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Abstract

In this thesis we describe a procedure for isolating the infrared singularities present in

gluonic scattering amplitudes at next-to-leading and next-to-next-to-leading order.

We adopted the antenna subtraction framework which has been successfully applied

to the calculation of NNLO corrections to the 3-jet cross section and related event

shape distributions in electron-positron annihilation. We consider processes with

coloured particles in the initial state, and in particular two-jet production in hadron-

hadron collisions at accelerators such as the Large Hadron Collider (LHC). We derive

explicit formulae for subtracting the single and double unresolved contributions from

the double radiation gluonic processes using antenna functions with initial state

partons. We show numerically that the subtraction term effectively approximates

the matrix element in the various single and double unresolved configurations.
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Preface

With the start up of the new Large Hadron Collider (LHC) imminent attention is

firmly focused on the high energy frontier. The main goal is to probe the mechanism

of electroweak symmetry breaking and, if the Standard Model is correct, to discover

the Higgs boson in the first years of LHC operation. Because of its prominent role in

electroweak symmetry breaking, the Higgs boson is especially sensitive to any new

physics that could explain in a satisfactory way the stability of the electroweak scale

against higher energy corrections. Therefore the LHC provides an extraordinary

opportunity for addressing the great questions surrounding the structure of matter,

the unification of fundamental forces, and the nature of the universe. It is expected

that high luminosity pp collisions at the LHC at the TeV scale could result in new

phenomena such as the production of supersymmetric particles, new families in the

quark sector, new gauge interactions and/or extra dimensions and many detailed

analyses of these scenarios are available in the literature.

On the other hand, to firmly establish the discovery or any other new physics,

precision studies of QCD processes have to be made. This involves understanding the

standard model backgrounds to both the Higgs production and to the new physics

signals which are governed by the dynamics of QCD. This can be achieved by making

theoretical predictions including next-to-leading order (NLO) or when needed, next-

to-next-to-leading order (NNLO) effects to reduce the theoretical uncertainty.

In parallel with this, there is an opportunity for the precision study of the free

parameters of the theory using the LHC data. The single jet inclusive cross section

σ(pp → j + X) constrains αs and the density of gluons in the proton at large

values of x. Their determination proceeds by fits of the best experimental data

with the best theoretical predictions. It is expected that the uncertainty from the

xii



Preface

experimental data will be smaller that the current NLO predictions which means

that a next-to-next-to-leading order (NNLO) estimate is mandatory.

This thesis focuses on the perturbative calculation of next-to-next-to-leading

order (NNLO) corrections to two-jet production at the LHC. The bottleneck in this

calculation is a procedure to handle the infrared divergences present in intermediate

steps of the calculation. The antenna subtraction method is a potential solution

to this problem. We look at the extension of this method to tackle processes with

coloured particles in the initial state which is relevant for both hadron-hadron or

hadron-lepton colliders.

The thesis is structured as follows. In chapter 1, we review some of the basic

concepts of QCD. Chapter 2 describes the phenomena of jet production at colliders.

In chapter 3, we describe the antenna subtraction method to compute observables at

NLO. Chapter 4 discusses the NNLO extension of the antenna subtraction method.

In chapter 5 we look at the sector decompisition method as another approach to

perform NNLO calculations. For the remainder of the thesis we develop the antenna

subtraction method. In chapter 6 we deal with the regularisation of the double real

contribution relevant to the NNLO cross section for two-jet production at hadron

colliders. Subsequently, in chapter 7 we test our implementation of the matrix

element and the NNLO subtraction term. We summarise our findings in chapter 8.



Chapter 1

Higher order corrections in

perturbative QCD

Since the main work of this thesis is the higher order calculation of a QCD observable,

in this chapter we will briefly collect all the ingredients that make such an observable

well defined.

First we explain the concept of asymptotic freedom and why the methods of

perturbation theory are useful at high energy. Then we look at the procedures used

to regulate the different types of singularities that appear in intermediate steps in

the perturbative calculation. It is important to have a formal method to describe the

singularities of the problem so that we can assemble all the divergent pieces to obtain

a finite physical result. The methods of choice are Dimensional Regularisation,

Renormalisation and Factorisation and the way they are implemented is explained

below.

