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Abstract

Monte Carlo event generators, such as Herwig++, provide a full sim-

ulation of events at collider experiments. They give a fully exclusive

description of hadronic final states and are therefore crucial tools for

the planning of future experiments and analysing of data from existing

experiments.

The key component that allows this description of high-multiplicity

final states is the parton shower. There has been much recent progress

improving the parton shower description of hard radiation using exact

matrix elements. This thesis describes research into implementing and

improving such methods within the Herwig++ event generator.

In Chapter 1, the parton-shower formalism is reviewed and the struc-

ture of event generators described. Chapter 2 details the specifics of the

Herwig++ parton shower.

In Chapters 3 and 4, the POWHEG next-to-leading-order match-

ing procedure is described, and work implementing the scheme within

Herwig++ is presented. The method is implemented for the processes

e+e− → hadrons and Drell-Yan vector boson production and the results

are compared to experimental data from LEP and the Tevatron. This

work includes the first full implementation of the truncated shower.

A description of the development and implementation of a modified

matrix-element merging scheme is presented in Chapter 5. This scheme

is based on CKKW merging but uses an extension of the POWHEG

idea to improve the method using truncated showers. The method is

implemented first for final-state radiation in e+e− → hadrons and then,

in Chapter 6, extended to include initial-state radiation in Drell-Yan

vector boson production.
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Chapter 1

Introduction

Quantum Chromodynamics (QCD) is the component of the Standard Model of particle

physics that describes the strong interactions of the constituents of hadronic matter.

QCD is constructed as a gauge theory of the SU(3) group of colour, describing the

interactions of the fundamental partons: quarks and gluons. The predictions of QCD

have been tested at a number of collider experiments, including the Large Electron

Positron (LEP) and Tevatron, and it is widely accepted as the correct quantum field

theory of strong interactions.

The Large Hadron Collider (LHC) experiment has just begun operation at CERN.

Its primary aim is to probe the TeV scale at which it is expected that new physics

and corresponding new particles should be found. It is hoped that the experiment will

discover the Higgs Boson, the particle responsible for electro-weak symmetry breaking

in the Standard Model, as well as particles predicted by theories of physics beyond the

Standard Model, such as supersymmetry. In order for these discoveries to be made, it

is crucial that the QCD underlying the proton-proton collisions, which give rise to the

discovery signals as well as the QCD processes, which comprise the background, are well

understood. In particular, discoveries are reliant on accurate Monte Carlo simulations

of QCD.

In this chapter we present an overview of the theory of QCD, in Sect. 1.1, leading to

a description of how the physics of QCD is simulated in Monte Carlo event generators, in

Sect. 1.2. In Sects. 1.1.1 and 1.1.2 we describe the construction of the QCD Lagrangian

and the application of the theory to calculations using perturbative QCD and the parton

model. In Sect. 1.1.3, we illustrate some of the features of calculations in perturbative

QCD using the e+e− → hadrons cross section. In Sect. 1.1.4, we describe the branching

formalism of QCD, providing the treatment of soft and collinear emissions, which forms

2
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Quark spin electronic charge / e Mass

d 1/2 −1/3 (3.5 − 6.0) MeV

u 1/2 +2/3 (1.5 − 3.3) MeV

s 1/2 −1/3 (70 − 130) MeV

c 1/2 +2/3 (1.16 − 1.34) GeV

b 1/2 −1/3 (4.13 − 4.37) GeV

t 1/2 +2/3 (170.1 − 172.5) GeV

Table 1.1: The properties of the six quarks of the Standard Model.

the basis of the parton shower. In Sects. 1.2.1 and 1.2.2, we give an overview of the

stages of the simulation of an event and the Monte Carlo principles used to generate it.

In Sect. 1.2.3, we give a detailed description of the parton-shower phase of the simulation,

where soft and collinear emissions are resummed using a Markovian branching process.

1.1 Quantum Chromodynamics

In this section we briefly review the theory of QCD, following the treatments of Refs. [9–11].

1.1.1 The QCD Lagrangian

In the Standard Model, hadrons are comprised of bound states of six flavours of fermionic

partons known as quarks, the properties1 of which are given in Table 1.1. The Lagrangian

density2 of non-interacting quark fields qi, of flavour i, is given by the Dirac Lagrangian

density3

Lquark =
∑

flavour

q̄i (iγµ∂
µ − mi) qi. (1.1)

1The masses quoted are running masses and are therefore dependent on the renormalisation scheme
and scale used to define them. We refer to Ref. [12] for the definitions of these masses.

2From this point onwards we use Lagrangian to refer to a Lagrangian density.
3We follow the index notation of [11] writing Lorentz indices as lower case Greek letters, colour indices

in the fundamental representation (quarks) as lower case letters and colour indices in the adjoint
representation (gluons) as upper case letters. Spinor indices are suppressed throughout.
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Equation 1.1 exhibits an invariance under the global set of transformations in which

the quark fields transform according to

q → Uq, (1.2)

where U is a unitary matrix.

QCD dictates that the quarks possess an additional quantum number, colour charge,

and may exist in three colour states. The quark fields may be represented by the

vector qa
i , where a = [1, 2, 3], in the fundamental representation of the SU(3) group of

colour. QCD is constructed as a gauge theory, requiring local gauge invariance under

the transformations of the SU(3) group of colour.

The SU(N) group

The SU(N) group refers to the group of N ×N unitary matrices with unit determinant.

The simplest representation of the group is the fundamental representation, where the

group transformations, Uab, are given by the SU(N) matrices themselves. The quark

fields in Eq. 1.1 exist in the fundamental representation of the SU(3) group and are

therefore represented by a three-component vector, defining the quark’s colour state.

The group transformations may be expressed in terms of a set of N2 − 1 hermitian,

traceless group generators, tA, defining the infinitesimal group transformations. The

group transformations are expressed in terms of the group generators according to

Uab = exp
[
iαCtC

]ab
. (1.3)

The conventional representation of these generators is given by the Gell-Mann matrices

which are normalised such that

tr
[
tAtB

]
= TF δAB, (1.4)

where TF = 1/2. The group generators tA satisfy the Lie algebra,

[
tA, tB

]
= ifABCtC , (1.5)

where fABC are the structure constants of the group which are completely anti-symmetric.
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Another important representation of the group is the adjoint representation, where

the representation space consists of the group generators.. The Lie algebra of the group

generators, TA,

[
TA, TB

]
= ifABCTC , (1.6)

implies that the structure constants themselves provide a representation of the group

generators, with a convenient choice being

(
TA
)

BC
= −ifABC . (1.7)

The gluon fields, required to construct a Lagrangian that is invariant under local SU(3)

transformations, exist in the adjoint representation and may therefore be represented by

a vector in the adjoint representation, defining the eight gluon colour states.

An important result, which will feature in calculations involving the generators of

the SU(N) group representations, are the Casimir operators, where the operator given

by the sum of the generator matrices squared is proportional to the identity matrix,

tAtA = Cr1, (1.8)

where Cr is the colour factor of the representation r. The colour factors of the funda-

mental and adjoint representations of the SU(N) group are given by

CF =
N2 − 1

2N
, CA = N. (1.9)

The SU(3) gauge theory

The theory of QCD is constructed analogously to the gauge theory of Quantum Electro-

dynamics (QED) where the global gauge invariance exhibited by the free-field Lagrangian

is extended to a local gauge invariance by the introduction of a new vector boson field.

In QED the gauge symmetry group is U(1) and the introduced gauge boson is the pho-

ton; in QCD the gauge symmetry group is SU(3) and the gauge bosons are a set of eight

gluon fields.



Introduction 6

In order for the Lagrangian in Eq. 1.1 to be invariant under the local gauge trans-

formation

qa → U(x)abqb, (1.10)

the derivative ∂µ in Eq. 1.1 is replaced by the covariant derivative [10] Dµ defined by

(Dµ)ab = ∂µδab + igs

(
tCGµ

C

)
ab

. (1.11)

This procedure introduces the vector boson fields Gµ
C which correspond to the eight

gluon fields and transform under the local gauge transformation according to4

tAGµ
A → U(x)tAGµ

AU−1(x) − i

gs

U(x)
(
∂µU−1(x)

)
, (1.12)

guaranteeing that local SU(3) gauge invariance is satisfied. The parameter gS is the

coupling constant of the introduced interaction between the quark and gluon fields. We

must include the free-field Lagrangian for the introduced gluon fields which is given by

the gauge invariant, renormalisable combination of the field strength tensor,

Lgluon = −1

4
GA

µνG
µν
A , (1.13)

where GA
µν is the field strength tensor defined by

GA
µν = ∂µGA

ν − ∂νG
A
µ − gsf

ABCGA
µ GB

ν . (1.14)

1.1.2 Perturbative QCD

The calculation of S-Matrix elements in the gauge theories of the Standard Model is

performed in the paradigm of perturbation theory, where the interaction terms of the

Lagrangian are viewed as perturbations to the free Lagrangian. Matrix elements are

constructed as series in the couplings of the interaction terms. If these couplings are

small then this series may be approximated by truncating the series at finite order in the

couplings. These matrix elements, M, are then related to cross sections, σ, according

4For ease of notation, the indices on the gauge transformation, U(x), and the fundamental represen-
tation group generators, tA, have been suppressed.
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to

dσ (p1, p2 → {pf}) =
1

2E12E2 |v1 − v2|
dΦn |M|2 , (1.15)

where dΦn is the Lorentz invariant n-body phase-space element, which is given by

dΦn =

(
∏

f

d3pf

2Ef(2π)3

)
(2π)4δ4

(
p1 + p2 −

∑

f

pf

)
. (1.16)

The variables p1,2 and v1,2 are the momenta and velocities of the incoming particles and

{pf} are the momenta of the final-state particles. The prescription for calculating the

matrix elements is given by the evaluation of all contributing Feynman diagrams by

applying a set of Feynman rules.

Feynman rules of QCD

The Feynman rules of QCD may be read off from the QCD Lagrangian. From the quark

Lagrangian, we obtain the quark propagator and the qq̄g vertex shown in Fig. 1.1. These

rules are analogous to those appearing in QED.

In order to define the propagator of the gluon fields, the operator associated with

terms bilinear in the gluon field should be inverted. In order to define an inverse, it

is necessary to introduce gauge-fixing terms. This is done according to a prescription

due to Faddeev and Popov [16], introducing an additional, gauge-fixing term to the

Lagrangian [11],

Lgauge−fixing = − 1

2λ

(
∂µGA

µ

)2
. (1.17)

The gluon propagator is given in Fig. 1.2. An important choice of the gauge parameter,

λ, is the Feynman gauge, λ = 1, where the gluon propagator has its simplest form.

The free gluon Lagrangian in Eq. 1.13 contains terms that yield the Feynman rules for

three- and four-gluon vertices given in Fig. 1.2. These terms originate from the fact that

the QCD field strength tensor in Eq. 1.14 contains an additional term, which is quadratic

in the the gluon field, leading to cubic and quartic terms in the free Lagrangian. These

extra terms stem from the non-abelian nature of QCD where the group generators do not

commute. The gluon self interactions have no analogue in abelian theories and represent

the major difference between QCD and QED.
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a b

A

cb

i(�p+m)
p2−m2+iǫδab

−igsγ
µ(tA)bc

p

Figure 1.1: Feynman rules obtained from the quark Lagrangian.

In non-abelian gauge theories, an extra ghost term must also be included in order

to cancel the propagation of unphysical gluon field polarisations [10]. This is done by

adding the ghost Lagrangian

Lghost = ∂µφ
A†
{
Dµ

ABφB
}

, (1.18)

where φB represents a scalar ghost field of Grassman variables. The ghost Lagrangian

results in additional Feynman rules given in Fig. 1.3. These ghost fields are unphysical

and should cancel in all calculations.

The full QCD Lagrangian is therefore given by the sum of the quark Lagrangian, the

free quark Lagrangian together with the gauge fixing and ghost Lagrangian terms,

LQCD = Lquark + Lgluon + Lgauge−fixing + Lghost. (1.19)

As an alternate choice of the gauge fixing Lagrangian, we could use

Lgauge−fixing = − 1

2λ

(
nµGA

µ

)2
, (1.20)

introducing the gauge vector n. This defines a class of axial gauges [11], where the gluon

propagator has the more complicated form

δAB

[
−gµν +

nµpµ + pµnν

n · p − (n2 + λp2) pµpν

(n · p)2

]
i

p2 + iǫ
. (1.21)

The advantage of this class of gauges is that the propagator projects out two physical

polarisation states, such that unphysical polarisation states do not propagate and thus

it is not necessary to introduce ghost fields. For this reason, this gauge is often referred

to as the physical gauge.
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νµ
δAB

[
−gµν + (1 − λ) pµpν

p2+iǫ

]
i

p2+iǫ
p

p2

p1

p3

−gsf
ABC(p1 − p2)

ρgµν

B, µ

C, ρA, µ

−gsf
ABC(p2 − p3)

µgνρ

−gsf
ABC(p3 − p1)

νgρµ

−ig2
sf

XACfXBD (gµνgρσ − gµσgνρ)

A, µ B, ν

C, ρD, σ

−ig2
sf

XADfXBC (gµνgρσ − gµσgνσ)

−ig2
sf

XABfXCD (gµρgνσ − gµσgνρ)

Figure 1.2: Feynman rules obtained from the gluon Lagrangian. All momenta in the three
gluon vertex are defined to be incoming.

A B

A, µ

CB

iδAB

p2+iǫ

−gsf
ABCpµ

p

p

Figure 1.3: Feynman rules obtained from the ghost Lagrangian.

The running coupling of QCD and asymptotic freedom

In Quantum Field Theories, ultra-violet singularities arise from loop diagrams in which

virtual particles propagate with unconstrained momentum. These divergent terms are

controlled by renormalisation, where the physical set of parameters of the theory are

defined in terms of the bare parameters, that appear in the Lagrangian, such that ob-

servable quantities are finite. The renormalisation procedure introduces a renormalisa-

tion scale (µ2) and scheme dependence into the physical parameters of the theory. The

condition that physical observables should not depend on the unphysical renormalisa-

tion scale may be expressed as differential equations known as the renormalisation group

equations. The renormalisation group equations describe how these parameters evolve

as the renormalisation scale is changed. The most important parameter of the QCD

Lagrangian is the coupling gS, which it is conventional to write in the form

αS =
g2

S

4π
. (1.22)
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This strong coupling is referred to as a running coupling, exhibiting a dependence on

the scale, Q2, according to the renormalisation group equation

Q2 ∂αS

∂Q2
= β(αS). (1.23)

The beta function is given to leading-order by [14, 15]

β(αS) = −α2
Sb + O(α2

S), (1.24)

with

b =
11CA − 2nf

12π
, (1.25)

where nf is the number of flavours of light quarks. This yields the running coupling as

a solution to Eq. 1.23,

αS(Q2) =
αS(µ2)

1 + αS(µ2)b log (Q2/µ2)
. (1.26)

It is clear that Eq. 1.26 suggests an asymptotically free theory where, in the limit

Q2 → ∞, αS(Q2) → 0. This means that, provided we restrict ourselves to hard scat-

tering processes, the strong coupling is small and perturbation theory is valid. This

behavior stems from the fact that the β-function of QCD is negative (whereas in QED

it is positive), which in turn originates from the presence of the gluon self interaction

vertices that have no analogue in QED.

Conversely, Eq. 1.26 suggests that at small scales the strong coupling becomes large,

signalling the end of the perturbative regime. We may quantify the region of validity of

the perturbative expansion by introducing the scale Λ, defined by [11]

log
Q2

Λ2
= −

∫ ∞

αS(Q2)

dx

β(x)
, (1.27)

such that Λ characterises the scale at which αS becomes large and perturbation theory

is valid for scales Q2 ≫ Λ2. This definition allows the leading-order running coupling

Eq. 1.26 to be written as

αS(Q2) =
1

b log (Q2/Λ2)
. (1.28)
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p1

p2

q1

q2

Figure 1.4: The leading-order diagram for the process e+e− → hadrons.

The fact that the running coupling increases as smaller scales are probed also points

to the property of confinement. Confinement refers to the phenomenon that partons

are found in colour-singlet hadron states and that free partons are never observed. The

increased strength of the strong interaction at low scales suggests a potential, between

colour-singlet combinations of quarks, from which they cannot escape. A full description

of the formation of hadrons is outside the domain of perturbation theory and relies on

non-perturbative models of QCD which are not fully developed.

1.1.3 The e+e−
→ hadrons cross section

One of the simplest QCD processes we can calculate is e+e− → hadrons, describing

hadron production at an e+e− collider. Since many of the general features of QCD

amplitudes are illustrated by this simple process correction, we will spend some time

calculating its cross section.

The Born cross section

To leading order there is only a single diagram contributing to the process in which

an electron and positron annihilate to an intermediate vector boson which decays to a

quark-anti-quark pair, as shown in Fig. 1.4. For simplicity we will, for now, assume that

the intermediate boson is a photon and that the emitted quarks and incoming leptons

are massless.

Applying the Feynman rules to the diagram in Fig. 1.4 yields the matrix element,

M = iQqe
2v̄(p2)γµu(p1)

gµν

Q2
ūa(q1)γνδabvb(q2), (1.29)
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where Qqe is the charge of the quark, Q is the momentum of the intermediate photon, q1,2

are the electron and positron momenta and q1,2 are the quark and anti-quark momenta.

In order to calculate the cross section according to Eq. 1.15, we must find the spin-

averaged matrix-elements squared by multiplying Eq. 1.29 by its hermitian conjugate,

summing over spins and dividing by the number of incoming spin states. In doing

this, the result will contain two traces over the fermionic indices: a leptonic trace and a

hadronic trace. Furthermore, once integrated over the Lorentz invariant two-body phase

space, dΦ2, the result will have the form [10],

∫
dΦ2

∑
|M|2 = Q2

qe
4 1

Q2
Lµν

∫
dΦ2H

µν , (1.30)

where, Lµν and Hµν are the tensors resulting from the leptonic and hadronic traces. Since

we have integrated over the final-state momenta, the only momenta that
∫

dΦ2H
µν can

depend on is Q and therefore its Lorentz structure must be

∫
dΦ2H

µν = H1g
µν + H2Q

µQν . (1.31)

Appealing to gauge invariance, both tensors must satisfy Ward identities, implying that

QµH
µν = 0. (1.32)

This further limits the Lorentz structure of Eq. 1.31 to

∫
dΦ2H

µν = H

(
gµν − QµQν

Q2

)
. (1.33)

Contracting Eq. 1.33 with the metric tensor we find that

H =
1

3

∫
dΦ2gµνH

µν , (1.34)

and, applying the Ward identity (Eq. 1.32) to the leptonic trace, we can write

∫
dΦ2

∑
|M|2 = Q2

qe
4 1

3

1

Q2
gµνLµν

∫
dΦ2gρσHρσ. (1.35)

The leptonic production and hadronic decay pieces of the amplitude are now factorised

and can be treated independently. This will significantly simplify the calculation of

cross sections, especially for higher order radiative corrections. We note, however, that
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in performing this decomposition we have essentially integrated out correlations between

the initial- and final-state particles.

We now turn our attention to the leptonic tensor Lµν . Applying the completeness

relations for on-shell fermions,

∑

s

us(p)ūs(p) = �p + m,
∑

s

vs(p)v̄s(p) = �p − m, (1.36)

we can write this as,

Lµν = tr [�p1γµ�p2γν ] . (1.37)

This results in the leptonic factor

gµνLµν = 8p1 · p2 = 4Q2. (1.38)

The hadronic tensor has exactly the same form as the leptonic tensor but also includes

a colour factor δabδab = NC , which comes from the colour degrees of freedom of the

external quarks, we obtain

gµνHµν = 8NCq1 · q2 = 4NCQ2. (1.39)

The two-body phase-space measure, over which the matrix-elements squared should be

integrated, is given by

dΦ2 =
dΩ

32π2
, (1.40)

where dΩ represents the integration measure of the solid angle of either particle in the

centre-of-mass frame. Finally, integrating over the solid angle and including a flux factor

of 1/(2Q2) we obtain the Born cross section

σb = NCQ2
q

4πα2

3Q2
, (1.41)

where we have introduced α = e2/4π.
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Figure 1.5: The diagrams contributing to the radiative corrections to the process e+e− →
hadrons.

O (αS) radiative correction

We now consider the O(αS) radiative correction to the process. The correction has two

contributing diagrams, as shown in Fig. 1.5, each with a final state containing the quark

and anti-quark together with an additional gluon.

The same arguments that we used for the Born cross section apply for the radiative

corrections and therefore the radiative diagrams give rise to an amplitude of the same

form as Eq. 1.35 but with the replacement dΦ2 → dΦ3. The leptonic trace Lµν is again

given by Eq. 1.38 and the hadronic trace must be calculated from the diagrams in Fig 1.5.

Taking the modulus squared of the radiative diagrams, we find four traces contribut-

ing to Hµν . Each of these receives an identical colour factor tAabt
A
ba which we identify

as being the trace of the Casimir operator of the fundamental representation of SU(3)

(Eq. 1.8), giving the colour factor NCCF . The hadronic trace is given by

Hµν = NCCFg2
s

{
1

(q1 + q3)4
tr [(�q1 + �q3)γ

ρ
�q1γρ(�q1 + �q3)γν�q2γµ] (1.42)

− 1

(q1 + q3)2(q2 + q3)2
tr [(�q1 + �q3)γ

ρ
�q1γν(�q2 + �q3)γ

ρ
�q2γµ]

− 1

(q1 + q3)2(q2 + q3)2
tr [�q1γ

ρ(�q1 + �q3)γν�q2γ
ρ(�q2 + �q3)γµ]

+
1

(q2 + q3)4
tr [�q1γν(�q2 + �q3)γ

ρ
�q2γρ(�q2 + �q3)γµ]

}
.

This can be evaluated with standard trace identities yielding

gµνHµν = NCCF g2
S

4 [Q2(q1 · q2) + (q2 · q3)
2 + (q1 · q3)

2]

(q1 · q3)(q2 · q3)
. (1.43)
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The three-body phase space is most conveniently expressed in terms of momentum-

fraction variables, {xi}. After integrating out angles defining the plane of the final-state

particles this is given by

∫
dΦ3 =

Q2

128π3

∫
dx1dx2, (1.44)

where the momentum fraction variables are defined by

xi =
2(qi · Q)

Q2
, (1.45)

and the integration region is {xi} ∈ [0, 1] with x1+x2 > 1. The invariant mass of all com-

binations of the external parton momenta can be expressed in terms of the momentum

faction variables according to

2(q1 · q2) = s(1 − x3),

2(q1 · q3) = s(1 − x2), (1.46)

2(q2 · q3) = s(1 − x1), .

where s = Q2 is the centre-of-mass energy squared.

Finally, expressing Eq. 1.43 in terms of the variables {xi} and defining αS = g2
s/(4π),

we obtain the cross section contribution of the O(αS) radiative correction

σr = σbCF
αS

2π

∫
dx1dx2

x2
1 + x2

2

(1 − x1)(1 − x2)
. (1.47)

Singularity structure of the radiative corrections

The differential cross section given in Eq. 1.47 is singular in the limits x1 → 1 and

x2 → 1. The nature of these singularities may be seen by expressing the momentum

fractions defined in Eq. 1.45 in terms of the opening angles between the partons θij ,

1 − x1 = x2x3(1 − cos θ23), (1.48)

1 − x2 = x1x3(1 − cos θ13).

The singular regions of the differential cross sections therefore correspond to the limits

where the gluon is collinear to the quark (θ13 → 0) or the anti-quark (θ23 → 0) or is soft

(x3 → 0).



Introduction 16

Since the cross section is enhanced in the region of phase space where the gluon is

collinear to either the quark or anti-quark it is tempting to view the O(αS) contribution

of Eq. 1.47 as a correction to the Born cross section, describing the emission of a gluon

from either the quark or the anti-quark. This picture forms the basis of the parton-

shower formalism which we describe in Sect. 1.2.3. For now we will motivate the idea by

interpreting Eq. 1.47 as describing a gluon emission which we assign to either the quark

or anti-quark.

In order to describe the kinematics of 1 → 2 emissions it is convenient to introduce

the Sudakov decomposition of momentum where the parton momenta are parameterised

by αi, βi and q⊥i
, as defined by

qµ
i = αip

µ + βin
µ + qµ

⊥i
. (1.49)

Here, the vectors p and n define the Sudakov basis where, p is the momentum of the emit-

ting parton. The vector n is a general light-like reference vector which we choose to be a

light-like vector with three-momenta −p [3]. The component of momentum transverse

to the emitting parton momentum, is given by q⊥i
, such that p · q⊥i

= n · q⊥i
= 0.

We first consider the emitter of the gluon to be the quark and refer to the anti-quark

as being a spectator to the emission. In the massless limit, the reference vectors p and

n are given by the momenta of the quark and anti-quark of the underlying Born parton

configuration. In the centre-of-mass frame the basis vectors are

pµ =

√
s

2
(1; 0, 0, 1) , nµ =

√
s

2
(1; 0, 0,−1) . (1.50)

From the definitions of the Sudakov basis in Eqs.1.49-1.50, we find that the momen-

tum fraction variables are given by

xi = αi + βi. (1.51)

If we assume that the direction of the spectator anti-quark is unchanged by the

emission, then we have q⊥2 = 0 and by momentum conservation we obtain

q⊥1,3 = ±p⊥. (1.52)
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Momentum conservation also demands that

∑

i

αi = 1,
∑

i

βi = 1. (1.53)

The enhanced collinear and soft regions of phase space, correspond to the limit where

the gluon’s transverse momentum5, p⊥, goes to zero. It is therefore natural to express

the phase space of the emission in terms of the relative transverse momentum and

an auxiliary variable. A convenient choice for the auxiliary variable is the momentum

fraction of the emission, z, which is defined to be the fraction of the emitter’s momentum

which is carried by the corresponding parton after the emission. From the definition of

the Sudakov basis (Eq. 1.49), we identify z = α1. If we demand that the resultant

partons are on-shell, we find the relation,

βi =
|q⊥i

|2
αis

. (1.54)

Since we assume the direction of the anti-quark is preserved, we have α2 = 0 and the

full set of Sudakov parameters can be expressed in terms of z and p⊥ according to

α1 = z, β1 =
p2
⊥

zs
,

α2 = 0, β2 = 1 − p2
⊥

z(1 − z)s
, (1.55)

α3 = 1 − z, β3 =
p2
⊥

(1 − z)s
.

Equation 1.51 may then be solved, yielding

p2
⊥ =

s(1 − x1)(1 − x2)(x1 + x2 − 1)

x2
2

, (1.56)

z =
x1 + x2 − 1

x2

.

The phase-space measure defined in Eq. 1.44 may be written in terms of these variables

according to the relation,

dx1dx2 = z(1 − z)(2 − x1 − x2)dz
dp2

⊥

p2
⊥

. (1.57)

5In the following, it is assumed that p⊥ refers to the modulus of the magnitude of the space-like
transverse momenta q⊥1,2

.
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The corresponding kinematics for the limit where we consider the gluon to be emitted

from the anti-quark is given by the same expressions under the replacement x1 ↔ x2.

The integral in Eq. 1.47 is dominated by the enhanced regions of phase space, ap-

proached in the limit p⊥ → 0. We can therefore approximate the integral by expanding

the integrand in p⊥ and neglecting terms which do not receive an enhancement. For

emissions where the quark is the emitter, this approach yields,

σr = σbCF
αS

2π

∫
dz

dp2
⊥

p2
⊥

[
1 + z2

1 − z
+ O

(
p2
⊥

)]
. (1.58)

The divergent regions of this integral can be regulated by introducing the cut-offs, Q0

and ǫ, parameterising the singular regions of the emission phase space, according to

Q2
0 < p2

⊥, ǫ < z < 1 − ǫ. (1.59)

The integral in Eq. 1.58 then yields single and double logarithmic terms of the form

∝ αS

2π
log

(
Q2

Q2
0

)
, ∝ αS

2π
log

(
Q2

Q2
0

)
log

(
1

ǫ

)
. (1.60)

Here, the single logarithm terms may be attributed to collinear regions of phase space

and the double logarithm to soft and collinear regions of phase space.

The presence of these divergent terms appears to spoil the interpretation of σr as the

leading-order contribution to the observable three-jet cross section. However, in order

to define this observable we must define what is meant by a three-jet configuration and

therefore define jet resolution criteria. In our example, this corresponds to introduction

cuts to the phase space of the gluon emission, avoiding the regions of soft and collinear

emission where the third jet is not resolved, exactly as was done in Eq. 1.59. The

parameters, Q0 and ǫ, that we introduced as regulators can therefore be thought of a

physical parameters defining what is meant by a resolvable emission.

Furthermore, according to a general theorem due to Kinoshita, Lee and Nauenberge

[18–20], singularities of this type will cancel, at all orders in αS, in any infra-red safe

observable, defined as an observable that is insensitive to the emission of soft or collinear

partons. For the inclusive cross section for e+e− → hadrons, the singularities that we

have seen are introduced from the O(αS) radiative corrections are cancelled by identical

singularities of opposite sign that arise from the O(αS) virtual corrections.
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Mn

qĩj

qi

qj

Figure 1.6: A correction to a general process with matrix element, Mn, due to the branching
of an external parton ĩj(qeij) → i(qi)j(qj).

1.1.4 The parton-branching formalism

The presence of enhanced terms corresponding to soft and collinear emissions is a gen-

eral feature of perturbation theory. In order to illustrate their origin we consider the

correction to a general process, characterised by the matrix element Mn, resulting from

the branching of an external parton ĩj into partons i and j, as shown in Fig. 1.6. The

matrix element of this correction will contain a factor, arising from the denominator of

the emitter (parton ĩj),

1

q2
eij
− m2

eij

. (1.61)

This denominator is singular in the limit that the emitter is on-shell (q2
eij
→ m2

eij
). In the

limit where the partons are massless, this becomes

1

EiEj (1 − cos θij)
, (1.62)

where Ei,j and θij are the energies of the emitted partons and the angle between them

respectively. We therefore find the general result that a matrix element is divergent in

the limit that either, an external parton is soft (Ei,j → 0) or a pair of external partons

are collinear (θi,j → 0), as was seen in Sect. 1.1.3. These divergent regions are the same

as those found in Sect. 1.1.3.

An important result of QCD is that, in the enhanced soft and collinear limits,

these corrections factorise into a universal set of Altarelli-Parisi splitting function [21],

Peij→ij(z), according to

dσn+1 = dσn
αS (p2

⊥, z)

2π

dp2
⊥

p2
⊥

dzPeij→ij(z). (1.63)
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Mn
(qq + qg)

qg

qq

Figure 1.7: A correction, Mn+1, to a general process with matrix element, Mn, due to the
emission of a gluon from a final-state quark.

These splitting functions are independent of the underlying process, depending only on

the parton species involved in the branching.

In order to illustrate this factorisation, we consider the case of a gluon emission from

a final-state quark. The branching is shown in Fig. 1.7. Applying the Feynman rules to

this diagram yields the matrix element

Mn+1 = gst
C
abǫ

⋆C
µ (qg)ūb(qq)γ

µ (�qq + �qg)

2(qq · qg)
M′

na, (1.64)

where M′
na, refers to the underlying n-body matrix element with the spinor of the

emitting parton removed and has an implicit spinor index.

Taking the modulus squared of this and summing over colours and spins, yields the

matrix-element squared

∑
|Mn+1|2 = g2

sCF

∑
ǫµǫ⋆

ν

1

(2qq · qg)2
tr
[
M′†

naγ
0(�qq + �qg)γ

µ
�qqγ

ν(�qq + �qg)M′
na

]
.

(1.65)

It is convenient to work in the physical gauge [9] with a light-like gauge vector n where

the sum over polarisation vectors gives

∑

polarisations

ǫµ(q)ǫ⋆
ν(q) = −gµν +

qµnν + qνnµ

n · q . (1.66)

Applying the usual Dirac algebra to Eq. 1.65, yields6

∑

spin,colour

|Mn+1|2 = g2
sCF

1

(qq · qg)(qg · n)
(1.67)

× tr
[
M′†

naγ
0 (n · (qq + qg)(�qq + �qg) + n · qq�qq − qq · qg�n)M′

na

]
.

6The
∑

here denotes summation over external spin, colour and polarisation states.
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We now appeal to the Sudakov decomposition, as defined in Eq. 1.49, writing Eq. 1.67

in terms of the relative transverse momentum of the branching, p⊥. This can then be

evaluated, retaining only terms at O(1/p2
⊥) that are associated with enhanced emissions.

The reference vectors of the Sudakov basis may be conveniently chosen by setting p to

the on-shell (p2 = 0) momenta of the parton correspond to the emitter in the underlying

process. The gauge vector is set equal to the Sudakov reference vector n which is taken

to be a light-like vector with three-momentum opposite that of p. Applying momentum

conservation and on-shell relations to this basis, together with the definition αq = z, we

write the external parton momenta as,

qµ
q = zpµ +

p2
⊥

2zp · nnµ + pµ
⊥, (1.68)

qµ
g = (1 − z)pµ +

p2
⊥

2(1 − z)p · nnµ − pµ
⊥.

Inserting these momenta into Eq. 1.67, we find

∑
|Mn+1|2 = g2

sCF
1

(qq · qg)

(
1 + z2

1 − z
tr
[
M′†

naγ
0
�pM′

na

]
+ O(p⊥)

)
. (1.69)

We now note that the remaining momentum, p, featuring in the trace, is the on-shell

momentum of the external momentum corresponding to the underlying n-body process.

We can therefore apply the spin sum relation

∑

spin

u(p)ū(p) = �p, (1.70)

where ū(p) is precisely the spinor that was removed from Mn in our definition of M′
na.

We can therefore write Eq. 1.69 in the factorised form

∣∣M̄n+1

∣∣2 = 8παS
1

(qq · qg)

1 + z2

1 − z

∣∣M̄n

∣∣2 . (1.71)

The n + 1-body phase space of these corrections can also be written in terms of the

n-body phase space of the underlying process. Singling out the the momentum of the

emitter, p, we can write the n-body phase-space measure as,

∫
dΦn =

∫
...

d3p

(2π)32Ep

, (1.72)
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where we have omitted the integrals over other momenta and the δ-function ensuring

momentum conservation. The n + 1-body phase space of the correction may similarly

be written, highlighting the integrals over the momentum of the partons involved in the

branching, as

∫
dΦn+1 =

∫
...

d3qq

(2π)32Eq

d3qg

(2π)32Eg

. (1.73)

In the Sudakov decomposition, the three-momentum of the off-shell momentum emitter

in the correction, qq + qg, is related to the three momentum of the on-shell emitter in

the n-body process, p, according to

qq + qg = p

(
1 − p2

⊥

4Epz(1 − z)

)
, (1.74)

and therefore we can write Eq. 1.73 as

∫
dΦn+1 =

∫
...

d3p

(2π)32Eq

d3qg

(2π)32Eg
. (1.75)

The integral over the gluon momentum can be written in terms of z and p⊥ according

to

∫
d3qg

(2π)32Eg
=

dzdp2
⊥

16π2(1 − z)
, (1.76)

where we have integrated over the azimuthal angle7. Finally we note that we can write

Eq = zE + O(p⊥), yielding the factorised phase-space measure,

∫
dΦn+1 =

∫
dΦn

dzdp2
⊥

16π2z(1 − z)
. (1.77)

Combining the factorised phase-space measure with the the factorised matrix-element

result (Eq. 1.71) we find the factorised cross section correction

dσn+1 = dσn
dp2

⊥

p2
⊥

dz
αS

2π
Pq→qg, (1.78)

7This corresponds to ignoring spin correlations which we do throughout.
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Mn

qg1
qg2

q1 q2 qq

(p⊥1
, z1) (p⊥2

, z2)

Figure 1.8: A time-like shower line with two successive gluon emissions. The diagram gives
a LL contribution only in the region where the emissions are strongly ordered,
q2
1 ≫ q2

2.

where,

Pq→qg = CF

[
1 + z2

1 − z

]
, (1.79)

is the Altarelli-Parisi splitting function for the branching, q → qg. We note that this

general result matches Eq. 1.58.

The collinear splitting functions of branchings involving other partons may be derived

by a similar treatment with the result

Pg→gg = CA

[
z

1 − z
+

1 − z

z
+ z(1 − z)

]
, (1.80)

Pg→qq̄ = TF [1 − 2z(1 − z)] . (1.81)

Space-like emissions

So far we have considered collinear emissions from final-state partons. This results

in the intermediate parton, along the emission line, gaining a virtuality, q2
a > 0 and

is therefore referred to as a time-like branching. Exactly the same factorisation result

(Eq. 1.63) applies for emissions from initial-state partons. In this case the corresponding

intermediate parton gains a virtuality, q2
a < 0 and is referred to as a space-like branching.

Multiple collinear emissions

We now consider the corrections due to multiple collinear emissions from a parton.

Figure 1.8 shows the correction due to the successive emission of two collinear gluons

from a quark line.

The approximations leading to the factorised form in Eq. 1.78 relied on the fact

that the quark, from which the gluon was emitted, was on-shell prior to the emission.
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Working backwards along the emitting line in Fig. 1.8, we see that in emitting the gluon

at (p⊥2 , z2), the corresponding emitter becomes off-shell by a virtuality

q2
2 = (qq + qg2)

2 =
p2
⊥2

z2(1 − z2)
. (1.82)

In treating the emissions at (p⊥1, z1), this finite virtuality can only be neglected in the

limit that it is small in comparison to the virtuality of the emitter momentum, q1, i.e.

q2
1 ≫ q2

2.

This condition is known as strong ordering. The relationship between the virtuality of

the emitter and relative transverse of the emission dictates that, for non-soft emissions,

the strong-ordering condition can be equivalently expressed as

p2
⊥1

≫ p2
⊥2

. (1.83)

Taking the non-soft, collinear limit of Eq. 1.78 we find that in this case, the emissions

shown in Fig. 1.8 result in a correction proportional to,

(αS

2π

)2
∫ Q2

Q2
0

dp2
⊥1

p2
⊥1

∫ p2
⊥1

Q2
0

dp2
⊥2

p2
⊥2

=
1

2

(αS

2π

)2

log2

(
Q2

Q2
0

)
. (1.84)

The double logarithms here are seen to only feature for emissions in which the strong-

ordering condition holds. In particular, reversing the ordering condition to the region

where p2
⊥1

≪ p2
⊥2

, will yield only a single large logarithm while still containing two

powers of αS, such a configuration is therefore subleading.

