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Abstract: Future particle colliders will usher in a new era of precision physics. It

will be crucial that the theory community can provide highly precise predictions for

these experiments. In particular, for future e+e− colliders the theoretical calculations

will need to improve by a factor 2-100, depending on the observable. In this thesis,

we will present the theoretical improvements implemented in the SHERPA event

generator for e+e− physics. We will concentrate on the treatment of QED radiation

within the framework of Yennie, Frautschi and Suura resummation and discuss its

impact on future colliders. In particular, we shall show how initial state radiation can

be resummed in a process-independent manner to all orders in the QED coupling.

We find that the resummation alone is not sufficient, and the inclusion of fixed-order

corrections improves the perturbative description substantially. We will apply these

corrections to the study of e+e− → ff̄ , e+e− → W+W− and e+e− → ZH processes

at a future lepton-lepton collider, and discuss the impact of the QED corrections.

In the second part of this thesis we will consider precision calculation of W/Z+jet

at a future hadron-hadron colliders, namely the HE-LHC/FCC-hh. The theoretical

modelling of these processes is crucial for controlling the background in many bey-

ond the standard model searches. The processes are calculated up to next-to-next

leading-order in the QCD coupling αs. A detailed and robust study of the associated

scale and shape uncertainties is presented.
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Chapter 1

Introduction

The validation of the Standard Model (SM) of particle physics is a triumph of mod-

ern physics. With an unprecedented amount of data gathered, the Large Hadron

Collider (LHC) continues to provide a rich environment, that allows us to test our

knowledge of fundamental particles and their interactions with matter. The crown-

ing achievement of the LHC has been the discovery of a new scalar particle by the

ATLAS [1] and CMS [2] collaborations, which to date has all the signatures of a

Standard Model Higgs-Boson with a mass mH = 125.09 ± 0.21(stat.) ± 0.11(syst.)

GeV [3]. The coupling of the Higgs-Boson has been measured to vector bosons [4–8],

to the top quark [9–12], the bottom quark [13,14], the tau lepton [15,16] and some

first hints of its coupling to the muon [17,18].

To date, there has not been any discovery of physics beyond the SM at the LHC, yet

other experiments have made observations that are not explained within its frame-

work, for example, the observation of non-zero neutrino masses, dark matter, and

the anti-matter matter asymmetry. Developing more of an understanding of the

origin and nature of the Higgs-Boson may answer some of these questions. While

the LHC, and its hadronic successor, may yet provide a deeper understanding to

the nature of the Higgs-Boson, there exists an alternative, and compatible [19], ex-

perimental avenue that the community can explore. A future lepton-lepton collider

or "Higgs-Factory" could provide unprecedented measurements of the SM. Unlike a
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hadronic machine, a lepton-lepton collider has a very clean initial state, due to the

fact that leptons are point like particles. This allows for an experimental environ-

ment where measurements can be preformed with an unprecedented precision, which

will allow for precise measurements of electroweak pseudo-observables (EWPO) [20].

Such a collider may be circular or linear and currently there are four proposals being

considered.

The Future Circular Collider is a post-LHC particle accelerator, that initially would

be e+e− collider (FCC-ee) [21, 22] and later, a high energy hadron-hadron collider

(FCC-hh). For the leptonic stage there are four proposed energies at which the

leptons will be collided. The first stage, which will last four years, will run at the Z-

pole and is expected to collect 150 ab−1 of data, which corresponds to the production

of around 1012 Z bosons [21]. Following this, there will be a two year run at the

W+W− production threshold,
√
s= 161 GeV, with a projected integrated luminosity

of 12 ab−1 or 108 W+W− pairs. After the W+W− run, there will be a three year

run at
√
s = 240 GeV to produce the Higgsstrahlung process e+e− → ZH. While

this energy does not correspond to the maximum cross section for Higgsstrahlung, it

does maximize the event per unit time due to the colliders luminosity profile. This

run will produce 1 million ZH events with an integrated luminosity of 5 ab−1. The

last run will be at the tt̄ threshold, which will done as a multipoint scan around

the threshold range
√
s = 345− 365 GeV. The integrated luminosity for this run is

expected to be 1.5 ab−1 which will result in a 106 tt̄ events.

The Circular Electron Positron Collider (CEPC) [23, 24], is a Higgs-factory that

would based in China. With a circumference of 80 km, it is designed to operate at

around 91.2 GeV as a Z-factory, at 160 GeV for of theW+W− production threshold,

and at 240 GeV as a Higgs-factory. The CEPC will produce close to one trillion Z

bosons, 100 million W bosons and over one million Higgs bosons during it operation.

Like the FCC-ee, there is also the possibility for the CEPC to operate as hadron-

hadron collider.

While circular colliders can reach large integrated luminosities, they are rather re-
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stricted in their energy reach due to bremsstrahlung effects. The linear colliders on

the other hand, do not suffer as much due to bremsstrahlung and can reach ener-

gies in the multi-TeV range. Though they can reach higher energies than a circular

collider, they have reduced luminosities. The linear colliders will also be able use

polarised beams to enhance their physics potential.

The Compact Linear Collider (CLIC) [25–27] is a multi-TeV linear e+e− machine,

which is purposed to be built at CERN. It has three planned stage of operation,

with centre of mass energies at, 380 GeV, 1.5 TeV, and 3 TeV. In the first stage,

the Higgs boson will be measured through Higgsstrahlung and WW fusion and is

expected to produce 160,000 Higgs bosons. Its energy range will then be extended

into the TeV range, where it is expected to produce millions of Higgs-bosons.

The final e+e− collider being considered is the International Linear (ILC) [28–31] in

Japan. The ILC is expected to run at multiple energies from the Z-pole up to 500

GeV, with a possible upgrade to 1 TeV. For e+e− → ff̄ and e+e− → W+W− there

will be a dedicated run at 91 GeV and 160 GeV respectively. The next proposed run

will be at 250 GeV where the ILC will study the Higgs-boson through e+e− → ZH

with a projected integrated luminosity of 250 fb−1. There will then be a run at

the tt̄ threshold followed by a run at 500 GeV. 500 GeV is currently the maximum

planned centre of mass energy at the ILC but it is possible for the collider to be

upgraded to 1 TeV which would allow it to probe rare Higgs couplings, such a the

top and self couplings.

To take full advantage of these precision machines, the corresponding theory errors

have to, at least, match the experimental uncertainties. There are two main types

of theory uncertainties, parametric uncertainties, which are uncertainties on the SM

input parameters, and the intrinsic error, which estimates the uncertainty due to

missing higher-order terms. A large source of intrinsic uncertainty are the corrections

due to QED radiation. A improvement factor of 2-100, depending on the observable,

will have to be achieve to reduce the QED uncertainties to a level that is acceptable,

as we see in Table 1.1. QED effects of the order 0.1% could be safely ignored
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Observable Where from Current (LEP) FCC (stat.) FCC (syst.) Now
FCC

MZ [MeV] Z linesh. [32] 91187.5± 2.1{0.3} 0.005 0.1 3
ΓZ [MeV] Z linesh. [32] 2495.2± 2.1{0.2} 0.008 0.1 2
RZ
l = Γh/Γl σ(MZ) [33] 20.767± 0.025{0.012} 6 · 10−5 1 · 10−3 12
σ0

had[nb] σ0
had [32] 41.541± 0.037{0.025} 0.1 · 10−3 4 · 10−3 6

Nν σ(MZ) [32] 2.984± 0.008{0.006} 5 · 10−6 1 · 10−3 6
Nν Zγ [34] 2.69± 0.15{0.06} 0.8 · 10−3 < 10−3 60

sin2 θeffW × 105 Alept.FB [33] 23099± 53{28} 0.3 0.5 55
sin2 θeffW × 105 〈Pτ 〉,Apol,τFB [32] 23159± 41{12} 0.6 < 0.6 20
MW [MeV] ADLO [35] 80376± 33{6} 0.5 0.3 12
AMZ±3.5GeV
FB,µ

dσ
d cos θ [32] ±0.020{0.001} 1.0 · 10−5 0.3 · 10−5 100

Table 1.1: The current systematic and statistical uncertainties on
QED sensitive observables. The terms in {...} are the
pure QED uncertainties. The FCC-ee error estimates
have been taken from [36]. Reproduced from [37]

ignored at LEP, but cannot be ignored at future Higgs-Factories. For example,

from a precise measurement of the total hadronic cross section of e+e− → ff̄ near

the Z-pole, the mass and width of the Z boson can measured with an error of

the order 0.1 MeV. The corresponding QED uncertainty will have to be reduced to

δQED ≤ 0.03MeV [38]. The inclusion of corrections up to O (α4L4) , L = log
(
s/m2

f

)
,

will become mandatory. In the first part of this thesis, we will explore how to model

the emission of soft photons to all orders and how the logarithms associated with

their emission are resummed using the Yennie-Frautschi-Suura [39] formulation. In

the YFS approach, the photon emissions are treated in a fully differential form.

The photons are explicitly created and the treatment of their phasespace is exact.

An alternative inclusive approach to modelling the of soft collinear photons is the

structure function approach [40] whereby, all of the logarithmic terms are collected in

universal factors which are then resummed by the evolution of the DGLAP equations

[41–44]. For a long time these structure functions have been known at leading-order

accuracy [45–47] while in recent years these functions have been extended to next-

to-leading logarithmic accuracy [48,49].

We will present a process-independent algorithm for resumming initial state radi-

ation (ISR) to all orders. A method for systematically including matrix element
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corrections to the resummation will be introduced and we discuss the corrections

to e+e− reactions. In the case of e+e− → ff̄ we will also discuss the resummation

of final state radiation. A detailed comparison is performed against an existing im-

plementation in the Monte Carlo event generator KKMC [50]. We then introduce a

semi-analytical formulation of the ISR resummation. This approach was then im-

plemented in a python program, the results from which were used to validate the

full Monte Carlo calculation. We also consider the effect of ISR on import process

for future lepton-lepton colliders such as, e+e− → ZH, and e+e− → W+W−.

In the second part of the thesis we shall present a study of V+jet production at

the HL/HE-LHC. The accurate modelling of these process are essential for beyond

the standard model (BSM) searches at future colliders. In Chapter 6 we discuss

the importance of missing transverse energy (MET) in the search for BMS and

how to control the relevant backgrounds, such as Z(νν̄)+jet, by means of precise

calculations. The production of W/Z+jet will be calculated up NNLO in QCD and

the theory uncertainties will be examined in depth.





Chapter 2

The SHERPA Framework

At particle colliders, like the LHC, collisions between incoming particles can lead

to a final state with hundreds of particles. Understanding these final states is an

extremely difficult theoretical challenge, with physical phenomena that range over

many orders of magnitude. At very high scales, perturbation theory can be used to

describe the interactions and production of particles, while at low scales the physics

is dominated by non-perturbative effects due to QCD confinement. This low scale

regime can only be described using phenomenological models, which are generally

tuned to data. These two scales are connected by an evolutionary process in which

partons at a high scale systematically emit QCD or QED radiation until they reach

a low scale cut-off. Each of these regimes are present at colliders and they need to be

modelled. This can be done in using separate Monte Carlo algorithms which can be

combined to simulate the full event. To achieve this difficult calculation has required

decades of work to develop the armoury of techniques used in simulating these events

accurately. Putting all of these together into one code will yield a general-purpose

event generator [51]. This thesis focuses on improving and utilising the physics of

one such generator, SHERPA. It is a member of the "big three", the others being

HERWIG [52,53] and PYTHIA [54,55], whose contributions to the experiments at the

LHC are invaluable. Nearly all analyses done at the ATLAS and CMS experiments

involve at least one of these codes. SHERPA has a highly modular framework, written
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in C++, in which it provides the complete event generation from incoming beams

to final state hadrons. In proceeding sections we introduce each module and give a

short description of its physics content.

Hard-Scattering Matrix Element

The simulation of a scattering event begins with the calculation of the squared mat-

rix element (ME). Once the hard-scattering configuration is known, the 4-momenta

of the scattering particles can be sampled accordingly. This sampling allows one

to determine the total production rate and differential distributions of the final-

state objects to a given perturbative fixed-order accuracy, e.g. at tree-level or at

next-to-leading order in the strong or electroweak coupling. As there are numerous

processes of interest to users, both within the Standard Model and beyond, a high

level of automation is not only highly desired but mandatory for the construction

and evaluation of matrix elements.

SHERPA can calculate a wide variety of of MEs including, explicitly coded 2 → 2

squared amplitudes , tree level processes for large multiplicities, and can interface

to external tools which can calculate MEs at the tree and one-loop level. There

are two internal matrix-element generators (MEGs) within SHERPA, AMEGIC [56]

and COMIX [57]. Both are fully automated and can generate full tree-level MEs for

complicated final states. They both account for all correlations effects due to spin

and color. Spin-0, spin-1/2 and spin-1 external particles can be handle by both and

in addition, AMEGIC can also include spin-2 external particles. The MEGs allow for

arbitrary couplings in both QCD and EW. This means that the user has the ability

to calculate pure QCD or EW terms separately or to calculate specific interferences

terms [58,59].

In AMEGIC all tree-level Feynman diagrams are automatically generated. The dia-

grams are then transformed into helicity amplitudes, which for each set of external

momenta are just complex numbers. In the construction of the diagrams, common
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sub-diagrams are factored out and constructed only once thus dramatically reducing

the computation time. The expressions for the amplitudes are written out as source

code which is later automatically located and loaded.

COMIX calculates the tree-level matix-elements using the color-dressed Berends–Giele

recursive relations [60,61], which is a tree-level version of the Dyson–Schwinger equa-

tions [62–64]. This algorithm has been show to be highly efficient for the calculation

of processes with large multiplicities.

For BSM calculation SHERPA has an inbuilt interface to FEYNRULES [65,66]

Phase-Space Integration

The cross-section calculation requires the evaluation of multidimensional phasespace,

typically that means an dimension of 3n-4 for an n-particle final state. In most

cases the analytical solution is not known and we must turn to numerical methods.