Then we introduce the ideas of the helicity basis and colour decomposition used

in the derivation of the matrix elements for gluon scattering and finally we recall

the universal behaviour of colour ordered QCD gluonic amplitudes for up to two

unresolved particles. This is essential for the derivation of NLO and NNLO sub-

traction terms within the antenna subtraction method we introduce in the following

chapters.

1



1.1. Running αs and perturbative expansions in QCD 2

1.1 Running αs and perturbative expansions in

QCD

Consider now a dimensionless physical observable R which depends on a single

energy scaleQ. By assumption the scaleQ is much bigger than all other dimensionful

parameters such as quark masses (m2/Q2 � 1) and we shall therefore set the masses

to zero. Setting the quark masses to zero introduces infinities when computing higher

order corrections to R, however, a sensible zero mass limit exists within dimensional

regularisation and we will discuss it in more detail in section 1.3.

When we calculate R as a perturbation series in the coupling constant αs = g2/4π

the perturbation series requires renormalisation to remove ultraviolet divergences.

This procedure will be explained in section 1.4 but what is important is that it

will introduce a second mass scale µ - the point at which the subtractions that

remove the ultraviolet divergences are performed. Since this renormalisation scale

µ is arbitrary, physical observables should be independent of the choice made for µ.

The µ-independence of R may be expressed by:

µ2 d

dµ2
R(Q2/µ2, αs) =

[
µ2 ∂

∂µ2
+ µ2∂αs

∂µ2

∂

∂αs

]
R = 0 (1.1)

where R can only depend on the ratio Q2/µ2 and the renormalised coupling constant

αs. The second term in the previous equation defines the renormalisation coefficient

β. Its form is:

β(αs) = µ2∂αs
∂µ2

(1.2)

This equation represents the Renormalisation Group Equation which provides

the µ dependence of the strong coupling constant. Rewriting this equation in its

integral form we obtain:

log

(
Q2

µ2

)
=

∫ αs(Q2)

αs(µ2)

dαs
β(αs)

(1.3)

This equation governs the evolution of the coupling constant from one scale µ to

another scale Q. The solution to this equation can be approximately found when

the QCD β function is expanded as a perturbative series in αs:

β(αs)

2π
= −β0

(αs
2π

)2

− β1

(αs
2π

)3

−O(α4
s) (1.4)



1.1. Running αs and perturbative expansions in QCD 3

where the coefficients are extracted from the higher-order (loop) corrections to the

bare vertices of the theory. The coefficients β0 and β1 for NF (massless) quark

flavours are:

β0 =
11CA − 4TRNF

6
, β1 =

17C2
A − 10CATRNF − 6CFTRNF

6
(1.5)

where N is the number of colours, and

CF =
N2 − 1

2N
, CA = N, TR =

1

2
(1.6)

for SU(N) gauge theory.

If we solve equation (1.3) to first order (keeping only the first term in (1.4)

proportional to β0 we get:

αs(Q
2) =

αs(µ
2)

1 + αs(µ2)(β0/2π) log(Q2/µ2)
(1.7)

This gives the relation between αs(Q
2) and αs(µ

2) when both are small enough to

lie in the perturbative region. As the scale Q2 becomes large the running coupling

αs(Q
2) decreases. This is the property of asymptotic freedom. The positive sign β0

is crucial for this effect and we can see that this is the case for a number of active

flavours NF ≤ 16 which is realised in nature.

We can now rewrite equation (1.1) by defining t = log(Q2/µ2) and obtain:[
− ∂

∂t
+ β(αs)

∂

∂αs

]
R(et, αs) = 0 (1.8)

It is easy to prove that R(1, αs(Q
2)) is a solution of the last equation. Indeed,

∂R(1, αs(Q
2))

∂t
=
∂αs
∂t

∂R(1, αs(Q
2))

∂αs

= β(αs)
∂R(1, αs(Q

2))

