2.8).

4. The universe continues to cool, with the relaxion experiencing damped motion
toward the local minimum.

5. At T = Tosc, the relaxion mass exceeds the Hubble friction and oscillations of
the field about the local minimum commence. These oscillations produce a
cold dark matter candidate that can account for the measured relic abundance
(see Section 8.3.3).

With the mechanism and evolution outlined, we now look at the specific setup and
content of the all-in-one model and the way in which the solutions to the five BSM
puzzles are implemented.

8.3 The all-in-one setup

8.3.1 The clockwork & content

As we will see in Section 8.3.2, generation of the observed baryon asymmetry requires
a hierarchy f � fk, where f is the scale associated with the operator OSB required
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Figure 8.2: Schematic plot of the relaxion field’s evolution. Progress
in time is indicated by the numbered arrows, with corres-
ponding numbered explanations in the text. The red (blue)
curve is the relaxion’s potential with the backreaction
turned on (off). The initial relaxion mechanism chooses
the appropriate local minimum such that µ2(φ) = µ2

SM.
The temperature at various stages of the evolution are
shown. We see that all cosmic evolution of the field from
the subsequent reheating onwards is localised to this one
wiggle. Note that this diagram is not to scale and that
transitions are pictured as instantaneous for simplicity.

for spontaneous baryogenesis. This and the fact that the relaxion, in any case,
requires a large hierarchy between fk and its field excursion during rolling, fk � F ,
are problematic as explained in [292]. The solution to generating the latter hierarchy
is to embed the relaxion construction in a so-called clockwork model [293–295]; this
can easily be extended to also generate the former hierarchy, giving f � fk � F .

Clockwork models introduce a system of N + 1 interacting complex scalars, Φi, all
of which get a complex VEV such that,

〈Φi〉 = f√
2
eiπi/f . (8.3.1)

There is an approximate Abelian symmetry, U(1)i, at each site, which is spontan-
eously broken to give rise to a corresponding pseudo-Goldstone mode πi. Explicit
breaking effects give the angular fields, πi, a mass matrix such that the lightest state
is a massless (Goldstone) mode given by,

φ ∝
N∑
j=0

πj

3j
= π0 + π1

3 + ...+ πN

3N
. (8.3.2)
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Given that the mixing angle 〈πk|φ〉 ∼ 3−k, any Lagrangian term where the angular
field πk couples with a decay constant f translates to an interaction of φ with an
exponentially-enhanced effective decay constant, 3kf , in the mass basis.

Coming back to our set-up, the hierarchy f � fk � F can be obtained by having
the operator, OSB, at the 0th site, the backreaction sector at the intermediate kth
site and the rolling potential at the Nth site, such that fk = 3kf and F = 3Nf .
This is schematically shown in Fig. 8.3. The rolling and backreaction potentials
eventually lift the flat direction in Eq. 8.3.2, giving a mass to the relaxion.

Each of these three non-trivial nodes of the clockwork and their associated sectors
will be described in turn in the following sections.

8.3.2 Site 0: neutrino masses & baryogenesis

It was shown in [284] that with just one additional ingredient, the second phase of
relaxion rolling can also give spontaneous relaxion baryogenesis (SRB). One requires
that some fermions with B+L charge are charged under the relaxion shift symmetry.
This leads to the presence of the operator, ∂µφJµ/f , where Jµ contains the B + L

current. This operator generates a chemical potential for B + L violation once the
second phase of relaxion rolling results in a CPT-breaking expectation value for ∂µφ.
A baryon asymmetry is consequentially generated via (B + L)-violating sphaleron
transitions.

This SRB set-up in [284] is incomplete in two respects: the operator, OSB, and
the rolling potential are non-renormalisable and are introduced in a somewhat ad
hoc way. While OSB arises naturally if baryons and/or lepton are charged under
the Abelian symmetry of which the relaxion is a Goldstone boson, charging the SM
fermions seems to have no purpose other than generating OSB. Furthermore, the
charge assignments have to be carefully chosen such that they are anomaly-free with
respect to QCD (to avoid generating a strong CP phase) and preferably also with
respect to electromagnetism (to avoid the generation of a φγγ coupling that rules
out most of the parameter space in this set-up [284]).

Here we complete the SRB set-up as follows:

1. Instead of introducing the operator, OSB, by hand, we propose a simple neut-
rino mass model at site 0, which generates this operator with a current con-
taining only three new right-handed (RH) neutrino fields. The operator arises
because the RH fields are charged under the relaxion shift symmetry, which
in turn is identified with a Froggatt-Nielsen symmetry. This also explains the
observed smallness of neutrino masses. Only the SM-singlet RH neutrinos
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Misalignment dark matter

Rolling potential
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Figure 8.3: Schematic representation of our set-up with the vertical
line representing the clockwork system. The three right-
handed neutrinos at the 0th site, ni, couple to the SM in the
usual way, generating neutrino masses; they also provide
the current in the all-important operator for spontaneous
baryogenesis, OSB = (∂µφ)Jµ. At the kth site we intro-
duce a new strong sector, which couples to SM via its new
fermionic matter content, {L,Lc, N,N c}. This sector gen-
erates the backreaction wiggles; relaxion oscillations inside
these wiggles generate the observed dark matter abundance.
Finally, at site N there is a Nelson-Barr sector that radiat-
ively generates the rolling potential while also providing a
solution to the strong CP problem. This sector couples to
the SM up sector via a new vector-like quark pair (ψ,ψc).

are charged under the relaxion shift symmetry, which is thus automatically
anomaly-free with respect to both QCD and electromagnetism.

2. We show that the rolling potential can be generated by the addition of a
single up-type vector-like pair at site N . This modification can also solve the
strong CP problem via the Nelson-Barr mechanism [213,285]. In Nelson-Barr
models, CP is a good symmetry in the UV and is spontaneously broken at an
intermediate scale to generate an O(1) CKM phase but a much smaller strong
CP phase (within allowed constraints). We borrow the Nelson-Barr relaxion
sector from [224], where , upon stopping, the relaxion phase results in an O(1)
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CKM phase. The Nelson-Barr sector and generation of the rolling potential at
site N are discussed in Section 8.3.4.

It is also worth noting that spontaneous baryogenesis is an attractive feature from
the point of view of the Nelson-Barr relaxion model, as it does not require explicit
CP violation. Recall that the Nelson-Barr mechanism requires that CP is a good
symmetry that is later spontaneously broken.

Getting the operator OSB

At site 0, we introduce a sector that simultaneously generates small neutrino masses
and an operator suitable for spontaneous baryogenesis. We introduce three right-
handed (RH) sterile neutrinos, ni, that are charged under the 0th site Abelian
symmetry, U(1)0. We fix the charge of Φ0 to be −1 under this symmetry and take
all SM fields to be neutral.

The Lagrangian for the couplings of these RH neutrinos is given by,

LFN ⊃ yijn

(
Φ0

ΛFN

)qnj
l†iHnj +

(
Φ0

ΛFN

)qni+qnj
M̂ ij

n ninj, (8.3.3)

where l†i are right-handed spinors denoting the SM lepton doublets, qnj are the
Abelian charges for the sterile neutrinos andM ij

n is the Majorana mass matrix. Given
that we will eventually use the Nelson-Barr solution to the strong CP problem, we
impose CP as an exact symmetry of the Lagrangian so that all couplings above are
real.

Substituting, 〈Φ0〉 = f√
2e
iπ0/f , we obtain exponentially-suppressed effective Yukawa

couplings and Majorana masses, Y ij
n = yijn (εFN)qnj and M ij

n = M̂ ij
n (εFN)qni+qnj ,

where εFN = f/
√

2ΛFN < 1.

Factors of eiπ0/f , that appear upon substitution of Φ0 in Eq. 8.3.3, can be rotated
away by the field redefinition nj → nje

−iπ0qnj
/f , which, through the redefinition of

the kinetic terms for the RH neutrinos, yields the desired operator, OSB,

qni
f

(∂µπ0)n†i σ̄µni →
qni
f

(∂µφ)n†i σ̄µni, (8.3.4)

where we ignore an O(1) factor corresponding to 〈π0|φ〉.