While the divergent regions of Eq. 1.58 are avoided by introducing resolution criteria,

a description of exclusive jet observables will contain the logarithmic terms of Eq. 1.60. If

the resolution parameters are small then these logarithms will dominate the observable.

Furthermore, each extra power of αs will also introduce a large logarithm, invalidating

the truncation of the perturbative series and necessitating an all-orders-in-αS resumma-

tion of these enhanced contributions. The DGLAP equation, which we will go on to

discuss, provides the means of performing this leading-logarithmic (LL) resummation.

We note that for the non-soft, collinear emissions the strong ordering in virtuality

not only implies ordering in the transverse momentum of the emission but also the

opening angle of the emissions or any variable that parameterises the collinear limit of

the emission. The variable with which the strong-ordering condition is applied is referred
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to as the ordering variable and is a key characteristic of parton showers. Different choices

of ordering variable do not change the treatment of the leading logarithms but will affect

subleading terms.

The DGLAP equation

The branching formalism, introduced in Sect. 1.1.4, leads to a picture of partons evolving

in an ordering variable, t, (which may be virtuality or otherwise) undergoing an emission

in evolving from t → t + δt with probability Peij→ij(t)δt, where from Eq. 1.63,

Peij→ij(t)δt =
δt

t

∫
dz

αS(t, z)

2π
Peij→ij(z). (1.85)

Parton density functions (for initial-state partons) and fragmentation functions (for final-

state fractions), fi(x, t), describe the probability of finding a parton species i with light-

cone momentum fraction x at a scale defined by the ordering variable t. The DGLAP

equation [21,22] describes how parton distribution functions and fragmentation functions

develop as we evolve in t.

The DGLAP equation may be derived by considering the change in fi(x, t) in moving

from a scale t to t + δt. For simplicity, we consider only a single flavour of parton.

The increase in f(x, t) is the integral of all possible terms describing branchings from

a higher momentum fraction x′ leaving a parton with momentum fraction x, given by

δfin(x, t) =
δt

t

∫ 1

0

dz

∫ 1

0

dx′αS(t, z)

2π
P (z) f(x′, t)δ (x − zx′) . (1.86)

Performing the integration over x′ yields

δfin(x, t) =
δt

t

∫ 1

0

dz

z

αS(t, z)

2π
P (z) f(x/z, t). (1.87)

The corresponding decrease in f(x, t) is given by the integral of all branchings occurring

from a fraction x to a lower fraction, given by,

δfout(x, t) =
dt

t

∫ 1

0

dz

∫ x

0

dx′αS(t, z)

2π
P (z) f(x, t)δ (zx − x′) . (1.88)
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Again, we integrate over x′ giving

δfout(x, t) =
δt

t

∫ 1

0

dz
αS(t, z)

2π
P (z) f(x, t). (1.89)

The overall infinitesimal change in f(x, t) in moving to a scale t + δt is then given by

δf(x, t) = δf(x, t)in − δf(x, t)out, (1.90)

implying the differential equation

t
∂f(x, t)

∂t
=

∫ 1

0

dz
αS(t, z)

2π
P (z)

[
1

z
f(x/z, t) − f(x, t)

]
. (1.91)

This is the DGLAP equation which forms the basis of the parton-shower resummation.

In order to formulate the parton shower we must rewrite Eq. 1.91, in terms of the no-

emission probability, introducing the concept of the Sudakov form factor.

The Sudakov form factor

The Sudakov form factor ∆(t), is defined as being the probability for evolving from the

scale t down to the scale t0 with no resolvable emissions. The Sudakov form factor at the

scale t + δt is given by the product of ∆(t) with the probability of having no emissions

in the infinitesimal evolution step t → t + δt

∆(t + δt) = ∆(t)Pno−emission(t)δt. (1.92)

Unitarity implies that the infinitesimal no-emission probability is given by

Pno−emission(t)δt = 1 − P(t)δt, (1.93)

where P(t)δt is given by the single-branching-type analogue of Eq. 1.85. This implies

the differential equation,

∂∆(t)

∂t
= −P(t)∆(t). (1.94)

The solution to this equation is

∆(t) = exp

[
−
∫ t

t0

dt′

t′

∫
dz

αS(t′, z)

2π
P (z)

]
, (1.95)



Introduction 27

where we have used the definition of P from Eq. 1.85. We define the combination of

Sudakov form factors,

∆(t1, t2) =
∆(t1)

∆(t2)
, (1.96)

which we identify as the probability of evolving from t1 to t2 with no resolvable emissions.

The introduction of the Sudakov form factor allows the DGLAP equation (Eq. 1.91)

to be written in the form

t
∂

∂t

(
f(x, t)

∆(t)

)
=

1

∆(t)

∫
dz

z

αS(t, z)

2π
P (z)f(x/z, t). (1.97)

Taking into account multiple types of emission, ĩj → ij, this equation generalises to

t
∂

∂t

(
fi(x, t)

∆i(t)

)
=

1

∆i(t)

∑

i,j

∫
dz

z

αS(t, z)

2π
Peij→ij(z)feij(x/z, t). (1.98)

Soft emissions and colour coherence

So far we have considered only collinear emissions, where we found that the resulting

leading logarithms may be taken into account by a strongly-ordered DGLAP resumma-

tion. We now consider the case of soft gluon emission.

Returning to the branching in Fig. 1.7, we consider the case of soft gluon emission.

The momentum of the gluon may be expressed as

qµ
g = Eg(1;ng), (1.99)

where ng is a unit vector giving the direction of the gluon. In the limit that the emitted

gluon is soft, Eg → 0, the matrix elements for the emission factorises into a product of

a spin independent eikonal factor, a colour factor and the coupling constant

Mn+1 = gst
C
ab

qq · ǫ(qg)
⋆C

(qq · qg)
Mn ab. (1.100)

The form of this factorisation is a general result for the emission of a soft gluon from any

on-shell external parton, with only the colour factor depending on the emitting parton

species.
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This amplitude-level factorisation appears to spoil the classical interpretation of the

emissions, in that it results in the cross section containing interference between emissions

from different external partons. In calculating the cross section correction due to soft

gluon emissions, we must sum Eq. 1.100 over all external partons and square, where

combining with Eq. 1.77, we find [11]

dσn+1 = dσn
dEg

Eg

dΩ

2π

αS

2π

∑

i,j

CijWij , (1.101)

where the sum over i, j refers to a sum over pairs of external partons. The factor Cij

is the relevant colour factor and Wij is the radiation function. The radiation function

results from the product of eikonal factors from the external partons and is given, for

massless partons, by

Wij = E2
g

pi · pj

pi · qgpj · qg

. (1.102)

The radiation function can be written in terms of the opening angles between the partons

i, j and g, where for massless partons, we obtain

Wij =
1 − cos θij

(1 − cos θig)(1 − cos θjg)
. (1.103)

We note that the soft singularity factor is accompanied by a collinear singularity as

expected. We define

W
(i,j)
ij =

1

2

(
Wij +

1

1 − cos θ(i,j)g

− 1

1 − cos θ(j,i)g

)
, (1.104)

allowing us to write the radiation function as

Wij = W
(i)
ij + W

(j)
ij , (1.105)

where the terms singular as θig → 0 and θjg → 0 have been separated. The function

W
(i,j)
ij gives the soft-radiation pattern for soft emissions from the pair ij which is collinear

to the parton (i, j). It is convenient to perform the integral over the solid angle of the

gluon, Ωg, relative to the parton to which the gluon is collinear, as illustrated in Fig. 1.9.
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Figure 1.9: The regions into which soft gluons may be radiated from a pair of external partons.
Destructive interference between soft emissions from the two lines results in no
radiation being produced outside of the cones.

The functions W
(i,j)
ij exhibit a property of angular ordering [23–30] whereby, after

integrating over the azimuthal integration measure dφ(i,j)g [11], we find

∫ 2π

0

dφ(i,j)g

2π
W

(i,j)
ij =

1

1 − cos θ(i,j)g

Θ
(
θij − θ(i,j)g

)
(1.106)

This result shows that the interference is completely destructive outside of a cone

centered on the line (i, j) extending as far as the partner line (j, i). The regions into

which soft gluons may be radiated from a pair of external parton lines is illustrated in

Fig 1.9.

When parton masses are taken into account, it is seen that [37] the same angu-

lar ordering applies but with an inaccessible region collinear to massive quarks. This

phenomenon is known as the dead cone.

Finally, we note that, in the collinear limit, the correction in Eq. 1.101 approximates

the general soft-collinear form of Eq. 1.63 and we can therefore treat soft and collinear

emissions on an equal footing so long as we ensure that the interference effects are taken

into account. This idea forms the basis of the angular-ordered parton shower that we

describe in Sect. 1.2.3.

1.2 Monte Carlo event generators

Monte Carlo event generators aim to give an event-by-event description of collisions at

particle accelerator experiments, providing as full as possible a simulation of the physics

involved. The flexibility provided by the event-by-event simulation allows predictions to
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be found for any number of observable quantities and the straightforward application

of experimental cuts to these predictions. It also allows for the combination of a range

of physics models to be applied and as such they are able to describe a wide variety

of phenomena. In particular in QCD, they provide a means, via the parton shower,

of evolving from hard scales, where partons are produced in fixed-order perturbation

theory, to soft scales, where non-perturbative models must be applied. This allows an

exclusive description of the observed QCD jet structure. As such, event generators have

proven to be invaluable tools in both planning future experiments and analysing data

from current experiments.

Historically, the main general purpose Monte Carlo event generators were Pythia [39]

and HERWIG [7]. These programs were based on the FORTRAN language and, though

they were extremely successful and incorporated a wide range of physics models covering

many processes, maintaining them became impractical as they grew. As the era of the

LHC approached, a decision was made that these generators should be superceded by

a new generation of event generators, with an object-orientated structure in the C++

language. The HERWIG and Pythia programs were rewritten as such, with simultaneous

physics improvements, as the Herwig++ [6] and Pythia 8 [40] event generators. A fur-

ther event generator, SHERPA [41], was also developed. The different event generators

have notable differences in the details of the simulation they provide, with associated

strengths and weaknesses. However, all have a common event structure around which

the simulation is based.

1.2.1 The structure of event generators

The physics included in event generators can be divided into two distinct regimes: the

perturbative and non-perturbative domains. Asymptotic freedom tells us that the va-

lidity of perturbation theory is restricted to the region of hard scattering, where the

strong coupling is small. The perturbative domain is characterised by momentum trans-

fers Q2 ≫ Λ2. Perturbative QCD describes only the interactions of partons, however

confinement dictates that only colour singlet, hadronic states are observed and not free

partons. In order to provide a simulation of the hadronic final-state, non-perturbative

models, describing physics at the low scales characteristic of the production of hadrons,

must also be applied. The domains of perturbative and non-perturbative domains are

separated by a hadronisation scale, Q0 which is typically of the order 1 GeV.
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At present the only way of carrying out complete calculations in QCD relies on the

perturbative expansion. Non-perturbative models may be based on well motivated phys-

ical assumptions, however they are essentially phenomenological models which contain

a number of free parameters which must be tuned to data. In order for such models to

retain their predictive power, they must be applied to parton configurations at a low

scale: the hadronisation scale. The parton model motivates a factorised form of QCD

physics, where low scale physics is unaffected by high scale physics. If the physics of the

perturbative domain is taken into account down to the hadronisation scale, then univer-

sal hadronisation models may be applied describing the production of hadrons. These

hadronisation models should be independent of the hard subprocess, depending only

on the partonic configuration at the hadronisation scale. The parton shower provides

the means of evolving partonic states from the hard scales, associated with the hard

subprocess, down to the hadronisation scale where hadronisation models are applied.

The perturbative physics described in Monte Carlo event generators consists of the

hard subprocess, perturbative decays, and parton showers. In general, the hard subpro-

cess is calculated using leading-order tree-level matrix elements. Each external parton

then initiates a parton shower which evolves from the scale of the hard subprocess down

to the hadronisation scale, undergoing soft and collinear emissions. This corresponds

to a DGLAP resummation of the LL terms. Additionally, unstable particles produced

in the hard subprocess are decayed, possibly having emitted radiation via the parton

shower, according to decay rates calculated in perturbation theory.

A schematic illustration of the structure of the event simulation provided by the gen-

erators is given in Fig. 1.10. The event shown is an example tt̄ event at a hadron-hadron

collider with semi-leptonic decays of the top quarks. The phases of the simulation, in

the order in which they are applied, are:

1. a configuration describing the hard subprocess is generated according to the leading-

order cross section, including the PDFs of the incoming partons;

2. perturbative decays are applied to any unstable particles;

3. external partons undergo initial- and final-state parton showers, evolving the con-

figurations down to the hadronisation scale;

4. a hadronisation model is applied to the final-state partonic configuration;

5. unstable hadrons are decayed, according to their observed decay rates, leaving a

hadronic final-state made up of stable hadrons.
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PDFs IS parton shower hard subprocess decays FS parton shower hadronization

Figure 1.10: Schematic diagram showing the stages of evolution in a Monte Carlo event gen-
erator. The event shown is an example tt̄ event at a hadron-hadron collider with
semi-leptonic decays. Working from the initial-state on the left to the final-state
on the right, the various stages are: extraction of the incoming partons from
PDFs describing the content of the colliding hadrons; initial-state parton show-
ers; the hard subprocess; perturbative decays (in this case of the t and W s);
final-state parton showers; the application of hadronisation models; hadronic
decays leaving stable final-state hadrons. The dashed blue lines represent the
application of hadronisation models.
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Another important part of the simulation, not shown in Fig. 1.10, is the treatment of

the remnant of the beam particles after the incoming partons have been removed. This

further non-perturbative simulation describes the soft underlying event.

The focus of this thesis is the parton-shower phase of the event generator. We explore

the treatment of QCD radiation provided by the parton shower and improvements that

can be made to the description, as well as the interplay that exists between the hard

subprocess and the parton shower.

1.2.2 Monte Carlo methods

The calculation of an observable quantity in an event generator, by Monte Carlo tech-

niques, or otherwise, amounts to performing an integral over the phase space of all

final-state particles. The particle multiplicity of an event may be high; typical events

at the LHC have O(100) final-state hadrons. Event generators are therefore required

to perform integrals over many dimensions. This necessitates the use of Monte Carlo

techniques based on random numbers. A review of Monte Carlo algorithms can be found

in Ref. [42].

We now illustrate the principle of Monte Carlo algorithms with the simplest example

of d-dimensional Monte Carlo integration. The integral of a function f(x) over a d-

dimensional region, R, of volume V , can be related to its expectation value according

to

I =

∫

R

ddxf(x) = V 〈f(x)〉. (1.107)

If we have a random number generator that allows us to generate uniformly distributed

points in the integration region R, we can also estimate the expectation value of the

function by taking the mean value of a sample of N points. In the limit N → ∞ this

estimate approaches the result

I = lim
N→∞

V

N

N∑

i=1

f(xi), (1.108)

where xi refers to a randomly chosen point in the region R. This may be found from d

random numbers R in the interval [0, 1], by calculating

xi = (R1 [x1max − x1min] , ...,Rd [xdmax − xdmin]) (1.109)
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and rejecting the generated point if it is not within the integration region R.

A measure of the error of approximating Eq. 1.108 with a finite sample of N points

is given by the standard deviation of f(x), which in turn may be estimated according to

σ [f(x)] =

[
1

N

N∑

i=1

(f(xi) − 〈f(x)〉)2
] 1

2

. (1.110)

The key point is that the error in the result is proportional to N−1/2 regardless of the

dimension of the integration. This compares to other numerical integration techniques

such as the trapezium and Simpson’s methods where the error develops according to

N−2/d and N−4/d respectively. Thus for high dimensional integrals Monte Carlo algo-

rithms become the only feasible choice.

There are a number of advantages to providing an event-by-event description using

Monte Carlo techniques. The main virtues of the approach are:

• a good convergence of integrals in any dimension;

• any number of observable quantities may be histogrammed from the generated

event sample;

• an estimate of the error of an observable is always available in the form of the

standard deviation of the sample.

The Monte Carlo algorithms that were used in this thesis are presented in more detail

in the appendix.

1.2.3 The parton shower

The parton shower is based on the fact that the branching formalism of the DGLAP

equation (Eq. 1.98) can be interpreted in a probabilistic form as a Markov process

[31,32,32–34], describing a series of independent branchings. This interpretation is most

easily seen via the introduction of the Sudakov form factor [34], where, upon integrating

Eq. 1.98 with respect to the ordering variable, the DGLAP equation can be written in

integral equation form as

fi(x, t) = ∆i(t)f(x, t0) +

∫ t

t0

dt′

t′
∆i(t)

∆i(t′)

∑

i

∫
dz

z

αS(t′, z)

2π
Peij→ij(z)feij(x/z, t′). (1.111)
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1 = +
unresolved

+
resolved

Figure 1.11: Unitarity relation between resolved and unresolved emissions for the branching
q → qg in the LL approximation where the sum of virtual, resolved-radiative
and unresolved-radiative corrections must give one.

This equation can be solved by iterative substitution and has a straightforward prob-

abilistic interpretation. The first term on the right of Eq. 1.111 corresponds to the

probability of having no emissions in evolving from the scale t down to the hadronisa-

tion scale t0, undergoing no resolvable emissions. The second term corresponds to the

probability of having a branching ĩj → ij, at a scale t′ with momentum fraction z. This

is given by the product of the probability of evolving between t and t′, undergoing no

resolvable emissions,
∆ eij

(t)

∆ eij
(t′)

, and the probability of then undergoing an emission at (t′, z).

Iterating Eq. 1.111, we see that the resultant fragmentation function fi(x/z, t′), in the

second term then undergoes an evolution from the scale t′ with equivalent no-emission

and emission probabilities. The other daughter partons, produced at each branching,

should undergo the same evolution.

This recursive parton-shower procedure is most conveniently expressed by introducing

the generating functional [11], Si(t), to represent the parton shower evolving from a scale

t. For our purposes it is sufficient to understand that, Si(t), encodes the configurations

and corresponding probabilities of the the states accessible to the parton shower. The

parton shower may be represented by,

Seij(t) = ∆eij(t, t0)Seij(t0) +

∫ t

t0

dt′

t′
∆eij(t, t

′)
∑

i

∫
dz

αS(t′, z)

2π
Peij→ij(z)Si(t

′)Sj(t
′).

(1.112)

This parton shower resums the effect of enhanced collinear emissions to all orders in αS in

the LL approximation. We note that, although formulated solely from the consideration

of radiative corrections, this resummation also includes the effects of virtual correction.

These corrections are taken account via unitarity and the Sudakov form factor. In

deriving the Sudakov form factor we introduced the infinitesimal probability for having

no resolvable emissions, which, by unitarity, is given by Eq. 1.92. For the branching

q → qg, this unitarity condition corresponds to the Feynman diagrams in Fig. 1.11, thus

including the virtual correction.
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Implicit in the integral over z in Eq. 1.112 are the limits defined in Eq. 1.59 which

avoid the divergent regions of the splitting function, correspond to soft parton emission.

The choice of these cut-offs define what is considered to be a resolvable emission. In

general the resolution parameters, ǫ, are dependent on the scale and parton species of

the parent parton.

The argument of the running coupling, αS, should be a scale of the order of that

of the branching it is involved in, however there is a certain amount of freedom in its

precise form. Different choices of this scale result in differences at O(α2
S), corresponding

to subleading terms in the LL approximation. A natural choice is the scale of the

branching defined by the ordering variable, t, however it is shown in Ref. [38], that by

using the relative transverse of momentum of the branching, an important set of the

next-to-leading-log (NLL) terms may be included in the resummation.

The parton shower amounts to generating a series of branchings defined by the vari-

ables (ti, zi). Given that the probability for no emissions between t and t′ is ∆i(t)/∆i(t
′),

the scale of the emission in Eq. 1.112 can be found by generating a random number, R,

in the interval [0, 1] and solving

R =
∆i(t)

∆i(t′)
, (1.113)

for t′. The momentum faction of the branching, z, can then be generated by solving8

∫ z

ǫ

dz
αS(t′, z)

2π
P (z) = R

∫ 1−ǫ

ǫ

dz′
αS(t′, z′)

2π
P (z′). (1.114)

The parton-shower algorithms in Eqs. 1.113 and 1.114 require the Sudakov form

factors to be tabulated such that Eq. 1.113 can be solved. An alternative algorithm is

provided by the veto algorithm, which is described in Appendix A.2.

Initial-state parton showers

In the initial-state shower, of a hadron-hadron process, we have two parton lines con-

necting the incoming partons of the hard subprocess, at a scale Q2, to the partons that

are extracted from the incoming hadrons at a scale Q2
0. These incoming lines are illus-

trated in Fig. 1.12. The incoming partons have space-like virtualities ti = −q2
i increasing

8R represents a new random number in the interval [0, 1].



Introduction 37

...pn−1p = pn p1 p0

qn qn−1 q2 q1

hard
subprocess

incoming

hadron

Figure 1.12: A space-like parton shower line joining the parton that is extracted from the
incoming hadron to the parton entering the hard subprocess. The interme-
diate partons along this line have space-like virtualities, ordered such that∣∣p2
∣∣ <

∣∣p2
n−1

∣∣ < .. <
∣∣p2

1

∣∣ <
∣∣p2

0

∣∣ .

towards the subprocess. The fraction of beam momenta carried by the incoming partons

is given by xi and decreases as we move towards the hard subprocess.

The initial-state shower describes parton emissions in the LL approximation via the

DGLAP equation. The DGLAP equation for initial-state branchings is identical to that

describing final-state branchings and therefore naively, the initial-state shower could be

generated by extracting partons from the incoming hadrons at the hadronisation scale

and showering according to Eq. 1.112. There are however, several problems with this.

First, there is no clear way of deciding which partons correspond to the incoming par-

tons of the hard subprocess and the scale at which the shower should be stopped and

the hard subprocess applied. Second, the hard subprocess generally corresponds to a

highly peaked distribution and therefore importance sampling must be adopted in order

to achieve efficient generation. If we are to generate the hard subprocess with pre-

determined incoming parton momentum, importance sampling cannot be applied, and

therefore a high proportion of events must be rejected. Forward evolution implementa-

tions of the initial-state showers therefore result in ambiguities in the showering scheme

and inefficiencies in the event generation.

Forward evolution implementations of the initial-state parton shower are therefore

considered unworkable and instead backwards shower schemes are employed [13,35]. In

the backward evolution shower formalism, the hard subprocess is generated first and

the initial-state parton shower is generated by evolving from the incoming partons of

the hard subprocess down to the hadronisation scale where partons are assigned to the

incoming hadrons.

If we are to generate the hard subprocess first, then we have included a PDF fi(Q
2, x),

describing the parton entering the hard subprocess. This PDF describes the inclusive

DGLAP evolution from Q2
0 up to Q2. In order to provide an exclusive distribution of
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the radiation, we must deconstruct fi(Q
2, x), in terms of the parton shower in such a

way that it can be generated as a backward shower.

The integral form of the DGLAP equation in Eq. 1.111, provides an iterative solution

for fi(Q
2, x) which we expand along the initial-state line. This can be manipulated into

the form9 [9]

1 = Πi (t, t0; x) (1.115)

+

∫ t

t0

dt1
t1

∫
dz1Πi (t, t1; x)

αS(t1, z1)

2π
Peij→ij(z1)

feij(x/z1, t
′)

z1fi(x, t1)
Πeij (t1, t0; x/z1)

+

∫ t

t0

dt1
t1

∫
dz1

∫ t1

t0

dt2
t2

∫
dz2

× Πi (t, t1; x)
αS(t1, z1)

2π
Peij→ij(z1)

feij(x/z1, t1)

z1fi(x, t1)

× Πeij

(
t1, t2;

x

z1

)
αS(t2, z2)

2π
Pfeijk→eij

(z2)
ffeijk

(x/z1/z2, t2)

z2feij(x/z1, t2)
Πfeijk

(
t2, t0;

x

z1z2

)

+ ...,

where we have introduced the function,

Πi(t1, t2; x) = ∆i(t1, t2)
fi(x, t2)

fi(x, t1)
. (1.116)

This function represents a modified Sudakov form factor, which we interpret as the

probability of backward evolving a parton of flavour i and momentum fraction x from a

scale t down to t0, with no resolvable emissions. In order to justify this interpretation,

we take the derivative of Πi(t, t0, x) with respect to the ordering variable t,

t
∂Πi(t, t0; x)

∂t
= −Πi(t, t0; x)

[
1

fi(x, t)
t
∂fi(x, t)

∂t
+

∫
dz

αs(t, z)

2π
Peij→ij(z)

]
. (1.117)

The DGLAP equation (1.91) can then be applied to the first term in square brackets

yielding

t
∂Πi(t, t0; x)

∂t
= −Πi(t, t0; x)

∫
dz

z

αs(t, z)

2π
Peij→ij(z). (1.118)

We now observe that, in the backwards evolution from a scale t, the probability of

undergoing an emission in the evolution measure δt, from a parton of flavour i with

9The summation over all possible branchings is implicit in the splitting functions.
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momentum fraction x is given by10

Pback i(t)δt =
δfi(x, t)

fi(x, t)
=

δt

t

∫
dz

z

αs(t, z)

2π
Peij→ij(z)

feij

(
x
z
, t
)

fi(x, t)
. (1.119)

Using this result, Eq. 1.118 can be written analogously to Eq. 1.94 as

∂Πi(t, t0; x)

∂t
= −Pback i(t)Πi(t, t0; x), (1.120)

thus confirming the interpretation of Πi(t, t0; x) as the no-emission probability for back-

wards evolution. Furthermore, Eq. 1.120 implies that Πi(t, t0; x) can equivalently be

written in the alternate form,

Πi(t, t0; x) = exp

[
−
∫ t

t0

dt′

t′

∫
dz

αS(t′, z)

2π
Peij→ij(z)

feij(x/z, t′)

zfi(x, t′)

]
. (1.121)

Equation 1.115 represents the correctly normalised sum of all emissions in the initial-

state parton shower, where branchings are generated according to the probability given

by the product of the probabilities of having no emissions in evolving down to t, and

the branching probability for the branching (t, z), which is given by

αS(t, z)

2π
Peij→ij(z)

feij(x/z, t)

zfi(x, t)
. (1.122)

This may be achieved by employing Monte Carlo algorithms analogous to those used in

the time-like case. Starting from an incoming parton i, from the hard subprocess, with

momentum fraction x and scale t, the scale of the first branching, t′, may be found by

solving

R = Πi(t, t
′; x). (1.123)

The momentum fraction, z, of the branching may then be generated by solving

∫ z

ǫ

dz′
αS(t′, z′)

2π
P (z′)

feij(x/z′, t)

zfi(x, t)
= R

∫ 1−ǫ

ǫ

dz′
αS(t′, z′)

2π
P (z′)

feij(x/z′, t)

zfi(x, t)
. (1.124)

10The term δfi(x, t) is given by Eq. 1.89 with no δfin i(x, t) term since, in the backwards formalism, we
have isolated the incoming line.
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We note that, for the form of the modified Sudakov form factor given in Eq. 1.121, the

exponent of the Sudakov form factor matches this branching probability and is therefore

suitable for the application of the veto algorithm.

Each branching from an initial-state parton produces a space-like parent parton and

a time-like daughter parton which continue to evolve according to the backward initial-

state and forward final-state parton-shower algorithms. The full initial-state shower

may be expressed, analogously to Eq. 1.112, as a generating functional, S̄i(t, x) evolving

according to

S̄i(t, x) = Πi(t, t0; x)S̄i(t0, x) (1.125)

+

∫ t

t0

dt′

t′
Πi(t, t

′, x)
∑

eij

∫
dz

αS(t′, z)

2π
Peij→ij(z)S̄eij(t

′, x/z)
feij(x/z, t′)

zfi(x, t′)
Sj(t

′).

The angular-ordered parton shower

In the previous treatment of parton showers only collinear emissions were treated. In

Sect. 1.1.4, we described how soft gluons may be taken into account to LL approximation

by treating the emission of soft gluons from external partons. Interference effects between

emissions from pairs of external partons result in the property of angular ordering, where

soft emissions are confined to a cone around the emitting parton with half-angle given

by the angle between the two external quarks.

In the parton-shower formalism, it has been shown that coherent soft gluon effects

may be taken into account by choosing the ordering variable of the parton shower to be

the opening angle of emissions [36]. This is known as the angular-ordered parton shower.

It is clear from our discussion of the strong ordering of parton-shower emissions, that

such a change in ordering variable should not change the description of non-soft emissions

in the LL approximation. In this section, we outline the arguments that lead to this

prescription giving the correct treatment of coherent soft gluon radiation.

For a given parton configuration, the soft-gluon radiation pattern is given by Eq. 1.101.

Considering the simplest case of a qq̄ configuration, we have radiation from a single pair

of partons. The full soft-radiation pattern is therefore simply that shown in Fig. 1.9 and

the corresponding colour factor is Cij = CF .

In order to proceed to a more complicated example, we note that the colour factors

Cij may be found by representing the colour charge of each parton by a vector, Qi, such
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that Q2
i = CF for a quark and Q2

i = CA for a gluon. The colour factor in Eq. 1.101 then

corresponds to Cij = −Qi · Qj .

We now consider the radiation pattern from inserting a soft gluon emission from an

external parton in a general configuration. In order to infer the general structure of

such corrections to the parton shower, we write the radiation pattern highlighting two

partons, i and j, which we may consider to be a collinear pair resulting from the parton

shower [13]. The radiation function is given by

W =
∑

n,m

CnmWnm = −Qi · QjWij −
∑

l

Qi · QlWil (1.126)

−
∑

l

Qj · QlWjl −
∑

l 6=l′

Ql · Ql′Wll′,

where the summation of l and l′ denotes summation over the other external partons.

The external partons form a colour singlet and so we have the relation of the colour

charges,

Qi + Qj +
∑

l

Ql = 0. (1.127)

Since we assume i and j are the result of a collinear emission from a parent, ĩj, we make

the approximation i, j → ĩj in any term that is non-singular in θig and θjg. Utilising

this approximation, the colour singlet relation and the decomposition of Eq. 1.105, we

may write the radiation pattern as,

W = Q2
i

[
W i

ij +
1

2

∑

l

(
W̃ j

il − W̃ i
jl

)]
+ Q2

j

[
W j

ij +
1

2

∑

l

(
W̃ i

jl − W̃ j
il

)]

+

(
∑

l

Ql

)2
1

2

∑

l

[
W l

il + W l
jl + W̃ i

lj + W̃ j
li

]
−
∑

l 6=l′

Ql · Ql′Wll′, (1.128)

where the function W̃ k
ij is defined as

W̃ k
ij = W k

ik − W k
jk. (1.129)
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We note that the function W̃ k
ij is non-singular and under azimuthal averaging, applying

the angular-ordering approximation, Eq. 1.106, yields

W̃ k
ij =

1

(1 − cos θkg)
[Θ (θik − θkg) − Θ (θjk − θkg)] . (1.130)

The directions i and j may also be approximated by the parent direction ĩj in the

non-singular W̃ terms. The charge of the parent is given by Qeij = Qi + Qj. If we have

only a single additional parton l then under this approximation Eq. 1.128 becomes,

W = Q2
i W

i
ij + Q2

jW
j
ij + Qeij · QeijW̃

eij

leij
+ Ql · QlW

l
eijl

. (1.131)

There is a clear parton-shower interpretation for generating this radiation pattern.

This soft gluon radiation pattern may be assigned to the partons as follows. The

first two terms in this equation, correspond to radiation in cones of half angle θij around

the partons i and j being generated with a probability proportional to their respective

colour charges. The third term corresponds to radiation emitted around the intermediate

parton ĩj according to its colour charge in a cone of half angle between θeijl and θij . The

third term corresponds to emissions from the parton l according to its colour charge in

a cone of half angle θeijl.

This picture can be extended to emitting a soft gluon from any number of external

partons [37] and iterated to any number of soft gluon emissions. The result is that the

correct soft radiation pattern is obtained by emitting soft gluons from parton lines i

with the probability

dPsoft(θiq, Eg) =
dEg

Eg
d cos θig

αS

2π
Q2

i

1

1 − cos θig
, (1.132)

with soft emissions along the parton line ordered in opening angle. Since this emission

probability coincides with Eq. 1.101 in the enhanced region, and strong ordering allows

a change in the ordering variable without modification of the collinear LL resummation,

a simple modification can be made to the parton-shower formalism to take into account

coherent soft gluon radiation: the ordering variable of the parton shower should be taken

to be the opening angle of emissions.

This angular-ordered shower forms the basis of the HERWIG and Herwig++ parton

showers. Other parton-shower formulations, as employed in the Pythia and SHERPA
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generators, that use virtuality and transverse momentum as the ordering variable must

employ vetoes to enforce angular ordering and account for color coherence effects. While

this procedure is not exactly equivalent to the correct prescription of having an angular-

ordered parton shower, comparisons between the generators have shown it to give ac-

ceptable results.

1.3 Summary

QCD is widely accepted as the correct theory of strong interactions and a good un-

derstanding of QCD phenomenology is crucial for the success of collider experiments.

Monte Carlo event generators, based around parton showers, allow a full simulation of

the physics at collider experiments and provide a flexible event-by-event description. As

such, Monte Carlo event generators have become indispensable experimental tools.

The parton shower is based on the parton-branching formalism where corrections due

to soft and collinear parton emissions have a universal factorised form. Such emissions

correspond to enhanced emissions which result in LL corrections. The parton shower

provides an all-orders-in-αS resummation of these LL terms.

Parton showers were first formulated in terms of an evolution in virtuality which

formally only provides a correct treatment of collinear emissions. Coherent soft-gluon

emissions may be taken into account by instead ordering emissions in the opening angle

of branchings. Angular-ordered parton showers are used in the HERWIG and Herwig++

event generators.



Chapter 2

Herwig++ Shower

2.1 Introduction

The Herwig++ parton shower is an angular-ordered shower based on the HERWIG par-

ton shower but with modifications in order to provide an improved degree of Lorentz

invariance and description of mass effects. In this chapter we describe the main features

of the parton shower. In Sect. 2.2 the details of the kinematics, dynamics and implemen-

tation of the initial- and final-state showers are discussed and in Sect. 2.3 a technique

for improving the parton-shower description, using exact matrix elements, is introduced.

2.2 The Herwig++ parton shower

In the HERWIG parton shower the evolution variable, describing the scale of an emission

ĩj → ij, is given by [36]

t̃ = 2E2
eij

qi · qj

EiEj
=

q2
eij

z(1 − z)
, (2.1)

where z is the fraction of the parent partons energy carried by the emitted parton i

which reduces to E2θ2
ij in the limit that θij → 0 and therefore can be used to define an

angular ordered shower1. In Herwig++ the ordering variable is generalised to a mass

dependent variable q̃, characterising how close to being on-shell the emitting parton is,

1The evolution variable in Eq. 2.1 is used since it simplifies the parton-shower kinematics.

44
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defined as

q̃2 =
q2

eij
− m2

eij

z(1 − z)
, (2.2)

where z is defined as the light-cone momentum fraction in the Sudakov decomposition

and q2
ij and m are the virtuality and mass of the emitting parton. This evolution variable

has the limiting behavior,

q̃ = Eeijθij + O
(
θ2

ij

)
, (2.3)

and thus takes into account coherent soft gluon emission via angular ordering. It also

allows for the correct description of evolution within the dead cone by taking into ac-

count the mass of the emitted parton. In the HERWIG shower the dead cone is given

an approximate treatment by applying a hard cut, preventing the radiation into this re-

gion, while in the Herwig++ shower an exact treatment may be applied using the mass

dependent evolution variable in Eq. 2.2 and a set of mass dependent splitting functions.

2.2.1 Shower kinematics

In the Herwig++ parton shower each external parton is interpreted as a progenitor, with

momentum pJ , for a parton shower. Final-state progenitors initiate forward time-like

showers and initial-state progenitors initiate backward space-like showers. These parton

showers correspond to generating a series of emission variables (q̃, z, φ). This set of

splitting variables defines the momentum of the partons in the shower according to the

Sudakov decomposition, where the momentum of the ith parton in the parton shower

initiated by the progenitor J , is given by

qi = αipJ + βinJ + q⊥ i, (2.4)

where pJ is the on-shell progenitor momentum, nJ is chosen to be a light-like reference

vector with three-momenta equal to that of the colour connected progenitor, defining an

appropriate frame in which p and n are back-to-back. The vector q⊥ i is defined as the

component of momentum transverse to both pJ and nJ , such that the reference vectors

satisfy the relations

p2
J = m2

J , pJ · q⊥ i = 0, (2.5)

n2
J = 0, nJ · q⊥ i = 0.
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The momentum fraction z of each branching is

z =
αi

αeij

, (2.6)

the scale of the emission q̃ is defined in Eq. 2.2. The relative transverse momentum of

the branching is defined by

p⊥i = q⊥i − zq⊥eij . (2.7)

The p⊥i vector is written in terms of the azimuthal angle φ

p⊥ = (0; |p⊥| cos φ, |p⊥| sin φ, 0) . (2.8)

The Sudakov decomposition in Eq. 2.4 implies the relation between the Sudakov

parameters and virtuality of a parton2,

βi =
q2
⊥ i + q2

i − α2
i m

2

2αi (p · n)
, (2.9)

where q2
⊥ i = −q2

⊥ i is the positive definite transverse momentum squared.

Momentum conservation implies that the virtuality of the emitting parton in Eq. 2.2

is given by

q2
eij

= q2
i + q2

j + 2qi · qj (2.10)

= q2
i + q2

j + 2αiαjm
2 − 2q⊥ i · q⊥ j + 2p · n (αiβj + αjβi) .