As the integrals of interest are, generally, high-dimensional integrals, Monte-Carlo

integration is the obvious choice. This is due to the fact that in a Monte-Carlo

method the uncertainty on the integrand scales like 1√
N
, for N sampled points, and

its uncertainty is independent of the number of dimensions. SHERPA has a variety of

methods which are used to evaluate integrals in high dimensional phasespace. These

methods have been implemented in the PHASIC module. The overall objective

of these methods is to perform a multichannel importance sampling, where the

squared matrix element automatically provides the target distributions according

to the propagators and vertices found in the Feynman diagram. The multi-channel

integrator also provides an automatic optimisation for the individual channels as

described in [67]. Typically AMEGIC will create one channel per Feynman diagram,

whereas COMIX, due to its recursive nature, will reduce the growth of the integration

channels to be exponential.
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NLO Matrix Elements

For theoretical calculations in theLHC era, NLO calculations have become the in-

dustry standard. Due to the divergences in both virtual and real corrections, a can-

cellation scheme must be used to ensure a finite result. This has been implemented in

SHERPA for NLOQCD by automating the Catani-Seymour dipole subtraction formal-

ism [68,69]. The renormalised virtual corrections are provided by external dedicated

tools like BLACKHAT [70–72], GOSAM [73,74] MADGRAPH [75],OPENLOOPS [76] and

RECOLA [77,78]. All of which can be used in SHERPA. As well as NLOQCD, SHERPA

can perform a subtraction for NLOEW calculations [79] and NLOEW virtuals can be

provided by GOSAM, OPENLOOPS and RECOLA.

Parton Showers

In QCD, the evolution from the hard scale down to the hadronization scale is de-

termined by parton-shower simulations. In these algorithms, the emission of QCD

or QED particles off the initial and final state colored partons are iteratively pro-

duced from the hard process. This allows for the modelling of high-multiplicity final

states consisting of partons at relatively low scale Q0 ≈ 1 GeV from a hard pro-

cess at Qhard. SHERPA has two parton showers implemented, CSSHOWER [80] and

DIRE [81]. CSSHOWER is a shower based on the Catani-Seymour dipole factorisa-

tion, which was purposed in [82, 83]. Each dipole contains a splitting parton and a

colour-connected spectator parton. The shower evolves through sequential splittings

of such dipoles. The dipole terms are calculated for initial-initial, initial-final and

final-final emissions using unintegrated and spin-averaged operators which have be

constructed in the large Nc limit.

DIRE [81] is the second parton shower implemented in SHERPA. Like CSSHOWER,

DIRE is also based on the Catani-Seymour dipole subtraction. DIRE uses a symmet-

ric ordering variable, based on the inverse soft Eikonal of the color dipole, which

provides a closer resemblance to analytical resummation methods.
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Matching and Merging

Another feature of SHERPA is the combination of the parton shower with the hard

process. Matching [83,84] the parton shower to the hard process removes any double

counting of NLO matrix element with the first emission of the parton shower. Sherpa

employs the MC@NLO [85]. The multijet merging in SHERPA, first introduced in

[86,87], has been a cornerstone since the creation of the generator. In-depth details

of SHERPA’s matching and merging are described in [88–91].

Hadronization

At low scales, final state hadrons are constructed by using SHERPA’s hadronization

models. The default hadronization in SHERPA is a variant of the cluster algorithm

which has been implemented in AHADIC [92]. There is also an option to use the Lund

string fragmentation model [93–95] These decays of these hadrons are implemented

in the SHERPA module HADRONS which provides numerous matrix elements and form

factors.

QED Corrections

SHERPA can provide QED corrections to hard or hadronic decays using an imple-

mentation of YFS resummation which has been implemented in the PHOTONS mod-

ule [96]. These corrections can be applied to the leptonic decays electroweak bosons

and to all hadronic decays. This resummation can also include higher order matrix

elements to improve the accuracy of the calculation. The first part of this thesis will

focus on extending the PHOTONS module to include corrections to e+e− processes.

In particular, the implementation of the YFS resummation for ISR will be discussed

in detail in Chapter 3.
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Chapter 3

Yennie-Frautschi-Suura

Resummation

3.1 Theory

The Yennie-Frautschi-Suura (YFS) formalism [39] provides a robust method for re-

summing the emission of real and virtual photons in the soft limit to all orders. The

YFS resummation can be further improved by including exact fixed-order expres-

sion in a systematic way. In this chapter, we will first introduce the general YFS

framework and then will concentrate on its applications to e+e− collisions.

By summing over all real and virtual photons, the total cross section is given by,

σ = 1
2s

∫ nR∑
i=0

1
nR! dΦq dΦki (2π)4 δ

(
P −

∑
qf −

∑
ki
) ∣∣∣∣∣∣

∞∑
nV =0

MnV + 1
2nR

nR

∣∣∣∣∣∣
2

. (3.1.1)

In the matrix element notation that has been introduced here, the Born level con-

tribution will be defined asM0
0, while the matrix elementMj

i will refer to the Born

process plus i real photons evaluated at an overall coupling j in the electromagnetic

coupling α. While this expression includes photon emissions to all orders it is an

unrealistic ambition to be able to calculate all terms in Equation (3.1.1). In reality,

we can only calculate the first few terms in the perturbative series.
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Let us first consider the case of a single virtual photon. The factorised matrix

element for this case can be written as

M1
0 = αBM0

0 +M1
0 , (3.1.2)

where M1
0 is the infrared-subtracted matrix element including one virtual photon

and it is finite as the photon momentum goes to zero. All soft divergences due to

this virtual photon are contained in the universal factor B. YFS showed that the

insertion of further virtual photons, in all possible ways, leads to

M0
0 =M0

0 ,

M1
0 =αBM0

0 +M1
0 ,

M2
0 =(αB)2

2! M0
0 + αBM1

0 +M2
0 . (3.1.3)

For these we can see how the infrared subtracted matrix elements are constructed,

M0
0 =M0

0,

M1
0 =M2

0 − αBM0
0 ,

M2
0 =M2

0 − αBM1
0 −

(αB)2

2! M0
0 (3.1.4)

And for a fixed order in α,

MnV
0 =

nV∑
r=0

MnV −r
0

(αB)r
r! . (3.1.5)

Summing the virtual photons to infinity,

∞∑
nV =0

MnV
0 = exp(αB)

∞∑
nV =0

MnV
0 . (3.1.6)

In QED this can be generalised to any number of real photons, such that∣∣∣∣∣∣
∞∑

nV =0
MnV + 1

2nR
nR

∣∣∣∣∣∣
2

= exp(2αB)
∣∣∣∣∣∣
∞∑

nV =0
M

nV + 1
2nR

nR

∣∣∣∣∣∣
2

. (3.1.7)

M
nV + 1

2nR
nR is completely free of soft singularities due to virtual photons but it still

may contain those due to real photons.
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For a single real photon emission, the factorization occurs at the level of squared

matrix elements and can be expressed as,

1
2(2π)3

∣∣∣∣∣∣
∞∑

nV =0
M

nV + 1
2

1

∣∣∣∣∣∣
2

= S̃(k)
∣∣∣∣∣∣
∞∑

nV =0
MnV

0

∣∣∣∣∣∣
2

+
∞∑

nV =0
β̃nV +1

1 (k) . (3.1.8)

In this expression, all the singularities are contained within the eikonal, S̃ (k), and

the β̃nV +nR
nR

are the infrared-finite squared matrix elements. They correspond to the

Born level process plus emissions of nR real and nV virtual photons. For convenience

we introduce the following notation,

β̃nR =
∞∑

nV =0
β̃nV +nR
nR

. (3.1.9)

The squared matrix element for nR real emissions, summed over all possible virtual

photon corrections, can be written as
(

1
2(2π)3

)nR ∣∣∣∣∣∣
∞∑

nV =0
M

nV + 1
2nR

nR

∣∣∣∣∣∣
2

=

β̃0

nR∏
i=1

[
S̃(ki)

]
+

nR∑
i=1

[
β̃1(ki)
S̃(ki)

]
nR∏
j=1

[
S̃(kj)

]

+
nR∑
i,j=1
i 6=j

[
β̃2(ki, kj)
S̃(ki)S̃(kj)

]
nR∏
l=1

[
S̃(kl)

]
+ . . . + β̃nR(k1, . . . , knR) . (3.1.10)

Within this expression, all possible divergences due to the emission of soft photons

are contained within the eikonals. There is no collinear divergence present, as the

fermion mass prevents the photons from becoming fully collinear. It is therefore

crucial that all fermion masses are included in any YFS calculation. The first term

β̃0 contains all virtual photon corrections to the Born matrix element. The second

term in the expression corrects the approximation of S̃ (kk) for the real emission of

one additional photon. Similarly, the next term corrects for two real photons, and

so on. If we demand that the expression agrees with the exact result up to O (α2)

we have,
(

1
2(2π)3

)nR ∣∣∣∣∣∣
∞∑

nV =0
M

nV + 1
2nR

nR

∣∣∣∣∣∣
2

=
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(
β̃0

0 + β̃1
0 + β̃2

0

) nR∏
i=1

[
S̃ (ki)

]
+

nR∑
i=1

[
β̃1

1 (ki) + β̃2
1 (ki)

S̃ (ki)

]
nR∏
j=1

[
S̃ (kj)

]

+
nR∑
i,j=1
i 6=j

[
β̃2

2 (ki, kj)
S̃ (kj) S̃ (kj)

]
nR∏
l=1

[
S̃ (kl)

]
+ . . . (3.1.11)

Up to now we have been treating both initial and final state photons equally by

including them in nR = nI + nF . At this point it is useful to separate them, as

later they will be treated differently in the MC algorithm. The approach we have

chosen for our YFS resummation is known as exclusive exponentiation (EEX). This

is a generalisation of YFS exponentiation, in which the soft photons are included

independently for the initial and final states at the squared amplitude level. Any

interference effects between the initial and final states are ignored for both the soft

photon resummation and the β̃ terms.

To include initial-final interference (IFI) the YFS exponentiation has to be reformu-

lated at the amplitude level. In [97] Jadach et al developed a method, which they

called coherent exclusive exponentiation (CEEX), where the infrared divergences are

summed to infinite-order at the amplitude level for both real and virtual photons.

This allows for a correct treatment of IFI which is neglected in the EEX approach.

The EEX master formula is given by,
(

1
2(2π)3

)nI+nF
∣∣∣∣∣∣
∞∑

nV =0
M

nV + 1
2 (nI+nF )

nI+nF

∣∣∣∣∣∣
2

=

nI∏
i=1

[
S̃ (ki)

] nR∏
j=1

[
S̃ (kj)

] (
β̃0

+
nI∑
j=1

β̃1I(kj)
S̃ (kj)

+
nF∑
l=1

β̃1F (kl)
S̃ (kl)

+
∑

nI≥j≥k≥1

β̃2I(kj, kk)
S̃ (kj) S̃ (kk)

+
∑

nF≥j′≥k′≥1

β̃2F (kj′ , kk′)
S̃F (kj′)S̃F (kk′)

+
nI∑
j=1

nF∑
k=1

β̃2IF (kj, kk)
S̃ (kj) S̃ (kk)

+ · · ·
)
. (3.1.12)

Inserting this into our cross section formula Equation (3.1.1)

σ =
∞∑

nI=0

∞∑
nF=0

1
(nI + nF )!

∫
dΦf dΦk (2π)4 δ

(
P −

∑
qf −

∑
ki
)
eYf (Ω)

nI∏
i=1

[
S̃ (ki)

] nR∏
j=1

[
S̃ (kj)

]β̃0 +
nI∑
j=1

β̃1I(kj)
S̃ (kj)

+
nF∑
l=1

β̃1F (kl)
S̃ (kl)
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+
∑

nI≥j≥k≥1

β̃2I(kj, kk)
S̃ (kj) S̃ (kk)

+
∑

nF≥j′≥k′≥1

β̃2F (kj′ , kk′)
S̃F (kj′)S̃F (kk′)

+
nI∑
j=1

nF∑
k=1

β̃2IF (kj, kk)
S̃ (kj) S̃ (kk)

+ · · ·
 . (3.1.13)

In Equation (3.1.13) we have introduce the YFS form-factor which is defined as,

Yf (Ω) = 2α
[
B + B̃(Ω)

]
. (3.1.14)

B has already been introduced in the case of virtual emissions but B̃ is new addition.

It results from the fact that at each order in Equation (3.1.13) we have an integral

of the form,
∞∑

nR=0

1
(nR)!

(∫ d3k

k0 S̃ (k) e−iyk
)nR

. (3.1.15)

where e−iyk is extracted from the momentum conserving Dirac-delta. The diver-

gences in this integral can be subtracted by introducing a soft region Ω,

∫ d3k

k0 S̃ (k) e−iyk = 2αB̃(Ω) +D(Ω), (3.1.16)

where,

2αB̃(Ω) =
∫ d3k

k0 S̃ (k)
(
1−Θ(k,Ω)

)
D(Ω) =

∫ d3k

k0 S̃ (k)
[(
e−iyk − 1

) (
1−Θ(k,Ω)

)
+ e−iykΘ(k,Ω)

]
.(3.1.17)

The Step function Θ(k,Ω) has divided the phasespace into two regions. Ω contains

the singular region with the infrared divergence, while 1−Ω represents the remaining,

infrared safe, phasespace. We define Θ(k,Ω) = 1 if the photon k does not reside in

Ω and zero otherwise. Below we detail the individual terms in Equation (3.1.13).

• The eikonals are defined by

S̃ (k) =
∑
i<j

S̃ij(k) = α

4π2ZiZjθiθj

(
pi
pi · k

− pj
pj · k

)2

, (3.1.18)

where the sum runs over all charged particle pairs and Zi and Zj are the charge

of the particles and θ = ±1 if the particle is incoming/outgoing. p1,2 are the

beam momenta oriented such that p1,2 =
(√

s
2 , 0, 0,±pz

)
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• Yf is the YFS form factor,

Yf (Ω) =
∑
i<j

Yij(Ω) = 2α
[
Bij + B̃ij(Ω)

]
, (3.1.19)

where the soft factors are defined as,

Bij = − i

8π3ZiZjθiθj

∫
d4k

1
k2

(
2qiθi − k

k2 − 2(k · qi)θi
− 2qjθj + k

k2 + 2(k · qj)θj

)
, (3.1.20)

B̃ij(Ω) = 1
4π2ZiZjθiθj

∫
d4kδ(k2) [1−Θ(k,Ω)]

(
qi

qi · k
+ qj
qj · k

)2

. (3.1.21)

3.2 Algorithm

In this section we will introduce a process-independent algorithm for the generation

of multiple soft photons across the entire phasespace, which only depends on the

charged momenta of the Born process. For the phasespace generation we shall ignore

higher-order corrections and reintroduce them later through a correction weight.