∂αs
(1.9)

which completes the proof. This analysis shows that all the scale dependence in R

enters through the running of the coupling constant αs(Q
2). From equation (1.7)

we found that for big energy scales αs becomes small and this is the property which

allows a perturbative expansion of a QCD observable in terms of αs for large energies:

R = R(1, αs(Q
2)) = r1αs(Q

2) + r2αs(Q
2)2 + r3αs(Q

2)3 + · · · (1.10)
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1.1.1 Scale choice and uncertainty

Keeping the leading order term (LO) in equation (1.10) we can express R in terms

of αs(µ
2) using equation (1.7):

R(1, αs(Q
2)) = r1αs(µ

2)

×
[

1− αs(µ2)

(
β0

2π

)
log

(
Q2

µ2

)
+ αs(µ

2)2

(
β0

2π

)2

log

(
Q2

µ2

)2

− · · ·
]

(1.11)

using the known series:

1

1 + x
= 1− x+ x2 − ...

Thus order by order in perturbation theory there are logarithms of Q2/µ2 which are

automatically resummed by using the running coupling. The leading log behaviour

of (1.11) is αs(µ
2)N log(Q2/µ2)N−1. Higher order terms in R such as r2 (NLO) or

r3 (NNLO) when expanded give terms with fewer logarithms per power of αs. For

example an NLO term r2α
2
s would give:

r2αs(Q
2)2 → r2αs(µ

2)2

[
1− 2αs(µ

2)

(
β0

2π

)
log

(
Q2

µ2

)]
(1.12)

with one less logarithm in each term, ie αs(µ
2)N log(Q2/µ2)N−2.

It is important to keep all terms with the correct power of αs when computing

higher order NLO or NNLO corrections to a given observable R. For example at

NNLO we have to include the solution of the renormalisation group equation keeping

more terms. Including the NLO β1 coefficient in the beta function (1.4) we find the

following solution to the renormalisation group equation (1.3):

1

αs(Q2)
− 1

αs(µ2)
+
β1

β0

log

(
αs(Q

2)

αs(µ2)

)
− β0 log

(
Q2

µ2

)
= 0 (1.13)

Because there is no rule on how to pick the value for the renormalisation scale

µ - the point at which the subtractions that remove the ultraviolet divergences are

performed, it becomes natural to chose a scale µ not far from the physical scale Q.

This way we avoid large logarithms of the form log(Q2/µ2).

So far we have indicated that the theoretical calculations in QCD can be carried

out perturbatively for small coupling corresponding to the high energy regime. In
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principle the full prediction from the theory is an infinite number of terms in the

perturbative expansion but in practice we can only calculate a finite number of

them. It is important to have this in mind when it comes to comes to comparing the

theoretical predictions with the experimental observations. An equivalent expansion

of a general observable without the resummation of the logarithms to all orders is:

R(αs(Q
2), Q2/µ2) =

∞∑
n=1

rn(Q2/µ2)αs(µ
2)n (1.14)

We can consider the effect of truncation of the perturbative series to N terms by

calculating its µ dependence:

d

d log µ2

N∑
n=1

rn(Q2/µ2)αs(µ
2)n = − d

d log µ2

∞∑
n=N+1

rn(Q2/µ2)αs(µ
2)n ∼ O(αN+1

s )

(1.15)

where we have used the renormalisation group equation (1.1). The truncated series

on the l.h.s of equation (1.15) is dependent on the scale µ as determined by the

absent higher order terms on the r.h.s. of equation (1.15). This means that when

we truncate the series we introduce a residual dependence in the QCD prediction

on the value of the renormalisation scale. We can see however that the remainder of

the truncated series is of order αN+1
s . This means that when higher order terms are

included the dependence on the renormalisation scale is reduced as the cancellation

of the scale dependence occurs between different orders. This is shown in figure

1.1 for the cross-section for single inclusive jet production with transverse energy

ET = 100 GeV at leading order (LO), next-to-leading order (NLO) and next-to-

next-to-leading order (NNLO) for proton-antiproton collisions at
√
s = 1800 GeV.

The NNLO curve is based solely on the renormalisation scale dependence prediction

of the lower order terms because the NNLO coefficient is presently unknown.