Getting a baryon asymmetry from OSB

The presence of the operator OSB can lead to spontaneous baryogenesis, as discussed
in Section 7.3.1. The essential feature of this mechanism is the presence of a rolling
field that breaks CPT, a role played here by the relaxion [284].
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During the second phase of the rolling, the operator OSB causes equal and opposite
shifts in the energies of particles versus antiparticles, implying,

µi = −µ̄i = qiφ̇/f + (Bi − Li)µB−L +QiµQ + T3iµT3 ,

where µi (µ̄i) is the chemical potential for (anti-) particles of the ith species; qi
is its charge under U(1)0 (which is non-zero only for the RH neutrinos); Qi is the
electromagnetic charge; T3i is the charge corresponding to the diagonal generator
of SU(2)L; and the chemical potentials µQ,T3,B−L have been introduced to enforce
conservation of Q, T3 and B − L. In the presence of (B + L)-violating sphaleron
processes, we find,

∆ni ≡ ni − n̄i = f(T, µ)− f(T, µ̄) (8.3.5)

= giµi
T 2

6 , giµi
T 2

3 ,

for fermions and bosons respectively, where f(T, µ) is the Fermi-Dirac (Bose-Einstein)
distribution for fermions (bosons). We have taken µ� T and the factor gi denotes
the number of degrees of freedom for each species. The quantities µT3,Q,B−L can be
obtained by imposing nQ = nB−L = nT3 = 0, where,

nQ =
∑
i

Qi∆ni , (8.3.6)

and similarly for nB−L, nT3 . For temperatures above the critical temperature for the
electroweak phase transition, we obtain the following chemical potentials,

µQ = − 3
14
Qnφ̇

f
µT3 = 3

14
Qnφ̇

f
µB−L = 33

112
Qnφ̇

f
, (8.3.7)

taking all the qni = Qn. We subsequently obtain a baryon number density,

nB = −nL = gSB
φ̇

f

T 2

6 , (8.3.8)

where gSB = 3 Qn/4. Finally, we obtain its ratio with the entropy density,

η ≡ nB
s

= gSB
φ̇

f

T 2

6 ×
(

2π2g∗T
3

45

)−1

= 15
4π2

gSB

g∗

φ̇

fT
. (8.3.9)

The equilibrium distribution changes after electroweak symmetry breaking, when
there is no longer a need to conserve T3. This gives µQ = −(4/11)µB−L = −Qnφ̇/12f
and, once again, gSB = 3Qn/4. However, species such as the RH fermions, which are
coupled very weakly to the thermal plasma, would not be able to re-equilibrate on
the time scale of the electroweak phase transition. The precise value of gSB is thus
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hard to compute without considering the full dynamics of the process and may be
different from the value obtained above. Given that these subtleties only lead to an
O(1) ambiguity in gSB, for definiteness we stick to the value derived in Eq. 8.3.8.

The value of η is frozen at T = Tsph = 130 GeV, the temperature at which the
sphaleron processes decouple [296]. Demanding the observed baryon asymmetry,
η0 = 8.7× 10−11, we obtain,

fk
f

=
√

2
5

2π3

9
g3/2
∗

gSB

η0T
3
sph

m2
φMP

∼ 109
(

mφ

10−5eV

)−2
, (8.3.10)

using V ′ = 5Hφ̇ ∼ Λ4
c/fk (see Section 8.2). It is crucial that the relaxion is rolling

with a non-zero φ̇ when the value of η is frozen at T = Tsph. To ensure this, we
require that the critical temperature for the phase transition of the strong sector, Tc,
is lower than Tsph, as outlined in Section 8.2.

We have assumed so far that the RH neutrinos are relativistic and in equilibrium
at the temperatures relevant to the calculation. The first condition requires that
the see-saw scale, Mn . Tsph, where M ij

n ∼ Mn. The second requirement implies
that the interaction rate of ni with SM particles satisfies, Γ(n) > H(Tsph). Taking
Γ(n) ∼ g2Y 2

n T [297], where g is the weak coupling and Y ij
n ∼ Yn and imposing this

second condition, Γ(n) > H(Tsph), we find that,

Yn & 10−8 . (8.3.11)

Neutrino masses

The Lagrangian in Eq. 8.3.3 generates masses for the SM neutrinosmν ∼ Y 2
n v

2/Mn .

0.1 eV. Given that spontaneous baryogenesis demands Mn . Tsph, we require small
effective Yukawas Yn . 10−6, which can be naturally obtained via the Froggatt-
Nielsen mechanism, as explained above. Note that without the Majorana mass term
the neutrinos would only have a Dirac mass, which would require a much smaller
Yukawa coupling. Our explanation for the smallness of neutrino masses thus utilises
a combination of the Froggatt-Nielsen and see-saw mechanisms.

The constraints derived in the previous subsections imply that our model requires a
finite range for both the effective Yukawa coupling and effective Majorana mass scale:
10−8 . Yn . 10−6, 30 MeV . Mn . Tsph. Note that sterile neutrinos with masses
below 500 MeV are in tension with big-bang nucleosynthesis (BBN) [298]. Masses
around a few GeV may be within reach of future experiments such as SHiP [298].
For εFN = 0.1 the above range of the Yukawa couplings can be obtained for 6 ≤
Qn ≤ 8, where we have taken all qni = Qn. Given that all the couplings in Eq. 8.3.3
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are real, a concrete prediction of our model is a CP-even neutrino mass matrix,
which is still comfortably within the parameter space allowed by current neutrino
experiments [299].

8.3.3 Site k: the backreaction potential & dark matter

A new strong sector

The kth site is responsible for generating the backreaction potential via the non-QCD
model of Ref. [44], where the relaxion, φ, is the axion of a new strong sector. In our
setup, more specifically, it is the kth angular mode, πk, that is the true axion of the
sector. Recall that 〈πk|φ〉 ≈ 3−k and thus the ratio πk/f ∼ φ/fk.

The new strong sector, with field tensor G′µν , consists of two new vector-like leptons
described by Weyl spinors {L,Lc} and {N,N c}. These are charged under the new
strong group, with the non-conjugate L and N having the same electroweak quantum
numbers as SM lepton doublets and right-handed neutrinos respectively.

The interactions in this sector are described by the Lagrangian,

LBR ⊃ y1LHN + y2L
cH†N c −mLLL

c −mNNN
c + (πk/f)G′G̃′ + h.c. (8.3.12)

with the usual definition of the dual field tensor G̃′µν = εµναβG
′αβ. As with site 0,

we see that site k is coupled to the Standard Model via the Higgs.

Generating the backreaction

We follow the reasoning in Refs. [44,284] and assume that mN � 4πfc � mL so that,
similarly to QCD, we obtain a chiral condensate 〈NN c〉 = 4πf 3

c . We now consider
NN c contributions after L has been integrated out,

mNNN
c + y1y2H

†H

mL

NN c = (mN + ∆mN)NN c. (8.3.13)

After chiral condensation of NN c, non-perturbative effects induce a contribution to
the potential for πk in analogy to the QCD case in Section 7.1.1,

− 4πf 3
c (mN + ∆mN) cos(πk/f) = −4πf 3

c (mN + ∆mN) cos(φ/fk) , (8.3.14)

By comparison with the backreaction potential in Eq. 8.2.3, we see,

Vbr = −4πf 3
c (mN + ∆mN) cos(φ/fk) ≡ −Λ4

c cos(φ/fk) . (8.3.15)
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The ∆mN term can give a Higgs-dependent term via the VEV 〈H†H〉 = v2 or a
radiative Higgs-independent term via closure of the HL loop,

y1y2H
†H

mL

→ y1y2v
2

mL

+ y1y2mL

16π2 . (8.3.16)

Hence, combined with the Higgs-independentmN term, we have two Higgs-independent
terms and one Higgs-dependent term. As explained in Section 8.2, the relaxion mech-
anism relies on the backreaction only turning on once the Higgs field acquires a VEV.
It is therefore paramount that the Higgs-dependent contribution dominates. This is
the case if,

fc . v, mL . 4πv . (8.3.17)

Next, we consider that (mN + ∆mN) ∼ ∆mN must be smaller than 4πfc for the
condensate to have formed in the first place so that Λ4

c ≡ 4πf 3
c ∆mN . (16π2)f 4

c and
thus in combination with Eq. 8.3.17,

Λ4
c . (16π2)v4. (8.3.18)

With these constraints in mind, we now have the backreaction potential shown in
Eq. 8.2.3, with appropriate Higgs-dependent behaviour.

