evaluating quality of fit in Unbinned Maximum Likelihood Fitting

Statistical distribution of λ - zero free parameters
impact of free parameters
some speculations

K. Kinoshita University of Cincinnati Belle Collaboration

Motivation

Unbinned Maximum Likelihood (UMxL) fitting:

- preferred for determining parameter(s) α via parameterdependent shape f(x; α) of distribution in measured x
- maximizes use of **x** information, esp. w. limited statistics
- used in many current analyses CP, lifetime, Dalitz plot, ...
 Goodness-of-fit:
- to answer
 - are data statistically consistent with fitted shape
 - (not easily visualized within binless context, esp. in multiple dim.)?
 - is $f(x; \alpha)$ a valid parametrization?
- Straightforward for least-squares
- To date, no good test in UMxL why not?

Unbinned Maximum Likelihood (UMxL) fit

Brief outline: have experiment w N measurements of x -Maximize under variations in α (f(x; α)=normalized PDF)

$$\mathcal{L}(\alpha) = \prod_i f(x_i; \alpha)$$

Equivalent to maximizing:

$$\ln \mathcal{L}(\alpha) \equiv \lambda(\alpha) = \sum_{i}^{N} \ln f(x_{i}; \alpha)$$

Max. at $\alpha = \bar{\alpha}$

Wish to examine fit quality - questions:

- How are $\lambda(\bar{\alpha})$ distributed in ensemble, if root is $f(x, \bar{\alpha})$? O free parameters effect of free parameters
- at what level can other distributions be ruled out?

Distribution with zero free parameters

Mean: limit for large N= expected mean for finite N $\lim_{N \to \infty} \lambda(\bar{\alpha}) = N \int dx f(x; \bar{\alpha}) \ln f(x; \bar{\alpha}) \equiv N \hat{\lambda}(\bar{\alpha})$ Variance: of $\ln f(x; \bar{\alpha})$ over PDF = $N f(x; \bar{\alpha})$ $\lim_{N \to \infty} V[\lambda(\bar{\alpha})] = N \{ \int dx f(x; \bar{\alpha}) [\ln f(x; \bar{\alpha})]^2 - \hat{\lambda}^2(\bar{\alpha}) \}$

$${\scriptstyle\equiv} N \hat{\sigma}^2(ar{lpha})$$

("Statistical Methods in Experimental Physics", Eadie, Drijard, James, Roos, & Sadoulet)

Summary: Ensemble expts w

- •N measurements of x
- O free parameters

$$E[\frac{\lambda(\bar{\alpha})}{N}] = \hat{\lambda}(\bar{\alpha})$$
$$V[\frac{\lambda(\bar{\alpha})}{N}] = \frac{\hat{\sigma}^2(\bar{\alpha})}{N}$$

UMxL with free parameter(s)

(1) in each experiment, $\lambda(\alpha)$ is maximized - $\lambda(\alpha_{max}) \ge \lambda(\bar{\alpha})$ (2) J. Heinrich note (CDF/MEMO/BOTTOM/CDFR/5639) : toy MC's for 2 different PDF's by UMxL found $\lambda(\alpha_{max}) = N\hat{\lambda}(\alpha_{max})$ confirmed in analytic calculation -> conjecture: "CL/goodness" is always 100%

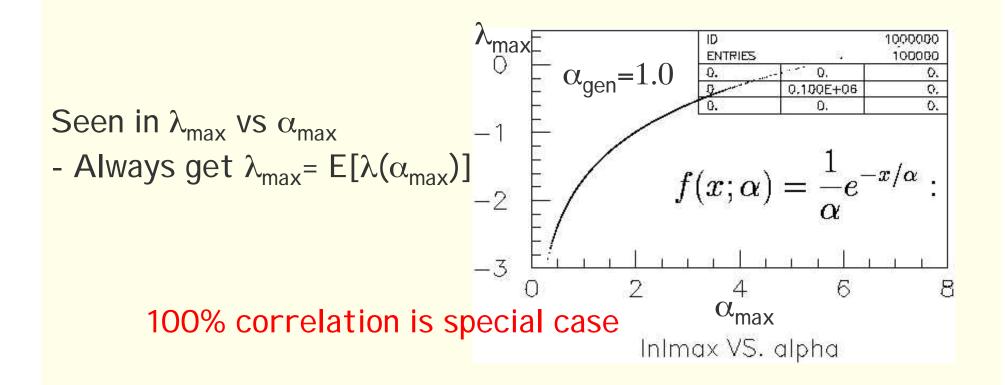
First, examine (2)...