Applying Eq. 2.9 to this and utilising the definition of z in Eq. 2.6, the virtuality of the

emitter can be written as

q2
eij

=
q2
i

z
+

q2
j

1 − z
− 2q⊥ i · q⊥ j +

z

1 − z
q2
⊥ i +

1 − z

z
q2
⊥ j. (2.11)

We now note that the definition of the transverse momentum in Eq. 2.7 implies the

relation

p2
⊥ = (1 − z)2q2

⊥ i + z2q2
⊥ j − z(1 − z)q2

⊥ i · q2
⊥ j, (2.12)

2In this equation we suppress the jet index but it is understood that a different set of reference vectors
is used for the shower originating from each progenitor.
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so the virtuality of the emitting parton can be expressed in terms of the relative trans-

verse momentum and momentum fraction of the branching together with the virtuality

of the resultant partons as

q2
eij

=
q2
i

z
+

q2
j

1 − z
+

p2
⊥

z(1 − z)
. (2.13)

In the parton-shower approximation the resultant partons are deemed on-shell and

therefore the Eqs. 2.2 and 2.13 yield the following result for the evolution variable,

z(1 − z)q̃2 =
p2
⊥

z(1 − z)
− m2

eij
+

m2
i

z
+

m2
j

1 − z
. (2.14)

2.2.2 Shower dynamics

The branching probability is approximated in the quasi-collinear limit [8], where the

transverse momentum squared, p2
⊥, and mass squared, m2, of the branching partons are

considered to be small, but p2
⊥/m2 is not assumed to be small. In this approximation,

the probability of a branching, ĩj → ij, occurring in the interval [q̃2, q̃2 + dq̃2], with

light-cone momentum fraction in the interval [z, z + dz], is given by

dPeij→ij =
αS(q̃, z)

2π

dq̃2

q̃2
dzPeij→ij (z, q̃) , (2.15)

where the function Peij→ij (z, q̃) is the corresponding quasi-collinear splitting function, as

derived in Ref. [8]. The strong coupling is evaluated at the scale given by the relative

transverse momentum of the branching, p⊥(q̃, z), so that the parton shower resumms

some important NLL terms in the perturbative series. The splitting functions may be

expressed in terms of the branching variables (q̃, z) with the relevant set of functions for

QCD branchings being given by,

Pq→qg =
CF

1 − z

[
1 + z2 −

2m2
q

zq̃2

]
, (2.16)

Pg→gg = CA

[
z

1 − z
+

1 − z

z
+ z(1 − z)

]
, (2.17)

Pg→qq̄ = TR

[
1 − 2z (1 − z) +

2m2
q

2 (1 − z) q̃2

]
. (2.18)

The infinitesimal branching probability in Eq. 2.15, gives rise to the Sudakov form factor,

as derived in Sect.1.1.4,. This defines the no-emission probability from a parton of flavour
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ĩj, in evolving between the scales q̃1 and q̃2,

∆eij (q̃1, q̃2) =
∏

i,j

∆eij→ij (q̃1, q̃2) , (2.19)

where ∆eij→ij (q̃1, q̃2) is the no-emission probability for the specific branching ĩj → ij

and is given by

∆eij→ij (q̃1, q̃2) = exp

[
−
∫ q̃1

q̃2

dq̃2

q̃2

∫ z+(q̃)

z−(q̃)

dz
αS

2π
Peij→ij (z, q̃)

]
. (2.20)

The Herwig++ time-like parton shower can be described, analogously to Eq. 1.112,

as a generating functional evolving from a shower progenitor of flavour ĩj and initial

scale q̃I , according to

Seij(q̃I) = ∆eij(q̃I , q̃0)Seij(q̃0) (2.21)

+

∫ q̃I

q̃0

∆eij(q̃I , q̃)dPeij→ij(q̃, z)Si (zq̃)Sj ((1 − z)q̃) .

The scales from which the daughter partons i and j evolve are set to zq̃ and (1 − z)q̃

respectively, rather than just q̃. This is a consequence of the fact that the evolution

variable is approximated by q̃ ≈ Eeijθij , while Ei ≈ zEeij and Ej ≈ (1− z)Eeij . Therefore,

in order to satisfy the angular ordering condition, that subsequent branchings from the

daughter partons must have an opening angle less than θij , the factors of z and 1−z must

be introduced in the maximum evolution scales of the daughter partons, as in Eq. 2.21.

Along each shower line this angular ordering condition corresponds to the requirement,

q̃i+1 < ziq̃i. (2.22)

The region of resolvable emissions is defined by the limits on the integral over z in

Eq. 2.20, which are given by z±. These limits also ensure that the divergent regions of

the splitting functions are avoided. In Herwig++ these limits are imposed by introducing

a minimum mass, Qg, such that all partons are assigned a mass3

µ = max(m, Qg), (2.23)

3This is used only to define the phase space for resolvable emissions. The physical parton masses are
used in the splitting functions.
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where m is the physical mass of the parton. A set of natural limits for the integration

over z can be found from the requirement that the transverse momentum is real, p2
⊥ > 0.

Equation 2.14 then implies that the limits z±(q̃) can then be found by solving

z(1 − z)q̃2 + µ2
eij
− µ2

i

z
−

µ2
j

1 − z
> 0. (2.24)

This results in a complicated phase-space boundary for resolvable emissions in the (q̃, z)

plane, however it can be shown [6] that an overestimate of the allowed phase-space region

is provided by

µ

q̃
< z < 1 − µ

q̃
. (2.25)

The threshold scale at which there is no phase space for resolvable emissions is therefore

found somewhere above the scale Qg. The scale Qg can thus be taken to be the hadro-

nisation scale at which the parton-shower evolution is terminated. It should be set large

enough (O(1 GeV)) that regions of phase space in which the perturbative expansion is

not valid, are avoided.

2.2.3 The initial-state parton shower

The initial-state parton shower is generated as a backward shower, as introduced in

Sect. 1.2.3, evolving from the hard sub-process to the incoming hadrons, with soft emis-

sions taken into account by angular ordering. For space-like branchings along the in-

coming parton line the correct angular ordering prescription is given by [13]

Ei+1θi+1 < Eiθi, (2.26)

where Ei is the energy of the incoming partons4 and θi is the angle between the incoming

parton and the incoming hadron. In HERWIG this is implemented by using the evolution

variable

t̃ =
−q2

i

1 − z
, (2.27)

which is approximated by E2
i θ

2
i so that ordering emissions in this variable satisfies the

angular ordering condition. As for the time-like case, in Herwig++ this evolution variable

4The index of the incoming parton is defined such that is increases in moving along the incoming
shower line, away from the hard sub-process, as in Fig. ??.
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is generalised to include the mass of the emitter by defining the evolution variable

q̃2 =
m2

i − q2
i

1 − z
. (2.28)

The virtuality of the space-like daughter, q2
i , is related to the transverse momentum

squared of the branching according to Eq. 2.13, yielding the expression for the initial-

state evolution scale,

q̃2 =
p2
⊥

(1 − z)2
−

zm2
j

(1 − z)2
−

zm2
eij

1 − z
+

m2
i

1 − z
. (2.29)

The modified Sudakov form factor, as derived in Sect. 1.2.3, giving the no-emission

probability for backwards evolution from a parton of flavour i and momentum fraction

x, between scales q̃1 and q̃2, is

Πi (q̃1, q̃2; x) = exp


−

∑

eij

∫ q̃1

q̃2

dq̃2

q̃2

∫ z+(q̃)

x

dz
αS

2π
Peij→ij (z, q̃)

feij(x/z, q̃)

zfi(x, q̃)


 . (2.30)

The space-like shower can then be described by a generating functional, analogously to

Eq. 1.125, which evolves from an initial-state shower progenitor of flavour i, momentum

fraction x and initial scale q̃I , according to

S̄i(q̃I , x) = Πi(q̃I , q̃0; x)S̄i(q̃0, x) (2.31)

+

∫ q̃I

q̃0

Πi(q̃I , q̃, x)
∑

eij

dPeij→ij(q̃, z)S̄eij(q̃, x/z)
feij(x/z, q̃)

zfi(x, q̃)
Sj((1 − z)q̃).

We note that in the backward evolution along the incoming line, ordering in q̃ corre-

sponds to angular ordering and so the initial scale of the space-like parent parton, ĩj, is

simply q̃ whereas, for the time-like daughter it must include a factor of the momentum

fraction and be set to (1 − z)q̃ to satisfy angular ordering.

In order to define the region of resolvable emissions and in turn the limits on the

z integral we introduce a minimum mass for the time-like daughter, assigning a mass

according to Eq. 2.23. The lower limit on the z-integration measure is given by the light-

cone momentum fraction x in order to prevent the backwards evolution to a parton with

x > 1 and so we are free to set the masses along the incoming line, mi and meij to zero.
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This simplifies the evolution variable to

q̃2 =
zm2

j + p2
⊥

1 − z
. (2.32)

Assigning a mass, µ (Eq. 2.23), to the time-like daughter parton, together with the

requirement that the transverse momentum is real then yields the exact limits on the

phase space for a resolvable emission

x < z < 1 +
µ2

2q̃2
−

√(
1 +

µ2

2q̃2

)2

− 1. (2.33)

The space-like parton shower is terminated as soon as it evolves below the threshold

scale, where there is no phase space available for a resolvable emission.

2.2.4 Initial parton-shower scale

The scale, q̃I , from which the parton shower is initiated, determines the phase-space

region that is accessible to parton-shower emissions. This initial scale is set for each

shower progenitor according to the colour flow of the hard sub-process. The initial

scales are chosen such that the emission phase space available to each progenitor does

not overlap while providing as full as possible a coverage of phase space.

In this section we review the discussion of Ref. [3], considering the two cases that are

used in this thesis: the case of two colour connected partons in the final state and the

case of two colour connected partons in the initial state.

Final-final colour connection

We consider the case of two colour-connected final-state progenitors b and c, coming

from the process a → b+c, where a is a colour singlet with virtuality Q2. An example of

a hard process of this sort is e+e− → qq̄. In the rest frame of the colour singlet system,

we can write the on-shell momentum of the jet progenitors as,

pb =
Q

2
(1 + b − c; 0, 0, λ) pc =

Q

2
(1 − b + c; 0, 0,−λ) , (2.34)
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where b = m2
b/Q

2, c = m2
c/Q

2 and

λ =
√

1 + b2 + c2 − 2b − 2c − 2bc. (2.35)

In order to explore the phase-space coverage of parton-shower emissions from the two

progenitors it is useful to express the phase space for a single emission in terms of the

Dalitz variables

xi =
2pa · qi

Q2
. (2.36)

We first consider the case of an emission from parton b where the Sudakov reference

vectors are given by the progenitor momentum, pb, and a light-like vector with three

momentum equal to that of c,

nb =
Q

2
(λ; 0, 0,−λ) . (2.37)

The momentum fractions are therefore given, in terms of the Sudakov parameters, by

xi = (1 + b − c) αi + λβi. (2.38)

The momenta of the three parton system, qb, qc and qg, are constructed from the

shower emission variables (q̃, z), such that the momentum of the colour singlet,

pa = qb + qc + qg, is preserved. Applying momentum conservation and on-shell condi-

tions to the parton momenta qi, together with the definitions of the shower variables in

Eqs. 2.6 and 2.14, it can be shown that the momentum fractions are given by [3]

xc = 1 − b + c − z(1 − z)k̃,

xb = (2 − xc) r + (z − r)
√

x2
c − 4c, (2.39)

xg = (2 − xc) (1 − r) − (z − r)
√

x2
c − 4c.

where

r =
1

2

(
1 +

b

1 + c − xc

)
, (2.40)
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Figure 2.1: Contours of constant k̃ = 0.6, 0.9, 1.2 in Dalitz space for an emission from parton
b (red) and c (blue).

and we have introduced the dimensionless variant of the evolution variable,

k̃ =
q̃2

Q2
. (2.41)

The equivalent expressions for emission from parton c are given by the Eqs. 2.39 with

the replacements b → c and xb → xc.

Equations 2.39 can be used to eliminate z, defining a contour of constant k̃. This is

shown for a selection of values of k̃ in Fig. 2.2.4. The limit to the phase-space region

accessible to emissions from each progenitor is given by the initial scale, k̃I = q̃2/Q2,

which we define as k̃b and k̃c respectively for the progenitors b and c.

These regions are chosen such that they do not overlap while providing a smooth

coverage of the phase space of enhanced emissions. This is obtained by requiring that

in the limit of a soft emission, z → 1, the phase-space limits of the two regions coincide.

In the limit z → 1, Eq. 2.39 yields the contour,

lim
b emits

xc(k̃) = 1 − b + c +
(xb − 1 − b + c) 2bk̃

2bλ + k̃ (1 − b − c − λ)
. (2.42)
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The equivalent contour for emission from parton c is given by

lim
c emits

xc(k̃) = 1 − b + c +
(xb − 1 − b + c)

(
λ + k̃ (1 − b − c − λ)

)

k̃
. (2.43)

The requirement that the phase-space limits for the two emitters coincide in the soft

limit can be expressed as

lim
b emits

xc(k̃b) = lim
c emits

xc(k̃c) (2.44)

which, from Eqs 2.42 and 2.43, gives the condition that the initial scale must satisfy,

(
k̃b − b

)(
k̃c − c

)
=

1

4
(1 − b − c + λ)2 . (2.45)

The default choice for the initial scales is taken to be the most symmetric choice of scales

qb and qc, satisfying Eq. 2.45

q̃b =
Q2

2
(1 + b − c + λ) , (2.46)

q̃c =
Q2

2
(1 + c − b + λ) , (2.47)

such that in the case where the masses of the progenitors b and c are equal, the ini-

tial scales are the same and the emission phase space is split evenly between the two

progenitors.

The phase-space regions for emission from the two progenitors are illustrated in

Fig. 2.2.4, for the case in which the masses of the two progenitors are equal. We see

that the allowed regions provide a smooth coverage of the enhanced soft and collinear

regions of phase space. However, there is also a central region that is inaccessible to

parton-shower emissions from either progenitor. This is referred to as the dead zone and

corresponds to emissions with large transverse momentum.

Initial-initial colour connection

We now consider the case of a hard process consisting of two colour connected partons

b and c in the initial state taking part in a process b + c → a where a is a colour singlet

system with virtuality Q2. An example of a process of this type is Drell-Yan vector

boson production. In this case the two incoming partons in the hard process are taken
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Figure 2.2: The allowed phase-space region for an emission from a pair of colour connected
final-state partons b and c with masses mb = mc = 5GeV, at a centre-of-mass
energy Q = 91.2GeV. The regions shown are the phase space for emissions from
partons b and c and the dead zone which is not accessible to emissions from either
parton.

to be progenitors of initial-state showers. The momentum of these progenitors is given

by

pb =
Q

2
(1; 0, 0, 1) pc =

Q

2
(1; 0, 0,−1) , (2.48)

where the mass of the incoming momentum is taken to be zero, as is done throughout

for initial-state partons. The reference vectors, defining the Sudakov basis, are therefore

given by p = pb, n = pc for emission from parton b and p = pc, n = pb for emission from

parton c.

The phase space covered by the emission of a gluon of momentum, qg, from partons b

and c is conveniently expressed in terms of a set of dimensionless Mandelstam variables,

which are defined by

s̄ =
(qb + qc)

2

Q2
, t̄ =

(qb − qg)
2

Q2
, ū =

(qc − qg)
2

Q2
, (2.49)

where qb and qc are the momenta of the incoming partons, as reconstructed from the

shower variables (q̃, z). The full allowed phase-space region is given by the limits

1 < s̄ < s/Q2, 1 − s̄ < t < 0, (2.50)
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where s is the beam centre-of-mass energy squared.

In constructing the parton momentum from the shower variables describing the emis-

sion, the colour singlet system, a, obtains a recoil transverse momentum so we cannot

preserve the momentum of the colour singlet system, as was done in the final-state

case. Instead we choose to preserve its mass and rapidity. Following this procedure, the

Mandelstam variables can be written in terms of the shower variables as [3]

s̄ =
1

z

[
1 + (1 − z)k̃

]
, t̄ = −(1 − z)k̃, ū = −(1 − z)s̄. (2.51)

The corresponding Mandelstam variables for an emission from parton c are given by the

same equations with the replacement t̄ ↔ ū.

Eliminating z from Eqs. 2.51, we find contours of constant k̃, which are given by

t̄ =
(1 − s̄)k̃

(s̄ + k̃)
, (2.52)

for emission from parton b and

t̄ =
(1 − s̄)s̄

(s̄ + k̃)
, (2.53)

for emission from parton c.

We require a smooth coverage of the region of phase space associated with enhanced

emissions. The phase space regions accessible to emissions from the two progenitors

should also not overlap. This dictates that in the soft limit, which is characterised by

s̄ → 1, the limits of the available phase space for the two progenitors should coincide.

As in the final-state case, the important phase-space limit is given by the contours in

Eqs. 2.52 and 2.53 evaluated at the maximum scales for k̃b and k̃c, respectively. This

gives

k̃bk̃c = 1. (2.54)

As in the final-state case, by default the most symmetric choice is taken where k̃b = k̃c = 1.

The allowed regions of emission with this choice of initial scale are illustrated in

Fig. 2.2.4. Again, we see that requiring that the two-emission regions do not overlap

leads to a dead-zone region that is not accessible to emissions from either parton.
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Figure 2.3: The allowed phase-space region for an emission from a pair of colour connected
initial-state partons b and c with the mass of the emitted parton mg = 5GeV, at
a centre-of-mass energy Q = 91.2GeV. The regions shown are the phase space
for emissions from partons b and c and the dead zone which is not accessible to
emissions from either parton.

2.2.5 The shower algorithm

The generation of the variables (q̃i, zi, φi), describing the emissions of the parton shower,

is performed in Herwig++ using the veto algorithm. This algorithm is discussed in

Appendix A.2. In this section we present the specifics of the algorithm used in Herwig++.

In Herwig++ the azimuthal angle of each branching, φ, is generated flat in the region

[0, 2π]. This amounts to neglecting the effects of spin correlations whereby the parton-

shower algorithm reduces to the generation of the variables (q̃i, zi).

The final-state shower algorithm

The bivariant veto algorithm, described in Appendix A.3, dictates how we may gen-

erate an evolution variable, t, and an auxiliary splitting variable, z, according to the

distribution

f(t, z) exp−
[∫ tI

t

dt

∫
dz′f (z′, t′)

]
. (2.55)
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The veto algorithm is then constructed by defining a bounding function for f(t, z),

defined such that

gt(t)gz(z) > f(t, z) ∀(t, z). (2.56)

This function must be simple enough that its primitive integral and associated inverse

can be found.

From the final-state shower equation (Eq. 2.21), we see that the expression corre-

sponding to f(t, z) for the final-state parton shower is given by

αS(q̃, z)

2π

1

q̃2
Peij→ij (z, q̃) , (2.57)

where the evolution variable, t, corresponds to q̃2 in Herwig++. A bounding function

can be found by introducing the constant αover
S which provides a bound for the running

coupling and a set of functions of z, P over
eij→ij

(z), which provide a bound to the splitting

functions. The overestimates for the relevant splitting functions are given by,

P over
q→qg =

2CF

1 − z
, (2.58)

P over
g→gg = CA

[
1

1 − z
+

1

z

]
, (2.59)

P over
g→qq̄ = TR. (2.60)

We define the primitive integral of these functions as Iĩj→ij(z).

The limits on z for an emission to be considered resolvable are found by requiring

that the transverse momentum, constructed from the shower variables, is real. For the

case of time-like emissions this corresponds to a complicated boundary in (q̃, z) space,

however the limits for a general branching can be approximated in terms of the minimum

parton virtuality, Qg,

zmax =
Qg

q̃
, zmin = 1 − Qg

q̃
. (2.61)

In practice, tighter, branching specific limits are employed, as detailed in Ref. [6], to

allow a more efficient algorithm.

The veto algorithm generation of the next time-like emission, (q̃, z), from a parton

of flavour ĩj and scale q̃I , proceeds according to:
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1. start at i = 0 with q̃0 = q̃I ;

2. the next scale is generated according to

q̃2
i = q̃2

i−1RC(q̃i−1), (2.62)

where C(q̃i−1) is defined as

C(q̃) =
2π

αover
S

[
Iĩj→ij (zmax) − Iĩj→ij (zmin)

]
, (2.63)

3. a light-cone momentum fraction z is simultaneously generated according to

z =
[
R
(
Iĩj→ij (zmax) − Iĩj→ij (zmin)

)
+ Iĩj→ij (zmin)

]
; (2.64)

4. the emission (q̃, z) is accepted if

R < w1(q̃, z)w2(q̃, z)w3(q̃, z) (2.65)

where the weights w1,2,3 are the veto probabilities that are required to compensate

for the approximations used in the phase-space limits, splitting function and strong

coupling respectively;

5. if the emission is rejected then return to step 2.

The weights w1,2,3, used as the acceptance probabilities in step 4 of the algorithm,

are given by

w1(q̃, z) = θ
(
p2
⊥

)
,

w2(q̃, z) =
Pĩj→ij (z, q̃)

P over
ĩj→ij

(z)
, (2.66)

w3(q̃, z) =
αS (q̃, z)

αover
S (q̃, z)

.

In order to take into account that several branching types, ĩj → ij, may be generated

from a shower line of flavour ĩj, this algorithm is augmented to generate by competition,

as discussed in Appendix A.4. This means that an emission, (q̃, z), of each possible type

is generated and the one with the highest evolution scale, q̃, selected.
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The initial-state shower algorithm

The Herwig++ backward initial-state parton shower is defined by Eq. 3.35 and can by

generated using a veto algorithm in a similar manner to the final-state parton shower.

As in the final-state case, each initial-state emission, (q̃, z) is selected from a probability

distribution of the form given in Eq. 2.55. The branching probability is in this case given

by

αS

2π

1

q̃2
Peij→ij (z, q̃)

feij(x/z, q̃)

zfi(x, q̃)
, (2.67)

which differs from the final-state case by the inclusion of a function of PDFs and mo-

mentum fractions,

feij(x/z, q̃)

zfi(x, q̃)
, (2.68)

for which we can define a constant upper bound KPDF .

The initial-state branchings can therefore be generated with the algorithm of Sect. 2.2.5

with the following modifications,

• the function C(q̃) used in step 2 gains an extra factor of KPDF becoming

C(q̃) =
2π

αover
S KPDF

[
Iĩj→ij (zmax) − Iĩj→ij (zmin)

]
; (2.69)

• an extra veto is applied in step 4 with a probability given by the weight

w4(q̃, z) =
feij(x/z, q̃)

zfi(x, q̃)KPDF
. (2.70)

2.2.6 Momentum reconstruction

Once all of the partons have evolved down to the hadronisation scale, the shower evo-

lution is stopped and the momentum of all external and intermediate partons are re-

constructed from the shower variables. This is done in the centre-of-mass frame via

the Sudakov decomposition as defined in Eq. 2.4. This procedure is referred to as the

momentum reconstruction. We will go on to describe how this is performed for final-

and initial-state parton showers.
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Final-state momentum reconstruction

The Sudakov variables αi, βi and q⊥i, defining the reconstructed shower momentum qi

are calculated from the shower variables recursively for all partons in the shower jet5.

This is done starting from the shower progenitor, where we set the parameters α0 = 0

and q⊥0 = 0. The αi parameters can then all be found by working recursively down all

shower lines and applying the definition of z in Eq. 2.6. The definition of the evolution

variable in Eq. 2.14, together with the definition of the azimuthal angle in Eq. 2.8, allow

the relative transverse momentum, p⊥, to be determined. The definition of the relative

transverse momentum in Eq. 2.7 then allows the parameters qi to be found by following

all shower lines recursively from the shower progenitor. The remaining parameters, βi,

are related to the partons virtuality according to Eq. 2.9. The virtuality is fixed only for

the end points of the shower which are given their on-shell mass. The β-parameters of

the other partons can then be found by following the shower lines backwards from the

shower end points to the shower progenitors and applying the momentum conservation

condition,

βeij = βi + βj. (2.71)

Having calculated the Sudakov parameters for all partons in the shower, their momenta

are constructed according to Eq. 2.4.

Final-state reshuffling

After the momentum reconstruction procedure, the momenta of the reconstructed shower

progenitors, qJ , are pushed off their mass-shell. In the hard sub-process these partons

were assumed to be on-shell and this therefore leads to the loss of global momentum

conservation. The parton-shower momenta must therefore be shuffled in order to enforce

global momentum conservation while disturbing the jet structure as little as possible.

This is done by the application of a set of longitudinal boosts to each shower jet such

that momentum conservation is restored. These reshuffling boosts are defined for each

jet by the transformation

(
qJ ;
√

q2
J + q2

J

)
→
(

kpJ ;
√

k2p2
J + q2

J

)
≡ q ′

J . (2.72)

5The term shower jet is used here to refer to the set of partons produced by showering a progenitor.
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Momentum conservation is ensured by requiring that the rescaling parameter k satisfies

∑

J

√
k2p2

J + q2
J =

√
s. (2.73)

This equation can be solved to find k, defining a boost for each shower jet according to

Eq. 2.72. These boosts should be applied to the momenta of all partons in the shower

jet, determining the full set of shuffled parton momenta.

Initial-state momentum reconstruction

In the case of an initial-state parton shower, the reference vectors defining the Sudakov

basis are given by the on-shell (massless) beam momenta, p©. It is now the end point

of the backwards evolving shower, parton k, that has transverse momentum,

q⊥k = 0, (2.74)

and therefore it is here that the momentum reconstruction begins. Since the reference

vector pJ is given by the corresponding beam momentum, the α-parameter of this parton

is given by its light-cone momentum fraction, which is

αk =
k∏

i=0

x

zi

, (2.75)

where x is the light-cone momentum fraction of the parton involved in the hard sub-

process. Since this is an external parton and parton masses along the initial state line

are set to zero, Eq. 2.9 tells us also that

βk = 0. (2.76)

The momentum of the end point of the initial-state shower, qk is then fully determined.

In order to determine the Sudakov parameters for the other partons along the initial-

state shower we trace along this line from the end point to the hard sub-process. At

each emission along this line the momenta of the partons in the shower initiated by

the time-like daughter can be constructed. The momentum of the space-like daughter

parton, qi, can then be constructed from the momentum of the space-like parent, qeij ,
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and the momentum of the time-like daughter from momentum conservation,

qi = qeij − qj. (2.77)

This procedure can be iterated all the way along the initial-state line, constructing the

momentum of all the partons in the initial-state shower.

Initial-state reshuffling

After reconstructing the momentum of the partons in the shower, the two initial-state

partons entering the hard sub-process have both a transverse momentum and space-like

virtuality. This results in a mismatch between the incoming shower partons and the

incoming partons of the hard sub-process which were assumed to be on-shell and have

zero transverse momentum.

As in the final-state case, we are therefore required to apply reshuffling boosts to the

shower momenta and the momenta of the particles produced in the hard sub-process in

order to enforce global momentum conservation.

In order to make our notation clear at this point, we review the different momentum

definitions that we make use of, for the incoming partons entering the hard sub-process:

• the (on-shell) momenta of the incoming partons from the hard sub-process, p©, are

given by

p© = x©P©, (2.78)

where P© are the beam momenta;

• the momenta of the incoming partons entering the hard sub-process after the shower

momentum reconstruction, q©;

• the corresponding reshuffled momenta, q′
©

.

In order to discuss the reshuffling procedure, we limit ourselves to the case of hard

sub-processes describing the production of a colour singlet system, such as Drell-Yan

vector boson production. For hard sub-processes with coloured partons in both final- and

initial-states, a more complicated procedure must be employed, as detailed in Ref. [3].

However, for the processes considered in this thesis the simpler procedure we describe is

sufficient.
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The reshuffling boosts, that are to be applied to all partons produced in the showers

generated from the two initial-state progenitors, are defined by

q© → q′
©

= α©k©p© +
β©

k©

p© + qT©, (2.79)

where the two boosts are determined by the parameters, k©

As discussed in Sect. 2.2.4, the momentum of the colour-singlet system produced

in the hard sub-process must receive a recoil transverse momentum and therefore we

cannot require these boosts to preserve the momentum of the hard sub-process. Instead

we choose a set of boosts that preserve the invariant mass and rapidity of the centre-of-

mass system. The requirement that the rapidity is preserved yields the equation,

x⊕

x⊖

=
α⊕k⊕ + β⊖

k⊖

α⊖k⊖ + β⊕

k⊕

. (2.80)

Requiring that the invariant mass is preserved results in the equation

sx⊕x⊖ =

(
α⊕k⊕ +

β⊖

k⊖

)(
α⊖k⊖ +

β⊕

k⊕

)
s + (q⊥⊕ + q⊥⊖)2 , (2.81)

where s is the hadronic centre-of-mass energy squared. Equations 2.81 and 2.80 may be

solved to obtain k⊕ and k⊖, allowing the two boosts to be obtained from their definition

in Eq. 2.79. These boosts are applied recursively to all partons resulting from the

shower initiated by the incoming progenitors. Finally, since the reshuffling boosts were

required to preserve the invariant mass of the system, the momentum of the colour

singlet produced in the hard sub-process, pa = p⊕ + p⊖, and the momentum of the

colour singlet after the shower momentum construction and reshuffling, q′a = q′⊕ + q′⊖,

are related by a boost. Thus, by applying the boost defined by,

p⊕ + p⊖
boost−−−→ q′⊕ + q′⊖, (2.82)

to the colour-singlet system and all its decay products, it receives the recoil transverse

momentum and global momentum conservation is restored.
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2.3 Improving the parton shower

While the parton shower accurately simulates soft and collinear radiation, it does not

provide a reliable description of hard (high transverse momentum) emissions. In par-

ticular the presence of the dead zone represents a deficiency in the description of hard

radiation. Even within the accessible shower regions of phase space, the distribution

of radiation involves some degree of approximation, since at any given fixed order in

perturbation theory, the parton shower effectively approximates the real emission cor-

rections to the hard scattering process by a product of splitting functions and Sudakov

form factors, summed over all combinations of branchings which give rise to the same

final state. The approximations account for the NLL corrections associated with soft

and collinear radiation in the perturbative series.

Fixed-order matrix elements have a number of advantages over the parton-shower

description, in particular they provide:

• a reliable treatment in the high-transverse-momentum region;

• an exact treatment of interference effects;

• an exact treatment of finite NC = 3 effects.

It is therefore appealing to combine the virtues of the parton shower and fixed-order

matrix elements such that the best features of both are included. Schemes that do this

are referred to as matrix-element merging and matching schemes. The development of

these schemes has been one of the major advances in Monte Carlo QCD in recent years

and has received much attention. In this thesis we focus on improving the description of

the Herwig++ parton shower, in the large-transverse-momentum region, with two such

schemes. In chapters 3 and 4, we describe an implemention of the POWHEG matching

scheme which combines NLO matrix elements with the parton shower. In chapter 5,

an implementation of a modified CKKW matrix-element merging scheme is described,

which combines higher-order tree-level matrix elements with the parton shower.

In the following section we describe the matrix-element correction method, which is

the default scheme implemented in Herwig++.
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2.3.1 Matrix-element corrections

The earliest and simplest means of forming this combination is known as the matrix-

element correction method [43,44]. This corrects the hardest emission generated by the

parton shower such that it is distributed according to the real single emission matrix-

element squared. This technique has been successfully applied to important processes

in a number of generators [45, 46], including Herwig++ [6].

The method consists of two distinct corrections: hard and soft matrix-element cor-

rections. We proceed to describe these methods and their implementation in Herwig++.

Soft matrix-element corrections

The soft matrix-element correction aims to correct the hardest parton-shower emission

such that it is generated according to the exact O(αS) radiative correction. In the

parton-shower approximation, the infinitesimal branching probability is given by dPeij→ij

as defined in Eq. 2.15. In order for the hardest emission to be generated according to

the exact radiative cross section, σr, we require the replacement

dPeij→ij(q̃, z) → dPME
eij→ij

(q̃, z) = dq̃2dz
1

σb

d2σr

dq̃2dz
. (2.83)

If the strong coupling in σr is evaluated at the transverse momentum, as in the parton

shower, then this will preserve the NLL resummation of the shower.

For processes where the parton-shower branching probability provides an overesti-

mate of the matrix-element corrected branching probability, 6 in Eq. 2.83, it is straight-

forward to achieve the required replacement. This is done by augmenting the parton-

shower veto algorithm, described in Sect. 2.2.5 to include an extra weight,

wME =
dPME

eij→ij
(q̃, z)

dPeij→ij(q̃, z)
, (2.84)

in the acception probability of step 4 of the veto algorithm. This results in the hardest

emission being generated according to

dPME
eij→ij

(q̃, z) exp

(
−
∫ q̃I

q̃

dPME
eij→ij

(q̃, z)

)
, (2.85)

6This is the case for e+e− → hadrons and Drell-Yan vector boson production.
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as required. For processes in which the parton-shower branching probability does not

overestimate the matrix-element branching probability it is possible to introduce an

enhancement factor to the parton-shower emissions, which is then taken into account in

the acceptance probability, such that the same procedure can be used.

The hardest emission in the Herwig++ parton shower is not necessarily the first emis-

sion and may be preceded by wide-angle soft emissions. However, since the corrected

branching probability in Eq. 2.83 matches that of the parton shower in the NLL ap-

proximation, the matrix-element veto can also be applied to these emissions with only

subleading differences. The procedure used is to apply the correction to any emission

that is the hardest so far.

Hard matrix-element corrections

Hard matrix-element corrections fill the dead zone with emissions generated according

to the O(αS) radiative correction. This is done by generating at most one emission

according to

1

σb

∫

Rdead

dx1dx2
d2σr

dx1dx2
, (2.86)

where Rdead refers to the dead-zone region of phase space, corresponding to the condition

q̃(x1, x2) > q̃I . The radiative variables, x1 and x2, parameterise the phase space for the

radiative correction (as suggested by the notation, they are the Dalitz variables for the

case of e+e− → hadrons).

In order to fill the dead zone, a hard emission is generated before the parton shower

begins according to the distribution in Eq. 2.86. This is done by first, generating a set

of radiative variables, (x1, x2), in the dead region and then accepting the emission if

wME−hard > R, (2.87)

where

wME−hard =
1

σb

d2σr

dx1dx2
. (2.88)

If the emission is rejected, no hard emission is generated in the dead zone. The parton

shower is then initiated from the resulting partons.
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This correction does not include a Sudakov form factor in the distribution of the

hardest emission generator and therefore corresponds to approximating the exclusive

hardest emission probability with the inclusive distribution given by the radiative cross

section. This approximation is valid since the contribution of the cross section in the

dead-zone region is generally small and therefore the corresponding Sudakov form factor

is close to one.

2.4 Summary

The Herwig++ parton shower is an angular-ordered shower based on a new ordering

variable which represents an improvement over that of the HERWIG parton shower in

terms of Lorentz invariance and the treatment of mass effects. In this chapter we have

described the details of the Herwig++ initial- and final-state parton showers which form

the foundation of the work of this thesis.

The technique of matrix-element corrections, where the parton-shower description is

improved using exact matrix elements, was also introduced. In Chapters 3-6, we focus

on the implementation of more sophisticated matrix-element merging methods.



Chapter 3

NLO matching with the POWHEG

method

3.1 Introduction

The parton shower represents an indispensable tool for describing high-multiplicity final

states, however this approach is traditionally based around a leading-order cross sec-

tion. For sufficiently inclusive observables, the best available description comes instead

from fixed-order calculations, which may be performed beyond leading order, for which

next-to-leading-order has become standard. In this chapter we discuss NLO matching

techniques which aim to combine parton showers with fixed-order NLO calculations such

that the virtues of each approach are retained.

The chapter is organised as follows. In Sect. 3.2, the general features of NLO calcu-

lations are reviewed and existing NLO matching techniques are reviewed. In Sect 3.3,

a novel approach to NLO matching, known as the POWHEG method, is reviewed. In

Sect 3.4, an implementation of the POWHEG method, in Herwig++, for the process

e+e− → hadrons, is described.

3.2 Matching NLO calculations with parton showers

3.2.1 NLO calculations

For a general 2 → n process, where the incoming parton momenta are given by p© and

the final-state momenta are given by pi, the NLO cross section can be written in the

69



NLO matching with the POWHEG method 70

form

dσNLO = B(Φn)dΦn + V0(Φn)dΦn + R0(Φn+1)dΦn+1, (3.1)

where Φn and Φn+1 represent the phase space of n and n + 1 final-state particles and

the functions B(Φn), V0(Φn) and R0(Φn+1) represent the Born, virtual and radiative

contributions respectively. The subscript on the virtual and radiative terms denotes that

these are divergent quantities.

To be more specific, we define Φn as the set of variables describing the phase space of

the final-state particle momenta, pi, and light-cone momentum fractions of the incoming

partons, x©,

Φn = {x⊕, x⊕, p1, ..., pn} . (3.2)

The corresponding phase-space element is

dΦn = dx⊕dx⊖dΦn (p⊕ + p⊖; p1, ..., pn) , (3.3)

where dΦn is the usual Lorentz invariant phase-space element, as given in Eq. 1.16. The

equivalent phase-space variables and integration element for configurations with n + 1

final-state particles are given by the same equations with n → n + 1.

The functions B(Φn), V0(Φn) and R0(Φn+1) are given products of the appropri-

ate matrix elements squared with corresponding flux factor and luminosity functions,

L(x⊕, x⊖). The luminosity functions contain the PDFs of the incoming partons and are

defined by,

L = f⊕ (x⊕) f⊖ (x⊖) . (3.4)

For the case of lepton-lepton scattering, the PDFs are replaced by δ (x⊕ − 1).

The matrix elements squared in the virtual contribution, V(Φn), come from the inter-

ference between the Born diagram and the one-loop corrections to it. The contribution

contains both ultra-violet and infra-red divergences. The ultra-violet divergences are

removed by renormalisation, where the divergences are absorbed into the physical pa-

rameters of the QCD Lagrangian. In the following we assume that all ultra-violet have

been renormalised and that Eq. 3.1 contains only infra-red divergences.
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As well as in the virtual contribution, infra-red divergences occur in the radiative

contributions. As discussed in Sect. 1.1.4, these divergences arise whenever an external

final-state parton is soft or in a configuration where it is collinear to another final-state

parton or one of the initial-state partons. We refer to these three cases as soft (S), final-

state-collinear (FSC) and initial-state-collinear (ISC) divergences, respectively. These

divergences can be parameterised using dimensional regularisation, where the divergent

contributions are calculated in d = 4 − 2ǫ dimensions where they are integrable. The

singularities then appear as terms with poles in ǫ. The KLN theorem [19] dictates

that, for any infrared-safe observable, the soft and final-state-collinear divergences must

cancel. The initial-state-collinear divergences from the radiative contribution are not

cancelled by the virtual contribution but should instead be factorised into the definition

of the physical PDFs.