Obtaining the relic abundance

The explanation for dark matter requires no additional ingredient. This is due to
the fact that during the second phase of rolling, the relaxion gets misaligned from
its original stopping point by an angle [287],

∆θ = ∆φ
f
' 1

20

(
mφ

H(Tc)

)2

tan φ0

f
. (8.3.19)

As shown in Ref. [287], this sets off relaxion oscillations that can give rise to the
observed dark matter relic abundance,

Ωh2 ' 3∆θ2
(

Λd

1 GeV

)4 (100 GeV
Tosc

)3

. (8.3.20)

Note that the correct relic density can always be reproduced by choosing an appropri-
ate value of tan φ0

f
. While there is some room for this in the relaxion mechanism, as

the relaxion is spread across multiple vacua at the end of its rolling, the probability
distribution of the relaxion field peaks for O(1) values of tan φ0

f
[300]. Thus the

extent to which tan φ0
f

deviates from unity can be interpreted as a measure of the
tuning required to get the correct relic abundance.
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8.3.4 Site N : the rolling potential & strong CP

Generating the rolling potential

As shown in Ref. [224], the rolling potential in Eqs. 8.2.1 and 8.2.2 can be generated by
a minimal modification of the SM up sector, namely the addition of a vector-like pair,
(ψ, ψc), where ψ has the same quantum numbers as an up-type singlet. Furthermore,
as shown in Ref. [223] and discussed in Section 7.1.2, the same modification can also
give a Nelson-Barr solution [213,285] to the strong CP problem, provided we impose
an additional Z2 symmetry.

The Lagrangian terms for the relevant interactions are,

LNB = Y u
ijQH̃u

c + yiψψΦNu
c
i + ỹiψψΦ∗Nuci + µψψψ

c + h.c.

The ψ, ψc and ΦN are odd under the Z2 symmetry, which forbids the term QHψc.
Recall that an exact CP symmetry has been imposed and thus all couplings are real.
The U(1)N symmetry is collectively broken by yiψ and ỹiψ, leading to breaking of the
relaxion shift symmetry. Any radiative Φ2

N terms get VEV contributions,

Φ2
N + h.c. ∼ f 2 cos(φ/F ) . (8.3.21)

The 1-loop ΦN → ΦN diagram gives the r2
rollM

4 in the roll potential (Eq. 8.2.1)
whereas the Φ2

NH
†H box diagram gives the µ2(φ) term in Eq. 8.2.2. For the loop

diagram generating the first term, we have taken the the cut-off for the ψuc loop
to be the mass of the clockwork radial modes, mρ ∼ f . Evaluating these loop
expressions and matching to the roll potential coefficients, we can identify,

M ∼

√
yiψỹ

j
ψ(Y u†Y u)ij

4π f, rroll ∼
4π
√
ykψỹ

k
ψ

yiψỹ
j
ψ(Y u†Y u)ij

. (8.3.22)

Nelson-Barr solution to the strong CP problem

The Lagrangian in Eq. 8.3.21 also provides a solution to the strong CP problem, with
ΦN playing the role of a Nelson-Barr field. We know that this field gets a complex
VEV,

〈ΦN〉 = f√
2
eiπN/f , (8.3.23)

such that CP is spontaneously broken. Once the relaxion stops, the phase, θN =
〈πN〉/f ∼ φ/F , enters the 4×4 matrix for the up sector as discussed in Section 7.1.2,

Mu =
(µψ)1×1 (B)1×3

(0)3×1 (vY u)3×3

 , (8.3.24)
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where Bi = f(yiψeiθN + ỹiψe
−iθN )/

√
2. The phase, θN , is nothing but the phase of

the cosine of the rolling potential at the relaxion stopping point. Note that the
bottom-left element in the above mass matrix is zero due to the absence of the
QHψc term in the Lagrangian, which in turn is a direct consequence of the Z2

symmetry. This ensures that at tree level there is no contribution to θ̄QCD from
the phase, θN , as Arg(det(Mu)) = 0, where we use the fact that µψ is real. On the
other hand, for µ2 +BiB

∗
i � v2, we can integrate out the vector-like pair to give an

effective 3× 3 mass-squared matrix of the SM up-quark sector with an O(1) phase.
This gets translated into an O(1) phase in the CKM matrix VCKM = V †uLVdL (see
Ref. [224]). Radiative effects can spoil the solution to the strong CP problem unless
yψ . 10−2 [224].

Before going to the next section we would like to point out that there appears to
be no obvious difficulty in extending our model along the lines of Ref. [286] to also
address the SM flavour puzzle for the charged leptons and quarks. At the cost of
complicating our model, this can be achieved by identifying one of the intermediate
sites of the clockwork chain with the flavon for the charged fermions and the Abelian
symmetry at this site with a Froggatt-Nielsen flavour symmetry. In order not to
generate a θ̄QCD, the charge assignment of the SM fermions must be anomaly-free
with respect to QCD as emphasised in [286] where an example charge assignment
was also presented. We do not explore this direction further and stick to our more
minimal set-up here.

With the various sectors of the model explained, we collect the constraints en-
countered along the way and look at the resultant parameter space.

8.4 The parameter space

A plot of the constraints and bounds on the (mφ,M) parameter space is shown in
Fig. 8.4. Let us summarise the constraints from the previous sections:

1. Cosomological evolution: The red band at the top shows the region where
the value of the cut-off, M , exceeds the upper bound imposed in Eq. 8.2.7.
The vertical green band shows the region that is ruled out by requiring, mφ <

5H(Tc), the condition in Eq. 8.2.9 that the relaxion does not overshoot the
barriers of the backreaction potential once they reappear after reheating. Here
we have taken the maximal value Tc = Tsph (see Section 8.3.2).

2. Spontaneous baryogenesis: We fix the fk/f ratio according to Eq. 8.3.10
such that each point in the plot gives the correct baryon asymmetry.
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3. Backreaction: The blue shaded region corresponds to the region Λ2
c > 16π2v2

ruled out by the requirement (see Section 8.3.3) that the Higgs-dependent parts
of the backreaction potential dominate over any Higgs-independent contribu-
tion.

4. Dark matter: The dashed lines show the required value of tan(φ0/fk) to
reproduce the correct dark matter density in Eq. 8.3.20. As explained below
Eq. 8.3.20, the extent to which tan φ0

f
deviates from unity can be interpreted

as a measure of the required tuning. The orange region shows fifth force
constraints that arise due to the fact that the relaxion mixes with the Higgs
boson with a mixing angle (see Ref. [301]),

sin θ ∼ Λ4
c

vfkm
2
h

. (8.4.1)

Finally, the region to the left of the dashed line may be probed in future atomic
physics experiments if there is an overdensity of relaxion dark matter around
the earth [302,303].

5. Nelson-Barr: From Eq. 8.3.22 we see that for a given value of f and yψ one
can fix the value of the Higgs mass cut-off , M , giving us the scale on the right
hand side of the frame.

6. Hierarchy problem: The grey band at the bottom shows the region where
the relaxion mechanism is unable to raise the Higgs cut-off beyond 2 TeV.

We see from Fig. 8.4 that after all the constraints are imposed, a finite allowed region
remains that remarkably contains the region in which tuning to obtain the correct
relic density for dark matter is minimal.

We will comment in the next section on how this allowed region can be probed
further by future experiments.

