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In this posted version, | have added afew dlides (in this black font)
containing afew of thethingswhich | said verbally.



THANKS!

e On behalf of all of us, to the
organizers.

e Toall of you, for making this a
stimulating week.

* To Michael Goldstein, for his help
and good-natured tol erance.



So much to summarize: What
will have alasting impact?

Well-founded methods from elsewherein
academe introduced into HEP and found to be
practical and useful.

HEP-specific adaptations of standard methods
which are understood, practical, and useful.

Methods in which “P” is defined.
Lucid explanations of subtle issues.

With higher threshold: completely new inventions
by professional physicists/amateur statisticians.



Even with these criteria, there is not enough time to mention everything.
| apologize to those | |eft out.



Fred James

Statistics helps to solve these problems:

e Point Estimation: Find the “best” value for a parameter.

e Interval Estimation: Find a range within which the true value

should lie, with a given confidence.

e Hypothesis Testing: Compare two hypotheses. Find which one is

better supported by the data.

e (Goodness-of-Fit Testing: Find how well one hypothesis is
supported by the data.

e Decision Making: Make the best decision, based on data.

|mportant not to confuse these problems, e.g., interval
estimation and goodness-of -fit testing.
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The “Other” PDF's

 |lluminating talks by

— Robert Thorne: Uncertainties in parton related
guantities.

— Mandy Cooper: The ZEUS NLO QCD fit to determine
parton distributions and a..

— Othersin parald: Blumlein...
e Tough business. uncertainties on functions

o PDF s matter: CDF compositeness, high-pT
search reach.



H1 F': Pla, ()?) 1996-97 moderate () and 1996-97 high
(2%, and By Plp ()?) 1998-99 high Q% small .

ZEUS JE-T'.E*_*'“"{.;:J ()?) 1996-97 small = wide range of ()°.

NMC HP Q‘:) Flu,{f( Qd} [:Fpn I Q_] "’FMJ(J_, QJ)‘}

medium .

E665 FIP(x, Q%), F*(x, Q%) medium .
BCDMS FX*(z,Q?), F¥%(x, Q?) large .
SLAC FiP(x,Q?), Fi*(x,Q?) large .

CCFR Fy'"P(z,Q2), FyP(2,Q?) large x , singlet,

valence.

ZEUS F§ P(x, ()%) 1996-97 charm.
E605 pN — pfi + X large a sea.

E866 Drell-Yan asymmetry . d o — 1.
CDF W-asymmetry . /d ratio at high .
CDF Inclusive jet data high & gluon.
DO Inclusive jet data high = gluon.

CCFR Dimuon data NuTev constrains strange sea.
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lmpressive
progress!

1-5% on s!

Higher order

Une can perform global fits to all up-to-date data over wide
range of parameter space. Fit fairly good - some slight
Worries:

Various ways of looking at uncertainties due to errors on
data alone. Much good work on this topic recently. Mo
totally preferred approach - all have pros and cons. Useful
to concentrate on 11" (and Z) and Higgs cross-sections
as measure of uncertainties. Errors rather small using all
approaches ~ | — 3%, Methods can be applied in same
manner to other quantities.

Uncertainties from this source rather small. Uncertainty
from Input assumptions e.g. cr;,-[.Uil. cuts on data,
parameterizations ..., comparable and potentially larger.

Errors from higher orders /resummation potentially large in
some regions of parameter space, and from correlations
between partons feed into all regions (small .« gluon
influences large .« gluon). For some/many processes theory
probably the dominant source of uncertainty at present.
Systematic study needed. Much harder than uncertainties
due to emors. Just beginning.

(Thorne)



Mandy Cooper

Mandy Cooper: The ZEUSNLO QCD fit to
determine parton distributions and a..

* Very stimulating talk, detailing many of the tough
Issues to be dealt with in areal-world example
carried to completion.

e Along with Thorn, highlighted the issue of what
Dc? to use for interval estimation.

e Some controversy over sgrt(2N); needs another
look.

o Along with Thorn, the thorny problem of
theoretical systematics. also needs another |ook?



Reports from the Trenches (1)

Gary Hill and Tyce De Y oung: Application of
Bayesian statistics to muon track reconstruction in
Amanda

Volker Blobel and ClausKleinwort: A New
method for the high-precision alignment of track
detectors

Nigel Smith and Dan Tovey: Dark Matter
Searches

R.K. Bock: Gamma/Hadron separation in
atmospheric Cherenkov telescopes



Identitying Muons from Neutrinos

e We wish to separate muons produced by neutrinos from muons

produced In cosmic ray air showers
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e We use the Earth as a filter, and observe the Northern Hemisphere
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(Hill/DeY oung)



Bayesian Approach (Hill/DeY oung)

e Bayesian posterior takes into account up-down asymmetry of the
muon flux

P (u|data) = L (data|w) P ()
for a muon track hypothesis

p=z,y,z,6,9¢)

e P{11) = P(#) is a one-dimensional prior incorporating the zenith
distribution of the muon flux at AMANDA.

e Misreconstruction rate is reduced by a factor of 410 compared to
the standard reconstruction.

e We simply maximize the posterior, rather than performing a full
marginalization, so reconstruction is still fast.

But....