The expectation value of a general infra-red safe observable, O, may be written, at

NLO in αS, as

〈O〉 =

∫
dΦnOn (Φn) [B (Φn) + V0 (Φn)] +

∫
dΦn+1On+1 (Φn+1)R0 (Φn+1) , (3.5)

where the functions On and On+1 give the observable quantity as a function of the n

and n + 1 final-state momenta, respectively. By explicitly cancelling the regulated S

and FSC divergences between virtual and radiative corrections and absorbing the ISC

divergences into the PDFs, this integral can be evaluated to calculate finite values for

infra-red safe observables.

3.2.2 Subtraction

It is desirable to provide an exclusive treatment of Eq. 3.1, using Monte Carlo methods to

generate final-state configurations, Φn and Φn+1, from which any observable quantities

may be calculated. This requires a numerical evaluation of Eq. 3.5. Furthermore, as

more complicated processes are considered, the procedure of cancelling the divergences

in the radiative terms becomes more difficult and numerical methods become a necessity.

The complication in doing this comes from the fact that the terms generating Φn and

Φn+1 in Eq. 3.5 are separately divergent and it is only their combination which yields a

finite result. In order to address this, the NLO cross section is reorganised according to

a subtraction procedure.
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To define the subtraction procedure, it is useful to parameterise the n+1-body phase

space in terms of the n-body phase space. We therefore embed the n-body phase-space

variables in the n+1-body variables and introduce a set of additional radiative variables

Φr. The phase-space element can then written

dΦn+1 = dΦndΦr (3.6)

In the subtraction formalism, a set of counterterms, Cα (Φn+1), are introduced. The

counterterms are defined such that in each divergent region, α, the singular part of the

radiative correction matches that of the counterterm, Cα. This guarantees that the

combination

R (Φn+1) = R0 (Φn+1) d −
∑

α

Cα (Φn+1) , (3.7)

is finite1.

Since the counterterms are chosen to match the radiative contributions in the di-

vergent regions, the KLN theorem dictates that the singularities resulting from the

integration of the counterterms over the radiative phase space, must match (with the

opposite sign) those present in that in the virtual contribution. The sum of the virtual

contribution with the counterterms therefore yields a finite contribution which we define

as

V (Φn) = V0 (Φn) +
∑

α

∫
dΦrC

α (Φn+1) . (3.8)

The counterterms can be chosen to be functions that are simple enough that they can

be be integrated in d-dimensions giving the singularities as poles in ǫ.

By adding and subtracting the integrated counterterms from Eq. 3.1, the differential

cross section can be written as

dσNLO = [B(Φn) + V (Φn)] dΦn + R(Φn+1)dΦrdΦn. (3.9)

The first term in the square brackets on right of Eq. 3.9 corresponds to n-body configu-

rations while the second term corresponds to n+1-body configurations. The subtraction

1This statement assumes that the Born contribution is free of divergences, as is the case whenever the
cross section corresponds to an infra-red safe observable.
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procedure results in both of these terms now being separately finite. In particular, the

term relating to n+1-body configurations can now be evaluated in four dimensions. This

equation is suitable for a numerical treatment using Monte Carlo techniques or other-

wise. A general NLO subtraction prescription, defining a universal set of counterterms

and their associated integrals in d-dimensions, is given in Ref. [47].

3.2.3 Matching NLO calculations with parton showers

Fixed-order NLO calculations provide the best available results for sufficiently inclusive

observables. However, in many cases we would like a more exclusive description and to

calculate observables that are sensitive to higher multiplicity configurations, as simulated

by parton showers. In particular, the parton shower is required in order to evolve

from the low multiplicity, high energy configurations, described by fixed-order matrix

elements, to high multiplicity, low energy configurations to which universal hadronisation

models are applied. It is therefore desirable to be able to combine NLO calculations with

parton showers in order to get the best of both worlds.

Prescriptions for combining NLO calculations with parton showers are known as NLO

matching schemes. The aims of a NLO matching scheme are to provide the parton shower

resummation of soft and collinear emissions while giving NLO results for all infrared-

safe observables upon expansion in αS. These matching prescriptions are complicated

because the regions of phase space filled by the higher-order matrix elements and the

parton shower must be smoothly separated in order to avoid problems such as double-

counting where the shower and matrix elements radiate in the same region.

The first successful NLO matching scheme was the MC@NLO approach,

[50–55] which has been implemented with the HERWIG event generator for many pro-

cesses. The MC@NLO method generates sets of n- and n + 1-body configurations ac-

cording to the subtracted NLO differential cross section. A naive implementation of this

approach would be to simply shower these configurations and assign weights according

to the appropriate terms in the differential cross section. However, this would result

in a double-counting of parton shower emissions. This results from the fact that the

phase space accessible to emissions from the n-body configuration is also included in the

phase space that is accessible to the radiative corrections described in the n + 1-body

configurations. In order to remedy this problem, the MC@NLO procedure dictates that

the weight assigned to n+1-body configurations should be given by the associated NLO

weight minus the parton shower approximation to the radiative correction.
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A feature that makes the MC@NLO particularly simple to implement is the fact that

it does not require any modification of the parton shower itself and can be constructed

as a separate generator that provides configurations which are interfaced to the standard

parton shower. The method has two drawbacks:

• since the implementation of the method relies on subtracting an approximation of

the parton shower result, it is heavily dependent on the details of the parton shower

algorithm used by the event generator;

• the subtraction of the shower approximation means that the weight assigned to

radiative events is not positive definite and results in a fraction of events with a

negative weight2.

3.3 The POWHEG method

In Ref. [48] a novel method, referred to as POWHEG (POsitive Weight Hardest Emission

Generator), was introduced to achieve the same aims as MC@NLO while creating only

positive weight events and being independent of the event generator with which it is

implemented. The POWHEG method has been applied to Z pair hadroproduction

[49], heavy flavour hadroproduction [58], e+e− annihilation to hadrons [59], Drell-Yan

vector boson production [1,60], Higgs production [61,62] and single top production [63].

A general outline of the ingredients required for POWHEG with two popular NLO

subtraction schemes is given in Ref. [57].

The POWHEG method is constructed on the basis that if the hardest emission (the

emission with the greatest transverse momentum) is generated according to the exact

NLO cross section then all infrared-safe observables will also be given according to their

NLO distributions. This is true since subsequent emissions are softer and therefore

affect the observables only at next-to-next-to-leading-order (NNLO). In a transverse-

momentum-ordered shower this corresponds to correcting the first emission, however for

showers ordered in other variables the procedure is more complicated. In the following

we describe the method, as it appeared in the original publication [48], for the case of

an angular-ordered shower such as Herwig++.

2It should be noted that while the presence of negative weight events is unappealling, it does not
necessarily constitute a problem. In principle, these events may be included in any histograms as
contributing a negative weight to a bin and the result should still be positive provided the observable
is infrared-safe and we have sufficient statistics.
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3.3.1 Shower reorganisation

In this section we present the POWHEG reorganisation of the Herwig++ parton shower

which allows the hardest emission to be generated separately before generating the rest

of the shower around it. This procedure is described separately for final- and initial-state

showers.

Final-state reorganisation

The Herwig++ time-like shower can be represented by the generating functional of

Eq. 2.21, which we repeat here for clarity

Seij(q̃I) = ∆eij(q̃I , q̃0)Seij(q̃0) (3.10)

+

∫ q̃I

q̃0

∆eij(q̃I , q̃)
∑

eij→ij

(
dPeij→ij(q̃, z)

)
Si (zq̃)Sj ((1 − z)q̃) .

The hardest emission in this parton shower is described by the shower variables (q̃h, zh, φh)

and has an associated transverse momentum p⊥h
. Since the ordering of this parton

shower corresponds to ordering in the opening-angle rather than transverse momentum,

the hardest emission is not guaranteed to be the first emission. These prior emissions

consist of wide-angle soft gluon radiation, corresponding to the limit z → 1 in the shower

variables. For reasons that will become apparent, we refer to these emissions as truncated

emissions.

In order to motivate the identification of the truncated emissions, we follow the

arguments of Ref. [48]. In this publication, the hardest emission and truncated emissions

are shown to have three important properties:

1. the hardest emission is always found along the shower line defined by following the

line with z > 1/2 at each emission;

2. the truncated emissions consist purely of soft gluon emissions;

3. from the first non-soft emission down to the last, the evolution variable of emissions

must satisfy q̃ . p⊥h
.

These statements are most easily seen using the massless limit of the evolution variable,

q̃ =
p⊥

z(1 − z)
, (3.11)
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but should hold for arbitrary masses.

To see that statement 1 is true, we consider a general truncated emission with emis-

sion variables (q̃t, zt). Combining the condition that the emission has a lower transverse

momentum than the hardest emission,

q̃tzt(1 − zt) < q̃hzh(1 − zh), (3.12)

with the angular ordering condition,

ztq̃t > q̃h, (3.13)

yields the inequality for zt

zt >
3

4
. (3.14)

Statement 2 is proved by defining that a non-soft emission is any emission away from

the soft region, z → 1. This implies that for non-soft truncated emissions the emission

scale is of the order of the transverse momentum, q̃t ∼ p⊥t
. The requirement that the

emission is softer than the hardest emission then yields the inequality

q̃t . p⊥h
, (3.15)

which, via Eq. 3.11, can be written in terms of the scale of the hardest emission as

q̃t . q̃h. (3.16)

This tells us that the scale of a non-soft truncated emission is of the order of or greater

than that of the hardest emission. Such an emission therefore does not correspond

to a strongly ordered variable in the angular evolution variable and thus results in a

subleading contribution that can be neglected. Since only gluon emissions are enhanced

in the z → 1 limit, we conclude that the truncated emissions correspond to soft gluon

emissions, which do not change the flavour of the shower line.

Finally, for the first non-soft emission (q̃, z), whether it is the hardest emission itself

or occurs afterwards, we have

q̃ . p⊥h
, (3.17)
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which by angular ordering must also hold for all subsequent emissions, proving statement

3.

It is possible to expand Eq. 3.10 along the line of the hardest emission. The shower

may produce any number of truncated emissions before the hardest emission and any

number of emissions after it but all of these must have p⊥ < p⊥h
. The shower can

therefore be written as

Seij(q̃I) = ∆eij(q̃I , q̃0)Seij(q̃0) (3.18)

+

∫ q̃I

q̃0

S̃T
eij

(q̃I , q̃h; p⊥h
)
∑

eij→ij

dPeij→ij(q̃h, zh)S̃V
i (zhq̃h; p⊥h

) S̃V
j ((1 − zh)q̃h; p⊥h

) ,

where S̃T refers to a truncated shower and S̃V refers to a vetoed shower. The truncated

shower is responsible for evolving from the initial scale down to the scale of the hardest

emission producing any number of truncated emissions and the vetoed shower evolves

from the scale of the hardest emission down to the hadronisation scale. The evolution

of the vetoed shower is defined by

S̃V
eij

(q̃h; p⊥h
) = ∆eij(q̃h, q̃0)S̃eij(q̃0) (3.19)

+

∫ q̃h

q̃0

∆eij(q̃h, q̃)
∑

eij→ij

dPeij→ij(q̃, z)Θ(p⊥h
− p⊥(q̃, z))

× S̃V
i (zq̃; p⊥h

) S̃V
j ((1 − z)q̃; p⊥h

) .

The recursive equation describing the evolution of the truncated shower is given by

S̃T
eij

(q̃I , q̃h; p⊥h
) = ∆eij(q̃I , q̃h) (3.20)

+

∫ q̃I

q̃h

∆eij(q̃I , q̃)dPeij→eijg(q̃, z)Θ(p⊥h
− p⊥(q̃, z))

× S̃T
eij

(zq̃, q̃h; p⊥h
) S̃V

g ((1 − z)q̃; p⊥h
) .

The Sudakov form factors and splitting functions appearing in Eqs. 3.19 and 3.20

are identical to those in the standard shower equation of Eq. 3.10 with the exception

that the splitting functions in both new showers have an additional Θ-function. This

Θ-function guarantees that no emissions with transverse momentum greater than that

of the hardest emission are generated. Standard Monte Carlo techniques require that

the splitting functions of a parton shower match those appearing in the Sudakov form
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factors. The introduction of the Θ-functions mean that this is not the case for the vetoed

and truncated showers in Eq. 3.18; we highlight this in our notation with a tilde.

In order to make the truncated and vetoed showers suitable for a Monte Carlo treat-

ment, the original the Sudakov form factor appearing in Eqs. 3.19 and 3.20 is split into

two parts according to

∆f(ziq̃i, q̃i+1) = ∆V
f (ziq̃i, q̃i+1; p⊥h

)∆̄R
f (ziq̃i, q̃i+1; p⊥h

). (3.21)

Here, ∆V
f refers to a vetoed Sudakov in which the exponent contains a Θ-function, which

matches that in the splitting function of Eqs. 3.20 and 3.19 which was introduced to

ensure that the transverse of these emissions is less than that of the hardest emission.

In full the vetoed Sudakov form factor is given by

∆V
eij
(ziq̃i, q̃i+1; p⊥h

) = exp


−

∑

eij→ij

∫ ziq̃i

q̃i+1

dPeij→ij(q̃, z)Θ (p⊥h
− p⊥(q̃, z))


 . (3.22)

The other factor, ∆̄R
f , contains the opposite Θ-function and is referred to as a remnant

Sudakov given by

∆̄R
eij
(ziq̃i, q̃i+1; p⊥h

) = exp


−

∫ ziq̃i

q̃i+1

∑

eij→ij

dPeij→ij(q̃, z)Θ (p⊥(q̃, z) − p⊥h
)


 . (3.23)

The combination of the splitting functions in Eqs. 3.20 and 3.19 and the vetoed Sudakov

form factors results in a parton shower that may be generated with standard vetoes al-

lowing only emissions with p⊥ < p⊥h
, however, the presence of the remnant Sudakov

form factors appears to spoil this picture. On the contrary, it turns out that the seem-

ingly awkward remnant factors have a key role to play in formalising how to generate

the hardest emission first.

In Ref. [48] it is shown that statements 1-3 result in the remnant Sudakov form

factors, ∆̄R
f , combining to form a single remnant Sudakov form factor, ∆R

f . Statements

1 and 2 show that all radiation, other than soft radiation in the limit z → 1, is subleading

and therefore in this region the approximation z → 1 can be applied in the remnant

Sudakov form factors (Eq. 3.23) resulting from the truncated shower. Furthermore,

statement 3 implies that for all emissions occurring after the first non-soft emission, the

Θ-function in Eq. 3.23 sets the integral to zero. This means that the approximation

z → 1 also hold in the remnant Sudakov form factors resulting from the vetoed showers.
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The net result of these replacements is that the product of all remnant Sudakov form

factors combine to give the remnant Sudakov factor:

∆R
eij
(q̃I , q̃0; p⊥h

) = exp


−

∑

eij→ij

∫ q̃I

q̃0

dPeij→ij(q̃, z)Θ (p⊥(q̃, z) − p⊥h
)


 . (3.24)

The full POWHEG reorganisation of the shower may be written as 3

Seij(q̃I) = ∆R
eij
(q̃I , q̃0; 0)Seij(q̃0) (3.25)

+

∫ q̃I

q̃0

ST
eij

(q̃I , q̃h; p⊥h
)∆R

eij
(q̃I , q̃0; p⊥h

)
∑

eij→ij

dPeij→ij(q̃h, zh)

× SV
i (zhq̃h; p⊥h

)SV
j ((1 − zh)q̃h; p⊥h

) .

The vetoed shower is defined by

SV
eij

(q̃h; p⊥h
) = ∆V

eij
(q̃h, q̃0)SV

eij
(q̃0) (3.26)

+

∫ q̃h

q̃0

∆V
eij
(q̃h, q̃)

∑

eij→ij

dPeij→ij(q̃, z)Θ(p⊥h
− p⊥(q̃, z))

× SV
i (zq̃; p⊥h

)SV
j ((1 − z)q̃; p⊥h

) ,

and corresponds to a standard shower with vetoes applied such that only emissions with

p⊥ < p⊥h
are generated. The truncated shower is defined by

ST
i (q̃I , q̃h; p⊥h

) = ∆V
i (q̃I , q̃h) (3.27)

+

∫ q̃I

q̃h

∆V
i (q̃I , q̃)dPi→ig(q̃, z)Θ(p⊥h

− p⊥(q̃, z))

× ST
i (zq̃, q̃h; p⊥h

)SV
g ((1 − z)q̃; p⊥h

) ,

and corresponds to a standard vetoed parton shower line, constrained not to produce

any flavour changing emissions, that is stopped once the truncated line has evolved down

to the scale q̃h.

3Here we have written the no-emission term also in terms of the remnant Sudakov form factor which
we are free to do since by definition ∆R

eij
(q̃I , q̃0; 0) = ∆eij(q̃I , q̃0).
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The POWHEG treatment results in a reorganisation of the shower such that the

hardest emission may be generated first. The Monte Carlo interpretation of this reor-

ganisation (Eq. 3.25) is:

1. the hardest emission (qh, zh, φh) is generated4 from the appropriate splitting func-

tion reweighted with the remnant Sudakov form factor, according to

∑

eij→ij

dPeij→ij(q̃h, zh)∆
R
eij
(q̃I , q̃0; p⊥h

); (3.28)

2. a truncated shower, allowing only non-flavour-changing emissions with p⊥ < p⊥h
is

initiated, evolving the shower from q̃I down to q̃h;

3. the hardest emission is forced with shower variables (qh, zh, φh);

4. showers with a veto, allowing only emissions with p⊥ < p⊥h
, evolve all external

lines down to the hadronisation scale.

A shower generated in this way should differ from the standard shower by only sub-

leading terms.

Initial-state POWHEG reordering

In the initial-state case, the parton shower evolution is described by Eq. 3.35. The

hardest emission, defining the NLO correction, must occur along the initial-state line.

The hardest emission can therefore be singled out by expanding Eq. 3.35 along the initial-

state line, analogously to Eq. 3.18, absorbing emissions before the hardest emission into

a truncated shower and emissions after the hardest emission into vetoed showers.

The truncated emissions can be shown to correspond to soft gluon emissions by

following analogous arguments to those presented for the time-like case. The transverse

momentum of an emission is related to the initial-state evolution scale, neglecting masses,

according to

p⊥ = q̃(1 − z). (3.29)

The evolution scale of a non-soft truncated emission therefore has an evolution scale

of the order of its transverse momentum. Since this transverse momentum is required

to be less than that of the hardest emission, this, as in the final-state case, implies

Eq. 3.16. This does not correspond to a strongly ordered emission and does not produce

4As usual in the parton shower the azimuthal angle, φh, is generated flat in the region [0, 2π].
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a LL contribution. Truncated emissions are therefore identified as soft emissions which,

provided the momentum fraction of the process x is not too low, correspond solely to

gluon emissions in the z → 1 limit which do not change the flavour of the initial-state

parton.

Since the angular-ordering condition applied along the initial-state line is q̃i+1 < q̃i,

the definition of the remnant Sudakov form is simpler in this case. The initial-state

Sudakov form factor is separated into two pieces, a vetoed and remnant Sudakov form

factor, according to

Πi (q̃1, q̃2; x) = ΠV
i (q̃1, q̃2; x; p⊥) ΠR

i (q̃1, q̃2; x; p⊥) . (3.30)

The vetoed Sudakov form factor is defined by

ΠV
i (q̃1, q̃2; x; p⊥) = exp


−

∑

eij

∫ q̃1

q̃2

dq̃2

q̃2

∫ z+(q̃)

x

dz
αS

2π
Peij→ij (z, q̃) (3.31)

×
feij(x/z, q̃)

zfi(x, q̃)
Θ (p⊥h

− p⊥(q̃, z))

]
,

such that it contains a Θ-function to match that appearing in the splitting function

of the truncated and vetoed emissions. The remnant Sudakov form factors contain a

Θ-function with opposite argument and is given by

ΠR
i (q̃1, q̃2; x, p⊥) = exp


−

∑

eij

∫ q̃1

q̃2

dq̃2

q̃2

∫ z+(q̃)

x

dz
αS

2π
Peij→ij (z, q̃) (3.32)

×
feij(x/z, q̃)

zfi(x, q̃)
Θ (p⊥(q̃, z) − p⊥h

)

]
.

The remnant Sudakov form factors are removed from the truncated and vetoed shower,

such that these correspond to standard vetoed showers. The same arguments that led

to the approximation z → 1 in the final-state Sudakov remnants can also be utilised in

the initial-state case allowing the remnant Sudakov form factors from the m emissions

along the initial-state line are combined into a single remnant Sudakov form factor

m∏

i=1

ΠR
i (q̃i, q̃i+1; xi, p⊥) ≈ ΠR

i (q̃I , q̃0; x, p⊥) , (3.33)
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where

xi =
x∏i

j=1 zj

. (3.34)

In this approximation, the POWHEG reorganised initial-state shower is described by

S̄i(q̃I ; x) = Πi(q̃I , q̃0; x)S̄i(q̃0; x) (3.35)

+

∫ q̃I

q̃0

S̄T
i (q̃I , q̃h; x, p⊥h

)ΠR
i (q̃I , q̃h; x, p⊥h

)
∑

eij

dPeij→ij(q̃h, zh)
feij(x/z, q̃h)

zfi(x, q̃h)

× S̄V
eij
(q̃h; x/zh, p⊥h

)SV
j ((1 − zh)q̃h; p⊥h

).

The initial-state truncated shower is defined by

S̄T
i (q̃1, q̃2; x, p⊥) = ΠV

i (q̃I , q̃0; x, p⊥) (3.36)

+

∫ q̃I

q̃0

ΠV
i (q̃I , q̃h; x, p⊥h

)dPi→ig(q̃, z)
fi(x/z, q̃)

zfi(x, q̃)

× S̄T
i (q̃, q̃2; x/z, p⊥)SV

g ((1 − z)q̃; p⊥),

and the vetoed shower by

S̄V
i (q̃1; x, p⊥) = ΠV

i (q̃1, q̃0; x, p⊥)S̄V
i (q̃0; x, p⊥) (3.37)

+

∫ q̃1

q̃0

ΠV
i (q̃1, q̃h; x, p⊥)dPĩj→ij(q̃, z)

∑

ĩj

fĩj(x/z, q̃)

zfi(x, q̃)

× S̄V
ĩj

(q̃; x/z, p⊥)SV
j ((1 − z)q̃; p⊥),

The Monte Carlo interpretation of Eq. 3.35 is completely analogous to the final-state

case.

3.3.2 Generating the hardest emission according to the NLO

cross section

Having singled out the hardest emission such that it may be generated separately, the

remaining task is to generate this emission according to exact NLO formulae. In the

original POWHEG publication [48] this is done by performing an expansion of the parton

shower at NLO in αS and comparing this to the exact NLO cross section. NLO corrected
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splitting functions and associated Sudakov forms may then be defined in terms of the

contributions of the NLO cross section.

In the standard Monte Carlo approach, each event is assigned the leading-order

weight B(Φn) and all partonic external legs, l, initiate a parton shower. The parton-

shower approximation to Eq. 3.9 is determined by the distribution of the hardest emis-

sion. The hardest emission can occur along any of the parton shower lines and, from

Eq. 3.25, it is distributed according to

dσ(PS) = B(Φn)dΦn

{
∆R(q̃I , q̃0; 0) + ∆R (q̃I , q̃0; p⊥) F (q̃, z) dq̃dz

}
, (3.38)

where we have defined the combination of remnant Sudakov form factors for all parton-

shower legs,

∆R(q̃I , q̃0; p⊥) =
∏

l

∆R
l (q̃I , q̃0; p⊥), (3.39)

and the infinitesimal splitting probability summed over all parton-shower legs,

F (q̃, z)dq̃dz =
∑

eij

∑

eij→ij

dPeij→ij(q̃h, zh), (3.40)

where the summation over ĩj denotes summation over the external legs which initiate

the parton shower. The NLO cross-section approximation is therefore provided by the

αS-expansion of Eq. 3.38 giving

dσ(PS) = B(Φn)dΦn

{
1 + F (q̃, z)dq̃dz −

∫ q̃I

q̃0

F (q̃, z)dq̃dz + O(α2
S)

}
. (3.41)

The exact NLO cross section in Eq. 3.9 can be manipulated to match the form of

Eq. 3.41 by writing it as

dσNLO =

[
V (Φn) +

∫
dΦrR(Φn+1)

]
dΦn (3.42)

+ B(Φn)dΦn

[
1 +

R0(Φn+1)dΦr

B(Φn)
−
∫

R0(Φn+1)dΦr

B(Φn)

]
.



NLO matching with the POWHEG method 84

The second term in square brackets now has exactly the form of the parton shower cross

section in Eq. 3.41 with the following substitutions

F (q̃, z) → R0(Φn+1)

B(Φn)
, dq̃dz → dΦr. (3.43)

Taking this correspondence a stage further, a remnant Sudakov form can be defined

according to

∆R(p⊥) = exp

[
−
∫

dΦr
R0(Φn+1)

B(Φn)
Θ (p⊥(Φn+1) − p⊥)

]
, (3.44)

and the cross section can be written analogously to Eq. 3.38 as

dσNLO =

[
V (Φn) +

∫
dΦrR(Φn+1)

]
dΦn (3.45)

+ B(Φn)dΦn

[
∆R(p⊥min

) + ∆R(p⊥)
R0(Φn+1)dΦr

B(Φn)

]
.

This equation has the same expansion at NLO in αS as Eq. 3.9 but also generates

the same distribution of the hardest emission as Eq. 3.38 in the LL approximation.

Therefore, together with the shower reorganisation it satisfies the requirements of a

NLO matching prescription.

Equation 3.45 has a simple Monte Carlo interpretation. The second term corresponds

to the distribution of events containing the hardest emission which should be generated

accordingly and attached to truncated and vetoed showers as dictated by the POWHEG

shower reorganisation. The terms in the first square brackets are formally of higher

order in αS and can therefore be implemented by generating n-body events with the

corresponding weight and applying the standard shower. While this implementation is

workable, like the MC@NLO scheme, it suffers from negative weights, since the first

term is not positive definite.

The POWHEG scheme circumvents the issue of negative weights by introducing the

function

B̄(Φn) = B(Φn) + V (Φn) +

∫
dΦrR(Φn+1), (3.46)



NLO matching with the POWHEG method 85

whereupon Eq. 3.45 can be rewritten, with only NNLO differences, as

dσNLO = B̄(Φn)dΦn

[
∆R(p⊥min

) + ∆R(p⊥)
R0(Φn+1)dΦr

B(Φn)

]
. (3.47)

The B̄ function is positive definite as long as perturbation theory is valid and therefore

Eq. 3.47 can be used to provide a NLO correction of the hardest emission without

producing any negative weights.

The transverse momentum cut off, p⊥min
, is introduced in order to define what is con-

sidered a resolvable emission, avoiding the singular regions of the radiative corrections.

Equation 3.47 can be considered to be the central POWHEG formula and the main

task of an implementation is the manipulation of the NLO cross section into this form.

3.4 POWHEG implementation: e+e−
→ hadrons

The simplest useful process for which the POWHEG scheme can be implemented is

e+e− → hadrons. This process provides an important test bed for the implementa-

tion since it is a clean process, not complicated by the presence of initial-state hadrons,

described by a large amount of data from the LEP experiments and is already well

described by Monte Carlo event generators. An implementation for the process in Her-

wig++, for light quarks, was presented in Ref. [59]. In this section we present a separate

implementation employing different methods and including some massive quark effects.

The implementation also features an exact treatment of the truncated shower which was

not included in Ref. [59].

3.4.1 Hardest emission

In this section we present the ingredients required for the generation of the hardest

emission according to Eq. 3.47. A finite quark mass defined by,

ρ =
m2

s
, (3.48)

is taken into account in the generation of the hardest emission.
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Kinematics

In separating the production and decay processes in Sect. 1.1.3, we integrated over cor-

relations between the two, resulting in the Born cross section being given by a constant.

In this implementation we will also follow this simplifying procedure but will employ a

trick which will allow us to regain the correct correlations. This simplification means

that we do not have any Born variables and the integration measure over the n-body

configuration can simply be set to one,

dΦn = 1. (3.49)

The phase space of the NLO radiative correction to the cross section is conveniently

expressed in terms of the Dalitz variables, xi, as defined in Eq. 1.45. However, since the

remnant Sudakov form factor (Eq. 3.44) contains the Θ-function,

Θ (p⊥(Φn+1) − p⊥) , (3.50)

the generation of the hardest emission may be simplified by choosing the transverse

momentum, p⊥, as one of the radiative variables. In this case, the Θ-function results

in the lower limit of the integral over p⊥ being set to p⊥h
which makes it suitable for a

straightforward implementation with the veto algorithm.

The exact parton shower transverse momentum may be calculated from the Dalitz

variables by solving Eq. 2.395 for the parton shower emissions. This gives

p2
⊥ =

s

4(1 − x2 + ρ)(x2
2 − 4ρ)

[
(x2 − 1)(

√
x2 − 4ρ + xg − x1) + 2ρxg

]
(3.51)

×
[
(x2 − 1)(

√
x2 − 4ρ − xg + x1) − 2ρxg

]
,

for emissions from the quark (parton 1) and the same expression with x1 ↔ x2 for

emission from the anti-quark. This is just the generalisation of Eq. 1.56 for quarks of

finite mass.

Instead of using the exact transverse momentum, p⊥, it is convenient to use a simpler

transverse momentum variable, p̄⊥, that provides a single mapping for the whole phase-

space region. This leads to a significantly more straightforward implementation due to

simpler kinematics and the fact that an emitter does not need to be assigned until after

5The notation here relates to that of Eq. 2.39 with the substitution xb,c ↔ x1,2.
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the radiative variables have been generated. The chosen variable must approximate the

parton-shower variable such that it approaches it in the soft and collinear limits.

Once a hardest emission has been generated, its transverse momentum in the parton

shower variable can be calculated with the exact mapping in Eq. 3.51. This exact

transverse momentum can then be used in the subsequent POWHEG truncated and

vetoed showers.

The transverse momentum variable used in this implementation is chosen as

p̄2
⊥ = s(1 − x1)(1 − x2). (3.52)

An auxiliary variable is also required to parameterise the phase-space region. This is

chosen to be a rapidity variable in which the radiative cross section is expected to be

relatively stable, so that the hardest emission may be generated using sampling a flat

sampling of the phase space in this variable. The rapidity variable used is defined as

y =
1

2
log

(
1 − x1

1 − x2

)
. (3.53)

These variables were used in the Ariadne dipole shower, described in Ref. [64]. The

corresponding solutions for the Dalitz variables in terms of these radiative variables are

x1,2 = 1 − p̄⊥√
s

exp (∓y). (3.54)

The radiative phase-space element in the Dalitz variables may be related to the

phase-space element in (p̄⊥, y) by a simple Jacobean factor

dΦr = dx1dx2 =
2p̄⊥
s

dp̄⊥dy. (3.55)

The allowed region of phase space for radiative emission from a quark of finite mass

is given by the inequality

∆
(
x2

1 − 4ρ, x2
2 − 4ρ, x2

3

)
< 0, (3.56)

where the function ∆(a, b, c) is defined by

∆(a, b, c) = a2 + b2 + c2 − 2ab − 2bc − 2ca. (3.57)
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Matrix elements

In this section we present a calculation of the Born and radiative matrix elements that are

required for the generation of the hardest emission according to the POWHEG formula,

Eq. 3.47.

In order to separate the implementation of production and decay processes, we em-

ploy a trick that is valid only in the massless limit. However, while this is strictly

only a massless correction, we include mass terms in the radiative matrix elements of

the radiative corrections, where they may improve the description of, for example, low-

transverse-momentum emissions from bottom quarks.

The matrix elements for the Born and radiative contributions to this process, for

the case of massless quarks with an intermediate photon, were calculated in Sect. 1.1.3.

In order to extend these calculations to include an intermediate Z boson, we use the

narrow width approximation. As in Sect. 1.1.3, we treat the production and decay

processes separately, neglecting interferences between the two. The Z boson propagator

then introduces an additional Breit-Wigner factor describing the Z boson resonance,

1

(p2 − M2
Z)

2
+ M2

ZΓ2
, (3.58)

where p, MZ and Γ are the momentum, mass and decay width of the Z boson. In

generating the hardest emission, this factor will always cancel between the Born and

radiative contributions and we omit it from this point onwards.

The Z boson also introduces separate axial- and vector-couplings. We may write the

general vector-boson-fermion-fermion vertex as

igAγµγ5 + igV γµ, (3.59)

where gA and gV are the axial and vector coupling constants. In terms of the electronic

charge e and weak mixing angle θw, the coupling constants are given by

gA = 0, gV = eQi, (3.60)

for a photon and

gA =
e

2 sin θw cos θw
t3L i, gV =

e

2 sin θw cos θw

(
t3L i − Qi sin

2 θw

)
, (3.61)
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for a Z boson. The constants Qi and t3L i are the fractional electronic charge and weak

isospin of the interacting fermion, i. The weak isospin is +1/2 for up-type quarks and

−1/2 for down type quarks.

For the process considered, the interference terms between the vector and axial cur-

rents vanish and the matrix elements squared for the production process can be written

in the form

|M|2 = g2
ATrA + g2

V TrV , (3.62)

where TrA and TrV refer to the terms coming from the evaluation of the traces of the

vector and axial currents respectively. In the case of massless quarks, the vector and axial

contributions are identical and we find a straightforward generalisation of the results of

Sect. 1.1.3. The Born cross section is given by

σb = σ0NC

(
g2

A + g2
V

)
, (3.63)

where we define

σ0 =
(g2

A + g2
V )

12πs
. (3.64)

The radiative contribution to the cross section is

σr = σ0NCCF
(g2

A + g2
V )

8π2

∫
dx1dx2

x2
1 + x2

2

(1 − x1)(1 − x2)
. (3.65)

We note that Eqs. 3.63 and 3.65 reduce to the expressions of Eqs. 1.41 and 1.47 in the

case that the vector boson is a photon.

If we introduce a finite quark mass the contributions from the axial and vector

currents are no longer equal. In this case it is found [65] that the Born contribution

is given by

σb = σ0NC

[
g2

Av3 + g2
V (1 + 2ρ)v

]
, (3.66)

where v is the quark velocity, v =
√

1 − 4ρ. The radiative corrections are given by

σr = σ0NCCF
αS

2π

∫
dx1dx2

[
g2

AFA(x1, x2, ρ) + g2
V FV (x1, x2, ρ)

]
, (3.67)
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where FA is the contribution from the trace over the axial current and is given by

FA =
(x1 + 2ρ)2 + (x2 + 2ρ)2 − 2ρ [(3 + xg)

2 − 19 + 4ρ]

(1 − x1)(1 − x2)
(3.68)

− 2ρv2

(1 − x1)2
− 2ρv2

(1 − x2)2
,

and FV is the contribution from the vector current trace,

FV =
(x1 + 2ρ)2 + (x2 + 2ρ)2 − 8ρ(1 + 2ρ)

(1 − x1)(1 − x2)
− 2ρ(1 + 2ρ)

(1 − x1)2
− 2ρ(1 + 2ρ)

(1 − x2)2
. (3.69)

Hardest emission generation

The matrix elements and kinematics that have been described lead to the identification

of the POWHEG NLO splitting function, from Eq. 3.47, as

R0(Φn+1)

B(Φn)
dΦr = F (NLO)(p̄⊥, y)dp̄⊥dy. (3.70)

where

F (NLO)(p̄⊥, y) = CF
αS

2π

[g2
AFA(x1, x2, ρ) + g2

V FV (x1, x2, ρ)]

[g2
Av3 + g2

V (1 + 2ρ)v]

2p̄⊥
s

. (3.71)

The radiative variables (p̄⊥, y) that describe the hardest emission are generated ac-

cording to Eq. 3.47 using the bivariant veto algorithm. This requires us to define a

simple function that provides an upper bound to F (NLO)(p̄⊥, y). A suitable choice for

this function is

g(p̄⊥) =
K

p̄⊥
, (3.72)

where

K =
2CFαSmax

π
. (3.73)

The allowed phase-space limits can be approximated by the rectangular region

p̄⊥min
< p̄⊥ < p̄⊥max , /; /; /; /; /; /; /; /; ymin < y < ymax.
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The limit p̄⊥max is set to the highest kinematically accessible value

p̄⊥min
=

√
s

2
. (3.74)

The limit p̄⊥min
is a cut parameter that must be set in order to avoid the singular region

of F (NLO)(p̄⊥, y) and define what is considered a resolvable emission. The kinematically

accessible limits to y are then given by

ymax,min = ± cosh−1

( √
s

2p⊥min

)
. (3.75)

The generation of the hardest emission variables (p̄⊥, y) then proceeds according to:

1. p̄⊥ 0 is set to p⊥max
;

2. a new (p⊥, y) configuration is generated from p̄⊥ i = p̄⊥ i−1R
1

K(ymax−ymin) and y =

ymin + R(ymax − ymin);

3. if p̄⊥ i < p̄⊥min
then a no-emission event is generated;

4. if the generated configuration is outside the exact phase-space boundaries in Eq. 3.56,

then return to step 2;

5. if W (p̄⊥ i, y)/g(p̄⊥ i) > R then accept the configuration, otherwise return to step 2.

3.4.2 The B̄ function

Since all Born variables have been integrated over, the B̄ function is also a constant and

corresponds simply to the integrated NLO cross section, which, for massless partons, is

given by the well known function

B̄dΦn = BdΦn

(
1 +

αS

π

)
. (3.76)

This corresponds to a trivial reweighting of the leading-order configuration that is gen-

erated according to Born matrix elements in the standard Monte Carlo treatment.

3.4.3 Momentum reconstruction

The momenta of the three-parton state defined by the hardest emission variables and

Born configuration, are constructed in the Sudakov basis, using a process analogous to

that of the parton shower momentum reconstruction detailed in Sect. 2.2.6.
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The gluon must be assigned as an emission from either the quark or anti-quark; the

other parton is then referred to as the spectator. This choice is made based on which

parton the gluon is closer to in angle. This corresponds to choosing the emitter to be

the quark if

x1 < x2, (3.77)

and assigning the anti-quark as the emitter otherwise. In the following we refer to

variables relating to the emitter with a subscript e and variables relating to the spectator

with a subscript s.