8.5 Summary

We have presented a simultaneous solution to five BSM puzzles: namely the lightness
of the Higgs boson in the absence of TeV-scale new physics, dark matter, matter-
antimatter asymmetry, neutrino masses and the strong CP problem. While our
construction is admittedly more involved than some other attempts to solve BSM
puzzles in a unified way [278,279,282,283], this is because we also use cosmological
relaxation to achieve the challenging task of obtaining a light Higgs boson without
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Figure 8.4: The parameter space for an all-in-one relaxion in the
(mφ, f) plane. For each value of f , taking the maximal
value yψ = 10−2, the value of the Higgs mass cut-off, M ,
is fixed as shown on the right-hand side of the frame (see
Eq. 8.3.22). The red band shows the region violating the
bounds imposed by cosmological requirements in [44]; blue
denotes the region where the Higgs-independent contribu-
tions to the backreaction are no longer subdominant [44];
the orange region shows the fifth-force exclusions due to
the mixing of φ with the Higgs [301]; green denotes the
region in which the relaxion overshoots the backreaction
barriers after reheating (see Section 8.2) for the maximal
value Tc = Tsph; and the purple dashed lines show the
tuning needed to reproduce the correct relic density [284].
The grey band at the bottom shows the region where the
relaxion mechanism is unable to raise the Higgs cut-off
beyond 2 TeV. Finally, the region to the left of the dashed
line may be probed in future atomic physics experiments
if there is an overdensity of relaxion dark matter around
the earth [302,303].
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adding any TeV-scale states that cut off the Higgs mass divergence. Our construction
has all the ingredients of a standard relaxion model – such as a chain of clockwork
scalars and a TeV-scale strong sector – but beyond this we only make minimal
modifications by adding three RH neutrinos and an up-type SU(2)L singlet vector-
like quark pair.

Our all-in-one relaxion set-up gives a diverse set of observational predictions. Our
construction predicts the absence of a CP-violating phase in the neutrino mass matrix
and GeV-scale sterile neutrinos potentially close to the reach of future experiments
such as SHiP [298]. The strong CP phase in our model is non-zero and may be
detectable in future experiments. The finite allowed parameter space in Fig. 8.4 can
also be probed by future atomic physics experiments [302,303] or future improvements
in fifth force experiments. Finally, we would like to point out the interesting trade-off
that exists in Fig. 8.4 between the Higgs mass cut-off scale and the tuning required to
reproduce the correct abundance of dark matter. The least-tuned regions correspond
to cut-off values smaller than 100 TeV, a scale where top partners in a full solution
to the hierarchy problem can be seen in future high-energy colliders.



Chapter 9

Conclusions

In this thesis, we have explored three avenues of Higgs research. These differ in
context and approach but all have the Higgs boson in common. We have seen how
studying its interactions and properties can lead to a better understanding of both
the physics that may have occurred in the past and the new physics we may see in
the future. Here we present an overview of the physics and conclusions discussed in
all three parts of this thesis. More detailed conclusions can be found at the end of
each part.

The 125 GeV scalar boson of interest was discovered at a particle collider, namely
the Large Hadron Collider (LHC). We began in Part I by looking at what we can
learn about the Higgs from such colliders, present and future. As of the time of
writing, the discovery of the Higgs boson in 2012 remains the most-recent direct
sign of new particle physics. The lack of discoveries of any supersymmetric partners
or other expected weak-scale candidates has led to the popularisation of a more
general parametric approach to new physics: the Standard Model Effective Field
Theory (SMEFT). In the SMEFT framework we trade speculation on possible UV
completions for a tower of lower-energy effective operators encapsulating all possible
UV effects (satisfying the appropriate Standard Model symmetries). We can truncate
this tower of operators and look at the leading effects of the SMEFT operators on
collider processes.

Through the ‘BSM primary’ parametrisation, we can translate the unbroken-phase
SMEFT Wilson coefficients into broken-phase collider-friendly parameters. The
measurement of Higgs interactions at colliders through various decay and production
channels can be used to constrain these parameters and in turn quantify deviations
from the Standard Model.

While many studies focus on total rate information alone, we argue that increasing
integrated luminosities will allow for the use of more complex differential observables.
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We show that using such differential observables can resurrect effects that would
otherwise be lost in a total rate analysis. In our specific cases of Higgs associated
production with an electroweak boson, analytic knowledge of the helicity amplitudes
instructed a decomposition into nine angular structures. Measurement or inference
of the relevant angles for collision events allows us to estimate the coefficients of
each of these nine structures for a given process via a so-called ‘method of moments’.
The sensitivity of this method relies on the preservation of the angular structures,
which can be affected by experimental cuts, showering and higher-order corrections.
The results obtained suggest that these structures do remain largely intact and that
access to the full angular dependence leads to improved sensitivity, particularly for
the hV µνVµν and hV µνṼµν interactions. This method could be applied in other Higgs
processes to provide more observables for a global fit.

In estimating the sensitivity of the method of moments, we considered the projected
integrated luminosities of the future high-luminosity LHC (HL-LHC). As well as
increasing luminosities, there is an interest in increasing energies, with excitement
surrounding the possible discoveries of the proposed future circular colliders (FCCs).
While there are plenty of popular new particle candidates from the model-building
community, one mustn’t overlook the Higgs itself.

The Higgs boson is the first known fundamental scalar and as such could exhibit
unusual behaviour at higher energies. More theoretical studies of scalar φ4 theory
suggest that the constructive interference and factorial growth in Feynman diagram
numbers with multiplicity can lead to exponential rates at high energies. This begs
the question of whether we should expect such behaviour of the Higgs, despite its
embedding in a more complex non-scalar theory.

In Part II we reviewed and derived the semiclassical method for calculating scalar
multiparticle rates, via the coherent state formalism. The method was then applied
to an idealised semiclassical regime, in which the coupling approaches zero and the
multiplicity approaches infinity such that their product is constant but large. Such
a regime is inherently non-perturbative and thus requires a semiclassical treatment.
In reality, the coupling would simply be small and the multiplicity large, but the
idealised limit above serves as our best approximation.

We show that under the assumption of the semiclassical regime and an isolated
scalar sector, we expect an exponential rate. Whether the rate is exponentially
growing or decaying depends on the interplay of two terms: a kinetic term and a
coupling×multiplicity term. We find that there is always a multiplicity for which
the latter term wins, triggering exponential growth. This exponential growth occurs
at multiplicities close to the kinematically-allowed maximum.
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One therefore wonders if we should expect such behaviour of the Higgs at future
higher-energy experiments, a phenomenon dubbed Higgsplosion. While the idealised
calculations presented in this thesis and other recent works referenced therein form a
great foundation, there is much work left to do in order to fully assess the plausibility
of Higgsplosion as a real process in nature.

A potential side effect of exponentially-growing multiparticle rates could be the
cutting-off of Higgs loop integrals. This would limit quadratic corrections to the
Higgs mass and solve, or at least improve, the hierarchy problem. Another potential
solution to the hierarchy problem was discussed in Part III, in which the Higgs
vacuum expectation value was set dynamically via the cosmic evolution of a relaxion
field.

We took a step back from the formal non-perturbative calculations and looked at the
Higgs as a piece of a greater model, aiming to solve five big problems in fundamental
physics: hierarchy, dark matter, strong CP, neutrino masses and baryon asymmetry.
Minor field content additions to existing non-QCD relaxion models allow us to
construct a theory that solves these problems, while simultaneously generating the
rolling and backreaction potentials required for the relaxion mechanism. The success
of this model is rooted in three separated scales. The scale hierarchy is generated by
a clockwork, with the relevant physics to each scale taking place at the appropriate
clockwork site. Experimental and cosmological considerations reveal a constrained
parameter space for such a model with a finite non-excluded region, much of which
can be probed by future experiments.

Over the course of this thesis, we have encountered a great variety of physics:
from the analysis of computer-simulated collision data, to formal non-perturbative
methods, to model building and wider cosmological considerations. We have also
seen the Higgs in a number of guises. In the context of colliders, it is a mysterious
new opportunity for measurement; yet in the context of model building it is often a
useful tool in connecting different physics sectors. We have presented a method to
increase sensitivity to new physics at future colliders, discussed possible high-energy
peculiarities and proposed a combined solution to some of the leading problems in
fundamental physics.

The Higgs boson is a fountain of experimental and theoretical curiosity. We are
optimistic that the work presented in this thesis will be of benefit in the continued
development of Higgs physics in the years to come.





Appendix A

Additional information from “A
Differential Analysis of the
SMEFT V h Mode”

A.1 Two solutions for the neutrino z momentum

For processes involving the decay of aW boson to a lepton, `, and a neutrino, ν, there
is usually an ambiguity in the kinematics arising from the experimentally-evasive
neutrino. Here we derive this two-fold ambiguity for our process of interest.