This is the main motivation for the huge effort to compute higher order correc-

tions to a multitude of QCD observables and processes. The predictions become

more accurate at higher order as the theoretical uncertainty is reduced. We can

make high precision tests of the theory and also extract its free parameters with

more accuracy.
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Figure 1.1: Renormalisation scale dependence for the production of single jet with

transverse jet energy ET = 100 GeV in proton-antiproton collisions at
√
s = 1800

GeV at different orders in the perturbative series [1].

1.1.2 Determination of αs from experiment

At this point it is important to remember that QCD makes no prediction for the

value of the coupling constant αs. As a free parameter in the theory it must be

extracted from experimental measurements. In theory it should be possible to make

a number of experimental observations at different energy scales Q and thus extract

measurements of αs(Q) over a broad range of Q and test that the coupling runs as

we expect. This is shown in figure 1.2 where the decrease in αs(Q) with increasing

Q is demonstrated.

Its more convenient to convert all measurements of αs(Q) into a value at Q =

MZ , the mass of the Z boson, and use the following running coupling to one loop

approximation:

αs(Q) =
αs(MZ)

1 +
(
β0

2π

)
log
(

Q
MZ

)
αs(MZ)

(1.16)

This is because at the scale Q = MZ we are sufficiently far away from quark thresh-

olds (and hence non-zero mass effects) and also close to the asymptotic region where
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0

0.1

0.2

0.3

1 10 10
2

Q GeV

α s(
Q

)

Figure 1.2: Summary of the values of αs(Q) at the values of Q where they are

measured taken from the PDG review 2008 [2]. The running coupling is determined

by solving the renormalisation group equation to two loop order, shown by the

dashed line.

perturbation theory should apply (αs ∼ 0.1). In addition the experimental measure-

ments on the Z pole are of high precision due to high statistics of the LEP data.

One recent analysis is the first determination of the strong coupling constant

using an NNLO prediction for hadronic event shapes in e+e− annihilations. In this

study a fit was made with the QCD predictions calculated at next-to-next-to-leading

order (NNLO) and matched to resummation in the next-to-logarithmic approxima-

tion (NLLA) to the data collected by the ALEPH detector in e+e− annihilations at

LEP. By combining the results for six event-shape variables and eight centre-of-mass

energies ranging between 91 and 206 GeV the following result was obtained [3]:

αs(MZ) = 0.1224± 0.0009(stat)± 0.0009(sys)± 0.012(had)± 0.0035(theo)

(1.17)

1.2 IR and UV singularities

In the previous sections we have shown the validity of the use of perturbative meth-

ods to compute the predictions from the theory and the importance of higher order
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corrections. The leading order estimate contains large errors due to the renormali-

sation scale dependence and clearly is a good tool to estimate relative magnitudes

of processes, but not enough to do precision studies or to identify a discovery with

a particular model.

However when we try to compute higher order corrections using perturbation

theory we encounter a new difficulty. Obviously we would expect the first order

(NLO) corrections to be a small contribution to the (LO) estimate and the second

order (NNLO) corrections even smaller. This we expect by the convergence of the

perturbative series. However we encounter a new difficulty which is the appearance

of infinities from ultraviolet (UV) and infrared (IR) divergences in the higher order

diagrams. We will now look at their origin and find a way to obtain finite corrections

that can be tested against the experimental observations.

For example we can consider the following one-loop integral, associated with the

fermion-antifermion gauge boson vertex for massless fermions such that p2
1 = p2

2 = 0

and (p1 + p2)2 6= 0,

p1

p2

p = p1 + p2

l

l − p2

l + p1

Figure 1.3: Virtual one-loop correction to the fermion-antifermion gauge boson ver-

tex.

I =

∫
d4l

f(l2)

(l2 + iε)((l + p1)2 + iε)((l − p2)2 + iε)
(1.18)

Within perturbation theory the integral I must be carried out over all possible

values of the virtual momenta lµ. We find divergences associated with high virtual

momenta,

|l| → ∞ =⇒ I →∞ (logarithmically)
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called ultraviolet (UV) divergences. There are also divergences appearing when one

of the propagators in the loop becomes zero for a specific value of the momenta,

|l| → 0,−p1, p2 =⇒ I →∞

called infrared (IR) divergences1. We considered p2
1 = p2

2 = 0 but if the propagators

are massive, e.g. (l + p)2 −m2, the mass plays the role of regulator. In QCD, the

presence of massless gluons and the assumption of light quarks, gives rise to this

divergent behaviour.