The momenta are constructed in the centre-of-mass frame with the Sudakov reference

vectors pµ
q q̄ and nµ

q q̄ for emissions from the quark and anti-quarks, defined by

pµ
q q̄ =

√
s

2
(1; 0, 0,±v) , nµ

q q̄ =

√
s

2
(v; 0, 0,∓v) . (3.78)

The Dalitz variables, representing the hardest emission, are related to the parton-

shower variables by

z = r +
xe − (2 − xs)r√

x2
s − 4ρ

, (3.79)

k̃ =
1 − xs

z(1 − z)
,

where r is defined by

r =
1

2

(
1 +

ρ

1 + ρ − xs

)
, (3.80)

and k̃ is the dimensionless evolution variable defined in Eq. 2.41. The α-parameters in

the Sudakov basis are then given by

αe =
z

(1 + v)

[
1 + z(1 − z)k̃ +

√
(1 − z(1 − z)k̃)2 − 4ρ

]
,

αs =
2

(1 + v)
− αe

z
, (3.81)

αg =
1 − z

z
αe.
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The β-parameters are related to the α-parameters by requiring the momenta to be on-

shell, giving

βi =
2

v(1 + v)

[
(m2

i + p2
⊥ i)

αis
− αiρ

]
(3.82)

Finally, the transverse component of the momentum qµ
⊥i

of each parton is given by

qµ
⊥e,g

= (0; ±p⊥ sin φ, ±p⊥ cos φ, 0) , qµ
⊥s

= 0, (3.83)

where the azimuthal angle φ is generated uniformly in the region [0, 2π].

The parton momenta are constructed in the frame defined by the basis choice in

Eq. 3.78, according to Eq. 1.49. The correlations between the production and decay pro-

cesses are correctly generated by employing a simple prescription, introduced in Ref. [66].

This dictates that the parton momenta should be rotated by uniformly generated angle,

in the region [0, 2π], around a direction chosen to be that of the quark (anti-quark) with

relative probability x2
1 (x2

2).

3.4.4 Shower implementation

In order to produce the full parton shower around the hardest emission, the POWHEG

scheme requires a set of modifications to the standard parton shower. We are required to

implement truncated and vetoed showers which, for final-state showers, evolve according

to Eqs. 3.27 and 3.26 respectively.

As discussed in Sect. 3.3.1, the vetoed shower corresponds to a standard vetoed

shower which is already implemented in modern event generators. This corresponds to

simply augmenting the veto algorithm described in Sect. 2.2.5 so that configurations

with p⊥(q̃, z) > p⊥h
are rejected.

The implementation of a truncated emission requires a non-trivial modification of the

parton shower. An approximate implementation of the truncated shower was given in

Ref. [59], describing at most a single truncated emission. The implementations described

in this thesis represent the first exact implementation of the POWHEG truncated shower.

The implementation of the truncated shower is achieved by interpreting the

n + 1-momenta configuration, describing the hardest emission, as a standard Herwig++

emission from an underlying n-momenta configuration. The parton-shower variables
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(q̃h, zh, φh) can then be calculated by inverting the momentum reconstruction procedure

described in Sect. 2.2.6. This then allows a straightforward implementation of the trun-

cated and vetoed showers, as a single shower evolution, via simple modifications of the

standard parton shower, as described below.

1. The hardest emission is interpreted as a parton-shower emission (q̃h, zh, φh) which

is assigned to a parton-shower line.

2. The truncated shower is initiated along that line from the standard starting scale

qI .

3. The shower evolves down in q̃. Vetoes are applied such that only emissions satisfying

the following conditions are allowed:

• p⊥ < p⊥h
;

• zq̃ > q̃h;

• non-flavour-changing (gluon emissions only);

4. Once the truncated shower has evolved to the scale of the hard emission q̃h, the

truncated shower is stopped and the hardest emission is forced with emission vari-

ables (q̃h, zh, φh).

5. All partons undergo vetoed parton-shower evolution down to the hadronisation

scale as a standard parton shower with the requirement that all emissions satisfy

p⊥ < p⊥h
.

Inverse momentum reconstruction

The ability to interpret the n + 1-body momenta configuration, describing the hard-

est emission, as a shower emission from an underlying n-body configuration is the key

component of the POWHEG implementation. In this section we outline a scheme for

doing this, providing a mapping between the n + 1-momenta and the shower variables

(q̃h, zh, φh). This mapping should work such that on initiating the parton shower from

the n-body configuration and forcing a single emission at the hardest emission variables,

the momenta of the n + 1-body configuration are reproduced exactly.

This procedure is also useful for schemes in which more than one emission is corrected,

as described in Chapters 5 and 6. We therefore present a general description for finding

the shower variables of m emissions from an n + m-body momentum configuration.

In order to do this, the n + m momenta must be assigned a pseudo-shower history,

describing formation of the n + m configuration as a series of 1 → 2 emissions from

an underlying n-body configuration. For the POWHEG case of a single emission this
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corresponds simply to defining an emitter. The momenta of all intermediate partons

in the pseudo-shower history can be calculated by requiring momentum conservation in

the 1 → 2 emissions.

The mapping to the shower variables corresponds to inverting the momentum recon-

struction procedure described in Sect. 2.2.6; this requires two steps. First, the reshuffling

boost applied to each shower jet in order to conserve global momentum must be found

and its inverse applied to the momenta of the shower jet. Second, the resulting momenta

are decomposed into the shower variables according to Eq. 2.4.

The momentum of the n-body configuration in the pseudo-shower history can be

thought of as a set of shuffled shower progenitors, q ′
J , which correspond to the momenta

on the right hand side of Eq. 2.72. The original on-shell progenitors pJ are related to q ′
J

by

pJ =

(√
q ′2

J

k2
+ m2

J ;
q ′

J

k

)
, (3.84)

where mJ is the on-shell mass of the jet progenitor. The set of on-shell progenitors

respect global momentum conservation therefore we can find the boost parameter k by

solving

∑

J

√
q ′2

J

k2
+ m2

J =
√

s. (3.85)

Once k is found, the reference vector pJ is given by Eq. 3.84; similarly nJ is given by

nJ =



√

q ′2
J̄

k2
;
q ′

J̄

k


 , (3.86)

where J̄ refers to the colour partner jet of the shower jet J . In the reconstruction

procedure, the Sudakov parameters of the progenitor partons are set to α0 = 1 and

q⊥0 = 0. Furthermore, Eq. 2.4 implies that

β0 =
q2
J − m2

J

2p · n . (3.87)

Since q ′
J and qJ are related by a boost, we also have q2

J = q ′2
J . The momentum of

the reconstructed progenitors qJ can then be constructed according to Eq. 2.4. This
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defines the reshuffling boost as in Eq. 2.72. The boosts for all shower jets can then

be calculated, inverted and applied to all momenta in each jet. The momentum can

then be decomposed into Sudakov parameters and the shower variables (q̃, z, φ) for each

branching calculated from Eqs. 2.6–2.8 and 2.14.

3.4.5 Results

In this section we present the results of the implementation at a centre-of-mass energy

of 91.2 GeV. Since the POWHEG method provides a parton-shower correction that

should be equivalent to the matrix-element corrections, with only sub-leading differences

between the two, we provide a comparison of the two approaches. This is done first at

parton level where differences should be easily visible and not hidden by hadronisation

corrections. We then present results at hadron-level with a comparison to LEP data.

Parton-level results

An important feature that POWHEG implementation should achieve is the filling of

the dead zone region of phase space, corresponding to emissions with q̃h > q̃I . This is

verified by looking at a Dalitz scatter plot of the distribution of hardest emissions. This

is shown in Fig. 3.1 and demonstrates a smooth coverage of the full allowed phase space,

including the dead zone.

A simple observable that is sensitive to the three-parton configurations generated

in the POWHEG scheme is the variable y23, which is defined as the scale at which

three-jets are resolved in a jet resolution variable. Figure 3.4.5 shows a comparison

of the distributions of y23 in the Durham jet algorithm for the bare parton shower,

POWHEG parton shower and the parton shower with matrix-element corrections. The

distributions all match fairly closely. In particular, the POWHEG and matrix-element-

corrected distributions coincide in the hard tail. This is to be expected since this region

corresponds to the high-transverse-momentum region in which emissions are generated

according to the radiative correction in both methods. The parton shower is also very

close to the two corrected distributions demonstrating that the parton shower provides

a close approximation to the exact matrix elements for this process. The parton shower

distribution is lower than the corrected distributions in the very high region, which can

be attributed to the fact that it does not fill the dead zone.
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Figure 3.1: A scatter plot of the Dalitz variables produced in the POWHEG hardest emission
for e+e− → hadrons at

√
s = 91.2 GeV.

Figure 3.2: The parton-level distributions of y23 in the Durham jet measure for
e+e− → hadrons at

√
s = 91.2 GeV. Distributions are shown for the standard

partons shower (PS), POWHEG implementation, and parton shower with matrix-
element corrections (MEC) in Herwig++.
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The POWHEG distribution shows significant differences from the other two distribu-

tions in the low-y23 region. This may be attributed to the different cut-off and emission

resolution criteria that have been applied. In both the bare parton shower and matrix-

element-corrected cases the cut-off scheme described in Sect. 2.2.2 is applied, whereas

in the POWHEG scheme the cut-off is in the p̄⊥ variable, which in this implementation

was set to p̄⊥min
= 1 GeV. Since these differences occur only in the low-transverse-

momentum region they can be affected by hadronisation corrections. The differences

observed therefore indicate that a separate tune of the hadronisation parameters is re-

quired for the POWHEG implementation but do not constitute a problem with the

description.

Hadron-level results

In order to compare the descriptions of the hadronic final state it is necessary to study

the distributions of a set of event shape variables. In this section we present comparisons

of hadron-level observables for the POWHEG implementation and the default (matrix-

element corrected) Herwig++ parton shower to LEP data. We concentrate on a set of

observables that are particularly sensitive to the three-jet configuration. A tune of the

hadronisation parameters, for the POWHEG implementations, was performed using a

full set of LEP observables, as detailed in Ref. [6]. The distributions of the thrust,

oblateness, sphericity and planarity event shape variables are shown in Fig. 3.3. The

distribution of the three-jet resolution variable in the Durham jet measure is given in

Fig. 3.4. The χ2 values for the two approaches are given in Table 3.1. It is seen that

the POWHEG implementation provides a reasonable description of LEP data, on a

similar level to the that provided by the default Herwig++, with a slight improvement

demonstrated by the χ2 values of Table 3.1.

3.5 Conclusions

Parton showers and NLO fixed-order calculations represent complimentary approaches

whose virtues may be combined with a NLO matching method. The most well-developed

of these methods is the MC@NLO scheme, however the POWHEG method is a novel

scheme which has the advantage of producing only positive-weight events and having a

decreased dependence on the parton shower in which it is implemented.

In this chapter the POWHEG method has been reviewed and an implementation of

the method in Herwig++, for the process e+e− → hadrons was presented. This is the
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Figure 3.3: Distributions of the event shape variables thrust, oblateness, sphericity and pla-
narity for e+e− → hadrons at a centre-of-mass energy of

√
s = 91.2GeV in com-

parison to LEP data (black) [98]. The red line gives the POWHEG distribution
and the blue line gives the default (matrix-element corrected) Herwig++ distri-
bution.
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Figure 3.4: Distributions of the scale at which three jets are resolved in the Durham jet
measure for e+e− → hadrons at a centre-of-mass energy of

√
s = 91.2GeV in

comparison to LEP data [99]. The colours of the lines are the same as those in
Fig. 3.3.

Observable Hw+ME χ2/d.o.f POWHEG χ2/d.o.f

Thrust 23.48 20.01

Sphericity 5.638 4.782

Oblateness 2.450 3.546

Planarity 1.249 1.663

y23 2.400 0.944

Table 3.1: A comparison of the χ2 per degree of freedom for event shape observables in
e+e− → hadrons with default Herwig++, with matrix-element corrections, and the
POWHEG implementation.



NLO matching with the POWHEG method 101

simplest possible process and represents an important test bed for the implementation

of the method. The implementation presented is the first to provide a full treatment of

the truncated shower.

The POWHEG implementation was found to give a reasonable description of LEP

data. No significant differences between the matrix-element correction and POWHEG

methods are observed for this process. This is to be expected since both methods

correspond to a correction of the hardest emission that is equivalent in the NLL approx-

imation.



Chapter 4

Implementing the POWHEG method

for Drell-Yan vector boson production

4.1 Introduction

In this chapter the work of Ref. [1] is presented, in which the POWHEG approach is

applied to Drell-Yan vector boson production with the Herwig++ event generator.

The implementation follows closely that described in Chapter 3 but involves a more

complicated NLO cross section and an initial-state POWHEG emission. In particular,

the implementation for this process is complicated by a non-trivial B̄-function which

requires a careful manipulation of the NLO cross section.

The chapter is organised as follows. In Sect. 4.2 we collect the essential formulae

relating to the NLO cross section, for implementation in the simulation. In Sect. 4.3 we

give details of the event generation process for the hard configurations and subsequent

POWHEG shower. In Sect. 4.4 we present the results of the implementation, comparing

it to Tevatron data.

4.2 Next-to-leading order cross section

Although the NLO cross section for the Drell-Yan process was calculated 30 years

ago [68, 69], we have implemented an independent calculation of it more suited to our

present goal, including the decay of the vector boson and γ/Z interference effects. In

this section we collect the ingredients that arise in the NLO calculation for q + q̄ → l+ l̄,

102
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necessary to describe the implementation of the POWHEG method.

4.2.1 Kinematics and phase space

The leading-order process under study is of the type, p̄⊕ + p̄⊖ → p̄1 + ... + p̄n, in

which all particles in the n-body final state are colourless. We denote the incoming

hadron momenta P©, for hadrons incident in the ±z directions, respectively. The cor-

responding massless parton momenta, with momentum fractions x̄⊕ and x̄⊖, are given

by p̄© = x̄©P©. The momenta of the particles produced in the leading-order n-body

process are p̄i, where i ranges from 1 to n. The leading-order phase-space element Φn

is defined in Eq. 3.3.

It will also be convenient to define p̄ as the total momentum of the colour neutral

particles, p̄ ≡ x̄⊕P⊕ + x̄⊖P⊖, and ȳ as the rapidity of p̄ in the hadronic centre-of-mass

frame. The partons’ momentum fractions are then given by

x̄© =

√
p̄2

s
exp (±ȳ). (4.1)

The phase-space element for the leading-order process can therefore be written as

dΦn =
1

s
dp̄2 dȳ dΦn, (4.2)

where s is the hadronic centre-of-mass energy and dΦn is the Lorentz invariant phase

space for the partonic process, in d = 4 − 2ǫ dimensions.

The real emission corrections to the leading-order process consist of 2 → n + 1

processes, p⊕ + p⊖ → p1 + ...+ pn +k, where we denote the momenta of the n final-state

colourless particles pi and that of the extra colour charged parton by k. The momentum

fractions of the incoming partons are distinguished from those in the 2 → n process as

x⊕ and x⊖ (p© = x©P©). For these processes we introduce the Mandelstam variables

ŝ, t̂, û and the related radiative variables Φr = {x, v, φ}, which parameterise the extra

emission:

ŝ = (p⊕ + p⊖)2 =
p2

x
, (4.3a)

t̂ = (p⊕ − k)2 =
p2

x
(x − 1) (1 − v) , (4.3b)

û = (p⊖ − k)2 =
p2

x
(x − 1) v , (4.3c)
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where φ is the azimuthal angle of k with respect to the beam direction and p is the total

momentum of the colourless particles, p ≡ x⊕P⊕ + x⊖P⊖ − k. In the hadronic centre-

of-mass frame, the momentum of the incoming partons, radiated parton and colourless

particles are given by,

p⊕ =
1

2

√
s (x⊕; 0, 0, +x⊕) , p =

(√
p2 + p2

⊥ cosh y; p⊥ sin φ, p⊥ cos φ,
√

p2 + p2
⊥ sinh y

)
,

p⊖ =
1

2

√
s (x⊖; 0, 0,−x⊖) , k = (p⊥ cosh yk;−p⊥ sin φ,−p⊥ cos φ, p⊥ sinh yk) , (4.4)

where p⊥ is the transverse momentum of the radiated parton, relative to the beam

direction, which is given by

p2
⊥ =

t̂û

ŝ
=

p2

x
v(1 − v)(1 − x)2, (4.5)

and yk is the rapidity of the radiated parton, given by

yk = y +
1

2
log

[
v(x + v(1 − x))

(1 − v)(1 − v(1 − x))

]
. (4.6)

The momentum fractions of the partons for 2 → n + 1 processes are therefore related to

those of the 2 → n process by

x⊕ =
x̄⊕√

x

√
1 − (1 − x) (1 − v)

1 − (1 − x) v
, x⊖ =

x̄⊖√
x

√
1 − (1 − x) v

1 − (1 − x) (1 − v)
. (4.7)

The Lorentz invariant n + 1-body phase-space element may be written in a form

factorised in the n-body phase-space element according to

dΦn+1 =
dp2

2π
dΦ2(P )dΦn. (4.8)

The measure dΦ2(P ) is the two-body phase space of the radiated parton and total system

of colourless particles. After integrating over transverse momentum components this is

given, in terms of the radiative variables, by1

dΦ2(P ) =
1

8π

(4π)ǫ

Γ(1 − ǫ)

(
µ2

p2

)ǫ

xǫ(1 − x)1−2ǫv−ǫ(1 − v)−ǫdv. (4.9)

1For convenience we also include a factor of µ2ǫ, where µ2 is regularisation scale. This factor will be
present in the radiative matrix elements squared when evaluated in d dimensions.
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The integration over incoming momentum fractions may be parameterised in terms

of the radiative variable x and the rapidity of the colourless system, y, according to

dx⊕dx⊖ =
ŝ

xs
dxdy. (4.10)

We may provide a simultaneous Monte Carlo sampling of the n- and n + 1-body phase

spaces by choosing p̄2 ≡ p2 and ȳ ≡ y. The full n + 1-body phase space, can then be

written, in a form factorised from that of the n-body system, as

dΦn+1 = dΦndΦr
K(ǫ)

(4π)2
t̂û

p2
J (x, v) , (4.11)

where

J (x, v) = xǫ(1 − x)−1−2ǫv−1−ǫ(1 − v)−1−ǫ, (4.12)

K(ǫ) =

(
4πµ2

p2

)ǫ
1

Γ (1 − ǫ)
, (4.13)

and the radiative integration measure is

dΦr = dvdx. (4.14)

The matrix elements squared for the radiative corrections contain S and ISC divergences

corresponding to the limits t̂ → 0 and û → 0 for emissions collinear to the directions

p⊕ and p⊖ and t̂û → 0 for soft emissions. The factor of t̂û in Eq. 4.11 therefore means

that all singularities appearing in the resulting cross sections have been absorbed into

the function J (x, v).

In order to extract the singularities from the radiative contributions, a subtraction

scheme must be employed, as detailed in Sect. 3.2.2. We choose to do this using the

plus-prescription. The plus prescription can be used to extract the singularities from

integrals of the type,

I =

∫ 1

0

dF (x)G(x), (4.15)
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where G(x) is a finite function and F (x) is divergent in the limit x → 1. Adding and

subtracting F (x)G(1) from the integrand, the integral may be written by

I =

∫ 1

0

dxF+(x)G(x) − G(1)

∫ 1

0

dxF (x), (4.16)

where the first term defines the plus distribution as

∫ 1

0

dxF+(x)G(x) =

∫ 1

0

dx (F (x)G(x) − F (x)G(1)) , (4.17)

which is finite. The second term in Eq. 4.16 contains the singularity and, which provided

F (x) is sufficiently simple, can be evaluated in d dimensions yielding the singularities as

poles in ǫ.

Applying this procedure to the function J (x, v) in Eq. 4.11, as detailed in Ap-

pendix B.1, yields

J (x, v) = [Sδ (1 − x) + C (x) (δ (v) + δ (1 − v)) + H (x, v)] , (4.18)

where

S =
1

ǫ2
− π2

6
, (4.19a)

C (x) = −1

ǫ

1

(1 − x)+

− log x

(1 − x)
+ 2

(
log (1 − x)

1 − x

)

+

, (4.19b)

H (x, v) =
1

(1 − x)+

(
1

v+

+
1

(1 − v)+

)
. (4.19c)

The labeling S, C, H reflects the fact that the S and C terms are multiplied by δ-

functions which limit their contributions to configurations with S (x → 1) and ISC

(v → 0, 1) emissions, while H is not associated with soft or collinear configurations but

instead contributes to hard emissions of the extra parton k.

4.2.2 Matrix elements

Radiative corrections:

The matrix elements contributing to the radiative corrections for this process are given

in Fig. 4.1 There are three contributing partonic processes in which the processes are

initiated by quark-antiquark, quark-gluon and gluon-antiquark incoming parton config-

urations.
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p⊕

+

p⊕ k

p k

p

p⊖ p⊖

p⊕

+

p⊕

k

p

p⊖ p⊖

p

k

p⊕

+

p⊕

p

k

p⊖ p⊖

k

p

Figure 4.1: The O(αS) radiative corrections to Drell-Yan vector boson production.

The matrix elements for the radiative corrections should be calculated in d dimensions

resulting in terms of O(ǫ) in addition to those appearing in the 4-dimensional result.

These matrix elements must be integrated over the phase space in Eq. 4.11, from which

it is clear that all terms of O(ǫ) will only contribute in the physical ǫ → 0 limit if they

multiply a term containing a δ-function. These δ-functions correspond to the soft and

collinear limits where the matrix elements have a universal factorised form. We therefore

consider the radiative matrix elements in the three regions separately: non-soft, non-

collinear emissions; soft emissions; and collinear emissions. In the first region we may

evaluate the matrix elements in 4-dimensions allowing us to apply a technique referred

to as the Kleiss trick [66, 70] to write the matrix elements in a factorised form. Such

a factorisation of the matrix element is not necessary for the implementation of the

POWHEG method but it improves the flexibility and generality of our implementation

of the Drell-Yan process.

In four dimensions, the matrix elements may be calculated helicity-wise and the

Kleiss trick dictates that we should work in the CALKUL [67] gauge where the �ǫ-tensor

is given by

�ǫ(k, ρ) = N

(
1

2
(1 + ργ5)��k�p⊖�p⊕ − �p⊖�p⊕��k

1

2
(1 + ργ5)

)
, (4.20)
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where ρ is the helicity of the emitted parton and

N = (4(p⊕ · p⊖)(p⊕ · k)(p⊖ · k))−
1
2 . (4.21)

In this gauge the two diagrams in each partonic subprocess correspond to different helic-

ity configurations and therefore the interference between the two diagrams is absorbed

into the �ǫ-tensor, allowing the n-body matrix element to be factorised out. This calcu-

lation is described in Ref. [70] and gives

∣∣M̄n+1
qq̄

∣∣2 =
8παSCF

p2t̂û

[(
ŝ + t̂

)2 ∣∣M̄B
qq̄ (p̃q, p̃q̄g)

∣∣2 (4.22)

+ (ŝ + û)2
∣∣M̄B

qq̄ (p̃qg, p̃q̄)
∣∣2
]
,

∣∣M̄n+1
qg

∣∣2 = −8παSTF

p2ûŝ

[(
t̂ + û

)2 ∣∣M̄B
qq̄ (p̃qg, p̃q̄)

∣∣2 (4.23)

+
(
t̂ + ŝ

)2 ∣∣M̄B
qq̄ (p̃q, p̃q̄g)

∣∣2
]
,

∣∣M̄n+1
gq̄

∣∣2 = −8παSTF

p2ŝt̂

[
(û + ŝ)2

∣∣M̄B
qq̄ (p̃qg, p̃q̄)

∣∣2 (4.24)

+
(
û + t̂

)2 ∣∣M̄B
qq̄ (p̃q, p̃q̄g)

∣∣2
]
,

where, for a more uniform notation we have denoted the final-state quark momentum in

the qg initiated process by pq̄ and the final-state antiquark momentum in the gq̄ process

by pq. The shifted momenta p̃i, p̃jg are given by

p̃i =
1

xi
pi ,

xi =
2p.pi

p2
, (4.25)

p̃jg = p − p̃i ,

The shifted momenta satisfy

p̃2
i = p̃2

jg = 0, p̃i + p̃jg = p, (4.26)

and therefore satisfy requirements for them to be considered as describing a kinematic

configuration for the leading-order process, hence they are valid arguments for M̄B
qq̄.

We now consider the regions of soft and collinear emission where the matrix elements

have a universal factorised form which we give in d-dimensions. In the soft limit, x → 1,
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only the radiative processes describing a gluon emission contribute. In the limit that a

soft gluon is emitted, the matrix elements factorise according to

lim
x→1

∣∣M̄n+1
ab

∣∣2 = 8παS2Cab
ŝ

t̂ û

∣∣M̄n
ab (p̄⊕, p̄⊖)

∣∣2 . (4.27)

where ab = (qq̄, qg, qq̄) and the colour factor, Cab, is equal to CA for the qg and gq̄

channels and CF for the qq̄ channel2. In the collinear limits, v → 0, 1, the matrix

elements factorise according to

lim
v→1

∣∣M̄n+1
ab

∣∣2 =
ŝ

xt̂û
8παS (1 − x) Pcd (x; ǫ)

∣∣M̄n
ab (xp̄⊕, p̄⊖)

∣∣2 , (4.28)

lim
v→0

∣∣M̄n+1
ab

∣∣2 =
ŝ

xt̂û
8παS (1 − x) Pcd (x; ǫ)

∣∣M̄n
ab (p̄⊕, xp̄⊖)

∣∣2 , (4.29)

where the flavour indices cd(ab) are cd = qq for the qq̄ channel and cd = gq for the qg

and gq̄ channels3.

The functions Pcd (x ; ǫ) are the unregularised splitting functions in d dimensions and

are given by the standard splitting functions introduced in Sect. 1.1.4 with additional

O(ǫ) terms according to

Pcd (x; ǫ) = Pcd (x) + ǫP ǫ
cd (x) + O(ǫ2), (4.30)

where

P ǫ
qq (x) = −(1 − x),

P ǫ
gg (x) = 0, (4.31)

P ǫ
gq (x) = −2x(1 − x).

Virtual corrections:

The O(αS) contribution to the virtual correction comes from the interference of the

one-loop vertex correction diagram, shown in Fig. 4.2, with the leading-order diagram.

In d dimensions the matrix element squared from this contribution is given by

∣∣M̄V
qq̄

∣∣2 =
αSCF

2π
K(ǫ)

[
− 2

ǫ2
− 3

ǫ
− 8 + π2

] ∣∣M̄B
qq̄ (pq, pq̄)

∣∣2 . (4.32)

2For the process considered, it is only the qq̄ which contributes in the soft limit.
3For ease of notation we have used an alternate labeling of the splitting functions to that used in

previous chapters, where the labeling eiji is equivalent to eij→ij .
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p⊕

p⊖

p

Figure 4.2: The O(αS) one-loop correction to Drell-Yan vector boson production.

4.2.3 Differential cross section

Having calculated the matrix elements and phase space, we may define the terms B(Φn),

R(Φn+1) and V (Φn) in the NLO cross section in Eq. 3.9. Each of these terms consists

of the matrix elements, a phase-space factor and a parton-flux factor.

The partonic flux due to parton a in hadron A and parton b in hadron B, at scale

µ2, with momentum fractions x⊕ and x⊖ respectively, is defined as

Lab (x⊕, x⊖) = fA
a

(
x⊕, µ2

)
fB

b

(
x⊖, µ2

)
. (4.33)

The functions f I
i (xi, µ

2) are the parton distribution functions (PDFs) for finding a parton

i in hadron I with momentum fraction xi at scale µ2. The contribution to the differential

cross section from the leading-order process is therefore

dσB
qq̄ = B (Φn) dΦn , (4.34)

where

B (Φn) =
1

2p2

∣∣M̄B
qq̄ (p̄⊕, p̄⊖)

∣∣2 Lqq̄ (x̄⊕, x̄⊖) . (4.35)

The divergent radiative contributions in Eq. 3.1 are given by

R0 (Φn+1) =
K(ǫ)

(4π)2

t̂û

p2
J (x, v)

1

2ŝ

∑

ab

∣∣M̄n+1
ab

∣∣2 Lab (x⊕, x⊖) . (4.36)

Since we have defined, p2 = p̄2 and y = ȳ, the shifted incoming momenta, appearing

as the arguments of the leading-order matrix elements in Eqs. 4.22 and 4.28, are related
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to those of the Born process by a boost. Lorentz invariance of the matrix elements

implies that we can equate

∣∣M̄B
qq̄ (p̃i, p̃j)

∣∣2 dΦn =
∣∣M̄B

qq̄ (p̄⊕, p̄⊖)
∣∣2 dΦn, (4.37)

leading to a complete factorisation of the Born contribution4. Therefore the radiative

contribution can be written in the factorised form

R0 (Φn+1) =
∑

ab

αSCab

2π

R0 ab

x
L̂ab (x⊕, x⊖) B (Φn) , (4.38)

where we have defined the radiative weights

R0 ab = K(ǫ)J (x, v)
x2t̂û

p2

∣∣M̄n+1
ab

∣∣2

8παsCab

∣∣M̄n
qq̄(p̄⊕, p̄⊖)

∣∣2 , (4.39)

and the ratio of flux factors

L̂ab (x⊕, x⊖) =
Lab (x⊕, x⊕)

Lqq̄ (x̄⊕, x̄⊖)
. (4.40)

Each of the radiative weight functions (Eq. 4.39) can be written as

R0 ab = S0 abδ(1 − x) + C0 ab (δ(v) + δ(1 − v)) + Hab, (4.41)

where S0 ab and C0 ab are the divergent soft and collinear contributions respectively and

Hab are the finite non-soft, non-collinear contributions.

The divergent virtual contribution is given by

V0 (Φn) =
αSCF

2π
K(ǫ)

[
− 2

ǫ2
− 3

ǫ
− 8 + π2

]
B (Φn) . (4.42)

The KLN theorem dictates that the singularities in this contribution should cancel with

those coming from the soft contribution in the radiative corrections. This soft contri-

bution comes exclusively from the qq̄ channel and corresponds to S0 qq̄ which consists of

two terms,

S0 qq̄ = SS
0 qq̄ + SSC

0 qq̄. (4.43)

4In order to obtain the correct correlations between the production and decay processes, the different
shifted momenta must still be taken into account when constructing the momenta.
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The first soft term comes from the phase-space term in Eq. 4.19a and the matrix element

squared in Eq. 4.27, giving

SS
0 qq̄ = K(ǫ)

[
2

ǫ2
− π2

3

]
. (4.44)

A further soft-collinear contribution comes from the product of the collinear factorised

matrix elements squared in Eq. 4.28 with the first term of the phase-space contribution

in Eq. 4.19b. This gives

SSC
0 qq̄ = K(ǫ)

3

ǫ
− 3 log

(
µ2

p2

)
. (4.45)

Putting together the contributions in Eqs. 4.42-4.45 and expanding to O(ǫ), yields the

finite, subtracted virtual contribution

V (Φn) =
αSCF

2π
VB (Φn) , (4.46)

where

V =
2π2

3
− 8 − 3 log

(
µ2

p2

)
, (4.47)

and we have used the expansion of K(ǫ)

K(ǫ) = 1 + ǫ

(
log(4π) + log

(
µ2

p2

)
− γE

)
+ O(ǫ2). (4.48)

Having subtracted the soft contributions with the virtual singularities, the radiative

contributions become

R0 ab =

[
−K(ǫ)

ǫ
P̂cd + Cab

]
(δ(v) + δ(1 − v)) + Hab, (4.49)

where P̂ab are the regularised splitting functions and Cab are the finite collinear contri-

butions.
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For the qq̄ contribution, the relevant functions are given by

P̂qq =

(
1 + x2

1 − x

)

+

, (4.50a)

Cqq̄ =
(
1 + x2

)( 1

(1 − x)+

log

(
p2

xµ2

)
+ 2

(
log (1 − x)

1 − x

)

+

)
+ 1 − x , (4.50b)

Hqq̄ =
1

(1 − x)+

(
1

v+
+

1

(1 − v)+

)(
(1 − x)2 (1 − 2v (1 − v)) + 2x

)
. (4.50c)

For the qg contribution we have

P̂gq = x2 + (1 − x)2 , (4.51a)

Cqg =
(
x2 + (1 − x)2)

(
log

(
p2

µ2x

)
+ 2 log (1 − x)

)
+ 2x (1 − x) , (4.51b)

Hqg =
1

v+

(
2x (1 − x) v + (1 − x)2 v2 + x2 + (1 − x)2) . (4.51c)

The function R0 gq̄ is equal to R0 qg under the replacement v ↔ 1 − v.

The remaining divergences are ISC divergences proportional to Pab. Working in the

MS scheme these are absorbed into the definition of the PDFs. In full, the finite radiative

contribution is

R (Φn+1) =
αS

2π

∑

ab

Cab
Rab

x
L̂ab (x⊕, x⊖)B (Φn) , (4.52)

where the functions Rab are given by

Rqq̄ = Cqq̄ (δ(1 − v) + δ(v)) + Hqq̄,

Rqg = Cqgδ(v) + Hqg, (4.53)

Rgq̄ = Cgq̄δ(1 − v) + Hgq̄. (4.54)

4.3 Implementation in Herwig++

In the following section we describe the generation of the hardest emission. In Sect. 4.3.3

we describe the simulation of further, lower p⊥, emissions, from the radiative events,

using the truncated and vetoed shower algorithms.
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4.3.1 Generation of the n-body configurations

The n-body configurations should be generated according to the B̄−function, defined

in Eq. 3.46, which corresponds to the differential NLO cross section integrated over the

radiative variables. The way in which the leading-order process is factorised inside the

real emission terms, Rab, results in the B̄ function

B̄ (Φn) = B (Φn)

[
1 +

αSCF

2π
V +

∑

ab

∫
dΦr

αSCab

2π

Rab

x
L̂ab(x⊕, x⊖)

]
, (4.55)

which can be implemented as a straightforward reweighting of the leading-order cross

section.

For convenience the radiative phase space dΦR is reparameterised by variables on the

interval [0, 1] such that the radiative-phase-space volume is unity, a three-dimensional

unit cube. This is achieved by a trivial change of variables φ → φ̄ = φ/2π and x → x̃,

where x̃ is defined by

x (x̃, v) = x̄ (v) + (1 − x̄ (v)) x̃, (4.56)

where x̄(v) is the lower limit on the x integration. Numerical implementation of the

B̄ (Φn) distribution requires that all plus distributions should be replaced by regular

functions, according to the identities given in Appendix B.2.

The generation of the n-body configuration proceeds as follows:

1. a leading-order configuration is generated using the standard Herwig++ leading-

order matrix element generator, providing the Born variables Φn with an associated

weight B (Φn);

2. radiative variables ΦR are then generated by sampling B̄ (Φn), parameterised in

terms of the ‘unit-cube’ variables x̃, v, φ̄, using the Auto-Compensating Divide-

and-Conquer (ACDC) phase space generator [71], which implements a variant of

the VEGAS algorithm [72];

3. the leading-order configuration is accepted with a probability proportional to the

integrand of Eq. 4.55 evaluated at {p2, y, ΦR}.
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4.3.2 Generation of the hardest emission

The hardest emission is generated from the n-body configuration according Eq. 3.47

with the modified Sudakov form factor of Eq. 3.44. The integrand in the exponent of

the Sudakov form factor is given by

R0 (Φn+1)

B (Φn)
=
∑

ab

αSCab

2π

Ĥab

x
L̂ab (x⊕, x⊖) , (4.57)

where Ĥab is equal to Hab without the plus prescription.

In generating the hardest emission we choose to parameterise the radiative phase

space in terms of the transverse momentum and rapidity of the emitted parton in order

to simplify the implementation of the Θ-function in the modified Sudakov form factor.

These variables are defined in Eqs. 4.5 and 4.6 and introduce a further Jacobean factor

according to

dΦr = dxdv =
2p⊥
ŝ

x

(1 − x)
dp⊥dyk. (4.58)

The integrand in the exponent of the Sudakov form factor for each channel ab=qq̄ is

therefore given by

Wab =
R0 ab (Φn+1)

B (Φn)
=

αSCab

π
Ĥab L̂ab (x⊕, x⊖)

p⊥
ŝ(1 − x)

. (4.59)

The modified Sudakov form factor for each channel therefore has the form

∆R
ab (p⊥) = exp

(
−
∫ p⊥max

p⊥

dp⊥dykWab

)
. (4.60)

In order to generate the radiative variables (p⊥, yk) with the veto algorithm we define

bounding functions for each channel. Functions of the form,

gab (p⊥) =
Kab

p2
⊥

, (4.61)

are used, with suitable values of Kab for each channel together with an overestimate

of the limits for the rapidity integral, ykmin
and ykmax. The generation procedure then

proceeds as follows:

1. p⊥ is set to p⊥max;
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2. a new (p⊥, yk) configuration is generated using two random numbers according to

p⊥ =

(
1

p⊥
− 1

Kab (ykmax − ykmin
)

logR
)−1

, (4.62a)

yk = ykmin
+ R (ykmax − ykmin

) ; (4.62b)

3. if p⊥ < p⊥min
then no radiation is generated;

4. if the generated configuration is outside of the exact phase space boundaries then

return to step 2;

5. if Wab/gab (p⊥) > R then accept the configuration, otherwise return to step 2.

For this process there are three partonic channels contributing to the radiative correc-

tions, this is dealt with by using competition, where a (p⊥, yk) configuration is generated,

as outlined above, for each channel individually and the configuration with the highest

p⊥ accepted. This algorithm is discussed in Appendix A.4.

In generating the Born and radiative variables, the shifted momenta appearing in

the factorised Born matrix elements in Eq. 4.22 could be ignored. In reconstructing the

momenta of the n + 1-configuration however they must be taken into account. This

is achieved by employing a simple prescription [70] to generate the azimuthal angle

that ensures the leptonic correlations are correctly generated. For the qq̄ channel, the

prescription proceeds as follows:

1. momenta are first constructed in the vector boson rest frame;

2. the p⊕ direction is chosen with probability

(
ŝ + t̂

)2
/
((

ŝ + t̂
)2

+ (ŝ + û)2
)

, (4.63)

otherwise the p⊖ direction is chosen. The momenta are then rotated around the

chosen direction by a random angle generated uniformly on the interval [0, 2π];

3. momenta are boosted back to the lab frame such that the rapidity of the vector

boson is the same as for the n-body configuration.