Consider the process pp → W (`ν)h(bb̄), as studied in Chapter 3. Using lepton
isolation and fatjet techniques (see Section 3.5), we can expect to know the lab-
frame four momenta of the isolated lepton and the Higgs boson, p` and ph, to a
decent accuracy.

The initial partons should be moving along the beam axis, which we choose to be the
z axis in the lab frame Cartesian coordinates. We therefore expect the transverse
momenta of the decay products to sum to zero by conservation of momentum. Hence,
we can infer that,

pνx,y = −p`x,y − phx,y. (A.1.1)

We now make the assumption that the W boson is on-shell, by requiring,

(pν + p`)2 = m2
W . (A.1.2)

We also assume a massless neutrino Eν2 = pν2
x + pν2

y + pν2
z = pν2

T + pν2
z . The on-shell

condition in Eq. A.1.2 can be rearranged to obtain a quadratic equation for our
unknown, the z momentum of the neutrino,

4(p` 2
z − E` 2)pν 2

z + 4Ap`zpνz + (A2 − 4pν2
T E

` 2) = apν 2
z + bpνz + c = 0, (A.1.3)
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with A = m2
W + (pνx + p`x)2 + (pνy + p`y)2 − E` 2 − pν2

T . Provided the discriminant,
b2 − 4ac, is positive, we obtain two solutions for pνz . Given that the calculations for
each angle used in the method of moments relies on these solutions, we obtain two
possible values for each angle in the Wh analysis. This is discussed in Section 3.3.3.

A.2 Packages, algorithms & tools

This appendix acts as a glossary for the packages, algorithms and toolsmentioned
in Section 3.5.

A.2.1 Packages

FeynRules & UFOs

FeynRules [142] is a Mathematica-based [304] package that calculates the Feyn-
man rules for any Quantum Field Theory (QFT) model, given some minimal in-
formation needed to describe said model. It creates a Universal FeynRules Output
(UFO) file, which can be fed into other tools. We use the UFO as an input to the
MadGraph event generator [145].

NLOCT

NLOCT [143] is also a package that creates UFO outputs. It is needed in conjunction
with FeynRules [142] when one wishes to use a model file to do next-to-leading-
order (NLO) event generation with the MadGraph event generator [145] (or any
other UFO-supporting generator). Specifically, it calculates the UV and R2 coun-
terterms required in one-loop calculations. UV counterterms are essential to remove
ultraviolet divergences that appear at the loop level, whereas R2 terms originate
from the one-loop integrands that carry (n−4)-dimensional pieces in the numerators
and n-dimensional terms in the denominators. As and when required, we manually
insert the R2 terms in the NLO model as the usage of publicly-available NLOCT
version is restricted to renormalisable interactions only.

MadGraph (MG5_aMC@NLO)

MG5_aMC@NLO [145] is a particle physics phenomenology framework capable
of many functions. We specifically use it for event generation and showering via
Pythia8 [151,152]. Inside this framework, real emission corrections are performed
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following the FKS subtraction method [146], whereas virtual corrections are done
using the OPP reduction technique [147]. The MC@NLO formalism [148] takes
care of the matching between the LO matrix element and parton shower, thus
avoiding double counting, using the MLM merging scheme. In our study, decay
of heavy bosons has been carried out with the help of MadSpin [150].

MadSpin

MadSpin [150] is a tool interfaced within MadGraph [145] used to decay narrow
resonances at LO while preserving spin correlation and finite width effects to a
good accuracy. It is useful for decaying resonances in events produced at NLO, as
MadGraph alone does not allow specification of daughter particles at NLO beyond
core process. For example, in our study we use MadSpin to specify and carry out
the decay of the heavy bosons. That is to say, MadSpin allows us to specify the
process pp→ V (``)h(bb̄) over just pp→ V h.

NNPDF2.3@NLO

NNPDF2.3@NLO [144] is a library of parton distribution functions (PDFs). PDFs
are probability density functions (usually obtained from experimental data) describ-
ing the probability of finding a certain parton with some momentum fraction in a
given hadron. A library of PDFs, such as NNPDF, is a required input for event
generation within MadGraph [145].

Pythia8

Pythia8 [151, 152] is a tool for evolving a few-body hard process to a complex
multihadronic final state. We use it within the MadGraph [145] framework to
perform parton showering, hadronisation and fragmentation.

Analysis using ROOT, HEPMC and FastJet

Our analysis is written in C++ using ROOT, HEPMC and FastJet [153]. After
event generation and parton showering, the MadGraph [145] framework stores
the showered events in a HEPMC file (High Energy Physics Monte Carlo). This
CERN-supported file format can then be read into our analysis script.

Within the analysis script we perform standard sorting and selection. This includes
triggering, jet algorithms and lepton isolation. All sorting, definition and manipula-
tion of jets is done with the help of FastJet.
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It is within this script, for example, that we demand a fatjet with two b-tagged
subjets (see the BDRS algorithm and Section 3.5 for more details). The final
events surviving all requirements fill ROOT histograms and are saved in a ROOT
file, ready for further analysis (such as BDT fitting) and presentation.

ROOT TMVA

TMVA [154] (Toolkit for Multivariate Data Analysis) is a ROOT toolkit for ma-
chine learning and multivariate classification. We specifically use it for its boosted
decision tree (BDT) capabilities. It takes a ROOT file as input (in our case this
ROOT file is generated in the C++ analysis step from a HEPMC file) and creates
a new ROOT file with the new MVA information included.

We train the BDT using a variety of kinematic parameters, while of course omitting
the parameters of interest we later use in implementing the method of moments (see
Section 3.4). We use the BDT to choose optimal cuts on our parameters. It has been
shown in Ref. [101] that a multivariate analysis is more effective for our purposes
than a simple cut-and-count analysis.

MCFM

MCFM [160–162] is a parton-level Monte Carlo program that calculates cross sec-
tions for processes at hadron colliders. Depending on the process, the cross section
can be calculated to NLO or even NNLO. In our study, we use it to compute a flat
K-factor for some of our background processes, which were not generated at NLO.

A.2.2 Algorithms & tools

NLO: FKS Subtraction & OPP Reduction

When extending calculations to next-to-leading order (NLO), we obtain two new
contributions to the cross section on top of the Born contribution: real emissions
and virtual corrections. Schematically,

σNLO =
∫
dΦB[Bn(ΦB) + Vn(ΦB)] +

∫
dΦRRn(ΦR), (A.2.1)

where Bn is the regular leading order (LO) Born contribution; Vn is the virtual
correction coming from the addition of a closed loop; and Rn is the real emission
correction coming from the emission of an additional particle, such as a gluon. Note
that dΦB is an n-body final-state phase space whereas dΦR is an (n + 1)-body
final-state phase space.



A.2. Packages, algorithms & tools 217

Calculating loop integrals for the virtual corrections can be very complicated. A
number of reduction techniques exist that decompose a more complex loop integral
into a sum of simpler scalar integrals. The OPP reduction method [147] is particularly
powerful as the reduction occurs at the integrand level. Our study implements the
OPP reduction method within the MadGraph [145] framework.

The virtual corrections, as they are, can have UV divergences as the loop momentum
can be infinitely-large. Through regularisation and renormalisation, the UV diver-
gences can be accounted for by the addition of counterterms. In our workflow, these
counterterms are calculated and included in the model using NLOCT [143].

Both virtual and real corrections experience infrared divergences. These too will
be regularised but no renormalisation is needed: for physical observables the two
infrared divergences must cancel each other out, due to the BN and KLN theorems
(see Refs. [50,305–307]). The difficulty in this calculation is that these divergences
exist in different terms, being integrated in different phase spaces, and that the
cancellation generally only occurs after integration. As a further difficulty, one
cannot integrate numerically in a general D dimensions.

The standard way to deal with these problems is to use a subtraction scheme. These
schemes involve the addition of two new terms: the real subtraction term, Sn, which
lives in ΦR and the integrated subtraction term, In, which lives in ΦB. These two
terms satisfy, ∫

dΦBIn(ΦB)−
∫
dΦRSn(ΦR) = 0. (A.2.2)

Hence, Eq. A.2.1 can be written,

σNLO =
∫
dΦB[Bn(ΦB) + Vn(ΦB) + In(ΦB)] +

∫
dΦR[Rn(ΦR)− Sn(ΦR)]. (A.2.3)

This idea of subtraction and the construction of these subtraction terms are the basis
of subtraction algorithms. The FKS subtraction scheme [146] is one such method
of numerically implementing subtraction. Our study implements the FKS method
within the MadGraph [145] framework.