We will begin with a discussion on how the initial state radiation is generated for

arbitrary e+e− collisions, followed by a discussion on the final state radiation for

e+e− → ff̄ .

3.2.1 Initial State Radiation

This algorithm was first presented in [98] and we have recapitulated it here for

completeness. While we concentrate on e+e− initial states, this method can be

generalized to other massive charged particles. We will first simplify the distribution

by neglecting higher-order β’s in Equation (3.1.13) and later introduce a corrective

weight to account for this simplification. By identifying β0 = dσBorn (ŝ), where
√
ŝ is

the reduced centre of mass energy, the total cross section, with respect to the Born

phasespace, can be expressed as,

σISR = eY (Ω(ε))
∞∑
n=0

1
n!

∫ n∏
i=1

[
d3ki
k0
i

S̃(p1, p2, ki)
]

dσBorn (ŝ) (3.2.1)
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It also includes the integration over the Born phasespace, which we do not make

explicit here as it is treated separately within the MC. To evaluate this integral we

need to rewrite the multiphoton phasespace so that it is more suitable for Monte

Carlo integration. Following the procedure detailed in Appendix A.2, the simpli-

fied cross-section can be written as two integrals, one when there are zero photon

emissions and another for when soft photons have been emitted.

σISR
simple = e

γ
4 +ZiZj απ (π

2
3 −

1
2 )
[∫ ε

0
dv γvγ−1 dσBorn (s)

+
∫ vmax

ε
dv dσBorn (s(1− v))J0(v)γ̄vγ̄−1εγ−γ̄

]
. (3.2.2)

As detailed in Appendix A.2 a change of variable v = 1 − ŝ
s
has been introduced.

The lower integration limit ε correspond to the infrared cut-off on photon energy,

Kmin = ε
√
s

2 . For the soft limit to hold we require ε� 1. The new terms introduced

in Equation (3.2.2) are defined as,

J0(v) = 1
2

(
1 + 1√

1− v

)
(3.2.3)

γ = 2α
π

[
1 + β1β2

β1 + β2
ln (1 + β1) (1 + β2)

(1− β1) (1− β2) − 2
]
, (3.2.4)

γ̄ = 2α
π

1 + β1β2

β1 + β2
ln (1 + β1) (1 + β2)

(1− β1) (1− β2) , (3.2.5)

where A ≤ 1 and βi = |~pi|
p0
i
. The full cross-section needed to be simplified to remove

any dependence on the total photon momentum. As we explained in Appendix A.2,

this dependence will cause problems in the Monte Carlo as we only know K̃ = ∑
i ki

after we have generated all the momenta. Now that we have a simplified cross

section, that is suitable for Monte Carlo integration, we need to correct for the

simplifications we introduced.

• The first corrective weight is associated with dropping the mass term in the

photon angular distribution in Equation (A.2.14). The weight is simply w1 =
n∏
i=1

g(θi)
g̃(θi) , where g(θ) and g̃(θ) are defined in Equation (3.2.6). Respectively

these result from the integration of the full eikonal and the reduced eikonal,

in which terms O
(
m2

s

)
are neglected.
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• Setting A = 1 in Jacobian, J (K̄, v) = 1
2

(
1 + 1√

1−Av

)
, reduces the Jacobian to

J0 and this simplification is corrected by w2 = J
J0
.

• The third corrective weight is a veto on the individual photon energies and is

defined as w3 = ∏nR
i=1 θ(k0

i −Kmin).

• The fourth weight which is due to neglecting the higher order corrections and

will be discussed in Section 3.3.

g(θ) = α

π2

(
2(1 + β1β2)

(1− β1 cos θ)(1 + β2 cos θ) −
1− β2

1
(1− β1 cos θ)2 −

1− β2
2

(1 + β2 cos θ)2

)
,

g̃(θ) = α

π2

(
2(1 + β1β2)

(1− β1 cos θ)(1 + β2 cos θ)

)
. (3.2.6)

To obtain the total cross section from our simplified version we just multiply our

simple distribution by the product of our corrective weights during the Monte Carlo

integration. The corrected cross section is therefore defined as,

dσISR =
2∏
i=1

wi dσISRsimple

=
nR∏
i=1

[
θ(k0

i −Kmin)g(θi)
g̃(θi)

]
J (K̄, v)
J0(v) dσISRsimple (3.2.7)

Now all that remains to complete our calculation is to integrate Equation (3.2.7) over

v, which can be preformed by standard MC methods. Once the main integration

variable, v, is known the photons can be explicitly constructed. The number of

photons is given by a Poissonian distribution with an average,

n̄ =
∫ Emax

Emin

d3k

k0 S̃ (k)

= −α
π
Z1Z2θ1θ2 ln

(
Emax
Emin

)(1 + β1β2

β1 + β2
ln (1 + β1) (1 + β2)

(1− β1) (1− β2) − 2
)
. (3.2.8)

Then the nR photon momenta are distributed as and rescaled as described in Ap-

pendix A.2. A reference frame is defined as P = p1 + p2 −
∑
i ki and the incoming

momenta are then expressed as p̂1/2 =
(√

ŝ
2 , 0, 0,±p̂z

)
, where,

p̂z = 1
2
√
ŝ

[
(ŝ− (m1 −m2)2)(ŝ− (m1 +m2)2)

] 1
2 (3.2.9)
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which are rotated in the z-direction and then boosted in P. The new momenta are

passed to SHERPA’s phasespace module PHASIC, which constructs the final states

from the reduced initial states according to the structure of the Feynman diagrams.

Phasespace Integration

At this point it is worth addressing how Equation (3.2.2) is generated in SHERPA.

Usually, SHERPA calculates cross sections of the form,

σX =
∑
ij

∫
dx1dx2 fi(x1, µf )fj(x2, µf )σ̂ij→X(x1, x2;µf , µR) (3.2.10)

where fi are, depending on the initial state, either parton distribution or an elec-

tron structure function, and σ̂ is the partonic cross section which includes the fi-

nal state phasespace. This convolution is evaluated by using a change of variable

x1,2 → M√
s
e±Y whereM2 = ŝ = x1x2s and Y = 1

2 ln
(
x1
x2

)
is the rapidity. The integral

is now preformed over ŝ and Y instead of x1/2, which is a standard transformation

that converts Equation (3.2.10) to a more Monte Carlo friendly form. However,

as the YFS approach to ISR does not factorize the emission based on incoming

particles, but treats them together, there is no rapidity integral and only an integra-

tion over ŝ is needed. This is quite obvious when inspecting Equation (3.2.2), that

the only integration needed is over v = 1 − ŝ
s
. To accommodate this, a new YFS

specific integrator was implemented in the SHERPA framework using multi-channel

importance sampling [67].

3.2.2 Final State Radiation

In this section, we present an algorithm for generating final state QED radiation.

The algorithm was developed by Jadach et al in [50]. The algorithm focuses on

the emission of final state soft photons in e+e− → ff̄ , f 6= e. The algorithm

will be presented in a reference frame X, defined by X = (
√
sx, 0, 0, 0), where sx =

(p1 +p2−
∑
i
ki), p1,2 are the initial state four-momentum, and ki are the soft photons
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emitted from the initial state. Let us consider the FSR part of Equation (3.1.13)

Fn̄ = 1
n̄!

∫ sx

4m2
f

dsQ
n̄∏
i=1

∫ d3k̄i

k̄0
i

S̃f (k̄i)Θ(k̄i − Emin)δ

sX −
Q+

n̄∑
j=0

k̄j

2
 eY (q1,q2)

(3.2.11)

where k̄i are the final state soft photons which are defined in the rest frame of the

outgoing momentum Q = q1 + q2. Emin is the energy cut off for the photons. Again,

we use an explicit polar parametrization for the photon momentum and with this

we can eliminate the Dirac delta function.

∫ sx

4m2
f

dsQ δ

sX −
Q+

n̄∑
j=0

k̄j

2
 =

∫ sx

4m2
f

dsQ δ
(
sX − sQ

(
1 + K̃0 + 1

4K̃
2
))

=
Θ(sQ − 4m2

f )
1 + K̃0 + 1

4K̃
2 , (3.2.12)

where,

K̃ =
n̄∑
i=0

k̃i,

k̃i = xi(1, sin θi cosφi, sin θi sinφi, cos θi). (3.2.13)

This means that sQ now depends on the photon momentum,

sQ = sX

1 + K̃0 + 1
4K̃

2 . (3.2.14)

The eikonal term can be treated the same as in the ISR case with the substitution

me → mf , s→ sQ.

∫ d3k̄i

k̄0
i

S̃f (k̄i) =
∫ dxi

xi

∫ dφi
2π

∫
d(cos θi) g (θi) , (3.2.15)

g(θ) = ZiZj
2α
π

(
2(1 + βiβj)

(1− βi cos θ)(1 + βj cos θ) −
1− β2

i

(1− βi cos θ)2 −
1− β2

j

(1 + βj cos θ)2

)
.

(3.2.16)

where βi = |~pi|
p0
i
. This leads to a partially factorized form of Equation (3.2.11).

Fn = 1
n̄!

n̄∏
i=1

∫ ∞
εf

dxi
xi

∫ 2π

0

dφi
2π

∫ 1

−1
d cos θi

α

π
g (θi)

Θ
(
sQ − 4m2

f

)
1 + K̃0 + 1

4K̃
2 e

YF (q1,q2). (3.2.17)
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Equation (3.2.17) is not yet in a fully factorised form desirable for a Monte Carlo

simulation. Ideally, we would want Equation (3.2.11) expressed as a product of n̄

independent integrals for each photon. This is not yet the case for Equation (3.2.17),

as there is an explicit dependence on the sum of the photon momenta in sQ. Another

issue that complicates matters is the fact that the upper limit can be quite large,

for example in the case of a hard FSR photon, which can be inefficient for MC

integration. A solution can be found by introducing a change of variables,

yi = xi
1 +∑

j xj
= xi

1 + K̃0 , (3.2.18)

where K =
√
sQ
2 K̃. This transforms Equation (3.2.17) to our primary distribution,

Fn = 1
n̄!

n̄∏
i=1

∫ 1
εf

1+K̃0

dyi
yi

∫ 2π

0

dφj
2π

∫ 1

−1
d cos θi

α

π
g (θi) ,

× 1 + K̃0

1 + K̃0 + 1
4K̃

2 Θ(sQ − 4m2
f )eYF (q1,q2). (3.2.19)

The new lower limit on the photon energy also depends on the total photon mo-

mentum, which is not ideal. This can be fixed by setting εf = δf (1 + K̃0) where

δf � 1. This substitution leads to a new minimum energy for the soft photons,

Emin = δf
√
sQ
2 (1 + K̃0). Now we are in a position to introduce some simplifications,

as we did in the ISR case, to make Equation (3.2.19) more suited for MC integration.

• To remove any dependence on the photon momentum in sQ is achieved trivially

by replacing sQ → sX .

• We drop the mass term in g (θi) for numerical stability, which leads to a

corrective weight
n̄∏
i=1

g(θi)
g̃(θi) .

• 1+K̃0

1+K̃0+ 1
4 K̃

2 Θ(sQ − 4m2
f ) → 1. This simplification was done to remove a com-

plicated dependence on the photon momentum.

• eYF (q1,q2) → eγ̄ ln(δf)
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With these simplifications we arrive at a FSR differential distribution that can be

generated from uniform random numbers.

dFn̄∏n̄
i=1 dyid cos θidφi

= eγ̄ ln(δf)
(
α

2π2

)n̄ n̄∏
i=1

Θ(yi − δf )
yi

g̃

(
θi,

m2
f

sX

)
, (3.2.20)

and the corrective weight for this simplified distribution is given by,

wFSR = eγf ln(δf (1+K̃0))−γ̄ ln(δf) 1 + K̃0

1 + K̃0 + 1
4K̃

2 Θ(sQ − 4m2
f )

n̄∏
i=1

g(θi)
g̃(θi)

. (3.2.21)

While it is not obvious, it can be shown that the FSR photon multiplicity is again

distributed according to a Poissonian. Summing over all photons and integrating

Equation (3.2.20) yields,

∞∑
n̄

Fn =
∞∑
n̄

1
n̄!

n̄∏
i=1

∫ 1

δf

dyi
yi

∫ 2π

0

dφi
2π

∫ 1

−1
d cos θi

α

π
g̃ (θj) eγ̄ ln(δf)

=
∞∑
n̄

eγ̄ ln(δf) 1
n̄!

(
γ̄ ln 1

δf

)n̄
= 1 (3.2.22)

From this it can be seen that the average for the photon multiplicity is 〈n̄〉 =

γ̄ ln 1
δf
. Once we know the multiplicity for a given event we can distribute the photon

momenta as described in Appendix A.3. To correct the final state momentum for

photon emission, we define a frame Q =
(√

sQ, 0, 0, 0
)
and a frame X = Q−∑i ki.

We boost the final states into the frameX, then we perform a random Euler rotation,

and finally we boost-back the fermions to the frame X. The Euler rotations have

no special geometrical meaning, it is just performed to erase the fermions direction

before we boost-back to X.

3.2.3 Infrared Boundary for FSR and ISR

In our previous discussions we have described how the multi photon phasespace for

initial and final state emissions is generated. We have already introduced infrared

domains in which the photons may reside. For the ISR photons the domain ΩI is

defined by rejecting all photons with k0
I <

√
s

2 ε and for FSR the domain is defined
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by k0
F < δf

(
sQ + 2

∑
kF

Q

√
sQ
2

)
where sQ = Q2 = (q1 + q2)2. Both of these limits are

defined in the CMS frame of the corresponding dipole. These two regions need to be

combined to avoid any violation of the IR domains. This can be done by choosing δf

small enough that the FSR domain lies with the ISR domain. This will also require

that we remove any photon that resides in δΩ = ΩI \ ΩF . This removal process

does not come for free. As we are in essence redefining the IR domain the photon

phasespace integration will have changed and a new distribution for the MC has to

be calculated. The photons in δΩ are not completely hidden as they are still present

in the FSR weight.

lim
ki→0

WFSR(n, k1, · · · , ki, · · · , kn) =

WFSR(n− 1, k1, · · · , ki−1, ki+1, · · · , kn)
g(θi,

m2
f

sQ
)

g̃(θi,
m2
f

s
)

(3.2.23)

and even the softest photon contributes to g/g̃. To calculate the effect from the

photons in δΩ we evaluate the following integral,

∫
δΩ

d3k

k0 S̃ (k)
g(θi,

m2
f

sQ
)

g̃(θi,
m2
f

s
)

= 2αQ2
f

(
B̃(ΩI ; q̄1, q̄2)− B̃(ΩF ; q̄1, q̄2)

)
. (3.2.24)

We have multiplied our FSR weight by a corrective factor which removes this addi-

tional term.