The same procedure is used for the qg and gq̄ initiated channels with the replacements

ŝ → t̂, t̂ → û, û → ŝ and ŝ → û, t̂ → ŝ, û → t̂, respectively.
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4.3.3 Truncated and vetoed parton showers

The full parton shower is produced around the hardest emission with initial-state trun-

cated and vetoed showers which evolve according to Eqs. 3.36 and 3.37 respectively. The

implementation of these showers follows closely that of the final-state case, as described

in Eq. 3.4.4. This implementation requires an inverse momentum reconstruction for the

initial-state shower in order to provide a mapping to the hardest emission shower vari-

ables (q̃h, zh, φh).

4.3.4 Inverse momentum reconstruction

We now describe the process of inverting the momentum reconstruction procedure, pro-

viding a mapping between the reshuffled parton momenta, q′, and the shower variables,

(q̃, z, φ). The shuffled progenitor momenta may be written in the Sudakov basis as

q′
©

= α′
©
P© + β ′

©
P© + q′⊥©

. (4.64)

The unshuffled progenitor momenta in the same basis are given by

q© = α©P© + β©P© + q⊥©. (4.65)

From the definition of the reshuffling boosts in Eq. 2.79, we see that boost parameters

k©, are given by

k© =
α′

©

α©

, (4.66)

where the α-parameter of the shuffled progenitor is obtained from the momenta according

to

α′
©

=
q′
©
· P©

P⊕ · P⊖

. (4.67)

By construction the α-parameters of the unshuffled progenitors are given by their light-

cone momentum fraction, x©, which in turn, in the beam centre-of-mass frame, are

related to the preserved rapidity and invariant mass of the system by Eq. 4.1. This

allows the boost parameters to be determined.

Having calculated the boost parameters, the unshuffled progenitor momenta q©, are

given by Eq. 2.79, defining the reshuffling boosts. These boosts are then calculated,
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Figure 4.3: Comparisons of dσ/dy for the POWHEG implementation and MCFM [73] for Z
and W+ production at the Tevatron (

√
s = 2TeV) and the LHC (

√
s = 14TeV).

inverted and applied to all parton shower momenta, yielding the full set of unshuffled

parton momenta. The shower variables can then be obtained recursively from their

definitions in Eqs. 2.32, 2.6, 2.7 and 2.8.

4.4 Results

As a check of the calculation of the B̄ (Φn) function, distributions of the vector boson

rapidity produced by the POWHEG implementation and the NLO program MCFM [73]

were compared. Figure 4.3 shows distributions for γ/Z and W+ production at the Teva-

tron (proton-antiproton at
√

s = 2 TeV) and the LHC (proton-proton at
√

s = 14 TeV).

In all cases the total cross sections from MCFM and the POWHEG implementation
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Figure 4.4: The rapidity of a) the electron in Z and b) the positron in W+ production at
the Tevatron including the leptonic decay of the gauge boson for the POWHEG
implementation and MCFM [73] at the Tevatron (

√
s = 2TeV).

agreed to within 0.5%. The distribution of the rapidity of the lepton produced in the

γ/Z and W decay is shown in Fig. 4.4 and is also in good agreement. For both Herwig++

and MCFM in this comparison, the parton density functions used were the MRST2001

NLO [74] set with the LHAPDF interface [75].

In Figs. 4.5-4.8, distributions from the Drell-Yan POWHEG implementations for the

rapidity and transverse momentum of the vector bosons are compared to Tevatron data.

The bottom panel in each of these plots shows the (Theory−Data)/Data value for each

bin. In Fig. 4.5 the rapidity distribution of γ/Z bosons of mass 71-111GeV is compared

to D0 Run II data [76]. Figure 4.6 shows the transverse momentum distribution of γ/Z

bosons of mass 66-116GeV compared to CDF Run I data [77]. Figure 4.7 shows the

transverse momentum distribution of γ/Z bosons of mass 40-200GeV compared to D0

Run II data [78]. Figure 4.8 shows the transverse momentum distribution of W bosons

compared to Run I D0 data [79]. In addition to the results from the implementation of

the POWHEG method the results from Herwig++ including a matrix-element correction

and MC@NLO [50–55] are shown.

The Herwig++ results were generated using an intrinsic p⊥ of 2.2GeV which was

obtained by fitting to the Run I W and Z p⊥ distributions [6]. The POWHEG results

used the same intrinsic p⊥ as for Herwig++ and a minimum p⊥ of 2GeV for the hardest

emission. The MC@NLO and HERWIG results were generated using an intrinsic pT of

1.6GeV from a fit to D0 data [80].
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Figure 4.5: Rapidity distribution for Z production compared to D0 Run II Tevatron data [76].
The solid line shows the prediction of the POWHEG implementation, the dotted
line is the prediction of MC@NLO and the dashed line is the default Herwig++

result.

The leading-order parton distribution functions of [74] were used for the Herwig++

result and the central value of the NLO parton distributions of [81] for the POWHEG

and MC@NLO results.

All the approaches give good agreement for the rapidity of the Z boson however they

differ in the description of the p⊥ spectrum of the gauge boson. The chi squared per

degree of freedom for the various p⊥ spectra and approaches are given in Table 4.1. All

the approaches are in good agreement with the Run I data from CDF and D0 for the

p⊥ of the Z and W . However, with the exception of the results of the HERWIG program

including a matrix-element correction, which gave the worst agreement with the Run I

Z data, all the results are below the new D0 Z p⊥ data at high transverse momentum.

There is a common trend that the matrix-element correction gives the largest result

at large p⊥, followed by the POWHEG approach with MC@NLO giving the lowest value.

This is due to the treatment of the hardest emission in the different approaches. In

MC@NLO method the result at large p⊥ is the leading-order matrix element for the

production of a vector boson and a hard QCD jet. However in this region, as we are

normalising to the total cross section, the matrix-element correction result is essentially

the matrix element for vector boson plus jet production multiplied by the K-factor5

5The K-factor here is the ratio of the NLO cross section for inclusive vector boson production divided
by the leading-order cross section.
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Figure 4.6: Transverse momentum distribution for Z production compared to CDF Run I
Tevatron data [77]. The solid line shows the prediction of the POWHEG imple-
mentation, the dotted line is the prediction of MC@NLO and the dashed line is
the default Herwig++ result.

giving a larger result. In the large p⊥ region the POWHEG result, because the real-

emission matrix element is exponentiated, is the real-emission matrix element multiplied

by the B̄ function, which results in a K-factor-like correction, and the Sudakov form

factor which causes the result to be slightly smaller than the default Herwig++ result.

The POWHEG result has the significant advantage that rather than using a global

rescaling of the cross section to get the NLO normalisation, which can lead to a poor

description of observables, such as the boson rapidity, which are non-zero at leading

order the NLO correction is calculated for each momentum configuration.

In general all the results lie below the D0 Run II Z p⊥ data between 50 and 100GeV

which results in the relatively poor chi squared, however in general the POWHEG ap-

proach gives comparable results to the other state-of-the-art techniques. The effect of

varying the scale used for the parton distributions and αS between 0.5ŝ and 2ŝ for the

B̄ term and between 0.5(M2
B + p2

T ) and 2(M2
B + p2

T ) for the hardest emission is shown

in Fig. 4.9. While this variation moves the POWHEG result closer to the data, it is still

below the experimental result in the intermediate pT region.

The effect of the truncated shower is illustrated in Fig. 4.10 which shows the low p⊥

region of the transverse momentum distribution for W and Z production compared to

D0 and CDF data. In this region where the highest p⊥ emission is at a low scale and there

is often a large region for the evolution of the truncated shower it has the largest effect.



Implementing the POWHEG method for Drell-Yan vector boson
production 122

Figure 4.7: Transverse momentum distribution for Z production compared to D0 Run II
Tevatron data [78]. The solid line shows the prediction of the POWHEG imple-
mentation, the dotted line is the prediction of MC@NLO and the dashed line is
the default Herwig++ result. The inset shows an expanded view of the low-p⊥
region.

Figure 4.8: Transverse momentum distribution for W production compared to D0 Run I
data [79]. The solid line shows the prediction of the POWHEG implementation,
the dotted line is the prediction of MC@NLO and the dashed line is the default
Herwig++ result. The inset shows an expanded view of the low-p⊥ region.
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Approach Data Set

D0 W p⊥ CDF Z p⊥ D0 Z p⊥

All p⊥ > 30GeV All p⊥ > 30GeV All p⊥ > 30GeV

MC@NLO 0.51 0.82 0.70 0.96 7.2 13.9

Herwig++ 0.67 0.42 0.89 0.61 5.1 7.0

POWHEG 0.54 0.33 1.99 1.00 5.3 6.9

HERWIG 0.69 1.08 2.45 4.47 2.0 1.9

Table 4.1: Chi squared per degree of freedom for MC@NLO, Herwig++, the implementation
of the POWHEG method in Herwig++ and HERWIG compared to Tevatron vec-
tor boson p⊥ data. The chi-squared values are calculated for the shapes of the
distributions, i.e. normalising them to unity. In order to compare the high p⊥
region and minimise the effect of tuning the intrinsic transverse momentum the chi
squared per degree of freedom is given for both the full p⊥ region and only for the
data points with p⊥ > 30GeV.

Figure 4.9: Transverse momentum distribution for Z production compared to D0 Run II
data [78]. The band shows the effect of varying the scale used for the parton
distributions and αS between 0.5ŝ and 2ŝ for the B̄ term and between 0.5(M2

B +
p2

T ) and 2(M2
B + p2

T ) for the hardest emission.
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Figure 4.10: Transverse Momentum distribution for a) W production compared to D0 Run I
data [79] and b) Z production compared to CDF Run I Tevatron data [77]. The
solid line includes the truncated shower whereas the dashed line does not.

However the effect is relatively small at least for the transverse momentum distribution,

equivalent to a small change in the intrinsic transverse momentum.

4.5 Conclusions

In this chapter we have described an implementation of the POWHEG NLO matching

scheme within Herwig++ for vector boson production. The implementation of the NLO

cross section has been compared to the MCFM NLO generator, showing an acceptable

level of agreement. The implementation demonstrates a good description of Tevatron

data for a range of observables exhibiting a slight improvement on the description pro-

vided by MC@NLO.



Chapter 5

A modified CKKW matrix-element

merging algorithm in Herwig++

5.1 Introduction

Matrix-element corrections represent the simplest of merging algorithms where a single

emission is corrected with tree-level matrix elements. In recent years, more general

matrix-element merging algorithms have been introduced. These combine tree-level

matrix elements with parton showers, for a given process, for all parton multiplicities

below some maximum N . Hence these algorithms correct all distributions involving up

to N external partons, instead of just that of the hardest emission. Several schemes of

this type have been developed and successfully implemented in event generators. The

most well known of these are the CKKW [82–84], CKKW-L [85], MLM [86] and pseudo-

shower [87] methods. All these methods have the same general approach [88,89] whereby

the phase space for parton emissions is divided into two regions by a merging scale y
MS

,

defined in some jet measure. Above the merging scale, emissions are described by exact

matrix elements while below it emissions are produced by the parton shower.

In this chapter we present a matrix-element merging scheme based on the CKKW

algorithm. A fundamental ingredient in the CKKW method is the association of a

pseudo-shower history to the configurations generated according to the fixed-order ma-

trix elements. Each shower history is constructed by clustering the two most closely

separated partons, according to the transverse momentum measure defining the merging

scale, until a leading-order parton configuration is obtained. The resulting branchings

in the shower history are therefore ordered according to the jet measure, which may

125
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not equate to the ordering variable of the parton shower, as is the case for the angular-

ordered parton shower of Herwig++. This discrepancy is understood to give rise to

serious problems, in particular it spoils the colour coherence properties of these shower

algorithms. Although this was already noted, and an attempt made to address it, in

the original CKKW paper, realisations of the method highlight the fact that the colour

structure in the events is nevertheless in conflict with that expected on the grounds of

colour coherence, moreover, they show that this is not simply an esoteric consideration

but a cause of significant practical problems, including a dependence on the unphysical

merging scale [87, 88].

We shall present and validate a modified version of the CKKW method, intended

to optimise the implementation of these colour coherence effects, by a fully consistent

merging of an angular-ordered parton shower with fixed-order matrix elements. The

idea behind this method was originally proposed by Nason in Ref. [48]. The central

result of that theoretical work is the observation that the parton shower may be for-

mally decomposed in terms of truncated showers, hard emissions, and vetoed showers.

Reference [48] advocates that the CKKW algorithm may then best model the coherent

emission of radiation by including these truncated showers, consisting of only soft emis-

sions, prior to, and between, the hard emissions in the shower history, thereby rendering

it angular-ordered. In the following we will develop the full details necessary for our

practical implementation of this idea for the process e+e− → hadrons and compare the

results of it to LEP data.

The chapter is organised as follows. In Sect. 5.2 we review the original CKKW

merging prescription. In Sect. 5.3 we go on to describe the way in which the angular-

ordered parton shower may be decomposed into hard emissions, truncated showers, and

vetoed showers. Having introduced the relevant conceptual ingredients we then give

a more detailed technical description of our modified CKKW algorithm in Sect. 5.4.

In Sect. 5.5 we present a validation of our algorithm by comparing to LEP data for

e+e− → hadrons, before giving our conclusions in Sect. 5.6.

5.2 CKKW merging

In this section we present an overview and discussion of the original CKKW algorithm

for the process e+e− → hadrons. We first describe the algorithm for the case where the

parton-shower evolution variable is identical to the merging variable before describing

the adaptations which must be made for the Herwig++ angular-ordered parton shower.
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5.2.1 Transverse-momentum-ordered CKKW merging

The algorithm is simplest if the merging variable is the same as the ordering variable of

the parton shower. We therefore first consider the case where we have a single transverse

momentum variable q as both the parton-shower evolution and merging variables.

The basic principle underlying the CKKW approach, is that the distribution of ra-

diation in the region of phase space where all partons are separated by an amount q

greater than the merging scale qMS, should be given by tree-level matrix elements, while

for q ≤ qMS it should be given by the parton shower. The algorithm then requires, as

input, samples of events of the process with up to N partons in the final state. These

input samples are easily obtained using fully automated tree-level event generators such

as Madgraph/MadEvent [92, 93]1. As well as producing the events themselves, for each

sample with n partons the generator will provide a finite, tree-level, jet cross section

σ
(ME)
n (q

MS
).

Naïvely, with the input events in hand, one might then consider filling the remaining

phase space by selecting events from each sample with n partons, with a probability

proportional to σ
(ME)
n , and simply invoking the parton shower on each of the external

legs, starting from the scale q
MS

. However, the merging scale, q
MS

, is not a physical

parameter and so all distributions of partons should be insensitive to its value. This

would certainly not be the case for such a naïve procedure, since the distribution of

radiation from the parton shower and the fixed-order matrix elements are known to

differ, especially in the regions corresponding to high and low q emissions. The great

success of the CKKW algorithm is in its ability to correct for the mismatch at the

phase-space partition q
MS

by providing a smooth, physical, interpolation between the

matrix-element distribution at high q values and that of the parton shower in the low q

region.

To illustrate how this works, consider the simplified case of merging only samples

of 2- and 3-parton events, with q ≥ q
MS

, for e+e− → hadrons, with a q-ordered parton

shower. In general, the parton-shower cross section analogous to σ
(ME)
n (q

MS
), with n

partons resolved at the merging scale, may be written as the product of the leading-order

cross section together with a set of Sudakov form factors and splitting functions. The

product of these splitting functions and the leading-order cross section approximate the

1Currently, computational efficiency limits the total number of final-state particles to around six.
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exact tree-level n-jet cross section. For the case of three partons this cross section is

σ
(PS)
3 (q

MS
) = σ2 × 2 [∆q (qI , qMS

)]2
∫ qI

q
MS

dq αS (q) Γq→qg (q)∆g(q, qMS
), (5.1)

where qI is the scale at which the parton shower is initiated and αS(q)Γeij→ij(q) is the

probability for a parent parton ĩj to branch into two daughter partons i and j, in the

interval [q, q + dq] 2. The overall normalisation factor σ2 is simply the leading-order

cross section. Finally, in Eq. 5.1, ∆eij(q, qMS
) is the Sudakov form factor, which can be

interpreted as the probability for the parent parton ĩj to evolve from a scale q down to

the scale q
MS

without undergoing a resolvable branching,

∆eij(q, qMS
) = exp


−

∑

eij→ij

∫ q

q
MS

dq′ αS (q′) Γeij→ij (q′)


 . (5.2)

In parton-shower (NLL) expansions of the jet cross sections, such as that in Eq. 5.1,

the exact tree-level matrix elements are approximated by the product of the leading-

order cross section and splitting functions. In order to improve the parton shower with

exact tree-level matrix elements, this product should be replaced by the corresponding

exact, tree-level jet cross section.

The CKKW merging should not affect the NLL expansion of the jet cross section

therefore the NLL expansion of the matrix-element contribution should give the result in

Eq. 5.1. Since a NLL expansion of the tree-level matrix elements yields a corresponding

product of parton-shower splitting functions, it is clear that in order to retain the NLL

form of Eq. 5.1, the matrix-element contribution above q
MS

should be given by configu-

rations generated according to the tree-level jet cross sections reweighted by appropriate

Sudakov and running αS factors.

In order to determine appropriate reweighting factors for events from the tree-level

generator, a pseudo-shower history must be assigned to each event. This shower history

interprets the set of external parton momenta as a set of branchings originating from a

leading-order configuration. This procedure gives rise to a set of nodal values, qi, for the

scales at which each pseudo-branching occurred. These scales provide the arguments

for the Sudakov form factors and αS factors with which the configuration should be

reweighted. In the original CKKW publication, this pseudo-shower history is assigned

2The dependence on auxiliary splitting variables has been suppressed.
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by repeatedly clustering the pair of partons3 with the smallest separation according to

the jet resolution variable, until only the particles of the leading-order process remain.

In the case being considered, where the evolution variable has been taken to match

the merging scale variable, combining the matrix elements with the parton shower is

straightforward. The parton-shower evolution can be split into two parts: first an evo-

lution from the initial scale down to the merging scale, q
MS

; then an evolution from the

merging scale down to the hadronisation scale q0. This results in a simple procedure

for attaching the parton shower to the reweighted matrix elements, where each external

parton produces a shower line evolving from the merging scale.

The full CKKW algorithm then proceeds as follows:

1. a jet multiplicity n is generated with probability

Pn =
σ

(ME)
n (q

MS
)

∑
N σ

(ME)
i (q

MS
)
, (5.3)

where all cross sections are evaluated at a fixed strong coupling αSME
;

2. a configuration of n parton momenta is generated according to dσ
(ME)
n (q

MS
);

3. external partons are clustered, defining a pseudo-shower history with a set of nodal

scales qi;

4. the configuration is reweighted by Sudakov and αS factors: each internal line be-

tween two nodes at qi and qi+1 contributes a factor of ∆f (qi, qMS
)/∆f (qi+1, qMS

),

each external line emanating from a node with scale qi contributes ∆f (qi, qMS
),

while each node itself contributes αS(qi)
αSME

;

5. the parton shower is invoked on each external parton from a starting scale of q
MS

.

This scheme is independent of the merging scale to NLL order [82]. We have

reweighted configurations such that the NLL three-jet cross section resolved at the merg-

ing scale is given by Eq. 5.1. This NLL cancellation of merging scale dependence can be

seen by considering the cross section for three jets resolved at the hadronisation scale.

This cross section is given by the sum of the probability of generating a single emission

in the matrix-element region and none in the parton shower, together with the proba-

bility of generating no emissions in the matrix-element region and a single emission in

3Only pairs of partons whose flavours correspond to allowed branchings are considered.
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the parton-shower region. The cross section is

σ
(PS+ME)
3 (q0) = σ̄

(ME)
3 (q

MS
) [∆q (q

MS
, q0)]

2 ∆g (q
MS

, q0) (5.4)

+ σ2 × 2 [∆q (qI , q0)]
2

∫ q
MS

q0

dq αS(q) Γq→qg(q) ∆g(q, q0),

where σ̄
(ME)
3 (q

MS
) is the reweighted matrix-element contribution for three jets resolved

at the merging scale. The first term in Eq. 5.4 corresponds to a single emission above

the merging scale followed by parton-shower evolution from the merging scale down to

the hadronisation scale with no resolvable emissions. The second term corresponds to

no emissions above the merging scale followed by a single parton-shower emission below

the merging scale. In the NLL expansion of Eq. 5.4, we replace σ̄
(ME)
3 (q

MS
) by the NLL

parton-shower approximation in Eq. 5.1. This results in a simplification of Eq. 5.4

σ3 (q0) = σ2 × 2 [∆q (qI , q0)]
2

∫ qI

q0

dq αS(q) Γq→qg(q) ∆g(q, q0), (5.5)

yielding the expected NLL parton-shower cross section for a single resolved emission

which is independent of the merging scale.

5.2.2 Angular-ordered CKKW merging

The merging variable used to define the jet cross sections must regulate both soft and

collinear singularities, so it must be a transverse momentum measure. The merging

variable in the original CKKW publication is defined in terms of the Durham jet measure

[90] for two partons i and j,

ydurij
=

2min
(
E2

i , E
2
j

)

s
(1 − cos θij) , (5.6)

where Ei,j are the energies of the two partons, θij is the angle between the two partons

and s is the centre-of-mass-energy squared. The merging transverse momentum variable

is defined by

k⊥ =
√

yijs. (5.7)

The parton shower with which we wish to merge the matrix elements may not be

ordered in transverse momentum, in which case the merging variable cannot be chosen
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to be the same as the evolution variable, as was assumed in Sect. 5.2.1. In the Herwig++

parton shower, the evolution variable is the angular variable given in Eq. 2.14.

In order to accommodate the fact that the evolution and merging variables are not

identical, the CKKW algorithm must include some additional features to that outlined

in Sect. 5.2.1. Changes must be made to the Sudakov form factors with which the

matrix elements are reweighted and the initial conditions with which the parton shower

is invoked, furthermore, when the shower is invoked, a veto must be applied to prevent

it generating emissions with k⊥(q̃, z) > k⊥MS
.

The Sudakov form factor used for the matrix-element reweighting corresponds to the

probability of evolving from a scale q down to the hadronisation scale with no emissions

resolvable at the merging scale. In the case of Sect. 5.2.1, this was achieved by setting

the lower limit on the integral to q
MS

, however, now this cut, defining what is meant by

a resolvable emission, must be implemented as a Θ-function in the Sudakov form factors

used in step 4. The Sudakov form factors for the reweighting are then given by

∆R
eij
(q̃; k⊥MS

) = exp


−

∑

eij→ij

∫ q̃

q̃0

dPeij→ij(q̃
′, z)Θ (k⊥(q̃′, z) − k⊥MS

)


 . (5.8)

The prescription for constructing the Sudakov weights is then identical to that in

Sect. 5.2.1 except for factors of z in the scale from which each child evolves, which are re-

quired for the angular-ordered evolution. Each intermediate line, connecting branchings

at (q̃1, z1) and (q̃2, z2) in the pseudo-shower history, contributes a factor

∆R
eij
(z1q̃1; k⊥MS

)/∆R
eij
(q̃2; k⊥MS

). (5.9)

Each external line, from a branching at (q̃, z) in the pseudo-shower history, contributes

a factor

∆R
eij
(zq̃; k⊥MS

). (5.10)
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5.2.3 Highest-multiplicity treatment

The original CKKW publication did not treat the highest-multiplicity matrix-element

contribution any differently to the other multiplicities. In Ref. [85] it was noted that a

different treatment of highest multiplicities must be employed in order to fill the phase

space in the matrix-element region to all orders in αS. Since computational limits mean

that only matrix elements with up to a maximum of N partons can be calculated, the

standard approach leads to a maximum of N partons being generated above the merg-

ing scale. The parton shower generates to all orders in αS and therefore we should also

let the matrix-element region generate to all orders. This can be achieved by allowing

the highest multiplicity channel parton shower to generate emissions in the region with

k⊥ less than that of the lowest transverse momentum of the matrix-element emissions,

k⊥L
. This is achieved by changing the scale of the parton-shower vetoes and Sudakov

form factor cuts from k⊥MS
to k⊥L

. This procedure is discussed further in Appendix C.1.

5.2.4 Problems with the algorithm

The above procedure is heavily reliant on having an exact mapping between the shower

variables and the merging measure k⊥MS
so that the parton-shower vetoes and Sudakov

cuts can be correctly applied. A mapping from the momentum clustered in step 3 to

the corresponding shower variables is also required, so that the correct scales for the

Sudakov reweighting and initial shower conditions are obtained. In practice obtaining

such mappings may be difficult due to the complexity of the shower kinematics.

The initial scale at which the parton shower is invoked is vital to the algorithm. Initi-

ating the parton shower directly from the merging scale would result in a radiation gap,

where emissions with transverse momentum less than the merging scale but evolution

scale greater than the merging scale are missed. In the angular-ordered shower, this

radiation corresponds to soft, wide-angle emissions. The original CKKW publication

attempts to resolve this by invoking the parton shower from each external parton at a

scale corresponding to the node at which it was ‘created’ in the pseudo-shower history.

Although adopting this maximal initial scale helps fill the radiation gap, the extra soft,

wide-angle radiation that results, is emitted from the external parton in the pseudo-

shower history, rather than the intermediates, as implied by colour coherence [48]. The

original CKKW publication argued that this should be a sub-leading effect, however, it
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will certainly change the colour structure of the configuration, which may cause problems

when non-perturbative hadronisation models are applied.

The original CKKW algorithm also assumes that the clustering of momentum in step

3 and subsequent mapping to parton-shower variables results in a set of emission scales

that respect the ordering of the parton shower, i.e.

q̃I > q̃1 > ... > q̃n > q̃0. (5.11)

The clustering scheme of the original algorithm does not guarantee this.

These issues were studied in Ref. [88] and found to result in problems when the parton

shower was not ordered in transverse momentum. It was found that both the CKKW-L

and CKKW algorithms provide a reliable merging when implemented in a parton shower

in which the evolution variable is given by a transverse momentum variable that is equal

to or approximates the merging variable. When the CKKW algorithm was applied to a

virtuality-ordered parton shower, it exhibited discontinuities around the merging scale

and a resultant dependence on the merging scale. These problems were most prominent

in parton-level observables in the merging variable itself. While the application of the

hadronisation models results in some smoothing of these features, the problems were

seen to persist at hadron level.

In Ref. [87], a study of the algorithm with angular- and virtuality-ordered parton

showers was presented. In that work, a number of ad hoc adaptations were applied and

tuned in order to achieve a reasonably smooth merging at the parton level, nevertheless,

some problems remained at the hadron level. In this article we aim to overcome these

problems with a set of well motivated modifications based on the POWHEG shower

reorganisation.

5.3 Shower reorganisation

The CKKW algorithm generates a set of n emissions above the merging scale, y
MS

,

according to exact tree-level matrix elements up to O(αN
S ). This defines a set of n hard

emissions. In order to reproduce the full shower around this set of hard emissions we

employ a generalisation of the POWHEG shower reorganisation. In the following we

present an extension of the POWHEG reorganisation, described in Sect. 3.3.1, that is

suitable for use in the CKKW case. The notation used relates specifically to that of the
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(q̃1, z1)

(q̃2, z2)

q̃I

˜
ij̃k

j̃k

k

j

i

Figure 5.1: An example of a hard shower line configuration where two emissions are generated
above k⊥MS

.

Herwig++ shower, however the treatment is largely independent of the details of the

parton shower.

5.3.1 CKKW shower reorganisation

In the POWHEG treatment, reviewed in Sect. 3.3.1, the hardest emission is separated

such that it may be corrected with matrix elements. In the CKKW algorithm we aim to

improve the parton shower with tree-level matrix elements for all parton multiplicities

resolved at the merging scale, k⊥MS
. We perform a reorganisation of the parton shower,

analogous to the POWHEG reorganisation, splitting the shower into two parts: a hard

shower describing emissions resolved above the merging scale; and another shower pro-

ducing the rest of the shower emissions around this hard shower. The hard shower can

then be generated according to the tree-level matrix elements as required by the CKKW

algorithm.

The result of this generalisation of the POWHEG reconstruction is a set of truncated

and vetoed showers which fill in the radiation between the hard emissions defined by

the hard shower history. In order to see how this works we first consider the next

step up from the POWHEG case of a single hard emission, where we have exactly two

hard emissions along the hard shower line, generated at scales q̃1 and q̃2. One possible

configuration of this hard shower line is given in Fig. 5.1. As was done in formulating the

POWHEG scheme, the full parton shower can be constructed around this hard shower
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line by constructing an equation analogous to Eq. 3.18,

S(2)
f
ifjk

(q̃I) =

∫ q̃I

q̃0

S̃T
f
ifjk

(q̃I , q̃1; k⊥MS
) dPf

ifjk→ifjk
(q̃1, z1)S̃V

i ((1 − z1)q̃1; k⊥MS
) (5.12)

×
∫ q̃1

q̃0

S̃T
fjk

(z1q̃1, q̃2; k⊥MS
) dPfjk→jk(q̃2, z2)S̃V

j (z2q̃2; k⊥MS
) S̃V

k ((1 − z2)q̃2; k⊥MS
) .

The superscript (2) on S denotes that this does not describe a general shower line, but

the subset of shower lines with exactly two emissions above the merging scale. Eq. 5.12

contains two truncated showers, one containing parton-shower emissions with k⊥ < k⊥MS

before the hard emission (q̃1, z1) and the other containing emissions with k⊥ < k⊥MS

between the hard emissions at (q̃1, z1) and (q̃2, z2). The showers S̃V
i (z2q̃2; k⊥MS

) and

S̃T
i (z2q̃2; k⊥MS

) are defined by Eq. 3.20 and Eq. 3.19 respectively, with the replacement

Θ (p⊥(q̃, z) − p⊥h
) → Θ (k⊥(q̃, z) − k⊥MS

) . (5.13)

The replacement in Eq. 5.13 ensures that subsequent emissions are generated in the

phase-space region below the merging scale.

As in the POWHEG case, the splitting functions and Sudakov form factors for the

truncated and vetoed showers in Eq. 5.12 do not match each other and are therefore

not suitable for a standard Monte Carlo treatment. However, we can use the same

manipulations as in the POWHEG formulation to split the Sudakov form factors into

a product of a Sudakov form factor that matches the vetoed splitting functions and a

remnant Sudakov form factor, as in Eq. 3.21. The statements of Sect. 3.3.1 also hold

true in this case, therefore we identify the truncated showers as containing only soft

radiation. We therefore set zi → 1 in the remnant Sudakov form factor of Eq. 3.23 with

only subleading differences. The result of this is that the product of remnant Sudakov

form factors for a particular truncated or vetoed line combine to give a remnant Sudakov

factor. Rather than resulting in a single remnant Sudakov factor as in the POWHEG

scheme, we now get a product of remnant Sudakov factors. The weight associated with

the product of remnant Sudakov factors for the hard shower configuration of Fig. 5.1 is

given by

Wsud =
∆R

f
ifjk

(q̃I ; k⊥MS
)

∆R
f
ifjk

(q̃1; k⊥MS
)
∆R

i ((1 − z1)q̃1; k⊥MS
)
∆R

fjk
(z1q̃1; k⊥MS

)

∆R
fjk

(q̃2; k⊥MS
)

(5.14)

× ∆R
j (z2q̃2; k⊥MS

)∆R
k ((1 − z2)q̃2; k⊥MS

),
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where the remnant Sudakov factor is given by

∆R
eij
(q̃; k⊥MS

) = exp


−

∫ q̃

q̃0

∑

eij→ij

dPeij→ij(q̃, z)Θ (k⊥(q̃, z) − k⊥MS
)


 . (5.15)

After removing the Sudakov weight Eq. 5.12 may be rewritten in terms of the standard

vetoed and truncated showers4, defined in Eqs. 3.26 and 3.27, as

S(2)
f
ifjk

(q̃I) =

∫ q̃I

q̃0

ST
f
ifjk

(q̃I , q̃1; k⊥MS
) dPf

ifjk→ifjk
(q̃1, z1)SV

i ((1 − z1)q̃1; k⊥MS
) (5.16)

×
∫ q̃1

q̃0

ST
fjk

(z1q̃1, q̃2; k⊥MS
) dPfjk→jk(q̃2, z2)

×SV
j (z2q̃2; k⊥MS

)SV
k ((1 − z2)q̃2; k⊥MS

) Wsud.

In the CKKW algorithm the hard shower is generated by choosing a jet multiplicity n

as described in Sect. 5.2.1 and generating n parton momenta according to the appropriate

jet cross section. A pseudo-shower history and corresponding shower variables are then

assigned by applying a clustering algorithm to the n parton momenta, until they are

clustered back to a leading-order configuration. The shower reorganisation presented

here results in a product of remnant Sudakov factors, with which these hard shower

configurations should be reweighted. These remnant Sudakov factors can generally be

found from the pseudo-shower history by applying the following prescription:

• each internal line from a branching at (q1, z1) to (q2, z2) contributes a factor

∆R
f (z1q̃1; k⊥MS

)

∆R
f (q̃2; k⊥MS

)
; (5.17)

• each external line from a branching at (q, z) contributes a factor

∆R
f (zq̃; k⊥MS

). (5.18)

These remnant Sudakov factors match the Sudakov factors, in Eq. 5.8, that we argued

should be introduced in order to extend the CKKW procedure for transverse momentum

showers to the angular-ordered shower.

4Again, with the replacement in Eq. 5.13.
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The parton shower for emissions below the cut is generated by producing truncated

and vetoed showers around the hard shower according to the following prescription:

• each internal line from a branching at (q1, z1) to (q2, z2) results in a truncated

shower

ST
f (z1q̃1, q̃2; k⊥MS

) ; (5.19)

• each external line from a branching at (q, z) results in a vetoed shower

SV
f (zq̃; k⊥MS

) . (5.20)

5.4 The algorithm

In order to implement the procedure described in Sect. 5.3.1 we employ the strategy

described in Sect.3.4.4, where the hardest emission, or set of hard emissions in this case,

are interpreted as parton-shower emissions. This approach leads to a straightforward

implementation of the truncated showers, where a truncated shower, evolving between

hard emissions at (q̃1, z1, φ1) and (q̃2, z2, φ2), is generated by initiating a standard parton

shower at z1q̃1 with vetoes allowing only non-flavour-changing emissions with k⊥ < k⊥MS

and stopping the truncated shower once it has evolved beyond q̃2, at which point the

second hard emission is forced with splitting variables (q̃2, z2, φ2). This allows the full

shower of truncated showers, hard emissions and vetoed showers to be generated as a

single shower evolution from the leading-order configuration. This results in a substantial

improvement over earlier CKKW implementations with angular-ordered showers [82,87],

since now the colour structure in the event is plainly equivalent to that which the shower

would have produced by default, i.e. it respects colour coherence.

In order to interpret the matrix-element emissions as shower emissions, we require

an exact mapping from the set of n external parton momentum and assigned pseudo-

shower history to a set of shower splitting variables, (q̃, z, φ), describing each emission.

Obtaining such a mapping equates to inverting the momentum reconstruction, which is

performed at the end of the standard parton shower to translate the set of shower vari-

ables into the parton momenta. This procedure may be performed exactly as described

in Sect. 3.4.4 with the additional requirement that the decomposition of the unshuffled

momenta into the shower variables is iterated so as to find a set of emission variables

for each hard emission. Having such a mapping also provides the exact shower variables

that are to used for the Sudakov and αS reweighting.
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The full modified CKKW algorithm is described below.

1. The jet multiplicity n is generated with probability

Pn =
σn(k⊥MS

)∑
N σi(k⊥MS

)
, (5.21)

where cross sections are evaluated at a fixed strong coupling αSME
.

2. The n external parton momenta are generated according to dσ(k⊥MS
).

3. Pairs of external parton momenta are clustered5 down to a leading-order configu-

ration, assigning a pseudo-shower history.

4. The inverse momentum reconstruction is applied to the external momenta and

shower history such that a set of shower splitting variables (q̃, z, φ) are found,

describing n − 2 hard branchings.

5. The configuration is reweighted to include the Sudakov form factors and running

αS. This corresponds to assigning the configuration a weight W and rejecting

the configuration if W < R6. The weight is constructed from the pseudo-shower

history, according to the following prescription:

• each hard emission at (q̃, z) contributes a running αS factor

αS (p⊥(q̃, z))

αSME

; (5.22)

• each internal line between hard emissions at (q̃1, z1) to (q̃2, z2) contributes a

Sudakov factor

∆R
f (z1q̃1; k⊥MS

)

∆R
f (q̃2; k⊥MS

)
; (5.23)

• each external line from a hard emission at (q̃, z) contributes a Sudakov factor

∆R
f (zq̃; k⊥MS

). (5.24)

If the configuration is rejected7 return to step 1.

5The clustering procedure is discussed in Sect. 5.4.2.
6R refers to a random number, generated in the interval [0, 1].
7This reweighting procedure relies on the weight generated in this step satisfying W < 1. The fixed

strong coupling used in the matrix elements α
ME

can be chosen to be large enough that the αS

weight is always less than one. Individual Sudakov form factors are also guaranteed to be less than
one while the ratio of Sudakov form factors contributed by intermediate lines must be less than one
due to the angular ordering condition ziq̃i > q̃i+1.
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6. Parton-shower lines are initiated from the leading-order configuration which are to

be evolved according to the procedure:

a) If a hard emission exists at a lower scale on the shower line, then the shower

is evolved as a truncated shower otherwise proceed with step 6c. The trun-

cated showers evolve as the standard parton shower with vetoes allowing only

non-flavour-changing-emissions with k⊥ < k⊥MS
. Each truncated emission gen-

erates a soft gluon which should be evolved according to step 6c.

b) Once the scale of the next hard emission is reached, the hard emission is forced

creating two further shower lines, each of which should be evolved according

to step 6a.

c) Vetoed showers evolve all external shower lines down to the hadronisation scale,

with vetoes allowing only emissions with k⊥ < k⊥MS
.

The above scheme is adapted for the highest-multiplicity channel, where n = N , by the

replacement k⊥MS
→ k⊥L

in the shower vetoes and Sudakov form factors.