Jet algorithms: the Cambridge-Aachen algorithm (CA)

The Cambridge-Aachen algorithm [308, 309] is a jet clustering algorithm. As dis-
cussed in Section 2.1.1, jets are a fairly-collimated spray of hadrons resulting from
final-state radiation of QCD particles produced in collisions (for more details on jets
see Ref. [50]). Jet algorithms provide a way to quantitatively define jets by clustering
tagged objects together.

Broadly speaking, there are two common classes of jet algorithms:



218 Appendix A. “A Differential Analysis. . . ”

• Cone algorithms: These algorithms are geometrically intuitive and involve
clustering objects based on their separation in the detector. A central point
and jet size, R0, are chosen. Particles within radius R0 of the central point
form part of the jet.

• kT algorithms: These algorithms are rather less intuitive and involve recursive
procedures. The resultant jets often have irregular shapes. The type of kT
algorithm is defined by its value of p. We define two distances in (momentum
space)2p,

di = (kT i)2p, dij = min{di, dj}
Rij

R0
, (A.2.4)

for jet size R0; Rij is the separation between particle i and particle j in the
(y, φ) plane, where y is the rapidity and φ is the azimuthal angle; kT i is the
transverse momentum of particle i with respect to the beam axis. As such, dij
is a new measure of distance between particles i and j.

The algorithm now iterates, with each step finding the lowest value in the full
set {di, dij} (i.e. for all combinations of i and j). If the minimum value is
a di, particle i is labelled a final jet and removed. If it is a dij, particles i
and j are clustered into one particle by four-vector summation. The process
generally repeats until all d-values are above some critical dc or there are no
particles left. These kT algorithms provide a weighting by some multiple of
the transverse momentum. For more discussion on jet algorithms, readers are
referred to Refs. [50,310].

In our study, we focus on the Cambridge-Aachen algorithm (specifically as part
of a BDRS treatment [52]), which is a kT algorithm with p = 0. This makes it
rather strange as a “kT algorithm” as there is in fact no weighting by transverse
momentum: di = 1∀ i. In other words, the closest pairs of particles/objects are
iteratively combined until all objects have separation Rij > R0.

Our jet algorithms are implemented within FastJet [153].

Fat jets & the BDRS Algorithm

When a fast-moving Higgs undergoes h → bb̄ decay, a ‘fatjet’ is constructed con-
taining the two b quarks. We consider one fatjet of R = 1.2, rather than two
separate narrower (R ∼ 0.4) b-tagged jets. This is motivated by the fact that a
hard gluon may be emitted at a large angle. This hard gluon would be missed in
the two-narrower-jets approach.

We utilise a slightly-modified version of the popular BDRS algorithm [52] for classi-
fying these fat jets as h(bb̄) jets. This procedure helps us in maximising the signal by
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retaining extra radiations and in discriminating electroweak-scale resonant signals
from strong QCD backgrounds, see also [156,157].

The jets are recombined upon using the Cambridge-Aachen algorithm [308,309],
with a considerably large cone radius in order to contain the maximum number of
decay products ensuing from a resonance. The jet clustering process is then reversed
step by step until the mass of a subjet, mj1 < µmj with µ = 0.66, where mj is the
mass of the fatjet. This step is called the mass drop and is required to occur without
a significant asymmetric splitting,

min(p2
T,j1 , p

2
T,j2)

m2
j

∆R2
j1,j2 > ycut, (A.2.5)

where ycut = 0.09. When this condition is not satisfied, the softer subjet, j2, is
removed from the list and the subjets of j1 are subjected to the aforementioned
criteria. This procedure is repeated iteratively until the aforementioned condition is
met. This algorithm terminates when one obtains two subjets, j1,2 which abide by
the mass drop condition.

The aim of the mass drop procedure is to identify the Higgs fatjet as the sum of
two hard b-tagged subjets with separation and radius Rbb̄ = ∆Rj1,j2 . However, the
mass drop step does not improve the resonance reconstruction significantly and more
fine-tuning is necessary to segregate the signal from the background.

A further step is performed: filtering. In this step, the constituents of the subjets j1

and j2 are further recombined using the CA algorithm but with a smaller cone radius
Rfilt = min(0.3, Rbb̄/2). This algorithm chooses only the hardest-three-filtered subjets
in order to reconstruct the resonance, thus filtering away much of the underlying
event contamination. As shown in Ref. [52], the filtering step significantly reduces
the active area of the initial fatjet. The resonance in question is the SM-like Higgs
boson and thus the hardest-two-filtered subjets are required to be b-tagged.

In the original paper [52], the Higgs boson is considered to have a mass of 115 GeV.
In our study, we find that the filtered cone radius Rfilt = max(0.2, Rbb̄/2) performs
better in reducing the backgrounds, see also [156,157]. Finally, we require the hardest-
two-filtered subjets to be b-tagged with tagging efficiencies of 70%. Moreover, the
misidentification rate of light subjets faking as b-subjets is taken as 2%.

MLM Merging

Merging is a procedure that helps to avoid double counting between matrix element
and parton showering, and construct more reliable inclusive distributions. Consider
pp→ W+, which in the parton showering stage will involve initial state radiation in
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the form of a gluon from the initial quarks. However, the process pp → W+j has
the same diagram at the matrix-element level. Similarly, the pp→ W+ process with
two gluon emissions in the parton showering stage will have a counting overlap with
the process pp→ W+j (+ 1 gluon emission from showering) and the matrix-element
level pp→ W+jj process. We need to produce reliable inclusive samples and avoid
overcounting.

MLM merging [149] is a leading-order jet matching technique, which can be used
within MadGraph [145]. The basic idea is that we make a phase space cut between
the matrix-element level (ME) and parton-shower level (PS); this is the matching
scale. Parton showering reliably predicts the soft collinear behaviour while the
matrix-element calculation is a far better description of the harder interactions. We
thus divide the phase space into a softer region and a harder region and match the
two distributions at the matchings scale dividing these regions. We check that all
jets after PS are matched to ME partons at this matching scale. This procedure
helps regularise the soft collinear ME divergence and correct the large-momentum
PS behaviour, resulting in more accurate and smooth jet distributions.

Boosted Decision Trees (BDT) & the Kolmogorov-Smirnov statistic

Decision trees are used in classification problems with binary structure [155]. An
input event is determined to be signal or background based on sequential decisions
made by cuts on different discrimination variables. This results in a highly-non-
linear partitioning of the phase space of events into regions identified as signal or
background.

Decision trees are often made more robust by ‘boosting’. We use adaptive boosting,
where each new tree learns from the errors made by the trees before it. Decision trees
with such boosting implemented are referred to as boosted decision trees (BDTs).

It is possible for classifiers like BDTs to overtrain on a sample: this refers to when a
classifier is trained to the point that it can classify the training data with excellent
results but as a result fails to classify other similar samples. The classifier becomes
too strict and is completely optimised for a very specific dataset. Overtraining can
be avoided by ensuring the Kolmogorov-Smirnov statistic is at least O(0.1) [155].
The Kolmogorov-Smirnov statistic is simply a measure of the similarity between two
distributions.

In our study, we implement a BDT treatment using TMVA [154], the ROOT
Toolkit for Multivariate Data Analysis. TMVA also provides built in support for
the Kolmogorov-Smirnov statistic.