Very Interesting Technique!

o Let'srelateit to something we do: say particle ID

IN a detector:
— In hot part of detector near beam: |ots of background,
we tighten particle-ID cuts

— Inlower-occupancy part of the detector away from
beam, can loosen certain particle-1D cuts without letting

In alot of background
o Use our knowledge of position-dependent
occupancy rates in Bayes's Theorem to calculate
the probability that a given particle in agiven
location is the species of interest.



Comments:

o |f al input P'sarefrequentist P's, the output
P(particle type | data) i1s afrequentist P.

* We can use this posterior frequentist P like any
other observable for cuts, weights, etc. If we
Independently calibrate the signal efficiency/
background rejection of this use, there is nothing
circular about using our knowledge of the input
occupancies.

 |f the Input occupancy knowledge is imperfect it
will not introduce a bias, but rather make the
technique less powerful.



Bayes's Theorem appliesto any P
satisfying the axioms of probability

Frequentist P: limiting frequency
— Theorem not much use if the unknown Is a constant of
nature: P(unknown) = delta-function at unknown value

Bayesian P: degree of belief
— For constant of nature, P(unknown) can be combination

of delta-function and continuous function, reflecting
degree of belief

|s the Amanda technique “Bayesian”?

— Not if “Bayesian” implies “not frequentist”, as| think is
common, even though frequency P isemulated in a
certain application/limit of degree of belief.

In any case, thanks for the instructive example!



Volker Blobd and Claus Kleinwort:
A New method for the high-precision
alignment of track detectors

(transparency)



Just Beautiful!



Smith/Tovey

Dark lviatter

* What is WIMP Dark Matter?
* How do we conduct Dark Matter searches?
e Case Studies

e Open questions.

Smith & Tovey UKDMC



(Smith/Tovey)

Jpen vuestions

* Would like to understand distributions of pulse-shape estimators in
scintillator detectors (Nal and liquid xenon). Photoelectron arrival
times approximately gamma distributed => expect gamma
distribution of mean photoelectron arrival time. Observe log-normal
orl(l/1)?

* Understand how best to compensate for lack of knowledge of
scintillation pulse start-time. Can assume first photoelectron always
arrives t/n after start of pulse - only the mean figure for a single
exponential PS however. Is there a better way? Can an estimator
less sensitive to nuisance parameters (noise etc.) be found?

True start
of Pulse

First photoelectron t

Smith & Tovey UKDMC



(Smith/Tovey)

Jpen vuestions

* Develop procedure for optimising position of cuts on
discriminating parameters for ZEPLIN and DRIFT. Can cuts just be
optimised for nuclear recoil sensitivity (i.e. independent of cross-
section) or is there a significant advantage to using WIMP model
dependent cuts?

 |s there a better way of analysing events described in terms of
energy and one discriminating parameter? Instead of using the
second to discriminate and the first to interpret (in terms of a
WIMP signal), is there a benefit to be had from cutting on both, or
performing a 2D fit to both parameters?

*  Would like to improve sophistication of DRIFT analysis. Can we
make use of the directional information when discriminating
against background? Currently only use to identify potential
nuclear recoil signal events (passing R, cut) as being WIMP
induced. Can these two steps be combined? Relevant also to
annual modulation in large mass scintillator detectors.

Smith & Tovey UKDMC



This DM search is very important work, well-funded with first-rate
collaboration and detectors. They came with some interesting statistics
Issuesto discuss, and | am sorry that we could not give them the attention

they deserve. | hope that some of the UK folks will take alook at these
|SSuUes.



R.K. Bock




Different methods on the same data set
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Lucid battle-tested studies like this should be required reading
for us and our students!




Reports from the Trenches (I 1)

Chris Parkes. Practicalities of combining analyses:
W physicsresults at LEP

Sergel Redin: Advanced Statistical Techniquesin
the muon g—2 experiment at BNL

Bruce Y absley: Statistical practice at the Belle
experiment, and some questions

Fabrizio Parodi et al: How to include the infor-
mation coming from B¢ oscillationsin CKM fits



Practicalitiesof Combining  ~priq
Analyses: Parkes
W Physics Results at LEP
Now the stuff you don’t

normally see...

RC: An informative talk about
both methodology and sociology'!

An important reminder:
pragmatic considerations
(sometimes even irrational) can
be as important as principlesin
order to get out a result.



Parkes

Conclusions
* Even ‘trivial’ combinations have practical
difficulties and in large collab.s (with big egos!)
can be politically sensitive

 Likelihood curves with correlated systematics
— Introduce nuisance parameters, and fit

* ...and the Standard Model Higgs is light
(with a high degree of belief)

Chris Parkes, Adv. Stat. Techniques in HEP,
Durham, March 2002



« LEP experiments contained a sizable fraction of
world HEP community, and reached very mature
state of analysis.

— We have much to learn from them, both theoretical and
practical.



Sergal Redin: Advanced Statistical Techniquesin the
muon g—2 experiment at BNL

ppM measurement!

G(t) = N, e’ [1 + Acos(wyt+f)
Five parameters, w, is the one of
main interest for new physics
Shows value of examining a
problem analytically: can give
Insight that hard to get from
M.C.



It'sagreat reminder for our students that one can learn alot by analytic
calculation. Welive a atime when a student’ sfirst reaction may beto
run a bunch of GEANT jobs, but it may take alot of CPU and alat of log
paper to discover scaling laws which can be found by hand with some

thought.