The UV divergences are then associated with high energy modes of the theory

and will be dealt with a procedure called renormalisation that we will explain in

detail in section 1.4.

The IR divergences are associated with low energy modes of the theory and

will cancel order by order when we consider also the diagrams from real radiative

corrections2:

p1

p3

p2

+

p = p1 + p2 + p3 p = p1 + p2 + p3

p1

p3

p2

2

Figure 1.4: Real correction single emission diagrams.

Computing these two diagrams gives the following matrix element:

|M|2qgq̄ ∼
(
sqg
sq̄g

+
sq̄g
sqg

+
2sqq̄sqq̄g
sqgsq̄g

)
(1.19)

Parametrising pq and pg gives:

pq = Eq(1,
−→pq ), pg = Eg(1,

−→pg ) ⇒ sqg = 2EgEq(1− cos θqg) (1.20)

1We will use infrared to denote both soft and collinear divergences.
2The cancellation happens when we add the interference of the virtual amplitude of figure 1.3

with the tree diagram γ → qq̄ to the real emission diagrams of figure 1.4. Both quantities are of

the same order in αs.



1.2. IR and UV singularities 10

Therefore, in the regions where the radiated gluon becomes soft (Eg → 0) or

collinear with the hard partons (θqg → 0) this correction becomes divergent and the

final state is indistinguishable from the diagram related to the virtual correction.

In this limit the radiated parton cannot be observed by any physical detector so it

makes sense to add the cross section for producing these low-energy modes to the

cross section without radiation. After regulating both diagrams we see that the IR

divergences cancel in the combined result for a particular kind of observables and a

finite result is obtained. An example of this will be given in chapter 3.

This example will just be a particular case of the theorems due to Bloch and

Nordsieck [4] and Kinoshita [5], Lee and Nauenberg [6] that prove that the IR diver-

gences present in both real and virtual corrections cancel to all orders in perturbation

theory.

This means that we have identified the ingredients that build up the higher order

corrections for an observed cross section. We must include unresolved contributions

up to the order in perturbation theory we wish to calculate. For instance at NLO one

must include all real emission diagrams which are single unresolved. This includes

single soft and collinear emission which is at equivalent order in αs to the loop

(virtual) corrections. The real emission must be integrated over the unresolved

phase space:

σNLOn = σ
(1)
n,virtual +

∫
dLIPS(1)σ

(0)
n+1,real (1.21)

At two loops (NNLO) the situation is more complicated as we must include single

unresolved contributions at 1-loop and double unresolved contributions at tree level:

σNNLOn = σ
(2)
n,virtual +

∫
dLIPS(1)σ

(1)
n+1,real +

∫
dLIPS(2)σ

(0)
n+2,real (1.22)

The behaviour at the amplitude level in various soft/collinear limits is univer-

sal and we will study it in detail for colour ordered gluonic amplitudes in section

1.8. This will be important to derive counterterms that make the real correction

contribution finite in four dimensions. However to perform the analytic cancellation

of the IR singularities between real and virtual corrections, as anticipated by the

mentioned KLN theorem, and the removal of the UV singularities with renormali-
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sation, we still need a regularisation method that will separate the infinities present

in these contributions from the finite parts.

The dimensional regularisation scheme works equally for UV and IR divergences

and will be described in the next section.

1.3 Dimensional Regularisation

Dimensional regularisation due to ’t Hooft and Veltman [7], assumes that the space-

time dimension is not 4 but rather D which need not be an integer. Therefore the

Lagragian is changed from 4 to D, but the action is still dimensionless. The Feyn-

man integrals become analytic functions of the number of dimensions D = 4 − 2ε.

Divergent quantities in the usual 4 dimensional space appear now as poles in ε, i.e,

1/εn with n = 1, 2, ... since the ε→ 0 limit is equivalent to the D → 4 limit. By doing

this, divergent quantities are properly controlled and mathematical manipulations

are made legitimately.