The merging algorithm presented is constructed such that the NLL resummation of

the parton shower is undisturbed and therefore the dependence on the merging scale

cancels at the NLL level. That this is true, follows directly from the shower reorgani-

sation presented in Sect. 5.3 and the fact that the tree-level cross sections, describing

emissions in the matrix-element region, may be approximated at NLL accuracy by the

product of the leading order cross section and the corresponding set of parton-shower

splitting functions. All observable quantities are therefore independent of the merging

scale to NLL order. This cancellation of merging scale dependence is illustrated in Ap-

pendix C.2 for the three-jet emission rate.

5.4.1 Shower vetoes

The vetoes that are applied to the truncated and vetoed showers and the cuts applied

to the remnant Sudakov form factors require a mapping between the shower variables,

(q̃, z) and the merging scale transverse momentum measure k⊥. The merging variable,

for an emission ĩj → ij, is defined in some jet measure according to, k⊥ =
√

yijs. We

have implemented the merging algorithm with the Durham [90] and LUCLUS [91] jet

measures, defined by

ydurij
=

2min
(
E2

i , E
2
j

)

s
(1 − cos θij) , (5.25)
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ylucij
=

2 (EiEj)
2

s (Ei + Ej)
2 (1 − cos θij) . (5.26)

In order to implement these vetoes a mapping between the shower variables (q̃, z, φ)

and yij , in the chosen jet measure, must be found. The Herwig++ shower produces off-

shell intermediate states and therefore a set of boosts must be applied to each shower line

in order to ensure momentum conservation. Since the boosts depend on the full shower

history, an exact mapping between the shower variables and the merging variable cannot

be found. We use a mapping that is exact for a single shower emission and should give

a good approximation for larger numbers of emissions. For clarity in the following, we

treat partons as massless while in our implementation parton masses are retained.

In order to relate the jet measure to the parton shower variables, we should write the

momenta of partons resulting from a single emission, q(pa) → q(p1)g(q3), in the Sudakov

basis used in the momentum reconstruction procedure of the parton shower. This was

already done in Sect. 1.1.3, yielding the results for the Sudakov parameters in Eq. 1.55.

The vetoes should correspond to vetoes on the reshuffled momenta that have had the

boosts, defined in Eq. 2.72, applied to them. We should therefore solve Eq. 2.73 and

calculate these boosts before applying Eqs. 5.25 and 5.26. The reconstructed progenitor

momenta are given by qa = q1 + q3 for the quark jet and qb = pb for the anti-quark jet.

Inserting these momenta into Eq. 2.73 yields the solution

k = 1 − p2
⊥

sz(1 − z)
, (5.27)

for the boost parameter. The reshuffling boost for the quark line is then defined by

Eq. 2.72. It follows that the three-vector of the shuffled quark progenitor q ′
a should be

given by

q ′
a =

√
s

2

(
1 − p2

⊥

sz(1 − z)

)
(0, 0, 1) . (5.28)

The expression in Eq. 5.28 is identical to qa, as defined by α1,3 and β1,3, and therefore

the boost to be applied to the quark jet is the identity matrix. The shuffled momenta

for the emitted partons have now been constructed and we can apply Eqs. 5.25 and 5.26
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to find expressions for the jet measures used to define the merging scale. These give

ydur = min

[
z +

p2
⊥

sz
, (1 − z) +

p2
⊥

s(1 − z)

]2
(1 − cos θ)

2
, (5.29)

yluc =

[
(p2

⊥ + (1 − z)2s) (p2
⊥ + z2s)

p2
⊥s + s2z(1 − z)

]2
(1 − cos θ)

2
, (5.30)

where

cos θ = 1 − 2p2
⊥s

(p2
⊥ + (1 − z)2s) (p2

⊥ + z2s)
. (5.31)

These mappings allow a transverse momentum measure, k⊥ =
√

ys, to be calculated

in the merging variable for each parton-shower emission. Parton-shower vetoes and

Sudakov cuts can then be applied by comparing this measure to the merging scale.

5.4.2 Clustering scheme

The parton-shower decomposition presented in Sect. 5.3.1 relied on our ability to inter-

pret the series of hard branchings, defined by the matrix-element momenta and assigned

pseudo-shower history, as a parton shower. The inverse momentum reconstruction pro-

cedure ensures that, given an assigned pseudo-shower history, a set of parton-shower

emissions are found that will exactly reproduce the matrix-element momenta.

Section 5.3.1 assumes that the assigned history is angular-ordered; we therefore aim

to assign histories that obey the angular-ordering condition

q̃izi > q̃i+1, (5.32)

for all emissions along all shower lines.

The inverse momentum reconstruction allows us to find the shower variables of all

branchings in a particular pseudo-shower history. We can therefore determine whether a

history is angular-ordered by following all shower lines outwards from the hard process

and explicitly checking that all of the branchings satisfy Eq. 5.32.

We employ a clustering procedure that creates all possible pseudo-shower histories

and attempts to choose the angular-ordered history that the parton shower was most

likely to produce.
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It may appear that the best way to choose a history is in a probabilistic way according

to the associated shower probability, as formed from the Sudakov form factor and αS

weights8. Attempting such a procedure in an angular-ordered shower however would

involve applying the shower kinematics to regions in which they are not valid. This

can result in finite probabilities being assigned to histories that the shower would never

produce. Furthermore, employing a probabilistic choice results in a finite probability

of unnatural shower histories being assigned, which can result in technical problems in

applying hadronisation models.

We therefore adopt a winner-takes-all strategy, accepting the pseudo-shower history

with the smallest scalar sum of the transverse momentum of the emissions. This ensures

that the history containing a set of emissions that are closest to the enhanced soft and

collinear regions of phase space is chosen. In Appendix C.3, we present some checks of

this approach for further justification of this procedure.

Events for which there is no angular-ordered shower interpretation correspond to

configurations that occur in a region of phase space that is inaccessible to the parton

shower. In the matrix-element region we aim to improve the parton shower description

by covering the full phase space of emissions and therefore such configurations should

be retained. We therefore choose to force the shower to generate non-angular-ordered

emissions in the case that no angular-ordered histories are found. Since such non-

angular-ordered emissions are manifestly subleading, the inclusion of such events does

not affect the NLL resummation of the parton shower.

In practice the contribution of such events is small (generally < 1%) and all the

observable quantities tested were found to be insensitive to their treatment (whether

such events were retained or discarded).

The full clustering procedure is:

1. all possible shower histories are created by clustering all pairs of partons whose

flavours correspond to allowed branchings;

2. non-angular-ordered histories are discarded;

8This is the procedure used to assign pseudo-shower-histories in the CKKW-L algorithm in the colour
dipole model.
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3. the angular-ordered history for which the scalar sum of the transverse momentum

of its branchings,

∑

hard emissions

|p⊥(q̃, z)| , (5.33)

4. if no angular-ordered histories are found, the unordered history for which Eq. 5.33

is smallest is chosen.

5.5 Results

In this section we present the results of the implementation of the modified CKKW

algorithm for the process e+e− → hadrons at a centre-of-mass energy of 91.2 GeV at both

parton and hadron level. The parton-level results provide a test of the algorithm’s ability

to provide a smooth merging between the matrix element and parton-shower regions of

phase space, showing features that may be hidden by the addition of a hadronisation

model. The hadron-level results provide the ultimate test of the algorithm’s ability to

describe data and in particular are sensitive to the parton colour structure assignment

which we expect the modified algorithm to improve with respect to traditional CKKW

methods.

A key test of the merging algorithm is its insensitivity to changes in the merging scale

and merging variable. The algorithm was implemented with two merging variables: the

Durham and LUCLUS jet resolution variables. For each merging variable, merging scales

of y
MS

= 5 × 10−2, y
MS

= 10−2 and y
MS

= 5 × 10−3 were used. Samples of events with

all partons separated by y > y
MS

were generated using MadGraph/MadEvent [92, 93] for

the process with up to five partons in the final state9.

5.5.1 Parton-level results

We present the distributions of the merging variable itself since these should be the

most sensitive to problems with the merging procedure. In order to provide a direct

comparison to Ref. [88], we first present a systematic look at the algorithm with the

9The maximum multiplicity for each merging scale was decided according to the phase space available
in the matrix-element region.
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maximum multiplicity set to three, so that the matrix-element region is responsible for,

at most, a single hard emission.

Figure 5.2 shows distributions of the scale at which three jets are resolved in the

Durham jet measure for the three chosen merging scales with the Durham jet measure

as the merging variable. Jet analyses were performed with the KtJet package [94]. Each

of the merging scale choices exhibit a smooth transition between the two phase-space

regions, there also appears to be little dependence on the choice of merging scale. The

CKKW distributions all closely match the matrix-element correction distributions. This

is to be expected since both algorithms aim to improve the parton-shower distributions

by applying a correction based on the three-jet matrix elements. The slight differences

seen may be attributed to differences in the way the two algorithms apply this correction.

Figure 5.3 shows the same distributions as Fig. 5.2 but with the truncated shower

switched off. Switching off the truncated shower results in a radiation gap, meaning

that emissions that would be generated at scales greater than that of the hard emission,

but with transverse momentum less than that of the hard emission, are never produced.

This radiation gap corresponds to a deficit in the amount of soft wide-angle emissions

produced from the three-jet samples. Additional parton-shower emissions (on top of

the hardest emission) have the effect of smearing the y23 distribution, as can be seen in

Fig. 5.2, where the two-jet contribution is significantly displaced into the three-jet region.

Comparing Figs. 5.2 and 5.3, we see that without the extra soft radiation produced in

the truncated shower, the smearing of the two-jet region is not compensated for in the

three-jet region and we observe a surplus in the three-jet region close to the merging

scale. This effect is more pronounced as the merging scale is lowered and the truncated

shower becomes more important. This problem will become more serious as higher

multiplicity contributions are included and underlines the importance of the truncated

shower in the merging algorithm.

Figure 5.4 shows the same distributions as Fig. 5.2 but with the highest-multiplicity

treatment switched off. The result of switching off the highest-multiplicity treatment

is that a maximum of three emissions may be generated in the matrix-element region.

This violates the all-orders-in-αS resummation of the parton shower. The effect of this is

twofold: first, there is a deficit in the radiation generated in the three-jet channel; second,

the three-jet channel receives too great a Sudakov suppression. The main observable

effect in Fig. 5.4 is a surplus in the three-jet region of the distribution close to the

merging scale. This can again be attributed to the deficit in radiation in the three-jet

region, preventing the smearing seen in the two-jet region being compensated by that in
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Figure 5.2: Parton level distributions of the scale at which three jets are resolved in the
Durham jet measure for e+e− → hadrons at

√
s = 91.2GeV. The red line shows

the CKKW distribution with maximum multiplicity set to three and the black line
shows the Herwig++ parton-shower distribution with a matrix-element correction.
The blue and cyan lines show the two- and three-jet contributions to the CKKW
distribution. Plots (a)-(c) show the CKKW distributions with merging scales set
to y

MS
= 5 × 10−2, y

MS
= 10−2 and y

MS
= 5 × 10−3 in the Durham jet measure.

Plot (d) shows a comparison of the CKKW distributions at the different merging
scale choices. The lower panel in all plots shows the difference between the CKKW
and matrix element correction lines, (CKKW − MEC)/MEC.
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Figure 5.3: The same distributions as in Fig. 5.2 but with the truncated shower switched off
in the CKKW treatment.
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Figure 5.4: The same distributions as in Fig. 5.2 but with the highest multiplicity treatment
switched off in the CKKW treatment.

the three-jet region. The suppression of the three-jet region also results in the relative

contribution of the two-jet region being too large and we see distributions that are peaked

around the merging scale and have a large dependence on the choice of merging scale.

Figures 5.5 and 5.6 show the distributions of the scale at which three jets are resolved,

for the algorithm with maximum multiplicity set to up to five jets, with the merging

algorithm defined in the Durham and LUCLUS jet measures respectively. As in Fig. 5.2,

all distributions appear to be smooth around the merging scale and to be relatively

insensitive to the choice of merging scale. The dependency on the merging scale in these
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Figure 5.5: Distributions of the scale at which three jets are resolved in the Durham jet
measure. The red line in plots (a)-(c) shows the distributions for the CKKW
treatment with all multiplicity channels (up to a maximum of five jets) included
at a set of merging scale choices in the Durham jet measure. Plot (d) gives a
comparison of the different merging scale choices.
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Figure 5.6: Distributions of the scale at which three jets are resolved in the LUCLUS jet
measure. The red line in plots (a)-(c) shows the distributions for the CKKW
treatment with all multiplicity channels (up to a maximum of five jets) included
at a set of merging scale choices in the LUCLUS jet measure. Plot (d) gives a
comparison of the different merging scale choices.
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y
MS

Durham cross section / nb LUCLUS cross section / nb

5 × 10−2 38.2 38.6

10−2 36.5 37.1

5 × 10−3 35.7 35.9

Table 5.1: Table of cross sections of the process e+e− → hadrons for different choices of the
merging scale in the Durham and LUCLUS jet measures.

distributions is greater than that seen in Fig. 5.2 which is to be expected since we are

now correcting more emissions and therefore the mismatch between the parton-shower

and matrix-element regions of phase space is greater.

Since we are now including higher-multiplicity channels in our merging algorithm we

check the distributions of scales at which higher numbers of jets are resolved. This is

done in Fig. 5.7 for the resolution of four and five jets in the Durham and LUCLUS jet

measures. The merging in these distributions is well behaved.

These distributions demonstrate a degree of insensitivity to the choice of merging

scale, which has been varied over an order of magnitude, however there is still some

residual dependence on this choice. While the parton shower and merged matrix-element

treatments formally have the same large logarithm behavior, there are differences be-

tween the two. The degree of these differences will directly influence the amount of

residual dependence on the merging scale that is observed. In changing the merging

scale we are changing the volume of the matrix-element phase-space region and therefore

changing the proportion of parton emissions that are corrected by exact matrix elements.

Table 5.1 gives the cross sections for the CKKW treatment at different choices of the

merging scale and exhibits variation at the 5% level.

5.5.2 Hadron-level results

We present a comparison of the Herwig++ CKKW implementation with hadronisation

switched on to LEP data for a variety of event shapes. It is standard practice to tune

the free parameters of an event generator to LEP data and this has been done with the

default Herwig++ parton shower with matrix-element corrections. Since the CKKW

merging algorithm significantly changes the parton-shower component of the event gen-

erator and in order to provide a fair comparison with default Herwig++, a new tune was
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Figure 5.7: Distributions of the scale at which (a) four and (b) five jets are resolved in the
Durham jet measure and the resolution scales for (c) four and (d) five jets in the
LUCLUS jet measure.
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performed on the free parameters for Herwig++ with the CKKW algorithm. This tune

was performed with the merging scale set to y
MS

= 10−2 in the Durham jet measure.

Figures 5.8-5.10 show distributions of a range of event shape, jet resolution and four-

jet observables in comparison to LEP data. The parton-level analysis shows that the

merging scale choice of y
MS

= 5 × 10−2 leaves only a very small region of phase space

that is corrected by the matrix elements. This very high scale choice will therefore

not give the improvement expected in introducing the merging algorithm, we therefore

omit this merging scale choice from the hadron-level analysis. In each of the figures

the red band shows the variation in distributions over the four merging scale choices of

y
MS

= 10−2 and y
MS

= 5 × 10−3 in the Durham and LUCLUS jet measures.

The CKKW distributions (red band) in Figs. 5.8-5.10 all demonstrate improved de-

scriptions of the data in comparison to the default Herwig++ parton shower with matrix-

element corrections. In particular the tails of the distributions in Fig. 5.8, corresponding

to hard emissions, and the jet resolution distributions of Fig. 5.9 with four and five jets

are significantly improved as would be expected given the aims of the merging algorithm.

The four-jet angle distributions of Fig. 5.10 are also all improved, with the exception of

the α34 angle, which was already well described by the default Herwig++ parton shower.

The θNR distribution provides the most notable improvement in its description of the

data in comparison to the default Herwig++ parton shower.

The width of the red band on the distributions shows that there is some residual

dependence on the merging scale however it does not appear to be too serious and is

at a similar level to that observed at parton level. This shows that the problems with

colour structure, that appear in the standard CKKW algorithm, are not present here

and that the truncated shower is working as intended. It should be noted that a fixed

set of Herwig++ shower and hadronisation parameters was used for each of the four

merging scale choices; the variation would be reduced further if a tune of the parameters

was performed for each merging scale choice.

The χ2 per degree of freedom values for the distributions in Figs. 5.8-5.10 are given in

Table 5.2 for the merging scale choice of y
MS

= 10−2 in the Durham jet measure, which

was used in the tune. The CKKW values are lower than those of the default Herwig++

shower in all cases except for the α34 angle, where the default implementation already

gave a satisfactory description, and in many cases the CKKW values are significantly

lower.
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Figure 5.8: Distributions of the event shape variables (a) thrust, (b) oblateness, (c)
sphericity and (d) planarity for e+e− → hadrons at a centre-of-mass energy of√

s = 91.2GeV in comparison to LEP data (black) [98]. The red band gives the
variation of the distributions of the CKKW implementation with merging scales
choices of y

MS
= 10−2 and y

MS
= 5 × 10−3 in the Durham and LUCLUS jet

measures. The blue histogram gives the distributions of the default Herwig++

parton shower with matrix-element corrections. The lower panel shows the ratio
of the difference between simulation and data to the data in comparison to the
error bounds of the data (yellow region).
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Figure 5.9: Distributions of the scale at which (a) three, (b) four and (c) five jets are resolved
in the Durham jet measure for e+e− → hadrons at a centre-of-mass energy of√

s = 91.2GeV in comparison to LEP data [99]. The colours of the lines are the
same as those in Fig. 5.8.
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Figure 5.10: Distributions of four-jet angles for e+e− → hadrons at a centre-of-mass energy
of

√
s = 91.2GeV in comparison to LEP data [100]. Figures (a)-(d) give the

angle between the lowest energy jets α34, the Bengtsson-Zerwas angle [95] χBZ ,
the Korner-Sielshotlz-Willrodt [97] ΦKSW and the Nachtmann-Reiter angle [96]
θNR. The colours of the lines are the same as those in Fig. 5.8.
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Observable Hw+ME χ2/d.o.f CKKW χ2/d.o.f

Thrust 25.78 10.62

Sphericity 9.126 0.580

Oblateness 7.262 0.339

Planarity 3.928 1.211

y23 2.812 0.867

y34 1.912 1.026

y45 4.204 2.018

cos α34 1.043 3.301

cos χBZ 0.3138 0.775

cos ΦKSW 1.645 1.337

cos θNR 2.514 0.702

Table 5.2: A comparison of the χ2 per degree of freedom for event shape observables in
e+e− → hadrons with default Herwig++, with matrix-element corrections, and the
CKKW implementation, with merging scale set to y

MS
= 10−2 in the Durham jet

measure.

5.6 Conclusions

A modified version of the CKKW algorithm has been implemented in Herwig++ for the

process e+e− → hadrons. The modified algorithm uses truncated showers in order to

provide smooth merging between the Herwig++ angular-ordered parton shower and a

set of transverse-momentum-ordered emissions defined by inverting the Herwig++ mo-

mentum reconstruction procedure on a samples of parton momenta generated according

to exact tree-level matrix elements.

The truncated shower was found to result in a smooth merging between parton-

shower and matrix-element regions of phase space with parton-level distributions ap-

pearing free of discontinuities around the merging scale and relatively insensitive to

changes in the merging scale.

A full tune of the Herwig++ free parameters was performed for the CKKW imple-

mentation with a merging scale of y
MS

= 10−2 in the Durham jet measure. This was

found to give a good description of LEP data, demonstrating a significant improve-

ment over the results from the default Herwig++ parton shower with matrix-element

corrections applied.
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The results show a comparable level of merging scale dependence and agreement with

LEP data to that found in Ref. [101], in which a similar CKKW merging approach was

performed with a transverse-momentum-ordered dipole shower.



Chapter 6

Merging matrix elements with

initial-state parton showers

6.1 Introduction

In order to provide a matrix-element merging algorithm which is useful for the simu-

lation of hadron-hadron collisions, it is necessary to extend the algorithm to include

the treatment of space-like emissions. This introduces significant complications since

it involves the merging of a backwards parton shower and the inclusion of PDFs. The

extension of the original CKKW algorithm to include initial-state corrections was pro-

posed in Ref. [84] and implemented within the Pythia and HERWIG event generators

in Ref. [87], and the SHERPA event generator in Refs. [102] and [83]. The CKKW-L

algorithm was also extended to include initial-state corrections in Ref. [103].

In this chapter we describe an extension of the modified CKKW algorithm described

in Chapter 5 to include initial-state corrections. A general procedure for initial-state cor-

rections is described, following the same POWHEG-style shower reorganisation that was

used in the final-state case. As in the final-state case, the modified algorithm provides

a theoretical improvement over the standard CKKW algorithm by consistently taking

differences in the ordering and merging variables into account via truncated showers.

An implementation of the algorithm is presented for the case of Drell-Yan vector

production. This represents the simplest hadron-hadron process and provides the clean-

est test bed for the initial-state algorithm. In order to verify the algorithm, a detailed

comparison of the simulation to Tevatron data is performed.
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q̃I

i

jk

ĩj
˜̃
ijk

(q̃2, z2) (q̃1, z1)

Figure 6.1: An example of an initial-state hard shower line configuration where two emissions
are generated above k⊥MS

.

The production of jets together with a vector boson is also an important background

to many processes at the LHC. As such, an accurate simulation of the Drell-Yan process,

particularly with jets, is crucial for potential discoveries at the LHC. Since parton show-

ers alone are deficient in their description of high-jet-multiplicity states, the development

and verification of merging algorithms is an important area of current event generator

development.

The chapter is organised as follows. In Sect. 6.2 the formal reorganisation of the

initial-state shower, in terms of a set of hard emissions with truncated and vetoed show-

ers, is presented. In Sect. 6.3 further details of the algorithm are described, detailing

the vetoing, reweighting and clustering procedures. In Sect. 6.4 the results of the imple-

mentation are presented in comparison to Tevatron data for Z/γ- and W -production.

6.2 Initial-state CKKW reorganisation

The initial-state parton shower can be decomposed into a set of hard emissions which

are dressed with POWHEG truncated and vetoed showers in order to reproduce the full

shower. In order to illustrate this reorganisation we consider, analogously to Sect. 5.3.1,

the case of exactly two emissions along an initial-state shower line which we will then

extrapolate to a general procedure. This case is shown in Fig. 6.1. Applying the same

decomposition as that leading to Eq. 5.16 to the initial-state case, the evolution equation
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of Eq. 3.35, for configurations of this type may be written

S̄(2)
i (q̃I , x) =

∫ q̃I

q̃0

S̄T
i (q̃I , q̃1; x, k⊥MS

)
dPeij→ij(q̃1, z1)

z1

SV
j ((1 − z1)q̃1; x, k⊥MS

)

×
∫ q̃1

q̃0

S̄T
eij
(q̃1, q̃2; x/z1, k⊥MS

)
dPfeijk→eijk

(q̃2, z2)

z2
(6.1)

× SV
k ((1 − z2)q̃2; k⊥MS

)S̄V
feijk

(q̃2; x/(z1z2), k⊥MS
) WSudakovWPDF.

where the the introduced Sudakov weight is given by

WSudakov =
ΠR

i (q̃I ; x, k⊥MS
)

ΠR
i (q̃1; x, k⊥MS

)

ΠR
eij
(q̃1; x/z1, k⊥MS

)

ΠR
eij
(q̃2; x/z1, k⊥MS

)
(6.2)

× ΠR
feijk

(q̃2; x/(z1z2), k⊥MS
)∆R

j ((1 − z1)q̃1; k⊥MS
)∆R

k ((1 − z2)q̃2; k⊥MS
),

and the PDF weight is

WPDF =
feij(x/z1, q̃1)

fi(x, q̃1)

ffeijk
(x/(z1z2), q̃2)

feij(x/z1, q̃2)
. (6.3)

The initial-state remnant Sudakov form factor, ΠR
i (q̃; x, k⊥MS

), space-like truncated

shower, S̄T
i (q̃1, q̃2; x, k⊥MS

) and vetoed shower, S̄V
i (q̃; x, k⊥MS

) are given by Eqs. 3.32,

3.36 and 3.37, respectively, with the replacement

Θ (p⊥(q̃, z) − p⊥h
) → Θ (k⊥(q̃, z) − k⊥MS

) . (6.4)

In the CKKW procedure of generating a hard configuration according to the exact

cross section, the set of splitting functions and a PDF factor are replaced by the corre-

sponding differential cross section weight. In the case of the configuration in Fig. 6.1 the

weight coming from the cross section can be approximated in terms of the parton-shower

splitting functions as

Wcross−section =
dPeij→ij(q̃1, z1)

z1

dPfeijk→eijk
(q̃2, z2)

z2

ffeijk
(x, µ)

fi(x, q̃I)

1

WαS

. (6.5)

in Eq. 6.1. The factor WαS
is a strong coupling weight, identical to that constructed in

the final-state scheme, consisting of the product of the ratios of the parton shower and

matrix element couplings for each emission vertex. The scale µ is the fixed factorisation

scale used to evaluate the PDFs in generating the hard configurations. The factors
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of z in Eq. 6.5 are Jacobian factor due to the convolution over PDFs being over the

variable x/z1z2 in the cross section but x in the parton shower. The ratio of PDFs in

Eq. 6.5 accounts for the fact that the PDF factor introduced by the cross section and

its parton-shower approximation do not match.

The initial-state shower decomposition of Eq. 6.1 implies a CKKW merging procedure

where hard configurations from exact cross sections are reweighted by a set of PDF

and Sudakov factors, while truncated and vetoed showers from the hard configurations

generate emissions below the merging scale. The initial-state truncated and vetoed

showers are completely analogous to those introduced in Sect. 5.3 for the final-state

case. From Eqs. 6.1 and 6.5, it is seen that the reweighting factors for the case shown

in Fig. 6.1, is given by

WαS
WSudakovWPDF

fi(x/(z1z2), q̃I)

ffeijk
(x, µ)

. (6.6)

This decomposition may be generalised to any configuration yielding a general merg-

ing procedure for initial-state showers. The procedure is identical to that for the final-

state case, described in Sect. 5.4, with the exception that configurations are reweighted

by a different set of Sudakov factors and additional PDF factors. The Sudakov weights

are constructed according to the following prescription:

• each internal space-like line for a parton of flavour i and momentum fraction x,

between the scales q̃1 and q̃2, contributes the factor

ΠR
i (q̃1; x, k⊥MS

)

ΠR
i (q̃2; x, k⊥MS

)
; (6.7)

• each external space-like line for a parton of flavour i and momentum fraction x,

starting from a scale q̃ contributes the factor

ΠR
i (q̃; x, k⊥MS

) . (6.8)

The PDF weights are constructed according to the following procedure:
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• each space-like emission ĩj → ij, from a parton of flavour i and momentum fraction

x, at (q̃, z), contributes the factor

feij(x/z, q̃)

fi(x, q̃)
; (6.9)

• each space-like parton with flavour i and momentum fraction x, entering the un-

derlying leading-order subprocess contributes the factor

fi(x, q̃I); (6.10)

• each external space-like parton with flavour i and momentum fraction x contributes

the factor

1

fi(x, µ)
. (6.11)

The contributions to the PDF weight coming from external partons corresponds to

dividing out the PDF factors that were present in the cross sections used to generate

the hard configurations.

6.3 The algorithm

6.3.1 Vetoes

As described in Sect. 2.2.6, the momenta of the initial-state partons are reconstructed in

the partonic centre-of-mass frame, which is related to the hadronic centre-of-mass frame

by a longitudinal boost along the beam direction. It is therefore convenient to use a

merging variable that is invariant under longitudinal boosts. A convenient choice of this

variable, which was also used in the original initial-state CKKW algorithm [84], is given

by the hadronic jet measure introduced in ref. [105]. For a pair of final-state partons i, j

the hadronic jet measure is defined by

yij =
min

(
p2
⊥i

, p2
⊥j

)
Rij

ŝ
, (6.12)
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where p⊥i
is the transverse momentum of parton i relative to the beam axis and the jet

separation Rij is defined by

Rij = (ηi − ηj)
2 + (φi − φj)

2 , (6.13)

where ηi and φi are the pseudo-rapidity and azimuth of parton i respectively. For a

final-state parton i and an initial-state parton i the hadronic jet measure is

yij =
p2
⊥i

ŝ
. (6.14)

In order to apply vetoes to emissions generated in the parton shower, it is necessary

to relate the hadronic jet measure, defined in Eqs. 6.12 and 6.14, to the shower variables.

As in the final-state case, we approximate this mapping to that of a single emission.

For an emission from an initial-state parton, the jet measure is given by Eq. 6.14

and we identify p⊥i
as the transverse momentum of the initial-state emission defined in

Eq. 2.29.

The jet measure of a final-state emission is given by Eq. 6.12 where, for a single

emission, we identify p⊥i,j
as the transverse momentum of the final-state emission defined

in Eq. 2.14. In the massless approximation used in treating initial-state radiation, the

pseudo-rapidity of the partons coincides with the rapidity of the partons and is given by

η =
1

2
log

[
E + pz

E − pz

]
, (6.15)

where E is the parton’s energy and pz is the component of the parton’s momentum in

the beam direction. For a single final-state emission, ĩj → ij, the on-shell reconstructed

parton momenta are parameterised in the normal Sudakov decomposition according to

Eq. 1.49. In terms of these Sudakov variables, the pseudo-rapidity is

ηi =
1

2
log

[
αi

βi

]
, (6.16)

where, analogously to Eq. 1.55, the Sudakov variables are

αi = z, βi =
p2
⊥

zs
,

αj = 1 − z, βj =
p2
⊥

(1 − z)s
.
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Transverse momentum conservation dictates also that for a single emission,

φi − φj = π, (6.17)

completing the definition of the hadronic jet measure in terms of the shower variables.

6.3.2 Dynamic Sudakov weights

In the final-state implementation, described in Chapter 5, the Sudakov form factors,

∆R
i (q̃; k⊥MS

), could be implemented by tabulating the integral in Eq. 5.8 and providing

two-dimensional interpolation between the tabulated values. Since, in the initial-state

case the corresponding Sudakov factor, ΠR
i (q̃; x, k⊥MS

), also depends on the momentum

fraction, x, the integration and interpolation procedures are not feasible. Instead we use

a trick, first introduced in Ref. [85], to generate the appropriate Sudakov weights dy-

namically from the parton shower. This results in a particularly simple implementation

where the desired reweighting is achieved by a vetoing of events.

The Sudakov weights that are introduced in the reweighting procedure, described

in Sects. 5.4 and 6.2, correspond to the probability of generating no emissions with

k⊥ > k⊥MS
in the parton shower that is produced around the set of hard emissions.

Given this correspondence the Sudakov reweighting may be achieved by, rather than

just vetoing the emission, throwing the whole event away if an emission with k⊥ > k⊥MS

is generated in the truncated or vetoed showers. We refer to this process as dynamic

Sudakov reweighting.

To see that the dynamic Sudakov reweighting produces the correct reweighting, we

consider the case of two hard emissions at (q̃a, za) and (q̃b, za). The probability, Pretain, of

retaining the event in the truncated showering of this line is given by the probability of

generating no emissions with k⊥ > k⊥MS
. This is equal to the probability of generating
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any number of emissions with k⊥ < k⊥MS
and is given by1

Pretain = ∆(zaq̃a, q̃b) +

∫ zaq̃a

q̃b

∆(zaq̃a, q̃b)dP(q̃1, z1)Θ (k⊥MS
− k⊥(q̃1, z1))

+

∫ zaq̃a

q̃b

∆(zaq̃a, q̃1)dP(q̃1, z1)Θ (k⊥MS
− k⊥(q̃1, z1)) (6.18)

×
∫ zaq̃1

q̃b

∆(z1q̃1, q̃b)dP(q̃2, z2)Θ (k⊥MS
− k⊥(q̃2, z2)) + . . . .

In the usual POWHEG approximation we identify the emissions as soft-gluon radiation,

allowing the replacement z → 1 in Eq. 6.182. The Sudakov form factors can therefore

be combined yielding

Pretain = ∆(zaq̃a, q̃b)

{
1 +

∞∑

n=1

n∏

i=1

∫ q̃i−1

q̃b

dP(q̃i, zi)Θ (k⊥MS
− k⊥(q̃i, zi))

}
, (6.19)

where q0 = zaq̃a. The nested integrals can then be exponentiated in the usual way giving

Pretain = ∆(zaq̃a, q̃b) exp

[∫ zaq̃a

q̃b

dP(q̃i, zi)Θ (k⊥MS
− k⊥(q̃i, zi))

]
(6.20)

= ∆R(zaq̃a, q̃b; k⊥MS
),

which is the same reweighting factor that was used previously.

6.3.3 Clustering procedure

The clustering procedure used is a direct extension of that described in Sect. 5.4.2 for

final-state radiation. All possible pseudo-shower histories are first created, one of which is

selected according to some criteria that ensures that the history that the parton shower

is most likely to produce is chosen. In the final-state case, the selection procedure

minimised the scalar sum of the transverse momentum of the branchings.

Since in the case of initial-state radiation, transverse momenta are relative to the

beam direction, employing the same clustering scheme would not ensure the most sen-

sible choice of history. In particular, for the case of a single emission this scheme would

select a history where the final-state parton was clustered to both incoming partons with

1For clarity of notation we ignore the flavour of the emissions.
2This also justifies our omission of flavour indices since all flavour changing emissions are subleading.
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equal probabilities. However, the parton shower would favour a history where the final-

state parton was more collinear to the emitted parton. In order to take this into account

the clustering procedure is augmented to favour collinear emission. This is achieved by

using the total transverse momentum measure

∑

hard emissions

a |p⊥(q̃, z)| , (6.21)

where an extra factor, a, has been introduced which is set to a constant less than one,

acollin, for initial-state emissions where the longitudinal momentum of the emitted time-

like parton is of the same sign as that of the space-like parent and one for all other

emissions. The default value used for this parameter is acollin = 0.9 however results were

found to be insensitive to the value provided it remains close to one. This ensures that

for histories with equal, or very similar, total transverse momentum, the more collinear

history is selected.

There are a set of diagrams which lead to configurations that have no parton-shower

interpretation. These correspond to electro-weak corrections to an underlying QCD

process. Such configurations correspond to genuine corrections but have no analogy in

the parton shower. We therefore choose to retain such configurations, showering them

directly. In practice, we find that neglecting such contributions has no visible effect,

justifying the decision to not provide a more sophisticated treatment.

6.3.4 Corrections to the dead zone

The merging scale should be chosen in the region where the validity of the parton shower

and matrix elements overlap. This must be low enough that the correction is applied

fully to the region in which it is most required and also high enough to avoid the cut-offs

that are applied in the parton shower.

The CKKW scheme ensures that the dead zone is filled above the merging scale but

remains empty below the merging scale. The phase space accessible to the parton shower

was discussed in Sect. 2.2.4 and we require that the parton shower and matrix elements

provide a full coverage of the phase space.

The phase space for a single initial-state emission in the Drell Yan process is shown in

Fig. 6.2 for a range of merging scale choices. It is clear that if the merging scale is chosen

to be sufficiently small then the overlap between the dead zone and the region that is not
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Figure 6.2: The phase-space regions accessible to initial-state parton-shower and matrix-
element emissions in Drell-Yan vector boson production at

√
s = 2TeV. The

red line shows the limits on the phase space into which the shower can emit, with
the dead zone inside. The blue, green and yellow lines show the merging-scale con-
tours with p⊥ = 20GeV, 30GeV, and 40GeV respectively. The matrix-element
region lies to the right of each of these contours and the parton-shower region lies
to the left.
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filled by matrix elements is negligible. However, for a merging scale of k⊥MS
= 40 GeV

there is a significant region that will be filled by neither the parton shower or matrix

elements.

In order to ensure that the dead zone is filled, a modified treatment of events with

no matrix-element emissions is employed. The POWHEG implementation presented in

Chapter 4 generates a single emission, according to exact matrix elements, allowing a

full coverage of the dead zone. The first emission of events with no matrix-element

emissions may therefore be generated with the POWHEG hard generator. Subsequent

emissions are then generated around this emission using the standard truncated and

vetoed showers. In order to retain the correct vetoes and Sudakov reweighting, events

are vetoed if an emission with jet measure above the merging scale is generated in the

POWHEG hard emission or subsequent emissions.

6.4 Results

In this section we present results of the implementation for Drell-Yan vector boson

production at the Tevatron, with the vector boson decaying into first generation leptons,

at a centre-of-mass energy of 1.96 TeV.

Matrix-element samples were generated using MadGraph/MadEvent [92, 93] for the

process with up to four extra jets. Merging scales of k⊥MS
= 20 GeV, 30 GeV and

40 GeV were used.

The CTEQ6L1 PDF set [106] was used, with the LHAPDF interface [75], in both

the generation of matrix-element samples and the Herwig++ parton shower.

The set of hadronisation parameters, generated in the tune to LEP data, were also

used for this process.

The intrinsic transverse momentum was tuned to a value of 1 GeV.

The CKKW algorithm should show the biggest improvement over the standard par-

ton shower for observables that are sensitive to configurations with multiple well sep-

arated jets. We therefore compare the simulation to a set of distributions of V + jets

production. The analyses were performed using Rivet [107].
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Figure 6.3: Jet multiplicity distributions in Z/γ-productions at the Tevatron with√
s = 1.96TeV in comparison to CDF data [108]. The red, cyan and green lines

show the CKKW distribution with a maximum of 4, 3, 2 and 1 jets described by
matrix elements. The blue line shows the distribution for default Herwig++ with
a matrix-element correction. The lower panel shows (MC − data)/data for each
distribution.

6.4.1 Z/γ + jets

Figure 6.3 shows the inclusive jet cross sections for different choices of N , where N is

the maximum number of jets that are described by the matrix elements. Final-state

hadrons are clustered into jets with a cone algorithm, requiring a minimum separation

between jets of Rij = 0.7. The merging scale is set to k⊥MS
= 20 GeV for each of the

CKKW distributions shown.

The distributions are compared to CDF data [108]. Since the normalisation in the

CKKW method corresponds to a leading-order cross section, it is necessary to introduce

a K-factor. This was calculated by normalising the distributions to the njet = 1 bin.

The same K-factor was then used for all subsequent distributions.