WHidden = exp
[
− 2αQ2

F

(
B̃(ΩI ; q̄1, q̄2)− B̃(ΩF ; q̄1, q̄2)

)
+2αQ2

F

(
B̃(ΩI ; q1, q2)− B̃(ΩF ; q1, q2)

) ]
(3.2.25)

where q1,2 are the final state momenta after the photon emission and q̄1,2 are scaled

momenta such that q̄2
i = m2

i
sQ
s
. The second term in the exponential is used to

remove B̃(ΩF ) from the original YFS form factor as ΩI now includes ΩF . For more

detail, see [50] where Jadach et al work this out in great detail.
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3.3 Higher-Order Corrections in YFS

The inclusion of exact fixed order calculations in the YFS algorithm is achieved by

a multiplicative corrective weight, Wc, which is defined as,

WC = 1 + 1
β̃0

0

(
β̃1

0 +
nR∑
i=1

β̃1
1

S̃ (ki)

)

+ 1
β̃0

0

β̃2
0 +

nR∑
i=1

β̃1
1 (ki)
S̃ (ki)

+
nR∑
i,j=1
i 6=j

β̃2
2 (ki, kj)

S̃ (ki) S̃ (kj)

+ 1
β̃0

0
O
(
α3
)

(3.3.1)

In the O (α) expansion, the first term in brackets is the next-to-leading order (NLO)

correction, followed in second bracket by the next-to-next-to-leading order (NNLO)

correction. While the series can be extended to all orders we have truncated it to

O (α2)Prag for the purpose of this thesis. As discussed in Section 3.1 the β̃nR+nV
nR

can

be constructed using real and virtual corrections to the the born level matrix element

M0
0 . Explicit expression in terms of matrix element corrections are displayed below

up to O (α2).

β̃0
0 = M0

0M
0∗
0

β̃1
0 = M0

0M
1∗
0 +M0

0M
0∗
0

β̃1
1 = 1

2(2π)3M
1
2

1 M
1
2∗

1 − S̃ (k) β̃0
0

β̃2
0 = M0

0M
2∗
0 +M2

0M
0∗
0 +M1

0M
1∗
0

β̃2
1 = 1

2(2π)3

(
M

3
2

1 M
1
2∗

1 +M
1
2

1 M
3
2∗

1

)
− S̃ (k) β̃0

1

β̃2
2 =

(
1

2(2π)3

)2

M1
2M

1∗
2 −

nR∑
i,j=1
i 6=j

S̃ (ki) β̃1
1 (kj)− S̃ (ki) S̃ (kj) β̃0

0 (3.3.2)

In the remainder of this chapter we will discuss the contributions to Equation (3.3.1)

that have been implemented in SHERPA’s new YFS module. In particular, we will

discuss the matrix element corrections that have been explicitly added in the leading-

log (LL) limit. Future implementations will hopefully not have to depend on hard

coded corrections but instead use automated tools to calculate the contributions to

Equation (3.3.2). Let us now introduce the notation we use. In a typical perturb-
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ative calculation higher order correction are included order-by-order in a coupling

constants. A fixed order calculation which is said to be O (αn) accurate means that

all contributions beyond this are set to zero. However, including exponentiation in

the calculation the simple order-by-order picture becomes distorted. This is due to

the fact the exponentiation sums up the soft photon emissions to infinite order. As

we are also including calculations in the leading-log approximation we need to keep

track of which αnLm terms we include. So following the notation of [99] we intro-

duce a pragmatic definition of O (αn) and label it O (αn)Prag which has incomplete

sub-leading terms. This new format is depicted in Figure 3.1. As the terms in Fig-

O(α1)Prag
1
αL α
α2L2 α2L α2

α3L3 α3L2 α3L α3

α4L4 α4L3 α4L2 α4L1 α4

... ... ...

O(α2)Prag
1
αL α
α2L2 α2L α2

α3L3 α3L2 α3L α3

α4L4 α4L3 α4L2 α4L1 α4

... ... ...
O(α3)Prag

1
αL α
α2L2 α2L α2

α3L3 α3L2 α3L α3

α4L4 α4L3 α4L2 α4L1 α4

... ... ...

Figure 3.1: Contributions to the leading and sub-leading QED cor-
rections. The first column is the leading logarithmic
(LL) contribution, the second column is the next-to-
leading (NLL) and so on. We have highlighted the
terms that contribute to our pragmatic expansion.

ure 3.1 refer to the accuracy of the βs it is worth mention that the exponentiation

is applied to all terms. Particular the first row in Figure 3.1, which is in fact a

pure exponentiated calculation, we will sometimes refer to as O (α0)Prag accurate.

If we consider the magnitude of the contributions in Figure 3.1 it can be seen that

the numerically important terms should not be summed up row or column wise but

instead should be summed diagonally. These corrections have been known for a

long time and have been calculated and developed in [40,100–105]. and the explicit
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Process Order ISR Corrections FSR Corrections

e+e− → ff̄
O (α1)Prag
O (α2)Prag

R + V
RR + RV + VV

R + V
RR + RV + VV

e+e− → V V
O (α1)Prag
O (α2)Prag

R + V
RR + RV + VV -

Table 3.1: The highest order diagrams included in SHERPA’s YFS
implementation.

expressions for Equation (3.3.2) can be found in [99]. In Table 3.1 we summarize the

corrections that have been implemented. In particular at O (α1)Prag =O (α,Lα) the

contributing corrections are, the one real photon correction β̃1
1 , and loop correction

to the Born β̃1
0 , which is calculated in the LL limit. For O (α2)Prag =O (α,Lα, L2α2)

the corrections include, the two real photon term β̃2
2 , the two loop correction to the

Born, β̃2
0 , and the one loop one real correction β̃2

1 .
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Results

In this chapter we will present numerical results from the YFS implementation in

SHERPA. First, we shall compare the total cross section from SHERPA with the

results of a separate semi-analytical calculation of Equation (3.1.13). Secondly,

we will present a comparison with an existing MC tool, KKMC [50, 98], in which

YFS resummation has been implemented. Predictions of total cross sections are

compared with experimental results from LEP. We will also discuss the production

WW and ZH at energies relevant for future colliders.

4.1 Semi-Analytical Approach

We shall briefly present the semi-analytical approach to soft photon resummation

and compare the results from this approach with our implementation in SHERPA.

As discussed in [99] it can be shown that Equation (3.1.13) can be approximated by

relatively simple integrals. This method involves integrating the entire phasespace

analytically as far as possible. This will then leave one or two dimensional integ-

rals which can be evaluate using non-MC methods such as numerical quadrature.

The non-MC approach was quite popular for predicting simple observables at LEP.

For example, it was used to calculate the cross section for e+e− → ff̄ , including

ISR and FSR effects, in tools like TOPAZO [106] and ZFITTER [107]. While the



48 Chapter 4. Results

non-MC approach is far easier to implement than a MC algorithm, it does have

significant disadvantages. Generally, they are unable to take into account complex

experimental cuts as the phasespace is not explicitly constructed. Improving the

perturbative accuracy of the semi-analytical approach is rather complicated, as in-

creasing the multiplicity of the final state makes the analytical integration of the

phasespace difficult, if not impossible. Even with these disadvantages the semi-

analytical approach can provide an accurate prediction of the total cross section at

certain orders. It is therefore a useful independent validation of the MC algorithm.

For ISR, the semi-analytical formula can be written as,

σ =
∫ vmax

vmin
dv
[
e
γ
4 +γEuler+α

π

(
− 1

2 +π2
3

)
γvγ−1

Γ(1 + γ)dσBorn(s(1− v)) [S +H (v)]
]

(4.1.1)

where γ = 2α
π

(
log s

m2
f
− 1

)
, mf is the mass of the initial state lepton, Γ is the

gamma function and γEuler is the Euler-Mascheroni constant. The expressions for

S and H(v) are given in Table 4.2. dσBorn is the spin-averaged differential Born

level cross section for e+e− → ff̄ , which is also integrated over the scattering angle

θ. We implemented a non-MC calculation of Equation (4.1.1) in a simple Python

program, where the integral was evaluated using adaptive quadrature methods from

the SciPy library [108]. The total cross section was calculated at various different

vmax, a trivial cut that can be applied in the non-MC approach, and was compared

against predictions from SHERPA. The input parameters used for both calculations

are given in Table 4.1. The lower integration limit, vmin, was set to 10−5. The

reduction of vmax was truncated at 0.1 as lower values caused numerical instabilities

in the python implementation.

The deviation between SHERPA’s cross section and the semi-analytical result is given

in Figure 4.1. As we can see in the figure there is an excellent agreement for all orders.

The deviation between the two implementation is at the 0.1% level. This results,

gives us confidence that our prediction for the total cross section is correct. However,

it tells us nothing about the differential distributions that are fully generated in

SHERPA. In the next section we investigate and validate the full MC approach against
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Mass [ GeV ] Width [ GeV ]

Z 91.1876 2.4952

W 80.385 2.085

H 125 0.00407

e 0.000511 -

µ 0.105 -

α−1
QED (0) 137.03599976

Table 4.1: Electroweak input parameters in the α(0) scheme.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

vmax = 1− s′min

s

-20.0
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-16.0
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-10.0

-8.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

σMC−σSemi-Analytical

σSemi-Analytical

×10−4

ISR O(α0)Prag

ISR O(α1)Prag

ISR O(α2)Prag

Figure 4.1: Plot of the deviation of the SHERPA cross section
from the semi-analytical calculated according to Equa-
tion (4.1.1) with increasing cuts on v.

S H(v)

O(α0)Prag 1 −1
4γ ln (1− v)− 1

2
α
π

ln2 (1− v)

O(α1)Prag 1 + γ
2 v

(
−1 + v

2

)
+ γ

[
−v2

2 −
(1−v)2

4 ln (1− v)
]

O(α2)Prag 1 + γ
2 + γ2

8 v
(
−1 + v

2

)
+ γ

[
−v

2 −
1+3(1−v)2

4 ln (1− v)
]

Table 4.2: Contributions to the functions S and H (v) for the semi-
analytical approach in Equation (4.1.1).
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existing implementation in KKMC. In future works, this method will be extended to

include FSR effects that can then be used to validate the FSR implementations. It

has not been implemented here as the inclusion of FSR is relatively new in SHERPA

and will be discussed further in Section 4.2.

4.2 Comparison to KKMC

Setup

In the comparison between SHERPA and KKMC, we considered the process e+e− →

µ+µ− + nγ at the Z-pole energy of
√
s = 91.2 GeV. In this calculation we choose

to use the α(0) electroweak scheme. As we are examining the effects of multiple

soft photon emissions, α(0) is the natural choice since the QED coupling of soft

photons should be evaluated in the Thompson limit. In this scheme the widths of

the Gauge bosons are taken to be fixed, sin θW is calculated from the W and Z

masses as sin θW =
√

1− M2
W

M2
Z
. Both the electron and muon masses are included, as

required by the YFS formalism. We set the infrared cut-off to be Eγ
cut = 1MeV. In

KKMC, we turn off any effects from FSR. For the matrix elements we use the exclusive

exponentiation (EEX) implementation in both KKMC and SHERPA.

ISR Comparison

Here we will compare results from SHERPA with KKMC for initial state radiation,

including matrix element corrections up to O (α2)Prag. In Figures 4.2 to 4.4 we plot

some key observables related to ISR. In the left plot of Figure 4.2 we compare the

number of initial state photons, normalised to unity, generated in SHERPA, compared

to the multiplicity generated in KKMC. SHERPA and KKMC are in excellent agreement

with each other to well below the 0.05% level. Next, we show the distribution of the

sum of the photon energy ∑nEγ. This plot has a distinct peak at
√
s

2 . The energy
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KKMC ISR
SHERPA ISR
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E γ
[p

b/
G

eV
]

0 10 20 30 40 50 60 70 80 90

1.01

1.005

1

0.99

0.995

∑ Eγ [GeV]

SH
E

R
PA

K
K

M
C

Figure 4.2: The left plot is the total number of soft photons pro-
duced by ISR in KKMC and in SHERPA. The plot on the
right is the sum of the photon energies, ∑Eγ, taken in
the rest frame of the final state.

√
s [ GeV ] Born O (α0)Prag O (α1)Prag O (α2)Prag

SHERPA σ [nb] 1.8719 1.3151 1.3755 1.3762

KKMC σ [nb] 1.8719 1.3151 1.3755 1.3762

Table 4.3: Table of total cross sections for e+e− → µ+µ− produc-
tion including ISR corrections.

of a single photon is constrained to be less than
√
s

2 , so for an event to have a total

photon energy beyond this, at least two hard photons are needed.

The next distribution we consider is the invariant mass of the final state particles

in Figure 4.3. In the first frame we present the nominal predictions from SHERPA.

The blue line represents the exponentiated O (α0)Prag, without any matrix element

corrections, the green line is the matchedO (α1)Prag including matrix element correc-

tion, and the red represents the O (α2)Prag. SHERPA and KKMC are again in complete

agreement at level of 0.1%.

In Figure 4.5 we examine the differences between the individual orders. The distri-

butions are normalized to unity to emphasize the differences in the shape. In the

soft limit the all the distribution tend to the same value, while away from the soft

limit we see that the O (α1)Prag distribution is undershooting the highest-order.

In Figure 4.4 we compare the pT distribution from of the virtual boson at each order.