At the end of the day for experimentally observable quantities such as cross

sections or decay-rates the limit D → 4 (ε → 0) should be well-defined, as all the

singularities in the calculation will have dropped out according to the considerations

of the previous section.

When going from 4 to D dimensions one must apply the following modifications:

• In the Feynman rules the measure we use to integrate over each loop-momentum

ki changes: ∫
d4ki
(2π)4

→
∫

dDki
(2π)D

The poles in ε will appear explicitly after the D dimensional integration that

we must learn how to perform.

• In D dimensions the metric gµν obeys gµνgµν = D. The Clifford algebra will

also be affected with Dirac matrices being manipulated as a set of D 4×4

matrices whose contraction identities are modified to:

γµνγµ = −2(1− ε)γν , γµνργµ = 4gνρ − εγνγρ, ...
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• The measure of the phase-space integration over the final state external mo-

menta will also have to be converted:∫
d3p

2E(2π)3
· · · (2π)4δ4(pi − pf )→

∫
dD−1p

2E(2π)D−1
· · · (2π)DδD(pi − pf )

The soft and collinear singularities are regulated appearing as poles in ε.

• the action

S =

∫
dDxL

is a dimensionless quantity, so the QCD Lagrangian has to be modified to

have a consistent number of dimensions. From the kinetic energy terms of the

quarks and gluons of this Lagrangian, we can see that the mass dimension of

their fields are

from mΨ̄fΨf =⇒ [Ψf ] =
D − 1

2

from ∂µA
a
ν∂νA

a
µ =⇒ [Aaµ] =

D

2
− 1

Then the interaction term gΨ̄f /AΨf is actually telling us that [Ψ̄f /AΨf ] =

3D/2− 2. Imposing that the interaction term in the Lagrangian should have

dimension D we fix the dimension of the coupling constant g to be:

[g] = 2− D

2
= ε

In D = 4 the coupling constant has no dimension. Since we decided to use the

number of dimensions as a regulator our theory acquires one more scale. We

introduce an arbitrary mass µ and replace the coupling strength with

g → gµε (1.23)

where ε = 4−D
2

.

This regularisation method has the advantages that it preserves the gauge in-

variance of the theory and this guarantees as we will see in the next section the

renormalisability of the theory. Also Lorentz invariance is preserved. Other regular-

isation schemes such as the Cut-off regularisation or the Pauli-Villars regularisation

do not enjoy these properties.
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Let us now look at the way the D dimensional integrals are done. We can

consider as an example the following scalar D-dimensional integral:

I1 =

∫
dDk

(2π)D
1

(k2 −m2 + iO+)n
(1.24)

Starting from the definition of the Gamma function

Γ(n) =

∫ ∞
0

dt tn−1e−t =

∫ ∞
0

d(at)(at)n−1e−at = an
∫ ∞

0

dt tn−1e−at (1.25)

we derive the following identity:

1

an
=

1

Γ(n)

∫ ∞
0

dt tn−1e−at (1.26)

The result for the D dimensional gaussian integral is also useful:∫
dDke−k

2

=

∫
dk1e

−k2
1

∫
dk2e

−k2
2

∫
...

∫
dk0e

−k2
0 = πD/2 (1.27)

Applying (1.26) to the integral (1.24) we obtain:

I1 =
1

Γ(n)

(−1)n

(2π)D

∫
dt tn−1

∫
dDke−t(−k

2+m2−iO+)

=
1

Γ(n)

(−1)n

(2π)D

∫
dt tn−1e−tm

2

∫
dD
(
k√
t

)
ek

2
0−~k·~k

= i
1

Γ(n)

(−1)n

(2π)D

∫ ∞
0

dt tn−1e−tm
2

t−D/2πD/2 (1.28)

where in the last step we took the iO → 0 limit and did a Wick rotation k0 → ik0.