As expected, the distribution for CKKW with N = 1 matches closely that of default

Herwig++, with a matrix-element correction. As a higher number of emissions are

included in the matrix-element region, a significant improvement is observed with a
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cross section / nb

N k⊥MS
= 20 GeV k⊥MS

= 30 GeV k⊥MS
= 40 GeV

4 0.269 0.269 0.268

3 0.270 0.269 0.268

2 0.272 0.269 0.268

1 0.270 0.267 0.266

Table 6.1: Table of the total cross sections obtained for the process pp̄ → Z/γ at the Tevatron
run II (pp̄ at

√
s = 1.96TeV), for different choices of k⊥MS

and N .

good description of the data being obtained for N ≥ 3. In all subsequent plots we set

N = 4.

The total cross-sections obtained for the different choices of k⊥MS
and N are presented in

Table 6.1. The cross-section is extremely stable, in both the merging scale and maximum

multiplicity, exhibiting variation at the percent level.

Figure 6.4 shows the distribution of jet transverse momentum in events with njet ≥ 1

and njet ≥ 2 resolved jets. The variation in the CKKW distribution for the three choices

of merging scale is represented by the red band. This is compared to CDF data [108] and

the default Herwig++ distribution. For njet ≥ 1 the default Herwig++ implementation

provides an adequate description and the CKKW distribution is comparable to this,

however for njet ≥ 2 there is a clear improvement in the CKKW distribution, indicating

that providing a correction to more than just one emission is important in describing

the data. The merging-scale dependence for the inclusive jet cross sections is shown in

Fig. 6.5. The merging-scale dependences are seen to be at an acceptable level with only

small variation.

Figure 6.5 shows the CKKW distribution and merging-scale dependence for the trans-

verse momentum of the Z/γ-boson in comparison to D0 data [78]. The CKKW distri-

bution demonstrates a similar level of agreement with data as the default Herwig++

distribution and the POWHEG implementation shown in Fig. 4.7. There is a slight

improvement visible in the mid-region which showed a deficiency in the POWHEG and

matrix-element correction distributions, where only a single emission is corrected. This

may be attributed to an improved description of higher multiplicity contributions.
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Figure 6.4: Distributions of jet transverse momentum in Z/γ + jet (Tevatron run II) pro-
duction events, with njet ≥ 1 and njet ≥ 2 in comparison to CDF data [108].
The red band shows the variation in the CKKW result for merging scale choices
of k⊥MS

= 20GeV, 30GeV, and 40GeV and the blue line shows the default
Herwig++ distribution. The lower panel shows (MC − data)/data for each dis-
tribution.

Figure 6.5: Jet multiplicity distributions in Z/γ-productions at the Tevatron run II, showing
the merging-scale dependence, in comparison to CDF data [108]. Line colours are
the same as those in Fig. 6.4.
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Figure 6.6: Distributions of the vector boson transverse momentum in Z/γ production at the
Tevatron run II in comparison to D0 data [78]. Line colours are the same as those
in Fig. 6.4.

6.4.2 W + jets

Figure 6.7 shows the inclusive jet cross sections for W -production for different choices

of N in comparison to CDF data [109]. Again, clear improvement in the description of

the data is seen as N is increased and good agreement is observed for N ≥ 2, for all jet

cross sections up to njet = 4. The total cross sections for W -production at run II of

the Tevatron are shown in Table 6.2. As in the case of Z-production, good stability of

the cross section, with variation at the percent level, is observed for changes in N and

k⊥MS
.

Figure 6.8 shows the distributions of the transverse energy of the 1st, 2nd and 3rd

highest-p⊥ jets and the inclusive jet cross sections in comparison to CDF data [109].

The transverse energy of the jets is defined by

E⊥ = E sin θ, (6.22)

where E and θ are the energy and angle, with respect to the beam axis, of the clustered

jet momentum. When jet-multiplicity channels up to N ≥ 3 are included, a good
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Figure 6.7: Jet multiplicity distributions in W -productions at the Tevatron run II with in
comparison to CDF data [109]. Line colours are the same as those in Fig. 6.4.

cross section / nb

N k⊥MS
= 20 GeV k⊥MS

= 30 GeV k⊥MS
= 40 GeV

4 1.97 1.96 1.95

3 1.98 1.96 1.95

2 1.99 1.96 1.95

1 1.98 1.94 1.93

Table 6.2: Table of the total cross sections obtained for the process pp̄ → W at the Tevatron
run II, for different choices of k⊥MS

and N .
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Figure 6.8: Plot (a)-(d) show the distribution of the transverse energy of the 1st, 2nd and
3rd highest-p⊥ jets and the inclusive jet cross sections, respectively, in W + jet
production at run II of the Tevatron. The distributions are compared to CDF
data [109]. Line colours are the same as those in Fig. 6.4.

description of the data is observed. Merging-scale variation is represented by the red-

bands in Fig. 6.8 demonstrating a low level of merge scale dependence.

6.5 Conclusions

In this chapter we have presented an extension to the modified CKKW algorithm, de-

scribed in Chapter 5, to include corrections to initial-state radiation. This has been
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implemented in Herwig++ for Drell-Yan W - and Z/γ-production. A comparison to

data from run II of the Tevatron was performed and a good agreement was seen for

all observables provided that a high enough jet-multiplicity is included in the matrix

elements.

An improvement was observed in the description of the CKKW distributions over that

of default Herwig++ which applies a correction to only one emission. The improvement is

particularly large for observables that are sensitive to high jet-multiplicity configurations.

The dependence on the merging scale was investigated and found to be acceptable, with

small variation seen in the distributions and good stability in the total cross sections.



Chapter 7

Conclusions

Monte Carlo event generators are important tools that are widely used in the planning

and analysis of collider experiments. As we enter the era of the LHC, the potential for

making new discoveries is dependent on the accuracy of event generators in describing

both signal and background processes. Much effort has been put into developing a new

generation of event generators for the LHC and these represent sophisticated simulations

capable of describing a wide range of phenomena. One particular area that has seen much

attention is the improvement of parton showers using exact matrix elements.

Parton showers provide a resummation of the large-logarithmic terms that are asso-

ciated with soft and collinear parton emissions. This approach has been shown to be

remarkably successful, however there are limits to its applicability. In particular, in the

region of emissions with large transverse momentum, the parton-shower approximation

becomes unreliable and there exists a region of phase space, referred to as the dead

zone, into which the parton shower cannot radiate. Fixed-order calculations present a

complimentary set of virtues, giving a good description of large-transverse-momentum

emissions and featuring a full treatment of interferences. Matrix-element merging algo-

rithms aim to combine both approaches such that the resummation of the parton shower

is retained while improving the description with exact matrix elements.

In this thesis, two matrix-element merging algorithms have been studied within the

Herwig++ event generator. The first is the POWHEG NLO matching scheme, which

combines the parton shower with NLO matrix elements. The second is the CKKW

matrix-element merging algorithm, which combines the parton shower with tree-level

matrix elements that describe the process with any number of parton emissions up to

some maximum multiplicity.
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NLO matching schemes aim to retain the resummation of the parton shower while

providing predictions for infra-red safe observables that agree with the exact NLO cross

section. The most well-developed of these methods is the MC@NLO scheme, however

the POWHEG method is a novel scheme which has the advantage of producing only

positive-weight events and having a decreased dependence on the parton shower in which

it is implemented. The main features of the method are: a reorganisation of the parton

shower in terms of truncated showers, vetoed showers and a hardest emission; and a

reformulation of the NLO cross section.

The POWHEG method was first implemented within Herwig++, for the process

e+e− → hadrons. This is the simplest possible process and represents an important test

bed for the implementation of the method. The implementation presented is the first to

provide a full treatment of the truncated shower. The POWHEG implementation was

found to give a reasonable description of LEP data. No significant differences between

the matrix-element correction and POWHEG methods are observed for this process.

This is to be expected since both methods correspond to a correction of the hardest

emission that is equivalent in the NLL approximation.

The POWHEG method was then implemented for Drell-Yan vector boson production.

This process involves a correction to an initial-state emission and a more complicated

cross section. The accurate simulation of this process is important for the LHC, where

it is an important background to many potential discovery signals. The implementation

demonstrates a good description of Tevatron data for a range of observables exhibiting a

slight improvement on the description provided by MC@NLO. It was found in all cases

that the NLO schemes resulted in distributions that were lower in the large-transverse-

momentum tail than matrix-element correction methods. This can be attributed to the

fact that the NLO schemes provide the correct NLO normalisation while matrix-element

correction methods require the application of a K-factor.

The principle of the POWHEG shower reorganisation may be extended to any number

of emissions, enabling a set of hard emissions to be generated separately, and then have

the angular-ordered (or otherwise) parton shower generated around them. This idea

has been used to develop a modified version of the CKKW matrix-element merging

algorithm which has been implemented in Herwig++. The modified algorithm uses

truncated showers in order to provide smooth merging between the Herwig++ angular-

ordered parton shower and a set of transverse-momentum-ordered emissions defined by

inverting the Herwig++ momentum reconstruction procedure on a samples of parton

momenta generated according to exact tree-level matrix elements.
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The algorithm was first implemented for the process e+e− → hadrons. A smooth

merging between the parton-shower and matrix-element regions of phase space was ob-

served, with parton-level distributions appearing free of the discontinuities that have

been seen in implementations of the standard CKKW algorithm. Distributions also

demonstrated a small dependence on the merging scale. The algorithm was found to

give a good description of LEP data, demonstrating a significant improvement over

the results from the default Herwig++ parton shower with matrix-element corrections

applied.

The algorithm was extended to include corrections to initial-state radiation and im-

plemented for Drell-Yan vector boson production. This required the inclusion of PDF

reweighting factors and the use of dynamic Sudakov reweighting. A modification was

also made to the algorithm to ensure that the dead zone was filled below the merging

scale. A comparison to data from run II of the Tevatron was performed and a good

agreement was seen for all observables provided that a high enough jet-multiplicity is

included in the matrix elements. An improvement was observed in the description of

the CKKW distributions over that of default Herwig++ which applies a correction to

only one emission. The improvement is particularly large for observables that are sen-

sitive to high jet-multiplicity configurations. The dependence on the merging scale was

investigated and found to be acceptable, with small variation seen in the distributions

and good stability in the total cross sections.

The subject of combining matrix elements and parton showers is an area of continued

development. The implementation of the POWHEG NLO matching algorithm is ongo-

ing for a number of processes. Merging algorithms also continue to be developed and

improved, with work being done on including one-loop matrix elements in the CKKW

merging scheme as well as the treatment of electro-weak corrections.

In summary, we have presented research in the implementation and development of

matrix-element merging algorithms within Herwig++ aiming to improve the simulation

of hard QCD radiation. The results have shown these implementations to be success-

ful, with many significant improvements seen in comparison to the standard Herwig++

description. Improvements to the simulation, such as these, are extremely important.

This is an exciting time; the LHC promises to shed light on new physics and Monte

Carlo event generators will play a major role in the discoveries it makes.
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Appendix A

Monte Carlo algorithms

In this appendix we review the Monte Carlo algorithms that are used throughout this

thesis.

A.1 Generating according to a probability distribution

The problem central to a Monte Carlo event generator is to generate ‘events’, x, accord-

ing to a probability distribution f(x). This corresponds to unweighting of the samples

in Eq. 1.109 such that each point has a unit weight and can be considered to be an

event.

In order to illustrate the method, we limit ourselves to a one-dimensional problem.

The probability for having a value between xmin and x is given by

P (xmin < x′ < x) =

∫ x

xmin
dx′f(x′)

∫ xmax

xmin
dx′f(x′)

. (A.1)

Since this yields a probability in the interval [0, 1], we can replace the left-hand-side by

the random number operator, R, and x can be found from

x = F−1 [R (F (xmax) − F (xmin)) + F (xmin)] , (A.2)

where F (x) is the primitive integral of f(x).

The function f(x) may be sufficiently complicated that the inverse of the primitive

integral, F−1(x), is not be known. In this case we can instead use a simpler function
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g(x), for which the inverse of the primitive integral, G−1(x) is known. If we choose the

function g(x) to be an enveloping function of f(x) such that

g(x) > f(x) ∀x ∈ [xmin, xmax] , (A.3)

then x may be distributed according to f(x) by first generating the event according to

g(x), using Eq. A.2, and then accepting the configuration only if

R <
f(x)

g(x)
. (A.4)

The probability of accepting an event x is then given by the product of g(x) and the

acceptance probability f(x)/g(x), yielding the desired distribution f(x). Evidently the

efficiency of this procedure is related to the proportion of events that are rejected and

therefore the closer g(x) is to f(x), the better the efficiency.

This can easily be extended to a distribution of n variables, f(x) = f(x1, .., xn), by

choosing a bounding function g(x) that can be written in the factorized form g1(x1)...gn(xn).

An event is then generated by generating each variable xi independently according to

Eq. A.2 with gi(xi). The event is then accepted, as before, if

R <
f(x)

g(x)
. (A.5)

A.2 The veto algorithm

In the parton shower we evolve down in an ordering variable, t, from an initial scale

tI and generate the scale at which the next branching occurs. The scale of the next

branching should be selected according to a probability distribution of the form

P (t) = f(t)∆ (tI , t) . (A.6)

This represents a correctly normalised probability distribution, where the term f(t)

corresponds to the branching probability, while ∆(tI , t) is the Sudakov form factor giving

the probability that a branching has not already occurred in evolving from tI down to
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t. This is given by

∆(tI , t) = exp

[
−
∫ tI

t

dt′f(t′)

]
. (A.7)

If we assume that we can define a primitive integral of f(t), F (t), with a known

inverse, then we can write the inclusive probability for an emission between tI and t as

P (tI > t′ > t) = 1 − exp [F (t) − F (tI)]. (A.8)

As before we can replace the inclusive probability, or equivalently one minus the proba-

bility, by the the random number operator R and solve for t yielding1

t = F−1 [logR + F (tI)] . (A.9)

In general, f(t) is not sufficiently simple for us to use Eq. A.9 directly, however we can

again employ a method that uses a simpler function g(x), defined such that it satisfies

Eq. A.18. The correct prescription for using the bounding function g(x) in this case is

given by the veto algorithm [39]. The veto algorithm dictates that t should be selected

according to the following procedure:

1. start at i = 0 with t0 = tI ;

2. the next scale is found according to

ti = G−1 [logR + G(ti−1)] ; (A.10)

3. the scale ti is accepted according to

R <
f(ti)

g(ti)
; (A.11)

4. if ti is rejected then return to step 2.

That this algorithm does indeed generate values of t according Eq. A.6 can be seen

by considering the probability of generating the scale t after different numbers of veto

algorithm iterations. Each veto algorithm iteration i that is not accepted, introduces a

probability given by the product of generating the scale ti and it then being rejected,

1Note that this is equivalent to solving R = ∆(tI , t) as in Eq. 1.113.
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given by

(g(ti) − f(ti)) exp

[
−
∫ ti−1

ti

dt′g(t′)

]
. (A.12)

The final iteration, at which the scale t is accepted after n rejections, introduces a

probability

f(t) exp

[
−
∫ tn

t

dt′g(t′)

]
. (A.13)

It is clear that, regardless of how many rejection steps occur before a scale is accepted,

the exponential factors in Eqs. A.12 and A.13 combine. The intermediate rejected scales

ti should be integrated over such that they are ordered. The probability of generating

the scale t after n rejections is therefore given by

Pn = f(t) exp

[
−
∫ tI

t

dt′g(t′)

] n∏

i=1

∫ ti−1

t

dti (g(ti) − f(ti)) . (A.14)

The n nested integrals can be ordered in n! ways where the sum of these orderings

complete the integral over the n-dimensional hypercube. We can therefore decouple the

integrals in Eq. A.14, giving

Pn = f(t) exp

[
−
∫ tI

t

dt′g(t′)

]
1

n!

[∫ ti−1

t

dti (g(ti) − f(ti))

]n

. (A.15)

The full probability of selecting a scale t is then given by the sum of all Pn, yielding

P = f(t) exp

[
−
∫ tI

t

dt′g(t′)

] ∞∑

n=0

1

n!

[∫ ti−1

t

dti (g(ti) − f(ti))

]n

= f(t) exp

[
−
∫ tI

t

dt′f(t′)

]
, (A.16)

as required.

A.3 The bivariant veto algorithm

In general the branching probability depends also on an auxiliary splitting variable

z. In this section we describe an extension of the veto algorithm referred to as the
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bivariant veto algorithm which allows the generation of the variables (t, z) according to

the distribution

P (t) = f(t, z)∆ (tI , t) , (A.17)

where the Sudakov form factor now also includes the integral over the variable z.

The auxiliary variable may be generated simultaneously by introducing a bounding

function g(t, z) defined such that,

g(t, z) = g1(t)g2(z) > f(t, z) ∀(t, z) ∈ R, (A.18)

where R is the allowed phase space region. The correct prescription is then to:

1. start at i = 0 with t0 = tI ;

2. generate the scale ti according to Eq. A.10 but with g(t) = g1(t)
∫

dzg2(z);

3. generate z according to

z = G−1
2 [R (G2(zmax) − G2(zmin)) + G2(zmin)] , (A.19)

where G2(z) is the primitive integral of g2(z);

4. the event is accepted if

R <
f(t, z)

g(t, z)
; (A.20)

5. if ti is rejected then return to step 3.

A.4 The veto algorithm for competing processes

Often, the branching probability, f(t), will be of the form

f(t) =
∑

i

fi(t), (A.21)

where i corresponds to a channel with a different subprocess. We may need to select

a value of t and the subprocess (for example in a situation where each i corresponds

to a different flavour configuration) it came from where values of t coming from the
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subprocess i should be distributed according to

Pi(t) = fi(t) exp

[
−
∫ tI

t

dt′f(t′)

]
. (A.22)

This is achieved by generating by competition as described in Ref. [44]. This requires

that a value of t is generated for each channel, according to the standard veto algorithm

with f(t) → fi(t) with the largest of the values being selected. The channel from

which this value was generated is the subprocess in which the branching occurred. The

probability of a value t being generated in the channel i is then given by the probability

of generating the value t from the veto algorithm with f(t) → fi(t), multiplied by the

probability that no values in the interval [tI , t] were generated in the other channels this

is given by

fi(t) exp

[
−
∫ tI

t

dt′fi(t
′)

]
×
∏

i′ 6=i

exp

[
−
∫ tI

t

dt′fi′(t
′)

]
, (A.23)

which we identify as the required probability in Eq. A.22.



Appendix B

Plus distributions

In this appendix we present further details of the plus distributions used in Chapter 4.

In order to subtract the divergences from the radiative corrections as poles in ǫ, we

write Eq. 4.12 in terms of the plus distributions defined by

∫ 1

0

dxF+(x)G(x) =

∫ 1

0

dx (F (x)G(x) − F (x)G(1)) . (B.1)

The plus distributions are only defined when considered in the convolution with another

arbitrary finite function, G(x).

B.1 Plus distributions for the two-body phase space

We first consider the divergent integral

I =

∫ 1

0

dx(1 − x)−1−ǫG(x). (B.2)

This integral is divergent in the limit ǫ → 0. Adding and subtracting

(1 − x)−1−ǫG(1) and using the definition of the plus distribution, we can write this as

I =

∫ 1

0

dx

{(
(1 − x)−ǫ

(1 − x)

)

+

+ δ(1 − x)

∫ 1

0

dx′x′ (1−ǫ)

}
G(x). (B.3)

193
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The integral in the second term can be evaluated yielding a pole in ǫ and the first term

is finite and can be expanded in ǫ giving

I =

∫ 1

0

dx

{
1

(1 − x)+

− ǫ

(
log(1 − x)

(1 − x)

)

+

(B.4)

+
ǫ2

2

(
log2(1 − x)

(1 − x)

)

+

− 1

ǫ
δ(1 − x)

}
G(x) + O(ǫ3).

from which we identify

(1 − x)−1−ǫ = −1

ǫ
δ(1 − x) +

1

(1 − x)+

− ǫ

(
log(1 − x)

(1 − x)

)

+

(B.5)

+
ǫ2

2

(
log2(1 − x)

(1 − x)

)

+

+ O(ǫ3).

In order to arrive at the result in Eq. 4.18 we are required to write the function

J (x, v) = xǫ(1 − x)−1−2ǫv−1−ǫ(1 − v)−1−ǫ, (B.6)

in terms of plus distributions. This is achieved by a set of manipulations of the result

in Eq. B.5. The x dependent factor in Eq. B.6 is found by applying the substitution

ǫ → 2ǫ, multiplying by xǫ and expanding in ǫ. The result of this is

xǫ(1 − x)−1−2ǫ = − 1

2ǫ
δ(1 − x) +

1

(1 − x)+

(B.7)

+ ǫ
log x

(1 − x)
− 2ǫ

(
log(1 − x)

(1 − x)

)

+

+ O(ǫ2).‘

The v dependent factors are given by Eq. B.5 with the substitutions (1 − x) → v and

x → v yielding1

v−1−ǫ(1 − v)−1−ǫ =

(
−1

ǫ
δ(v) +

1

v+

− ǫ

(
log(v)

v

)

+

+
ǫ2

2

(
log2(v)

v

)

+

)
(B.8)

×
(
−1

ǫ
δ(1 − v) +

1

(1 − v)+
− ǫ

(
log(1 − v)

(1 − v)

)

+

+
ǫ2

2

(
(log(1 − v))2

(1 − v)

)

+

)
.

1The plus distributions of functions that are divergent in the limit v → 0 are defined with the sub-
traction at v = 0 rather than v = 1.
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This may be simplified by applying the following identities for products of plus distri-

butions

1

v+

1

(1 − v)+
=

1

v+
+

1

(1 − v)+
, (B.9)

1

v+

(
log(1 − v)

(1 − v)

)

+

=
log(1 − v)

v
+

(
log(1 − v)

(1 − v)

)

+

, (B.10)

(
log(v)

v

)

+

(
log(1 − v)

(1 − v)

)

+

=

(
log(v)

v

)(
log(1 − v)

(1 − v)

)
. (B.11)

Equation B.8 then gives

v−1−ǫ(1 − v)−1−ǫ = −1

ǫ
δ(v) − 1

ǫ
δ(1 − v) +

1

v+

+
1

(1 − v)+

(B.12)

−ǫ

[
log(1 − v)

v
+

log(v)

(1 − v)
+

(
log(v)

v

)

+

+

(
log(1 − v)

(1 − v)

)

+

]
.

The result in Eq. 4.18 is then found by calculating the product of Eqs. B.7 and B.12

up to O(ǫ). The resulting terms may be split into terms proportional to the three δ-

functions as defined by Eq. 4.18. Since all ǫ-poles are accompanied by a δ-function, the

terms containing no δ-functions are found from the product of the finite O(1) terms in

Eqs. B.7 and B.12, giving

H (x, v) =
1

(1 − x)+

(
1

v+
+

1

(1 − v)+

)
, (B.13)

as in Eq. B.13. The terms proportional to δ(1 − x) are given by

S =
1

2ǫ2
[δ(v) + δ(1 − v)] − 1

ǫ

[
1

v+
+

1

(1 − v)+

]
(B.14)

+
log(1 − v)

v
+

log(v)

(1 − v)
+

(
log(v)

v

)

+

+

(
log(1 − v)

(1 − v)

)

+

.

The product of matrix element, Jacobean and flux factors with which J (x, v) is convo-

luted depends only on the combinations x, ŝ, t̂, û and x©, all of which are independent

of v in the limit x → 1. This allows us to replace all the plus distributions in Eq. B.14

by zero and all other functions of v by their integrated value. This gives

S =
1

ǫ2
− π2

6
, (B.15)
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as in Eq. 4.19a. Finally, the remaining O(1) terms are proportional to (δ(v) + δ(1 − v))

and give the result in Eq. 4.19b,

C (x) = −1

ǫ

1

(1 − x)+

− log x

(1 − x)
+ 2

(
log (1 − x)

1 − x

)

+

. (B.16)

B.2 Plus distribution identities for the implementation

of B̄

In order to implement the collinear (Cab) terms in the real-emission contributions to

B̄ (Φn), the following relations are required

∫ 1

x̄(v)

dx
f (x)

(1 − x)+

=

∫ 1

0

dx̃ (1 − x̄ (v))

[
f (x (x̃, v)) − f (x (1, v))

1 − x (x̃, v)
(B.17)

+
f (x (1, v))

1 − x̄ (v)
log (1 − x̄ (v))

]
,

and

∫ 1

x̄(v)

dx f (x)

(
log (1 − x)

1 − x

)

+

=

∫ 1

0

dx̃ (1 − x̄ (v)) × (B.18)

[
(f (x (x̃, v)) − f (x (1, v)))

(
log (1 − x (x̃, v))

1 − x (x̃, v)

)
+

f (x (1, v))

2 (1 − x̄ (v))
log2 (1 − x̄ (v))

]
,

with x̃ defined in Eq. 4.56 and v ∈ [0, 1]. For the hard (Hab) contribution to the real

radiation components in B̄ (ΦB)

∫ 1

0

dv

∫ 1

x̄(v)

dx f (x, v)
1

(1 − x)+

(
1

(1 − v)+
+

1

v+

)
= (B.19)

∫ 1

0

dv

∫ 1

0

dx̃
1

1 − x̃

(
f (x (x̃, v) , v) − f (1, v) − f (x (x̃, 1) , 1) + f (1, 1)

(1 − v)
+

f (x (x̃, v) , v) − f (1, v) − f (x (x̃, 0) , 0) + f (1, 0)

v

)
+

∫ 1

0

dv

∫ 1

0

dx̃

(
f (1, v) log (1 − x̄ (v)) − f (1, 1) log (1 − x̄ (1))

(1 − v)
+

f (1, v) log (1 − x̄ (v)) − f (1, 0) log (1 − x̄ (0))

v

)
,
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where in the last line of Eq.B.20 we have introduced the identity as
∫ 1

0
dx̃. Similar

relations are derived, in different variables, in Ref. [57].



Appendix C

Further matrix-element merging details

C.1 Highest-multiplicity treatment

In order to show the necessity of the highest-multiplicity treatment, we consider the case

where we merge matrix elements with a maximum multiplicity of N = 3, i.e. the matrix

elements describe at most one emission. For clarity we proceed as in Sect. 5.2.1, consid-

ering the algorithm in the simplest case where the parton-shower evolution variable and

merging variable are a transverse momentum measure q. In this case the merged NLL

cross section σME+PS
n (q0) for n up to three jets resolved at the hadronization scale q0 is

unchanged by the highest multiplicity. However, for jet multiplicities n > N , the correct

NLL cross section is only achieved with the highest-multiplicity treatment. To illustrate

this we consider the four-jet cross section. The NLL parton-shower approximation to

the four-jet cross section with partons resolved at the scale q
MS

is given by

σ
(PS)
4 (qI , qMS

) = σ2 × 2 [∆q (qI , qMS
)]2
∫ qI

q
MS

dq αS (q) Γq→qg (q) ∆g(q, qMS
)× (C.1)

∫ q

q
MS

dq′ F PS
qq̄g (q′, q

MS
) ,

where F PS
qq̄g (q′, q

MS
) is a function describing the probability of a single emission, from a

qq̄g parton configuration, in the region [q′, q′ + dq′] and subsequent evolution down to a

198
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scale qMS. It is given by

F PS
qq̄g (q′, q

MS
) = 2αS (q′) Γq→qg (q′) ∆g (q′, q

MS
) (C.2)

+ αS (q′) Γg→gg (q′)∆g(q
′, q

MS
)

+ αS (q′) Γg→qq (q′)
[∆q(q

′, q
MS

)]2

∆g(q′, qMS
)

.

The four-jet NLL merged cross section is given by the sum of a term where exactly

one emission is generated by the matrix elements and one by the parton shower and a

term where the parton shower produces exactly two emissions. Without the highest-

multiplicity treatment this is given by

σ
(PS+ME)
4 (q0) = σ

(PS)
4 (q

MS
, q0) (C.3)

+ σ̄
(ME)
3 (q

MS
) [∆q (q

MS
, q0)]

2 ∆g (q
MS

, q0)

∫ q
MS

q0

dq′ F PS
qq̄g (q′, q0) ,

where σ̄
(ME)
3 (q

MS
) is the reweighted matrix-element contribution for three jets resolved

at the merging scale. By design, at NLL, the reweighted three-jet matrix-element cross

section σ̄
(ME)
3 (q

MS
) is given by the corresponding NLL parton-shower cross section

σ̄
(ME)
3 (q

MS
) = σ2 × 2 [∆q (qI , qMS

)]2
∫ qI

q
MS

dq αS(q) Γq→qg(q) ∆g(q, qMS
) + O(NNLL).

(C.4)

The NLL expansion of Eq.(C.3) is therefore given by,

σ
(PS+ME)
4 (q0) = σ2 × 2 [∆q (qI , q0)]

2

∫ qI

q
MS

dq αS (q) Γq→qg (q) ∆g(q, q0)× (C.5)

∫ q
MS

q0

dq′ F PS
qq̄g (q′, q0) + σ

(PS)
4 (q

MS
, q0) + O(NNLL).

This cannot be simplified any further, is not independent of the merging scale and does

not produce the NLL parton-shower cross section as desired. The reason for this is

that the procedure presented only allows a single emission to be generated in the region

q > q
MS

; the highest-multiplicity treatment corrects this.

The highest-multiplicity treatment dictates that in the highest-multiplicity channel

the cuts applied to the Sudakov form factors used in the reweighting of the matrix ele-

ments and the vetoes applied to the parton shower should be changed from the merging
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scale to the transverse momentum of the matrix-element emission with smallest trans-

verse momentum. In the case considered, this transverse momentum is q and the result of

the highest-multiplicity treatment is the following changes to the first term the three-jet

channel) in Eq. (C.3):

σ
(PS+ME)
4 (q0) → σ̂

(ME)
3 (q

MS
) ∆g (q, q0)

∫ q

q0

dq′ F PS
qq̄g (q′, q0) + σ

(PS)
4 (q

MS
, q0) . (C.6)

where σ̂
(ME)
3 (q

MS
) is the matrix-element three-jet cross section reweighted according to

the highest-multiplicity treatment. Its NLL expansion is again, by design, given by the

parton-shower cross section but now with Sudakov cuts set to q rather than qMS.

σ̂
(ME)
3 (q) = σ2 × 2

∫ qI

q
MS

dq [∆q (qI , q)]
2 αS(q) Γq→qg(q) + O(NNLL). (C.7)

Inserting this NLL expansion into Eq. (C.6), we observe that the integrands of the two

terms in Eq. (C.6) are identical, differing only in the integration regions of q. The two

terms may then be combined, completing the integration region [qI , q0] and yielding the

result

σ
(PS+ME)
4 (q0) = σ

(PS)
4 (qI , q0) + O(NNLL), (C.8)

which, to NLL, matches the parton-shower four-jet cross section and is independent of

the merging scale.

C.2 Merging scale independence of the three-jet

emission rate

In the following, we extend our pedagogical example concerning the merging of the

two- and three-parton matrix-element configurations to illustrate the cancellation of the

merging scale dependence at NLL level.

For clarity of notation we define the remnant and vetoed Sudakov form factors

∆R,V
i (q̃1, q̃2) =

∆R,V
i (q̃1; k⊥MS

)

∆R,V
i (q̃2; k⊥MS

)
, (C.9)

where the dependence on the merging scale k⊥MS
is implicit.
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The parton-shower rate for the production of three-parton configurations via emission

from the quark line (and none from the anti-quark) is given by

Pqq̄g =
1

σtot

dσqq̄ dPq→qg (q̃, z) (C.10)

× ∆q (q̃I , q̃) ∆q (zq̃, q̃0) ∆g ((1 − z)q̃, q̃0) ∆q̄ (q̃I , q̃0) .

In the modified CKKW algorithm, emissions above the merging scale are generated

according to the hard matrix element, initially with probability

Pqq̄g (yij > y
MS

) =
1

σtot
dσqq̄g. (C.11)

Depending on whether the pT of the gluon is smaller with respect to the quark or anti-

quark a shower history is assigned to the configuration in which the former or latter is

deemed to have emitted the gluon. Let us assume that the gluon pT with respect to the

quark was the smaller of the two, the event is then assigned the relevant Sudakov and

coupling-constant weights

Pqq̄g (yij > y
MS

) → 1

σtot
dσqq̄g αS (p⊥ (q̃, z))

αSME

(C.12)

× ∆R
q (q̃I , q̃) ∆R

q (zq̃, q̃0) ∆R
g ((1 − z) q̃, q̃0) ∆R

q̄ (q̃I , q̃0) .

For this configuration to remain a three-parton configuration, no further radiation should

be generated in the truncated and vetoed shower. The probability of generating no emis-

sions in the vetoed and truncated showers is found from Eqs. 3.26 and 3.27 respectively.

The result is that the emission probability receives further vetoed and remnant Sudakov

form factors, resulting in the aggregate emission probability

Pqq̄g (yij > y
MS

) =
1

σtot
dσqq̄g αS (p⊥ (q̃, z))

αSME

(C.13)

× ∆R
q (q̃I , q̃) ∆R

q (zq̃, q̃0) ∆R
g ((1 − z) q̃, q̃0) ∆R

q̄ (q̃I , q̃0)

× ∆V
q (q̃I , q̃) ∆V

q (zq̃, q̃0) ∆V
g ((1 − z) q̃, q̃0) ∆V

q̄ (q̃I , q̃0) .

Recalling the definitions of the vetoed and remnant Sudakov form factors (Eqs. 3.22 and

3.23), it is clear from the fact that each remnant Sudakov form factor is accompanied

by an analogous vetoed Sudakov form factor, that the emission rate does not depend on

the merging scale y
MS

.
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Furthermore, if we take the NLL approximation of this we may replace dσqq̄g with

the factorized form it approaches in the soft and collinear limits1,

dσqq̄g → αSME

αS (p⊥ (q̃, z))
dσqq̄ dPq→qg (q̃, z) . (C.14)

In this approximation we see that the emission rate is identical to that of the parton

shower in Eq. C.10,

Pqq̄g (yij > y
MS

) ≈ Pqq̄g. (C.15)

Beneath the merging scale three-parton configurations arise through the emission

of a single parton from a configuration generated according to the two-parton matrix

element. These hard two-parton configurations are initially generated with probability

Pqq̄ =
1

σtot
dσqq̄ (C.16)

and then reweighted according to the prescription in Sect 5.4, such that

Pqq̄ → 1

σtot

dσqq̄ ∆R
q (q̃I , q̃0) ∆R

q̄ (q̃I , q̃0) . (C.17)

It follows from the vetoed shower equation (Eq. 3.26) that the aggregate probability

for an emission to be subsequently generated from the quark line (and none from the

external anti-quark line) is

Pqq̄g (yij < y
MS

) =
1

σtot
dσqq̄ dPq→qg (q̃, z) (C.18)

× ∆R
q (q̃I , q̃) ∆R

q (q̃, q̃0) ∆R
q̄ (q̃I , q̃0)

× ∆V
q (q̃I , q̃) ∆V

q (zq̃, q̃0) ∆V
g ((1 − z) q̃, q̃0) ∆V

q̄ (q̃I , q̃0) .

where, for comparison with Eq. C.14 we have rewritten the first remnant Sudakov form

factor in Eq. C.18 as ∆R
q (q̃I , q̃) ∆R

q (q̃, q̃0). It appears that the remnant and vetoed

Sudakov factors in Eq. C.14 do not match, spoiling the cancellation of the merging

scale, however we note that we rectify this by writing one of the remnant Sudakovs as

∆R
q (q̃, q̃0) ≈ ∆R

q (zq̃, q̃0) ∆R
g ((1 − z) q̃, q̃0) . (C.19)

1The ratio of coupling constants enters here due to the fact that dσqq̄g while the shower branching
probability contains the running coupling evaluated at p⊥.
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This replacement results in only subleading differences; we can see this by considering the

soft and non-soft emission regions separately2. The region of soft emissions corresponds

to the limit z → 1 where ∆R
g ((1 − z)q̃, q̃0) → 1 and ∆R

q (zq̃, q̃0) → ∆R
q (q̃, q̃0), satisfying

Eq. C.19. Away from the soft region we have q̃ ≈ p⊥ and since p⊥ < p⊥MS
, the Θ-

function results in all remnant Sudakov factors approaching one, so Eq. C.19 is trivially

satisfied. Making this approximation we find that, to NLL accuracy, the emission rate

is independent of the merging scale and is given by the parton shower emission rate of

Eq. C.10,

Pqq̄g (yij > y
MS

) ≈ Pqq̄g. (C.20)

We see that to NLL the proposed algorithm yields emission rates that are independent

of the merging scale and are identical to the emission rates of the parton shower. We note

that all three components: truncated showers; vetoed showers; and Sudakov reweighting,

are essential in achieving this smooth merging and independence from the merging scale.

C.3 Parton-shower merging test

As a check of the validity of the pseudo-shower history assignment procedure (as out-

lined in Sect. 5.4.2) and the approximations made in applying the vetoes (as outlined

in Sect. 5.4.1), we present a test of reproducing the shower by merging two showers

describing emissions above and below the merging scale yMS.

The test was performed by generating the parton shower with a veto applied such

that only events with k⊥ > k⊥MS
are produced. The partons produced by this shower

represent the shower approximation to a set of hard emissions. This set of hard emissions

are then read back into the parton shower and showered with the CKKW truncated and

vetoed showers, generating emissions with k⊥ < k⊥MS
.

Ideally the resultant distributions would exactly match those of the default shower.

In practice, we have used approximations in the vetoes and an inexact history assignment

and so we expect some differences. There are also some subleading differences inherent

in the shower reorganisation as discussed in Sect. 5.3.

Figure C.1 shows parton level three-jet resolution distributions in the Durham jet
measure which was also used to define the merging scale. We expect these plots to

2The arguments here are exactly those used in the POWHEG shower reorganisation.
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Figure C.1: Parton level distributions of the scale at which three jets are resolved in the
Durham jet measure for e+e− → hadrons at

√
s = 91.2GeV comparing the de-

fault parton shower with no matrix-element correction (black line) to a parton
shower merged around y

MS
with with merging scales set to y

MS
= 5 × 10−2,

y
MS

= 10−2 and y
MS

= 5 × 10−3 in the Durham jet measure. The lower panel
in each of the plots shows (m − d)/d where m is the merged distribution and d
is the default distribution.
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be sensitive to any problems that may arise. Figure C.1 shows that the merged shower
matches the default shower result closely for all three merging scale choices. As expected,
the distributions exhibit some slight differences however these are at an acceptable level,
indicating that the approximations made in the vetoes and pseudo-shower history are
valid.
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