Due to the fully exclusive nature of the YFS formalism, the virtual boson in e+e− →
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Figure 4.3: Plot of the invariant mass distribution of the final state
particles. The nominal plots from SHERPA are displayed
in the main frame. The sub-plots are the ratios with
respect to KKMC.
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Figure 4.4: Plot of pT distribution of the virtual boson. The nom-
inal plots from SHERPA are displayed in the main frame.
The sub-plots are the ratios with respect to KKMC.
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Figure 4.5: Plot of the invariant mass distribution of the final state
muons. In the main frame the nominal predictions are
shown normalized to unity. The ratio is take with re-
spect to O (α2)Prag
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Figure 4.6: Plot of pT distribution of the virtual boson at different
orders. The ratio is taken with respect to O (α2)Prag.

µ+µ− does have a pT spectrum. The explicit creation of the real photons cause the

initial state momenta to recoil against their emissions. In other inclusive approaches

to ISR such a distribution would not be visible as the pT is fully integrated out. To

probe the pT in the inclusive approach, a matching to a QED shower would need

to implemented. We see that the pT distribution is again in excellent agreement,

at the level of 0.1%, between the two generators at all orders. In Figure 4.6 we

compare the pT distributions from SHERPA at different orders. We see that in the

first bin there is little deviation between the orders.This bin generally corresponds

to events where the photon multiplicity is zero. If there are no photons in an event

then there are no higher-order corrections and Equation (3.3.1) reduces to one. The

O (α0)Prag term deviates strongly from the higher-order terms while the O (α1)Prag

term has a small deviation at low pT it grows to be the order of 10% when compared

to O (α2)Prag.

FSR Comparison

Recently, we have attempted to include FSR effects, for e+e− → ff̄ , in our YFS

algorithm as described in Section 3.2.2. We will present the results that have been

obtained so far but the FSR treatment is not as advanced as the ISR. Due to the
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Figure 4.7: In the left plot we have a comparison between KKMC and
SHERPA for FSR multiplicity. On the right, we compare
the multiplicities of ISR and FSR photons at O (α0)Prag

factorised treatment of ISR and FSR in the EEX approach, it is possible to neglect

the contribution from ISR. While this is not a phenomenologically important option

for e+e− physics, it is useful test of our FSR implementation. A similar option exists

in KKMC and therefore we can compare FSR only corrections to e+e− → µ+µ−. For

the FSR calculation we use the same input parameters as ISR case, namely the

parameters in Table 4.1. We are only presenting the results from the O (α0)Prag

simulation. Including the higher-order corrections yield large deviations, sometimes

as large as 50%, between KKMC and SHERPA, both in the total cross-section and in the

differential distributions. The source of this deviation is believed to be in SHERPA’s

corrective weight as given by Equation (3.3.1).

In Figure 4.7 we have two plots related to the photon multiplicity. In the first, we

are comparing the number of photons emitted by the final state particles between

KKMC and SHERPA. The agreement between the two generators is within 0.5%. In

the second plot, we compare the number of photons emitted by the initial state and

those emitted by the final state. The muons, which are heavier, radiate less photons

then the lighter electrons in the initial state. This result expected, as it is well know

in electrodynamics that the radiation from a charged particle with massM is ∝ 1
M4 .
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Figure 4.8: In the left plot we have the invariant mass distribution
of the final state particles and on the left we have the
pT distribution of the exchange boson including effects
from FSR at O (α0)Prag

In Figure 4.8 we have plotted two differential distributions for FSR corrections to

e+e− → µ+µ−. In the first, we consider the invariant mass distribution of the final

state muons. Above 20 GeV there is good agreement between KKMC and SHERPA

but below that we see deviations between the two. The reason for this deviation

has yet to be found but it may be due an unknown phasespace cut missing from

the SHERPA implementation. Similarly, there is generally good agreement between

KKMC and SHERPA for the pT distribution with the exception of the last bin. These

deviations unfortunately become enhanced when ISR is included as we can see in

Figure 4.9. We do note that for realistic experimental cuts, particular for those at

LEP, the deviation is removed by cuts on
√
ŝ which tended to be greater than 75

GeV.

4.3 W+W− Production

In this section we examine the effects of ISR on W+W− production at the FCC-

ee collider. At the FCC-ee there is a planned two year run at energies near the

W+W− threshold, first at
√
s = 157.5 GeV and followed by a run at

√
s = 162.5

GeV [21]. With a predicted total luminosity of 12ab−1 it is expected to produce on
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Figure 4.9: Plot of the invariant mass distribution of the final state
particles including ISR and FSR resummation.

the order of 108 W+W−. It is predicted that the fit of the W mass and width from

the e+e− → W+W− cross section will yield a precision of 0.5 MeV for the mass and

1.2 MeV for the width. At this level of experimental uncertainty it is crucial that

the theory uncertainty is not allowed to dominate. It is therefore critical that the

emission of soft photons is modelled to the highest possible accuracy.

In simulation of W+W− production, we model the ISR using the new YFS imple-

mentation in SHERPA and we include fixed-order corrections up to O (α2)Prag. We

neglect any photon emissions from a boson line or from the final state. While the ISR

corrections are numerically the largest, the FSR terms can be quite sizeable [109] and

will need to be taken into account for future Higgs factories. While the interference

between ISR and FSR could be neglected at LEP, due to the narrow width of the W

boson, these effects will have to be taken into account at a future e+e− collider. We

also neglect corrective terms due to the final state Coulomb corrections which can be

important in threshold production. While this calculation is by no means complete,

it is a crucial first step in improving the theoretical modelling of e+e− → W+W−.

We use the Gµ scheme to describe the electroweak input parameters and we have

taken the CKM matrix to be diagonal. All mass terms are included for massive

particles. We consider the fully inclusive production of W+W− including all decay

channels and we do not apply any cuts on fiducial phasespace.
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Born O (α0)Prag O (α1)Prag O (α2)Prag

σ [pb] 4.165 2.846 2.990 2.994

Table 4.4: Table of total cross sections for fully inclusive e+e− →
W+W− production.
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Figure 4.10: Plot of theW+W− invariant mass for e+e− → W+W−

at
√
s = 161GeV including effects of ISR up to

O (α2)Prag. The ratio is taken with respect to the
highest order O (α2)Prag.
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The differential distribution of the invariant mass of the W+W− pair is shown in

Figure 4.10. The distribution has been normalized to unity to emphasis difference

in the shape between the different orders. We can see that the exponentiated term,

O (α0)Prag, has a large deviation from the higher-order corrections over most of the

mass range while in the soft limit the deviation is around a percent. While for the

O (α1)Prag we see a much better convergence to the O (α2)Prag term. In the soft limit

the two predictions exactly agree while for lower mass values there is 0.1-1% level

difference. In Table 4.4 we list the total cross-sections for the different orders. We

can estimate the uncertainty due to missing higher-order terms by considering the

difference between O (α2)Prag and O (α1)Prag [110]. We this conservative error is on

the order of 0.2%.

4.4 HZ Production

Experimentally measuring the properties of the Higgs-boson to the highest possible

precision is a key objective of future lepton-lepton colliders. The main production

of Higgs-bosons at e+e− colliders proceed through two channels, the Higgsstrahlung

reaction e+e− → ZH, and WW fusion e+e− → (W+W− → H)νν̄. In this section

we will focus on e+e− → ZH production at the purposed collider FCC-ee. The cross

section for this process is at a maximum at
√
s = 260 GeV but due to the luminosity

profile the event rate per unit time is maximum at
√
s = 240 GeV [21].

We consider the production of Z and Higgs bosons at
√
s = 240 GeV. For the

theoretical calculation the electroweak parameters where chosen according the Gµ

scheme. The masses and widths of the boson correspond to those inTable 4.1. The

ISR includes matrix element corrections up to O (α2)Prag. The total cross-section

predictions are given in Table 4.5. From this we can see that the inclusion ISR

decreases the total cross-section by 18-20%. The error estimate, due to missing

higher-order QED corrections, is found to be of the order 0.2%. The ZH threshold

mass is plotted in Table 4.5, where we consider the Z decaying to muons and the
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Born O (α0)Prag O (α1)Prag O (α2)Prag

σ [pb] 0.2532 0.2046 0.2138 0.2141

Table 4.5: Table of total cross sections for fully inclusive e+e− →
ZH production.
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Figure 4.11: Plot of the ZH invariant mass for e+e− →
Z[µ+µ−]H[bb̄] at

√
s = 240 GeV including effects of

ISR up to O (α2)Prag. The ratio is taken with respect
to the highest order O (α2)Prag.
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Higgs to bb̄. The O (α0)Prag is larger than the higher-order predictions away from the

soft limit, again showing that the exponentiation alone is not a sufficient description

of ISR. The higher-order corrections, O (α1)Prag and O (α2)Prag, are in agreement in

the soft limit while away from this limit there is a small deviation.

4.5 Comparison to Data

In this section, we will present a comparison of predictions from SHERPA to data

taken at LEP. The data we will present will only contain leptonic final states. This

will allows us to test the the YFS implementation in a cleaner environment. For pro-

cesses that have hadronic final states can introduce other systematic uncertainties,

that we wish to neglect.
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Figure 4.12: Plot of the total cross section of e+e− → µ+µ−/τ+τ−

as predicted by SHERPA including YFS resummation
for ISR matched up to O (α2)Prag compared to data
from DELPHI [111].

In Figure 4.12 and Tables 4.6 and 4.7 we present the total cross section predic-

tions for the inclusive fermion-antifermion production at energies around the Z pole.

We call these events inclusive as they include the Z resonance while observables
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Figure 4.13: Plot of the total cross section of e+e− → µ+µ−/τ+τ−

as predicted by SHERPA including YFS resummation
for ISR matched up to O (α2)Prag compared to data
from DELPHI [112]. This represents the events that
satisfy Mff̄√

s
≥ 0.85.
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Figure 4.14: Plot of the total cross section of e+e− → µ+µ−/τ+τ−

as predicted by SHERPA including YFS resummation
for ISR matched up to O (α2)Prag compared to data
from DELPHI [112]. This represents events that satisfy
Mff̄ ≥ 75GeV.
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√
s [GeV ] O (α0)Prag O (α1)Prag O (α2)Prag DELPHI

89.431 0.426 0.430 0.420 0.427 ± 0.007

91.1187 1.348 1.363 1.327 1.324 ± 0.012

91.1302 1.358 1.373 1.336 1.354 ± 0.017

93.3015 0.624 0.631 0.616 0.617 ± 0.008

Table 4.6: Table of total cross sections, in units of nb, for e+e− →
µ+µ−

which do not are labelled exclusive. The theoretical predictions are calculated using

SHERPA including YFS resummation for both initial and final states, which for ISR

is matched up to O (α2)Prag. The processes that are considered are, e+e− → µ+µ−

and e+e− → τ+τ−. The Bhabha scattering process, e+e− → e+e−, is not included

in this analysis due to the incorrect treatment of T-channel divergence in SHERPA.

The reference data is taken from the DELPHI experiment [111–113] unless otherwise

stated. To accurately compare with data we will need to apply cuts to the fiducial

phasespace corresponding to experimental cuts. For e+e− → ff̄ the following cuts

were applied

• For e+e− → µ+µ−, the highest muon momentum had to be at least 30 GeV.

• The polar angle of the fermions was required to be in the region of 20° ≤ θµ ≤

120°.

• For the inclusive events the invariant mass had to satisfy Minv(ff̄) > 75 GeV

and for exclusive events Minv(ff̄)
Ecm

> 0.85

We can see from Figure 4.12 that there is excellent agreement for the µ+µ− finals

for orders greater than O (α1)Prag. We can see that at
√
s = 91.1187 GeV the

resummation alone, i.e. O (α0)Prag, and the first matched term, i.e. O (α1)Prag,

are insufficient to replicate the experimental results. The O (α0)Prag calculation

deviates from the experimental value, including the error, by ≈ 1.7%. There is a

larger deviation for the O (α1)Prag term by ≈ 3.1%
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√
s [GeV ] O (α0)Prag O (α1)Prag O (α2)Prag DELPHI

89.431 0.459 0.463 0.464 0.470 ± 0.009

91.1187 1.444 1.467 1.466 1.477 ± 0.015

91.1302 1.458 1.490 1.500 1.502 ± 0.021

93.3015 0.674 0.670 0.675 0.665 ± 0.011

Table 4.7: Table of total cross sections, in units of nb, for e+e− →
τ+τ−

√
s [GeV ] O (α0)Prag O (α1)Prag O (α2)Prag DELPHI

130.2 8.5 8.6 8.3 9.7 ± 1.9

136.2 7.3 7.4 7.2 6.6 ± 1.6

161.3 4.1 4.1 4.0 3.6 ± 0.7

172.1 4.0 4.0 3.9 3.6 ± 0.7

Table 4.8: Table of total cross sections, in units of pb, for e+e− →
µ+µ−

We also compare the cross sections for exclusive e+e− → ff̄ production in the range

130 to 172 GeV. The comparison to data is presented in Figures 4.13 and 4.14.

Again, we see quite good agreement between the theory and experiment with the

exception of the τ+τ− predictions at 172.1 GeV. While the higher order terms agree

with the experimental data, the exponentiated only term overshoots the data by a

small margin. This deviation is not present in Figure 4.13 which is not surprising.

The deviation between O (α0)Prag and the higher term is more pronounced as
√
s′

decreases. Therefore the stricter cut of Mff̄√
s
≥ 0.85 will reduce differences between

the different orders.

e+e− → W+W− → `ν``
′ν`′

In this section we explore the leptonic decays of e+e− → W+W− and compare it to

measurements made by the DELPHI experiment [113] from 161 GeV to 209 GeV. For

this calculation we only consider three doubly resonant Feynman diagrams, namely

the so called CC03 [114]. These consist of two s-channel exchanges, γ and Z, and
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√
s [GeV ] O (α0)Prag O (α1)Prag O (α2)Prag DELPHI

130.2 8.3 8.4 8.3 10.2 ± 3.1

136.2 7.2 7.3 7.2 8.8 ± 3.1

161.3 4.5 4.5 4.5 5.1 ± 1.5

172.1 3.9 3.8 3.9 4.5 ± 1.1

Table 4.9: Table of total cross sections, in units of pb, for e+e− →
τ+τ−
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Figure 4.15: Plot of the total cross section of e+e− → W+W− →
`ν``

′ν`′ as predicted by SHERPA including YFS resum-
mation matched up to O (α2)Prag. The reference data
is from DELPHI [113].

a t-channel ν exchange. Given that CC03 is subset of the full e+e− → 4f set, it is

gauge dependent but due to the small energies at LEP this dependence produces a

negligible effect [110].