Appendix B

Additional information from “The
Coherent State Formalism”

B.1 Projection of scalar field state onto coherent
state

The aim of this appendix is to derive the expression for the overlap 〈φ|{a}〉 between
the eigenstate of the field operator φ and the coherent state in a scalar QFT. We
begin by inserting the coherent state definition,

〈φ|{a}〉 = 〈φ| exp
[∫

dk akâ
†
k

]
|0〉 , (B.1.1)

and then representing the creation operator â†k in terms of the original field φ̂ and
conjugate momentum π̂ = ∂tφ̂ field operators in Fourier space,

˜̂
φ(t,k) :=

∫
d3x e−ik·x φ̂(t,x) , ˜̂π(t,k) :=

∫
d3x e−ik·x ∂tφ̂(t,x) . (B.1.2)

The states in the overlap formula in Eq. B.1.1 are the eigenstates of the corresponding
operators at t = 0,

ˆ̃φ(t = 0,k) |φ〉 = φ̃(0,k) |φ〉 , âk(t = 0) |{a}〉 = ak |{a}〉 . (B.1.3)

Hence we should compute the creation operators â†k in the definition of the coherent
state in Eq. B.1.1 at t = 0. For the annihilation and creation operators we have the
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standard expressions,

âk =
√
ωk

2

(
ˆ̃φ(0,k) + iˆ̃π(0,k)

ωk

)
,

â†k = (âk)† =
√
ωk

2

(
ˆ̃φ(0,−k)− iˆ̃π(0,−k)

ωk

)
.

(B.1.4)

To simplify the expression for the creation operator in Eq. B.1.4 we introduce a
short-hand notation,

φ̂k := ˆ̃φ(0,−k) =
∫
dx eik·x φ̂(0,x) , and π̂k := ˆ̃π(0,−k) . (B.1.5)

For the overlap in Eq. B.1.1 we have,

〈φ|{a}〉 = 〈φ| exp
[∫

dk akâ
†
k

]
|0〉

= 〈φ| exp
[∫

dk ak

√
ωk/2

(
φ̂k − iω−1

k π̂k

)]
|0〉 .

(B.1.6)

In analogy with QM, φk represents the generalised coordinate, and

π̂k = −i ∂

∂φk
, (B.1.7)

is the conjugate momentum operator. Note that since φ(x) ∈ R, φ∗k = φ−k so
|φk|2 = φkφ

∗
k = φkφ−k. Hence,

〈φ|{a}〉 = exp
[∫

dk ak

√
ωk/2

(
φk − ω−1

k
∂

∂φk

)]
〈φ|0〉

= N exp
[∫

dk ak

√
ωk/2

(
φk − ω−1

k
∂

∂φk

)]
e−
∫
dpωpφpφ−p/2,

(B.1.8)

where N is some normalisation and 〈φ|0〉 is analogous to 〈q|0〉 in QM. We now make
use of the following relation,

eÂ+B̂ = e−[Â,B̂]/2eÂeB̂ if [Â, B̂] ∈ C, (B.1.9)

with Â and B̂ choices,

Â =
∫
dk
√
ωk/2 âkφk

B̂ = −
∫
dpω−1

p

√
ωp/2 âp

∂

∂φp
.

(B.1.10)
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Recalling that [φk, ∂φp
] = −δ3(k− p) and ωk = ω−k, we find that,

[Â, B̂] = −1
2

∫
dk dp akap

√
ωk/ωp[φk, ∂φp

]

= 1
2

∫
dk dp akap

√
ωk/ωpδ(k− p)

= 1
2

∫
dk aka−k.

(B.1.11)

Therefore, application of the relation in Eq. B.1.9 yields,

eÂ+B̂ = exp
[∫

dk ak

√
ωk/2

(
φk − ω−1

k
∂

∂φk

)]

= e−
1
4
∫
dk aka−k exp

(∫
dk ak

√
ωk/2φk

)
exp

(
−
∫
dk ak(2ωk)−1/2 ∂

∂φk

)
.

(B.1.12)

We note that though slightly abstract, the last term is in fact the operator for a
translation in φk-space by ak(2ωk)−1/2. Therefore, 〈φ|0〉, has its argument shifted:
φk → φk − ak(2ωk)−1/2, giving,

〈φ|{a}〉 ∝e−
1
4
∫
dk aka−k exp

(∫
dk ak

√
ωk/2φk

)
×

exp
(
−1

2

∫
dkωk(φk − ak(2ωk)−1/2)(φ−k − a−k(2ωk)−1/2)

)
∝e−

1
4
∫
dk aka−k exp

(∫
dk ak

√
ωk/2φk

)
×

exp
(
−1

2

∫
dkωkφkφ−k −

1
4

∫
dk aka−k +

∫
dk
√
ωk

8 [φka−k + φ−kak]
)

∝ exp
(
−1

2

∫
dk aka−k −

1
2

∫
dkωkφkφ−k +

∫
dk
√

2ωkakφ−k

)
.

(B.1.13)

Recall that φk is the shorthand for φ̃(−k), and equivalently, φ−k = φ̃(k); with this
in mind we recover the expression in Eq. 5.2.14 for the overlap 〈φ|{a}〉 used in the
rest of the paper.





Appendix C

Additional information from “The
Semiclassical Method”

C.1 Contributions of S[φ] to saddle-point
equations of φ̃i,f

Recall the action, S[φ(x)], in d+ 1 dimensions,

S[φ(x)] =
∫
dd+1x

1
2
[
(∂tφ)2 − |∇φ|2 − 2V (φ)

]

=1
2

tf∫
ti

dt
∫
ddx[∂t(φ∂tφ)− φ∂2

t φ− |∇φ|2 − 2V (φ)].
(C.1.1)

Only the total derivative part of this integral,

SBoundary[φi, φf ] = 1
2

tf∫
ti

dt
∫
ddx ∂t(φ ∂tφ) = 1

2

∫
ddx (φf∂tφf − φi∂tφi), (C.1.2)

will contribute to the saddle-point equations for φ̃i and φ̃f . Other terms on the right
hand side of Eq. C.1.1 contribute instead to the φ equation. Focusing on the total
derivative, we have, ∫

dxφf∂tφf =
∫
dp φ̃f (p)∂tφ̃f (−p). (C.1.3)

where ∂tφf is ∂tφ evaluated at time tf (and similarly for ∂tφi).

Hence, the complete saddle-point equation for say φ̃f is,

i
δSBoundary[φi, φf ]

δφ̃f (k)
+ δ[B(φf ; b∗)]∗

δφ̃f (k)
= 0. (C.1.4)
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Using the last equation in Eq. 6.1.26 for [B(φf ; b∗)]∗, we find,

i∂tφ̃f (k)− ωkφ̃f (k) +
√

2ωkb
∗
−ke

iωktf = 0, (C.1.5)

which is equivalent to the saddle-point equation (Eq. 6.1.39). The same logic can be
used to recover Eq. 6.1.38.

C.2 Comments on more general saddle-points

How can one be certain that only a single semi-classical solution dominates the
multi-particle rate? To address this question let us recall the defining properties of
the saddle-point solution we are after.

Our specific solution to the boundary value problem in Minkowski space is character-
ised by a single point-like singularity located at the origin, as shown in Fig. C.1 (a).
The energy E of the solution is vanishing at all t in the interval −∞ < t < 0, and
is non-vanishing and equal to

√
s for 0 < t < +∞. The solution in Fig. C.1 (a) is

singular at the origin, xµ = 0. This is precisely the point where the operator O† is
located in the corresponding ‘Feynman diagram’ contribution to the matrix element,

M†
X→n = in〈X|n〉out

1PI = 〈0|O†(0)S†|n〉1PI , (C.2.1)

as shown schematically in Fig. C.1 (b). The presence of this point-like singularity
at the origin explains the jump in the energy of the classical solution from E = 0 to
E =

√
s when time passes from t < 0 to t > 0, and in Fig. C.1 (b) it corresponds to

an injection of energy E =
√
s by the local operator.

One can also consider multi-centred solutions, i.e. semi-classical saddle-points ob-
tained by iterating the solutions with a single singularity into more complicated
saddle-points with multiple singularities. These would result in multiple jumps in
energy for each time the singularity is encountered. As such, these multi-centred
saddle-points would contribute to matrix elements with multiple insertions of local
operators rather than the matrix element with a single O† in Eq. C.2.1.

Furthermore, by comparing contributions to the cross-section (i.e. to the matrix
element squared) arising from the simple single-singularity solution in Fig. C.2 (a)
to that of the multi-centred solution in Fig. C.2 (b), one can see that the latter
contribute to one-particle reducible, rather than 1PI matrix elements.