Does fitted α_{max} always give expected $\lambda(\alpha_{max}) \sim N\lambda(\alpha_{max})$? Rewrite parametrized PDF $f(x; \alpha) \rightarrow n(\alpha) e^{-h(x; \alpha)}$ measured distribution $g(x) = \sum_{i=1}^{N} \delta(x - x_i)$ $\lambda(\alpha) = \int dx \ g(x) \ln f(x;\alpha) = \int dx \ g(\ln n - h) = N \ln n - \int dx \ gh$ To maximize, $\frac{\partial \lambda}{\partial \alpha} = 0 = N \frac{\partial \ln n}{\partial \alpha} - \int dx \ g \frac{\partial h}{\partial \alpha}$ $= \frac{\partial \ln n}{\partial \alpha} = \frac{1}{N} \int dx \ g \frac{\partial h}{\partial \alpha} \equiv < \frac{\partial h}{\partial \alpha} > < \frac{\partial h}{\partial \alpha'}$ g/N $\lambda(\alpha_{max}) = N[\ln n(\alpha_{max}) - \langle h(\alpha_{max}) \rangle]$

The bottom line:

Just 2 measured numbers characterize data vis-a-vis f: $< \frac{\partial h}{\partial \alpha}(\alpha_{max}) > < h(\alpha_{max}) > (+maximization of \lambda constrains 1)$ (averages, not highly correlated w shape of data distribution -> no GoF) Look at PDF's examined by Heinrich: (a) $f(x; \alpha) = \frac{1}{\alpha} e^{-x/\alpha}$: (1 param - 2 measured #'s, 1 constraint) Note: $\frac{\partial h}{\partial \alpha} = -\alpha h$ => 0 DoF in λ_{max} (b) $f(x; \alpha_1, \alpha_2) = \frac{1}{\sqrt{2\pi\alpha_2}} exp(\frac{-(x - \alpha_1)^2}{2\alpha_2^2})$: (2 params - 3 measured #'s, 2 constraints) Note: $\frac{\partial h}{\partial \alpha_2} = -\alpha_2 h \implies 0 \text{ DoF}$ i.e. these are special cases where $< \frac{\partial h}{\partial \alpha}(\alpha_{max}) >$ fixes $< h(\alpha_{max}) >$

Illustrate:



However... there is often a partial correlation ...

$$f(x;\alpha) = \frac{1 + \alpha x^{2}}{2(1 + \alpha/3)} \qquad h(x;\alpha) = \ln(1 + \alpha x^{2}) = \sum_{i=1}^{\infty} \frac{(-1)^{i+1}(\alpha x^{2})^{i}}{i}$$

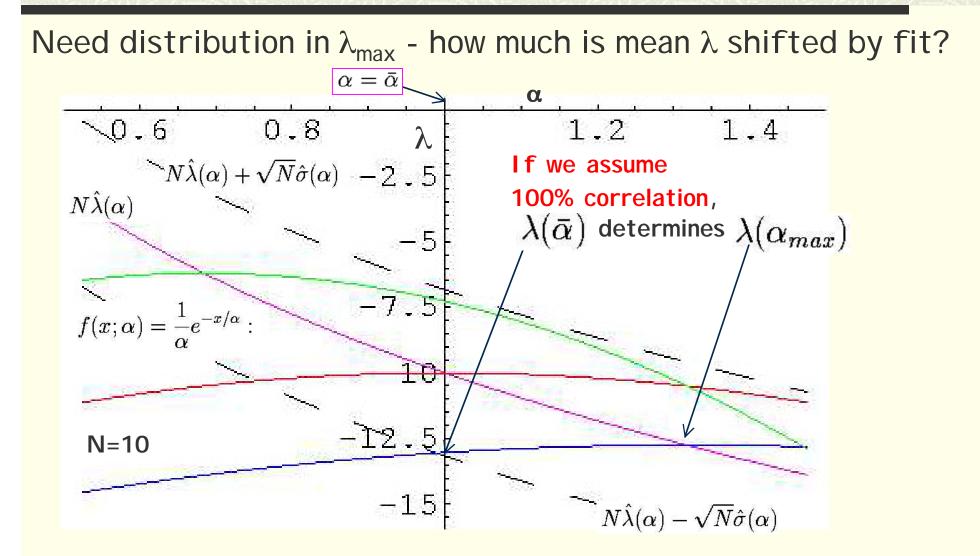
$$f(x;\alpha) = \frac{1 + \alpha x^{2}}{2(1 + \alpha/3)} \qquad h(x;\alpha) = \ln(1 + \alpha x^{2}) = \sum_{i=1}^{\infty} \frac{(-1)^{i+1}(\alpha x^{2})^{i}}{i}$$