For the numerical set-up we chose our electroweak parameter corresponding to

the Gµ scheme. We only include ISR corrections up to O (α2)Prag. To provide an

accurate description of the experimental results we implemented the following cuts.

The most energetic photon had to have an energy less than 0.25
√
s and the angle in

the plane perpendicular to the beam axis between the charged particles system and

the most energetic photon was required to be less than 170°. Finally, the energy of

the charged particles had to be greater than 0.04
√
s and the energy of the particles

with | cos(θ)| < 0.9 had to exceed 0.06
√
s.
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√
s [GeV ] O (α0)Prag O (α1)Prag O (α2)Prag DELPHI

161 0.30 0.32 0.32 0.3+0.3
−0.4

172 1.22 1.27 1.28 1.03+0.5
−0.39

183 1.57 1.64 1.64 1.59+0.26
−0.26

189 1.68 1.74 1.74 1.86+0.14
−0.14

192 1.72 1.78 1.78 1.97+0.37
−0.37

196 1.76 1.81 1.82 1.87+0.21
−0.21

200 1.78 1.83 1.83 1.84+0.2
−0.2

202 1.79 1.83 1.83 1.81+0.28
−0.28

205 1.80 1.85 1.85 1.82+0.2
−0.2

207 1.81 1.85 1.85 1.82+0.16
−0.16

Table 4.10: Table of total cross sections, in units of pb, for ee →
W+W− → `ν``

′ν`′

The results from SHERPA is compared with data from DELPHI in Table 4.10 and fig. 4.15.

Our cross section predictions agree with the data at all energies. We see that the

higher-order corrections increase the cross sections when compared to O (α0)Prag and

they remain stable with respect to each other. It is worth noting that the differences

between O (α1)Prag and O (α2)Prag are well below the experimental error and are not

displayed in Table 4.10.



Chapter 5

Conclusion

In this part, we have presented the theoretical formulation of the YFS resumma-

tion for both real and virtual photons and shown that all logarithms due to the

emission of soft photons can been resummed to all orders in QED. A method for

systematically improve the accuracy of this method, by the inclusion of higher-order

matrix elements, was introduced and we discussed a pragmatic implementation of

these corrections. We have implemented this resummation in a new SHERPA mod-

ule, YFS++, and we have described, in detail, the algorithm for the resummation

of ISR in a process independent manner. We also describe an algorithm for the

resummation of FSR in the process e+e− → ff̄ .

For both the ISR and FSR, the treatment of the multi-photon phasespace has been

done in a fully analytical manner and all simplifications have been corrected for in the

Monte Carlo. The photon momenta are explicitly constructed and are distributed

according to the YFS eikonals. We have also shown how the YFS resummation can

be matched to higher order corrections in a systematic way. These corrections, in the

LL limit, have been explicitly presented in a form that agrees with existing tools, in

particular KKMC. The are two main reasons for our choice of corrections. The first is

motivated purely by physics. The inclusion of these terms are necessary to reach the

required precision desired by future experiments. While the inclusion of these terms

brings the precision to the level of 0.1− 0.5% further improvements will be needed
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as discussed in Chapter 1. The second reason we chose these distributions is that

they are exactly the ones implemented in KKMC. This mirroring of their approach

will allow us to test our implementation of YFS against their code. The results of

this comparison has been presented in Chapter 4. The ISR resummation in SHERPA

and in KKMC’s has been shown to be in agreement to within 0.1% of each other up

to O (α2)Prag.



Part II

Precision Simulations for

HL/HE-LHC





Chapter 6

V+jets Predictions for Future

Hadron Colliders

6.1 Introduction

A powerful probe for Dark Matter (DM) searches at hadronic colliders are high-

energy jets recoiling against missing transverse energy (MET) [115]. MET is a

crucial experimental measurement, that is used in the identification and study of

Standard Model (SM) W or Z Bosons. As well as being a powerful probe for DM,

MET is omnipresent in nearly all BSM searches at the LHC and will continue to be

a feature at the future hadron colliders [36, 116–118] experiments. These searches

will require precise control of the relevant backgrounds, such as Z(νν̄) + jet, in

the signal region. The Z(νν̄) + jet can be extrapolated, using precise theoretical

calculations, from the Z(`+`−) + jet, W (`ν) + jet and γ + jet data taken in the

control regions. The dominant background to these searches is Z(νν̄) + jet, followed

by W (`ν) + jet. Unfortunately, the former can be limited by the statistics due to

the large branching ratio of Z boson to neutrinos when compared to the Z → `+`−

branching ratio. However, the W (`ν) + jet channel provides larger statistics which

will make it possible to access higher pT ranges. The accurate measurements of

visible vector boson signatures can provide experimental constraints on Z(νν̄) + jet
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Figure 6.1: Event rates for W/Z+jets as a function of the minimum
pT of the production of W/Z + jet at the HE-LHC and
FCC-hh including the fiducial cuts. The lower plot rep-
resents the statistical uncertainty based on 1√

N
. The

grey band represents the 1-10% range. The luminos-
ity L is assumed to be 3000fb−1 for the HE-LHC and
15 ab−1 for FCC-hh.

production at large MET. For example, the production of Z(`+`−) + jets provides

the most direct and reliable estimates for Z(νν̄) + jets. In Figure 6.1, we show the

expected event rates for W/Z + jets at the HE-LHC/FCC-hh. The Z(`+`−) + jets

allows an estimate of the the Z(νν̄) + jets rates at an accuracy below 1% up to 800

GeV, for the HE-LHC, and up to 2.5 TeV for the FCC-hh. The W (`ν) + jets can

extend this range to 1.2 TeV and 3.8 TeV respectively. These extrapolations will

require precise control over the shape of the distributions. The choice of inputs for

the theory calculation, for example the choice of factorization and renormalization

scales, can effect the shape of the pT distributions and hence effect the extrapolation.

In the next sections we will present our approach to calculating scale uncertainties.

6.2 Monte Carlo Reweighting

The reweighting of MC samples is a method of combining MC calculations, at differ-

ent levels of theory, to account for their respective uncertainties in a simple system-
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atic way. Mathematically, the reweighting of a generic observable can be expressed

as,
d

dx
d
d~y σ

(V )(ηMC, ηTH) ≈ d
dx

d
d~yσ

(V )
MC(ηMC)

 d
dxσ

(V )
TH (ηTH)

d
dxσ

(V )
MC(ηMC)

 . (6.2.1)

In our case of V+jet production, the variable x corresponds to the vector boson pT ,

and ~y are the remaining differential variables. The labels MC and TH represent the

Monte Carlo and higher-order predictions respectively. ηMC and ηTH are nuisance

parameters that parametrise the corresponding uncertainties. In the analysis of the

uncertainties the MC uncertainties must be correlated across the numerator and

denominator in Equation (6.2.1) but they can be kept uncorrelated across different

processes with the exception of Z(`+`−)+jet and Z(νν̄)+jet. An advantage to this

reweighting is that the individual terms on the r.h.s of Equation (6.2.1) do not

need to be calculated with the same set-up. Only the definition and binning of the

observable x needs to be consistent in all three terms. There are two conditions that

need to be fulfilled in order to ensure an optimal combination of MC and higher-order

calculations. The theory calculations should describe the differential distributions

in the reweighting with a higher precision, or at least equal, when compared to the

MC sample.

∆
(

d
dxσ

(V )
TH

)
≤ ∆

(
d

dxσ
(V )
MC

)
. (6.2.2)

It is worth noting that in some cases a particular choice of observable x may not

guarantee that Equation (6.2.2) holds, in particular when using state-of-the-art pre-

dictions. In fact, there are a range of observables for which MC is more accurate

than TH. For example, MC better describes the low pT region by resumming the

logarithms associated with the emission of soft partons. MC also provides a more

accurate description of multi-particle emissions, and it provides a prediction for the

decay of hadrons, all of which are not present in the fixed-order calculation. Ideally

the variable x should have minimal dependence on the above MC aspects that are

not present in the higher order calculations. A natural choice for us is the pT of the

vector-boson which has a minimal sensitivity to the multi-jet emissions. The region
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Mass [GeV ] Width [GeV ]
Z 91.1876 2.4955
W 80.385 2.0897
H 125 0.0
t 173.2 1.339

Table 6.1: Electroweak input parameters for V+jet Study

in which the vector-bosons pT is low, pVT � mV , should be excluded to ensure that

Equation (6.2.2) holds. Furthermore, any non-perturbative contribution from the

MC, e.g hadronization, hadron decays, MPI and UE, should not be included in the

variable x.

These considerations are by no means universal. They are presented here as we are

discussing searches for dark matter based on the inclusive MET distributions. A

more exclusive search would of course introduce more subtleties for example, if a

search was sensitive to the tails of inclusive jet-pT or HT distributions the lack of

multi-jet emissions, which provide a large contribution to the tails, can be a serious

issue and for such a search multi-jet merging should be employed [119].

6.3 Input Parameters

In this section we provide the input parameters used in the theoretical calculation.

The mass and widths of the SM parameters are stated in Table 6.1. The complex

mass scheme [120] is used to describe all unstable particles, where the widths are

absorbed into the renormalised masses,

µ2
i = M2

i − iΓiMi, for i = W,Z, t. (6.3.1)

The EW couplings are derived from the gauge-boson masses and the Fermi constant,

Gµ = 1.16637× 10−5GeV−2, using

α =
∣∣∣∣∣
√

2sin2θwµWGµ

π

∣∣∣∣∣ , (6.3.2)
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and the weak mixing angle is given by,

sin2θw = 1− cos2θw = 1− µ2
W

µ2
Z

, (6.3.3)

which is complexed valued. The Gµ scheme is the preferred choice for W/Z + jet

production, as it provides an optimal description of pure SU(2) interactions.

The CKM matrix is taken to be diagonal. This choice is justifiable as the difference

with respect to a non-diagonal CKM matrix for LO and NLO W + jet production

is ≈ 5%. The PDF set that was used is the NNPDF31_nnlo_as [121–123] which

include supplementary QED corrections. To be consistent with the PDF’s five-

flavour scheme, b-quarks are treated as massless and diagrams with initial state

b-quarks are taken into account. All light quarks are treated as massless. The

strong coupling used in the matrix element calculation are taken from the PDFs.

Again, to ensure consistency the decoupling scheme is used to renormalise the top-

quark loops, which are included at NLO. At NNLO QCD no top-quark loops are

present in the calculation.

6.3.1 Physical Objects

Charged Leptons

Physical distributions associated with leptons, such as their pT , are known to be

highly sensitive to the treatment of QED radiation. To reduces this sensitivity

all leptons are "dressed". This means that the leptons must be recombined with

collinear photons that lie within a cone defined as

∆R`γ =
√

∆φ2
`γ + ∆η2

`γ < R, (6.3.4)

where R is the radius of recombination which is chosen to be R = 0.1. This choice

will capture most of the collinear final state photons and will reduce the contribution

from large angle photons to a negligible level. The W and Z bosons four momentum
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are constructed from the dressed leptons in the final state. In line with standard

experimental practice, both electrons and muons are dressed.

Neutrinos

At the parton level only neutrinos that originate from the decay of a vector boson

are considered in the calculations of pp → ``/`ν/νν̄+jet. In Monte Carlo samples

neutrinos can arise from the decays of hadrons and to avoid any bias such neutrinos

should not be included at the Monte Carlo truth level.

QCD Partons

To reduce the bias between the modelling of jets in the MC simulation and the

perturbative calculations, reweighting and theory calculations should be performed

with inclusive vector-boson pT . In this study we do not impose any jet definition or

jet cuts and all our predictions.

W and Z

The W and Z bosons four momenta are defined as

pµW± = pµ`± + pµν`± , pµZ = pµ`+ + pµ`− , (6.3.5)

where, as stated before, the leptons and neutrinos are the result of W and Z decays.

6.3.2 Computational Framework

For the calculation of the Z/W±+jet cross-sections we employed the most accur-

ate calculations available. The fixed-ordered LO and NLO are calculated using

SHERPA [124]+OPENLOOPS [125]. SHERPA provides the Born and real-subtracted

amplitudes while the virtual amplitudes are calculated by OPENLOOPS, which uses

tensor reduction algorithms provide by COLLIER [126] or CUTTOOLS [127]. The
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process extra cuts observable
pp→ `+ν`+ jet none pT,`+ν`

pp→ `−ν̄`+ jet none pT,`−ν̄`

pp→ `+`−+ jet m`` > 30 GeV pT,`+`−

Table 6.2: Extra selection cuts, and observables for the various V
+ jet processes.

NNLO QCD predictions, for both pp → Z + jet and pp → W + jet, have been

obtained from the parton-level generator NNLOjet, which can calculate fully dif-

ferential distributions at NNLO using the antenna subtraction formalism [128–136].

Cuts

The Monte Carlo calculations were performed in a fully inclusive V+Jet set-up with

a single cut on the boson pT ,

pT,V > 50GeV, for V = W±, Z. (6.3.6)

This cut is essential to ensure the perturbative calculation does not suffer due to a

lack of QCD resummation. For the final state leptons and MET there are no cuts on

the pT or the rapidity and there are no restrictions on QCD radiation in the region

of the leptons and MET. The process specific cuts for the differential predictions

are summarised in Table 6.2. For pp→ νν̄ all three neutrino flavours are taken into

account. For the leptonic decaying W and Z bosons only a single lepton flavour is

used which for this analysis is the electron.

An additional cut is applied to the invariant mass of the `+`− system. This is used

to avoid far off-shell contributions, especially from γ → `+`− at low invariant mass.

The low choice of m`+`− > 30GeV is chosen to minimise the cross section loss due

to photon radiation, which will shift events from the Z-peak region to a lower mass

region.
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6.4 Higher-Order QCD Predictions

Predictions are provided, where possible, at NNLO QCD accuracy. However, to

accurately analyse the theoretical uncertainties, LO and NLO QCD contributions

are calculated and presented. It is also useful to introduce a K-factor, K(V )
NkLO(x,µ),

which describes the ratio of higher order terms to the LO predictions.