In this work we will concentrate on the contributions to Eq. C.2.1 and will assume
that the saddle-point solutions we will construct are the only saddle-points with
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Figure C.1: Plot (a) shows a classical field configuration with a single
jump in energy at the singular point at the origin t = 0 = ~x
in Minkowski space. Plot (b) depicts the contribution
of such saddle-point configuration to the amplitude in
Eq. C.2.1 using a Feynman-diagram-type representation.
Saddle-point configurations with a single jump in energy
contribute to the 1PI matrix elements, but not to the
one-particle-reducible ones (cf. Fig. C.2 (b)).

a single point-like singularity in Minkowski space that contribute to these matrix
elements. If additional saddles of this type do exist, their contributions would have
to be added to the ones we will be computing here.

C.3 Variation of the real part of the Euclidean
action δReSE[φ]

In this appendix we derive the formula in Eq. 6.1.76. In varying the surface A, we
expect the solutions to change, as well as the position of the surface,

δS = S[φ′1(x) onA′] − S[φ1(x) onA]
=
(
S[φ′1(x) onA′] − S[φ1(x) onA′]

)
+
(
S[φ1(x) onA′] − S[φ1(x) onA]

)
.

(C.3.1)

Hence, there will be two contributions to δS(1)
E [φ1]:

1. First contribution to δS(1)
E [φ1] comes from the change φ1 → φ′1 = φ1 + δφ1 in
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E 6= 0
E = 0E = 0

E 6= 0 E 6= 0 E 6= 0 t

(a)

(b)

h0|Ô†Ŝ†P̂E |nihn|P̂EŜÔ|0i
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Figure C.2: Contributions to the n-particle rate (see Eq. 6.1.10).
Plot (a) shows the one-particle-irreducible contribution to
〈0|Ô†Ŝ†P̂EP̂nŜÔ|0〉1PI from a saddle-point configuration
with a single energy jump. Plot (b) shows one-particle-
reducible contributions to the rate. They necessarily re-
quire multiple jumps from vanishing to non-vanishing en-
ergies and arise from saddle-point configurations with mul-
tiple singular points in Minkowski space.

field solution,

−
∫
ddx

τ0(x)∫
∞

dτ δ
(1

2(∂µφ1)2 + V (φ1)
)

= −
∫
A

ds(nµ∂µφ1)δφ1, (C.3.2)

which is obtained by using Gauss’ theorem and the fact that φ1(x) satisfies
the Euler-Lagrange equation. We are left in Eq. C.3.2 with the boundary
term, on the surface of A. Note that ds is shorthand for the appropriate d-
dimensional integration measure on the d-dimensional singularity surface, for
surface coordinates si.

2. Second contribution to δS(1)
E [φ1] comes from the change in the position of the

surface, xµ(si)→ xµ(si) + nµδx(si). It is given by,

−
∫
A

ds
[(1

2(∂µφ1)2 + V (φ1)
)
δx(s)

]
, (C.3.3)

with details in Appendix C.4.

Adding the contributions in Eqs. C.3.2 and C.3.3, we have a total variation of S(1)
E

of,

δS
(1)
E [φ1] = −

∫
A

ds
[
(nµ∂µφ1)δφ1 +

(1
2(∂µφ1)2 + V (φ1)

)
δx(s)

]
. (C.3.4)

We now use the regularisation imposed in Section 6.1.3, noting that φ1|A = φ′1|A′ =
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φ0,

δφ1(xµ) = φ′1(xµ)− φ1(xµ) = φ′1(xµ)− φ′1(xµ + nµδx) = −(nµ∂µφ1)δx(s), (C.3.5)

so that Eq. C.3.4 can be rewritten as,

δS
(1)
E [φ1] =

∫
A

ds
[(

(nµ∂µφ1)2 − 1
2(∂µφ1)2 − V (φ1)

)
δx(s)

]
. (C.3.6)

Finally, recall that φ1 is constant on A and thus the tangential derivative vanishes:
we need only consider normal derivatives, nµ∂µφ1 = ∂nφ1. Therefore, we find,

δS
(1)
E [φ1] =

∫
A

ds
[(1

2(∂nφ1)2 − V (φ1)
)
δx(s)

]
. (C.3.7)

Similarly, for S(2)
E [φ2] in Eq. 6.1.71, we find,

δS
(2)
E [φ2] = −

∫
A

ds
[(1

2(∂nφ2)2 − V (φ2)
)
δx(s)

]
. (C.3.8)

Adding these two contributions together and noting that φ1 = φ2 on A (but not
their normal derivatives), we find,

δS
(1)
E [φ1] + δS

(2)
E [φ2] = 1

2

∫
A

ds
(
(∂nφ1)2 − (∂nφ2)2

)
δx(s). (C.3.9)

The case for S(3)[φ2] is a little different. This third part of the integration contour
does not encounter the singularity surface and thus we only expect a contribution
from the change in field solution, φ2 → φ2 + δφ2,

− iδS(3)[φ2] = −i
[∫

ddx(t̂µ∂µφ2)δφ2

]t→∞
t=0

= −i
∫
ddx ∂tφ2δφ2

∣∣∣∣
t→∞

, (C.3.10)

in a similar vein to Eq. C.3.2. The contribution from t → 0 vanishes due to the
equivalent relation for δφ2 as for δφ1 in Eq. C.3.5, recalling that δx|t=0 = 0. It
will turn out that we do not need to consider this Minkowski boundary term as
it is purely imaginary and thus does not appear in the ImS[φ] ∼ ReSE[φ] term in
Eq. 6.1.60.

Consider the above term rewritten in terms of momentum-space fields,

− i
∫
dx ∂tφ2(x)δφ2(x)

∣∣∣∣
t→∞

= −i
∫
dk ∂tφ̃2(k)δφ̃2(−k)

∣∣∣∣
t→∞

. (C.3.11)

Inserting the late-time asymptotics (see Eq. 6.1.69) of φ̃2(k) and further noticing
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that, since φ̃2(k) and φ̃′2(k) obey the same asymptotics, so does δφ̃2(k),

δφ̃2(k) = 1√
2ωk

(δbke
ωkT−θ−iωkt + δb∗−ke

iωkt) , t→ +∞, (C.3.12)

we rewrite the expression in Eq. C.3.11 as follows,

− iδS(3)[φ2] = −i
∫
dk ∂tφ̃2(k)δφ̃2(−k)

∣∣∣∣
t→∞

= −
∫
dk (bkδb

∗
k − b∗kδbk)eωkT−θ,

(C.3.13)
which is purely imaginary.

Hence, Eq. C.3.13 does not contribute to the variation of the real part of the Euclidean
action, which thus is given by the expression on the right-hand side of Eq. C.3.9,
confirming the formula for δReSE[φ] in Eq. 6.1.76.

C.4 Contribution to S(1)
E from changes to

integration range

Before variation, we have,

S
(1)
E = −

∫
ddx

τ0(x)∫
∞

dτ LE(φ1) = −
∫
ddx

τ0(x)∫
∞

dτ
(1

2(∂µφ1)2 + V (φ1)
)
. (C.4.1)

We now consider the difference between this and the case where the singularity
surface A is distorted to A′, so that the spacetime coordinates describing it, xµ(si)→
xµ(si) + nµδx(si), where si are coordinates on the surface.

It is easily shown for the 1-dimensional integral, that the variation under a small
shift in integration range, ∆, gives a boundary term,

b∫
a

[f(x+ ∆)− f(x)]dx = [f(x)∆]ba , (C.4.2)

in the limit of small ∆. Applied to Eq. C.4.1, with τ0(x)→ τ0(x) + δτ0(x), we find,

−
[∫

ddxLE(φ1)δτ0(x)
]τ0(x)

∞
. (C.4.3)

Of course, δτ0(x) is only non-zero on surface A and so the above term can be written
as an integral over the singularity surface A,

−
∫
A

dsLE(φ1)δx(s) = −
∫
A

ds
[(1

2(∂µφ1)2 + V (φ1)
)
δx(s)

]
, (C.4.4)
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as stated in Eq. 6.1.76 in Section 6.1.3. Note that ds is shorthand for the appropri-
ate d-dimensional integration measure on the d-dimensional singularity surface, for
surface coordinates si.
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