$$f(x;\alpha) = \frac{1}{\alpha} \sum_{i=1}^{\infty} (-1)^{i+1}(\alpha x^{2})^{i}$$

$$f(x;\alpha) = \frac{1}{\alpha} \sum_{i=1}^{\infty} (-1)^{i}(\alpha x^{2})^{i}$$

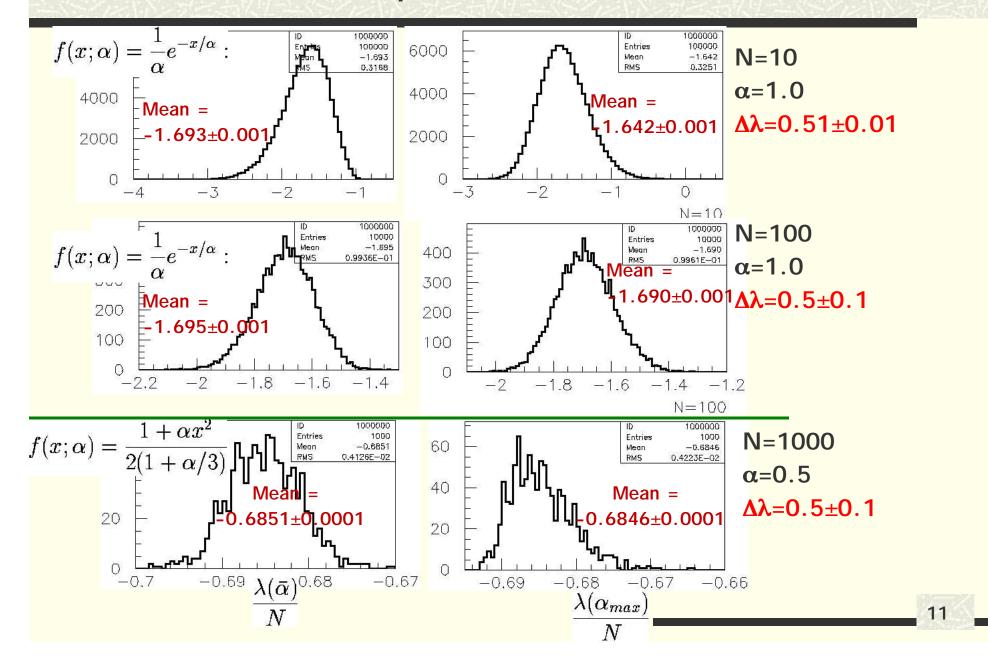
$$f(x;\alpha) = \frac{1}{\alpha} \sum_{i=1}^{\infty} (-1)$$

Can λ_{max} be used within parametrization to set confidence interval?



max $\Delta \alpha = O(\sigma_{\alpha}) - >$ conjecture: $\Delta \lambda = O(0.5)$ per fitted parameter

Test on the same suspects



... can λ_{max} be used within parametrization to set confidence interval?

Maybe -

- with stronger demo of distribution shift, width shift, extension to multiple parameters
- nice for multi-parameter fits reduce to 1-d

Other speculations

tests of fit quality using information generated in UMxL ... without resorting to binning

Test on subsets of fitted sample, e.g. sin2φ₁
result from simultaneous fit over many decay modes compare λ_{max} in different sets w. expectation - "χ²"
 event-by-event distribution {λ_i(α_{max})} - moments, or K-S test

Goodness-of-fit for UMxL • sorry, not possible with λ_{max} alone

Other measures of fit quality

Desirable, especially for multiparameter fitting

- steps toward definition of λ_{max} distribution for general PDF
- speculation exploit info in $\{\lambda_i(\alpha_{max})\}$