NkLOQCD(µ) = K
(V )
NkLO(x,µ)LOQCD(µ0). (6.4.1)

The dependence on the renormalization and factorization scales, µ = (µR, µF ), is

absorbed into the K-factors, while LO predictions on the r.h.s. of Equation (6.4.1)

are taken at the central scale, µ0 = (µR,0, µF,0). For the central scale we adopt the

commonly used choice

µR,0 = µF,0 = µ0 = ĤT/2, (6.4.2)

where the total transverse energy, ĤT , is defined as the scalar sum of the transverse

energy of all parton-level final-state objects,

ĤT = ET,V +
∑

i∈{q,g}
|pT,i|. (6.4.3)

Any quarks and gluons that are radiated in the (N)NLO QCD corrections are in-

cluded in ĤT , and the vector-boson transverse energy, ET,V , is computed using the

total (off-shell) four-momentum of the corresponding decay products, i.e.

E2
T,Z = p2

T,`+`− +m2
`+`− , E2

T,W = p2
T,`ν +m2

`ν . (6.4.4)

6.5 QCD uncertainties

Both the factorisation and renormalisation scales do not represent a physical scale

and as such no physical observable should depend on them. Indeed, when a cal-

culation is performed to all orders any dependence on a scale µ cancels. If the
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perturbative series is truncated at a finite order a dependence on µ will manifest.

This dependence reflects our lack of knowledge of higher-order terms and should be

presented as a theoretical uncertainty. The standard approach to estimate the the-

ory uncertainty due to a specific scale choice is to consider a standard seven-point

variations the central scale µ0, i.e.

µi

µ0
=

{
(1, 1), (2, 2), (0.5, 0.5), (2, 1), (1, 2), (1, 0.5), (0.5, 1)

}
, (6.5.1)

where i = 0, . . . 6. Nominal predictions and related uncertainties are defined as the

centre and the half-width of the band resulting from the above variations. In terms

of K-factors this corresponds to

K
(V )
NkLO(x) = 1

2
[
K

(V,max)
NkLO (x) +K

(V,min)
NkLO (x)

]
, (6.5.2)

δ(1)K
(V )
NkLO(x) = 1

2
[
K

(V,max)
NkLO (x)−K(V,min)

NkLO (x)
]
, (6.5.3)

with

K
(V,max)
NkLO (x) = max

{
K

(V )
NkLO(x,µi) |0 ≤ i ≤ 6

}
,

K
(V,min)
NkLO (x) = min

{
K

(V )
NkLO(x,µi) |0 ≤ i ≤ 6

}
. (6.5.4)

As the K-factors themselves include the scale variations the LO K-factor will differ

from unity. These constant scale variations provide an overall change to the nor-

malization and tend not to provide any information on shape uncertainties, which is

needed for an accurate extrapolation from low pT to high pT . To give a reasonably

conservative estimate of the shape uncertainty we introduce an additional shape

variation,

δ(2)K
(V )
NkLO(x) = δ(1)K

(V )
NkLO(x)ω (x) , (6.5.5)

which is the standard scale uncertainty from Equation (6.5.3) multiplied by a func-

tion, ω(x), which represents a shape distortion. It is defined as,

ω(pT ) =
p2
T − p2

T,0

p2
T + p2

T,0
, (6.5.6)
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which behaves as ω(pT )→ ±1 for high and low pT respectively. pT,0 is the reference

value which is chosen to be pT,0 = 700 GeV, for
√
s = 27 TeV, and 1.2 TeV for

√
s

= 100 TeV. Another key uncertainty is due to the correlation across the V + jet

processes which can play an important role in the fits of Z(νν̄) + jet dark matter

backgrounds. In QCD there is little difference between the processes pp → W +

jet and pp → Z + jet at high pT � MW,Z . With this in mind it is expected that

the QCD uncertainties will be highly correlated. This means that there will be

little dependence on V in the K-factors and the corresponding errors at high pT . To

model the uncertainties due to these correlated processes we take the difference of

the known K-factors to the Z K-factors,

δ(3)K
(V )
NkLO(x) = ∆K(V )

NkLO(x)−∆K(Z)
NkLO(x), (6.5.7)

where ∆K(V ) is taken from the highest known term in the perturbative expansion

∆K(V )
NkLO(x) = ∆K(V )

NkLO(x)
∆K(V )

Nk−1LO(x)
− 1, (6.5.8)

This uncertainty can is calculated using the central scale throughout this chapter.

The choice of Z as the reference distribution is arbitrary but changing it results in

little or no change in δ(3)K
(V )
NkLO(x) as the overall shift will largely cancel.

6.6 Numerical Results

The nominal distributions for the vector-boson pT in W/Z + jet production and

their ratios at LO, NLO and NNLO are presented for
√
s = 27 TeV and

√
s = 100

TeV in Figures 6.2, 6.3, 6.6 and 6.7. In all plots W refers to the combined W+

and W− distributions. In Figure 6.2 the QCD uncertainties from Equations (6.5.3),

(6.5.5) and (6.5.7) are combined in quadrature while in Figures 6.3, 6.6 and 6.7 the

individual errors are presented.

At both energies we can see that at high pT the QCD corrections and uncertainties

behave in a similar way, which show that the QCD corrections are independent of
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Figure 6.2: Higher-order QCD predictions and uncertainties for
Z(`+`−) + jet and W±(`ν) + jet production at 27 TeV
and 100 TeV. Absolute predictions at LO, NLO and
NNLO QCD are displayed in the main frame. The ratio
plots show results for individual processes normalised to
NLO QCD. The bands correspond to the QCD uncer-
tainties Equations (6.5.3), (6.5.5) and (6.5.7) combined
in quadrature.

the vector-boson. In Figure 6.2, the LO uncertainties are of the order 20-30% while

the NLO corrections, which amount to a correction of 30-40% compared to the LO,

have QCD uncertainties are in the range 10-20%. The NNLO correction is a further

increase the cross section by 5-10% with a scale uncertainties 2-10%. Figures 6.3

and 6.4 show that the two largest source of uncertainty in the pT distribution are the

scale variations in Equation (6.5.3) and the uncertainty due to the shape variations

in Equation (6.5.5). The contribution from the process-correlation uncertainty in

Equation (6.5.7) is the smallest, as expected.

The K-factors in Figures 6.6 and 6.7 are stable at both energies and do not change

drastically over the pT range. In the lower frames we see the individual contributions

to the total uncertainty from Equations (6.5.3), (6.5.5) and (6.5.7) divided byK(V )
NkLO

so to show the relative contribution. δ(1)K
(V )
NkLO and δ(2)K

(V )
NkLO gradually grow as pT

increase with δ(2)K
(V )
NkLO transitioning from a negative impact to a positive one as the
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pT approaches pT,0. δ(3)K
(V )
NkLO provides the smallest contribution to the uncertainty

and it remains stable across most of the pT range. At NNLO the uncertainty on the

K-factors is greatly reduced, by a factor ≈ 2, compared to the NLO case. All three

δ(i)K
(V )
NkLO maintain the same shape but there magnitudes have all been reduced, in

particular the process-correlation uncertainty has nearly vanished.
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Figure 6.3: Higher-order QCD predictions and uncertainties for
W±(`ν) + jet production at 27 TeV and 100 TeV. Abso-
lute predictions at LO, NLO and NNLO QCD are dis-
played in the main frame. The ratio plots show results
for individual processes normalised to NLO QCD. The
bands correspond to the QCD uncertainties, δ(i)KNkLO,
i.e. scale uncertainties according to Equations (6.5.3),
(6.5.5) and (6.5.7).
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Figure 6.4: Higher-order QCD predictions and uncertainties for
Z(`+`−) + jet production at 27 TeV and 100 TeV. Ab-
solute predictions at LO, NLO and NNLO QCD are dis-
played in the main frame. The ratio plots show results
for individual processes normalised to NLO QCD. The
bands correspond to the QCD uncertainties, δKNkLO,
i.e. scale uncertainties according to Equations (6.5.3),
(6.5.5) and (6.5.7).
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Figure 6.5: Higher-order QCD predictions and uncertainties for
Z(`+`−)+jet and W±(`ν)+jet production at 27 TeV
and 100 TeV. Absolute predictions at LO, NLO and
NNLO QCD are displayed in the main frame. The ratio
plots show results for individual processes normalised to
NLO QCD. The bands correspond to the QCD uncer-
tainties, δKNkLO, i.e. scale uncertainties according to
Equations (6.5.3), (6.5.5) and (6.5.7).
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Figure 6.6: Plot of the K-factor for Z(`+`−) + jet and W±(`ν) +
jet production at 27 TeV and 100 TeV. The K-factors
are taken at NLO with respect to LO are presented in
the main frame. The lower frames corresponds to there
errors given by Equations (6.5.3), (6.5.5) and (6.5.7)
which are divided by KNLO.
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Figure 6.7: Plot of the K-factor for Z(`+`−) + jet andW±(`ν) + jet
production at 27 TeV and 100 TeV. The K-factors are
taken at NNLO with respect to NLO are presented in
the main frame. The lower frames corresponds to there
errors given by Equations (6.5.3), (6.5.5) and (6.5.7)
which are divided by KNNLO.





Chapter 7

Conclusion

The control of the MET background is crucial to maximise the potential of the

HL/HE-LHC for BSM searches. These backgrounds can be calculated directly or

they can be related to experimental data by calculating similar V+jet processes, in

particular W (`ν) + jet and Z(`+`−) + jet which have been the focus of the previous

chapter. Another important process that needs to be consider in the future is

γ + jet production. When this study was first undertaken the NNLO prediction

of this process was under development in NNLOJET. Recently, the calculation has

been completed [137] and in the future it should undergo the same analysis that was

preformed on W/Z + jet.

We have calculated the inclusive vector-boson pT distributions for W/Z + jet using

the most advanced tools available. The predictions have been produced up to NNLO

in QCD and the associated scale uncertainties have been studied in detail. The scale

uncertainties, defined in Equation (6.5.3), were chosen so they had a strong correla-

tion across the full pT range. They were then enhanced with a shape uncertainty in

Equation (6.5.5), which was anti-correlated across the pT . Both of these uncertain-

ties are process-independent while the third uncertainty we introduced is process

dependent. It was defined as the difference between K-factors for different process

and is given in Equation (6.5.7). The QCD corrections are substantial. For NLO

they are in the range of 10-20%, while for NNLO they can range from 2% to as high
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as 10%. The scale uncertainties of the NLO and NNLO are consistent with each

other, not only in the pT distribution but also in the K-factors.

While this analysis has shown a detailed understanding of scale and shape uncer-

tainties in V + jet production it is only the first step towards a complete theoretical

treatment. Notably we have not included any NLOEW corrections and nor have

investigated the PDF uncertainties. The NLOEW are known to contribute signific-

antly at high pT due to the logarithmic enhancement. The role of PDF uncertainties

should be taken into account in a future study. In particular, these uncertainties can

be quite significant at high pT and large x, where the PDFs tend to be less precise.

We have shown that for future colliders it is possible to constrain theoretical errors

for the pT of bosons to the level of a few percent. This level of precision will be a

valuable contribution for future MET+jet searches.



Appendix A

Details on YFS Resummation

In this appendix, we will present the MC algorithm used to generate the full

phasespace for YFS resummation. In particular, we will present how the photon

momenta are generated and distributed according to the YFS eikonals.

A.1 YFS Infrared Functions

In this appendix, we present some analytical representations of the YFS infrared

(IR) functions corresponding to the emission of virtual and real photons from a pair

of charged massive particles. As already defined in Chapter 3 the YFS-Form-Factor

Y (Ω) reads

Y (Ω) = 2α
∑
i<j

(
Re B(pi, pj) + B̃(pi, pj,Ω)

)
,

where the virtual eikonal factor is given by

B(pi, pj) = − i

8π3ZiZjθiθj

∫ d4k

k2

(
2piθi − k

k2 − 2(k · pi)θi
+ 2pjθj + k

k2 + 2(k · pj)θj

)2

,

and the real eikonal factor reads

B̃(pi, pj,Ω) = 1
4π2ZiZjθiθj

∫
d4k δ(k2) (1−Θ(k,Ω))

(
pi

(pi · k) −
pj

(pj · k)

)2

.
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Here Zi and Zj are the charges of particles i and j in units of the positron charge,

respectively, and θi,j = ±1 for final (initial) state particles. Ω is the region of

the phase space for which the soft photons cannot be resolved. The divergences

present in this expression need to be regularised, which can be achieved by either

introducing a fictitious small photon mass mγ, as in the original YFS paper [39], or

through dimensional regularisation.

Virtual IR Function

Here we present the expression for the virtual part of the YFS for any two charged

massive particles.

2αRB(p1, p2) = −ZiZjθiθj
α

π

[(
1
ρ

ln µ(1 + ρ)
m1m2

− 1
)

ln
m2
γ

m1m2
+ µρ

s
ln µ(1 + ρ)

m1m2

+m
2
1 −m2

2
2s ln m1

m2
+ 1
ρ

(
π2 − 1

2 ln µ(1 + ρ)
m2

1
ln µ(1 + ρ)

m2
2

− 1
2 ln2 m

2
1 + µ(1 + ρ)

m2
2 + µ(1 + ρ) − Li2(ζ1)− Li2(ζ2)

)
− 1

]
, (A.1.1)

where,

µ = p1p2, s = 2µ+m2
1 +m2

2,

ρ =

√√√√1−
(
m1m2

µ

)2

,

ζi = 2µρ
m2
i + µ(1 + ρ) . (A.1.2)

Real IR Function

Here we present an expression for the IR function B̃ which corresponds to the the

emission of a real photon k ∈ Ω from a dipole consisting of two charged massive

particles p1 and p2.

2αB̃(p1, p2) = −ZiZjθiθj
α

π

[(
1
ρ

ln µ(1 + ρ)
m1m2

− 1
)

ln ω

m2
γ

+ 1
2β1

ln 1 + β1

1− β1

+ 1
2β2

ln 1 + β2

1− β2
+ µG (p1, p2)

]
, (A.1.3)
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where βi = |~pi|
Ei

and µ, ρ are defined in Appendix A.1 and ω is the momentum cut-off

specifying Ω in the frame B̃ is to be evaluated in. G (p1, p2) is a complicated function

that can be expressed as a combination of logarithms and dilogarithms,

G (p1, p2) = 1√
(Q2 +M2) (Q2 + δ2)

[
ln
√

∆2 +Q2 −∆
∆2 +Q2 + ∆

[
χ14

23(η1)− χ14
23(η0)

]

+Y (η1)− Y (η0)
]
, (A.1.4)

where,

χijkl = ln
∣∣∣∣∣ (η − yi)(η − yj)(η − yk)(η − yl)

∣∣∣∣∣
Y (η) = Z14 (η) + Z21 (η) + Z32 (η)− Z34 (η) + 1

2χ
12
34 (η)χ23

14 (η)

Zij (η) = 2Li2
(
yj − yi
η − yi

)
+ 1

2 ln2
∣∣∣∣∣η − yiη − yj

∣∣∣∣∣ , (A.1.5)

and

η0 =
√
E2

2 −m2
2, η1 =

√
E2

1 −m2
1 +

√
∆2 +Q2

y1,2 = 1
2

[√
∆2 +Q2 − E +

Mδ ±
√

(Q2 +M2) (Q2 + δ2)
√

∆2 +Q2 + ∆

]

y3,4 = 1
2

[√
∆2 +Q2 + E +

Mδ ±
√

(Q2 +M2) (Q2 + δ2)
√

∆2 +Q2 −∆

]
,

(A.1.6)

where the following notation has been introduced,

∆ = E1 − E2, E = E1 + E2,

δ = m1 −m2,M = m1 +m2,

Q2 = − (p1 − p2)2 . (A.1.7)

A.2 ISR Algorithm

In this section we will derive an algorithm for the emission of multiple soft photons

from the initial state of e+e− collisions. We will take the beam momentum p1 and
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p2 to be in the CMS frame where,

p1,2 =
(√

s

2 , 0, 0,±pz
)

(A.2.1)

Neglecting higher-order corrections the, YFS cross section in Equation (3.1.13) is

given by,

σISR =eY (Ω(ε))
∞∑
n=0

1
n!

∫
dŝ dσBorn (ŝ)

n∏
i=1

[
d3ki
k0
i

S̃(p1, p2, ki)Θ (ki − Emin)
]

× δ4

ŝ− (P −
∑
j

kj)2

 (A.2.2)

Let us introduce a new integration variable,

v = 1− ŝ

s
= 2KP −K2

P 2 , and P = p1 + p2, K =
n∑
i=1

ki. (A.2.3)

Here pi are the initial state momenta before any photon emissions and ki are the

photon momenta. This then transforms Equation (A.2.2), which becomes,

σISR = eY (Ω(ε))
∫ vmax

ε
dv dσBorn (s(1− v))

∞∑
n=0

1
n!

∫ n∏
i=1

[
d3ki
k0
i

S̃(p1, p2, ki)Θ (ki − Emin)
]
δ4
(
v − 2KP −K2

P 2

)
(A.2.4)

Θ (ki − Emin) is a cut introduced to ensure that soft singular regions are excluded

from the integration region as Θ (ki − Emin) = Θ(2k0
i√
s
− ε). Any dependence on this

infrared cut-off is exactly cancelled by the YFS form factor [39,138],

eY (Ω(ε)) = e
−2α
π
ZiZjα

(
B̃(p1,p2,ε)+Re

(
B(p1,p2)

))

= e
−2α
π
ZiZj

(
B̃(p1,p2)+

∫
d3k
k0 S̃(k)

(
1−θ
(
k0− ε

√
s

2

)))
= eγ ln(ε)+ γ

4−ZiZj
α
π

(π
2
3 −

1
2 ), (A.2.5)

where Zi,j are the electric charges of the incoming fermions in units of the electron

charge. This expression is taken in the limit m2
f

s
� 1 while the full expression for

a given dipole can be found in Appendix A.1. The relative numerical difference

between this approximation and the full calculation was checked and found to be
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of the order 10−8 1. The upper integration limit vmax must satisfy kinematical

constraints defined by the final state particles. Introducing a simpler constraint

than the one in Equation (A.2.3) we have,

σISR
n (v) = eY (Ω(ε))

∫ vmax

ε
dv dσBorn(ŝ)

∫ n∏
i=1

[
d3ki
k0
i

S̃(ki)
]

×δ
(
v − 2KP −K2

P 2

) n−1∏
i=1

θ(k0
i − k0

i+1)θ(k0
n −
√
s

2 ε) (A.2.6)

Here, the photon energies have been rearranged at the expense of the symmetry

factor and therefore Θcm is replaced by a single θ function depending on the energy of

the softest photon. Introducing a new variable and a delta function which represents

this simpler constraint,

σISR
n (v) = eY (Ω(ε))

∫ vmax

ε
dv σBorn(ŝ)

∫
dλ

n∏
i=1

d3ki
k0
i

S̃(ki)δ
(
λ− 2k1P

vP 2

)

× δ
(
v − 2KP −K2

P 2

) n−1∏
i=1

θ(k0
i − k0

i+1)θ(k0
n −
√
s

2 ε) (A.2.7)

Now all photon momenta are rescaled, k = λk̄, and the old δ−function can be

removed by integrating over λ.

σISR
n (v) = eY (Ω(ε))

∫ vmax

ε
dv σBorn(ŝ)

∫
dλ

n∏
i=1

λ3d3k̄i

λk̄0
i

1
λ2 S̃(k̄i)δ

(
λ− λ2k̄1P )

vP 2

)

× δ
(
v − λ2K̄P − λ2K̄2

P 2

) n−1∏
i=1

θ(λk̄0
i − λk̄0

i+1)θ(λk̄0
n −
√
s

2 ε) (A.2.8)

After removing the old δ−function the resulting integral is given by,

σISR(v) = eY (Ω(ε))
∫ vmax

ε
dv σBorn(ŝ)

∫ n∏
i=1

d3k̄i

k̄0
i

δ
(2k̄0

1√
s
− v

)
× θ(k̄0

1 − k̄0
2)θ(k̄0

2 − k̄0
3) · · · θ(k̄0

n−1 − k̄0
n)θ(λ0k̄

0
n −
√
s

2 ε)

× J (K̄, v) (A.2.9)

This gives us a new constraint on the most energetic photon, k̄0
1 = v

√
s

2 . J and

1The user may chose to use the full calculation by setting "YFS_FULL_FORM: true" in the
runcard
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λ0 are algebraic functions resulting from removing the old delta function and are

defined as,

J (K̄, v) = 1
2

(
1 + 1√

1− Av

)
, A = K̄2P 2

(K̄P )2 , K̄ =
n∑
i=1

ki (A.2.10)

λ0 = v
P 2

K̄P

1
1 +
√

1− Av
, (A.2.11)

where A ≤ 1 and 0 ≤ λ0 ≤ 1. It is worth noting that if there is only one photon

or if the invariant mass of the photon system is 0 then both the old and the new

constraints are the same and therefore there is no need to introduce a rescaling. For

these case, the Jacobian disappears and λ0 → 1.

The next step in the algorithm is to introduce an explicit form for the photon mo-

mentum. A natural choice is to parametrise the momentum using polar coordinates.

ki = λ0k̄i = λ0

√
s

2 xi(1, sin θi cosφi, sin θi sinφi, cos θi). (A.2.12)

In this parametrisation the eikonal term is given by,

d3ki
k0
i

S̃(ki) = d3k̄i

k̄0
i

S̃(k̄i) = dxi
xi

d(cos θi) dφi g(θi), (A.2.13)

and g(θ) is given by,

g(θ) = α

π2

(
2(1 + β1β2)

(1− β1 cos θ)(1 + β2 cos θ) −
1− β2

1
(1− β1 cos θ)2 −

1− β2
2

(1 + β2 cos θ)2

)
,

(A.2.14)

where βi = |~pi|
p0
i
. Inserting this into Equation (3.2.1) we arrive at a new expression

for the total cross-section

σISR = eY (Ω(ε))
∫ vmax

ε
dv σBorn (s (1− v)) [δ(v)+

∞∑
n=1

n∏
i=1

∫ v

ε

dxi
xi

∫ 1

−1
d(cos θi)

∫ 2π

0
dφi g (θi)

×δ(v − x1)θ(x1 − x2) · · · θ(xn−1 − xn)θ(λ0xn − ε)J (K̄, v)
]
, (A.2.15)

The transition from Equation (3.2.1) to Equation (A.2.15) involved no approxima-

tions or simplifications and the two equations are exactly equal to each other, the
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latter merely has had its phasespace reorganised. It is now nearly possible to gener-

ate Equation (A.2.15) from uniform random numbers. However, this is complicated

by the presence of the term θ(λ0(K̄, v)xn−ε). This factor corresponds to the IR cut-

off of the photon energy and therefore it is problematic to generate photon momenta

satisfying this condition as it depends on their sum. Similarly, the dependence of

the Jacobian on the photon momentum also provides a complication and will have

to be simplified. These simplifications will be corrected for later on in the algorithm.

To avoid the problem we simply set λ0 and A to 1.

θ(λ0(K̄, v)xn − ε)→ θ(xn − ε), J → J0(v) = 1
2(1 + 1√

1− v
), (A.2.16)

and correct for this through suitable weights at the end. For numerical stability it

is also necessary to correct Equation (A.2.14) by dropping the mass terms.

g(θ)→ g̃(θ) =
(

2(1 + β1β2)
(1− β1 cos θ)(1 + β2 cos θ)

)
. (A.2.17)

These simplifications reduce Equation (A.2.15), which is an exact equation, to a

new simplified distribution that can be generated from uniform random numbers.

With a final change of variable yi = ln xi,

σISR
simple = eY (Ω(ε))

∫ vmax

0
dv dσBorn(s(1− v))J0(v)

×
(
δ(v) + 1

v

∞∑
n=1

n∏
i=1

[∫ ln v

ln ε
dyi

∫ 1

−1
d (cosθi) g̃ (θi)

∫ 2π

0
dφi

]

× δ(ln(v)− y1)θ (y1 − y2) θ (y2 − y3) · · · θ (yn − ln(ε))
)
. (A.2.18)

The integrals over the angles and yi can be done analytically yielding,

σISR
simple = eY (Ω(ε))

∫ vmax

0
dv dσBorn(s(1− v))J0(v)

{
δ(v) +

+ θ(v − ε)1
v

∞∑
n=1

1
(n− 1)!

[
ln
(
v

ε

) 2α
π

1 + β1β2

β1 + β2
ln (1 + β1) (1 + β2)

(1− β1) (1− β2)

]n−1 }
.

(A.2.19)

Summing over all photons and removing a factor eγ ln(ε) = εγ =
∫ ε

0 dv γvγ−1 from
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eY (Ω(ε)) we have our master formula,

σISR
simple = e

γ
4 +ZiZj απ (π

2
3 −

1
2 )
[∫ ε

0
dv γvγ−1 dσBorn (s)

+
∫ vmax

ε
dv dσBorn (s(1− v))J0(v)γ̄vγ̄−1εγ−γ̄

]
. (A.2.20)

where,

γ = 2α
π

[
1 + β1β2

β1 + β2
ln (1 + β1) (1 + β2)

(1− β1) (1− β2) − 2
]
,

γ̄ = 2α
π

1 + β1β2

β1 + β2
ln (1 + β1) (1 + β2)

(1− β1) (1− β2) . (A.2.21)

This cross-section is now ready to be calculated at the Monte Carlo level.

A.3 Photon Generation

In this section we shall discuss the explicit construction of the photon momentum in

the Monte Carlo. As mention in Appendix A.2 the photon momentum are describe

using polar coordinates.

Photon Angles

There are two angles used in the parametrisation of the photon momentum that

have to be generated. The first, φ, is trivial and is given by,

φ = 2π#, (A.3.1)

where # is uniformly generated random number ∈ (0, 1). The remaining angle θ is

slightly more complex. It is generated by sampling from the S̃ (k)distribution,

S̃ (k) ∝
(
p1

p1k
− p2

p2k

)2

,

=
(

p2
1

(p1k)2 + p2
2

(p2k) −
2p1p2

(p1k) (p2k)

)
. (A.3.2)
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By taking p1 and p2 to be the beam momenta, i.e p1/2 =
(√

s
2 , 0, 0,±pz

)
, the eikonal

can be written as

S̃ (k) ∝
(

1− β2
1

(1− β1 cos θ)2 + 1− β2
2

(1− β2 cos θ)2 −
2 (1 + β1β2)

(1− β1 cos θ) (1 + β2 cos θ)

)
,(A.3.3)

where βi = |~pi|
p0
i
. The interference term can be rewritten as,

1
(1− β1 cos (θi)) (1 + β2 cos (θi))

= β1β2

β1 + β2

(
1

β2 (1− β1 cos (θi))
+ 1
β1 (1 + β2 cos (θi))

)
.

(A.3.4)

Then cos (θi) can be generated according to either of the two terms in the interfer-

ence. For example it can be generated according to
(
1− β1 cos (θi)

)−1

∫ y

−1
d cos (θi)

1
1− β1 cos (θi)

= #
∫ 1

−1
d cos (θi)

1
1− β1 cos (θi)

,

ln
(

1 + β1

1− β1y

)
= #

(
ln
(

1 + β1

1− β1

))
,

cos (θi) = 1
β1

1− (1 + β1)
(

1− β1

1 + β1

)#
 . (A.3.5)

The probability associated with this distribution is given by,

Pi =
ln
(

1+β1
1−β1

)
ln
(

1+β1
1−β1

)
+ ln

(
1+β2
1−β2

) (A.3.6)

Then cos (θi) can be the generated according to
(
1+β1 cos (θi)

)−1
with a probability

of Pj = 1− Pi,

cos (θi) = 1
β1

(
1− (1− β1)

(
1 + β1

1− β1

))
. (A.3.7)

The correction weight for this distribution is given by,

W =
2(1+β1β2)

(1−β1 cos θ)(1+β2 cos θ) −
1−β2

1
(1−β1 cos θ)2 − 1−β2

2
(1−β2 cos θ)2

2(1+β1β2)
(1−β1 cos(θi))(1+β2 cos(θi))

. (A.3.8)
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