The remaining integration is done with (1.25) and we finally obtain:

I1 =

∫
dDk

(2π)D
1

(k2 −m2 + iO+)n
=

i(−1)n

(4π)D/2
Γ(n−D/2)

Γ(n)
(m2)D/2−n (1.29)

Setting n = 2 and D = 4− 2ε in (1.29) we find that:

I1 =
1

(4π)2

(
1

ε
+ ln(4π)− γe − ln(m2) +O(ε)

)
(1.30)

We can see that the singularity reveals itself as a pole of 1/ε as anticipated.

Other scalar/tensor integrals with more than one propagator can also be calculated

along the lines described.

After continuation of the loop momenta into D dimensions one is still left with

some freedom concerning the dimensionality of the momenta of the external particles
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as well as the number of polarisations for internal and external particles. Within

the Conventional Dimensional Regularisation scheme (CDR) no distinction is made

between real or virtual particles and massless quarks are considered to have 2 helicity

states while gluons have D − 2 helicities.

In the ’t Hooft-Veltman scheme external particles are 4 dimensional and external

gluons have 2 helicity states whereas virtual particles are D dimensional and virtual

gluons have D − 2 helicity states. Finally in the four dimensional helicity scheme

(FDH) the number of helicity states is 2 for internal and external gluons. Only the

momenta of the virtual particles is kept D dimensional. We will mention in more

detail the helicity basis for the computation of the amplitudes in section 1.6.

1.4 Renormalisation

The idea behind renormalisation is to reinterpret the parameters of the Lagragian.

We proceed by redefining all the fields and parameters in the QCD Lagrangian by

a multiplicative factor:

Aaµ = Z
1/2
3 Aar,µ (1.31)

Ψf,i = Z
1/2
2 Ψr f,i (1.32)

gs = Zggr,s (1.33)

· · ·

Each field/parameter on the left-hand side represents a bare field/parameter whilst

those on the right represent renormalised fields/parameters. The renormalisation

constants Z absorb the UV divergences and hence represent infinite quantities.

With these modifications the Green’s function of the renormalised fields become

UV-divergent free as all the UV divergences are now in the multiplicative factors.

In this way the renormalised fields are interpreted as the ones that have a physical

meaning and the renormalised couplings as the ones we measure. We can then

determine the values of these parameters with a few experiments and compute any

other observable in terms of them and the predictive power of theory is not lost.

The renormalisability of the theory is guaranteed by the fact that we don’t have
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an infinite number of different types of divergent diagrams. The diagrams we need

to consider are the quark self-energy, vacuum polarisation or gluon self-energy and

the quark-gluon vertex functions, and the divergent terms always appear in the final

answer combined with the bare parameters. There is a proof that the divergences

in these diagrams can be eliminated to all orders by redefining the free parameters

of the theory [7].

It is important to remember now that to regularise the mentioned diagrams we

use dimensional regularisation and a new scale µ is introduced in the theory to keep

the action dimensionless. The relation between the renormalised strong coupling

constant and the “bare” coupling constant is given by:

αb = Z2
g (µ2)εαr (1.34)

where the value of Zg can be calculated perturbatively to give

αbSε = (µ2)εαr

[
1− β0

ε

(αr
2π

)
+

(
β2

0

ε2
− β1

2ε

)(αr
2π

)2

+O(α3
r)

]
(1.35)

where

Sε = e−εγ(4π)ε (1.36)

The finite part of the Z ′s is not fixed at all and to define it we need a renormal-

isation scheme. In the MS (minimal subtraction scheme) the finite part is set to 0

whereas in the MS (modified minimal subtraction scheme) we remove the UV pole

defined as:

1

ε̄
= (4π)ε e−εγ

1

ε
with γ being the Euler’s constant. (1.37)

This choice simplifies our calculation because in practice the finite part of the poles

always appear in the combination:

Γ(1 + ε)

ε
(4π)ε =

1

ε
+ ln(4π)− γ +O(ε) =

1

ε̄
+O(ε) (1.38)

We have now described the procedure of renormalisation and its final importance

in the description of the theory comes from the renormalisation group equations.

As we have seen in section 1.1 the invariance of the renormalised quantities under a

change of the renormalisation scale µ gives an indication of the asymptotic behaviour

of the theory at high energy.
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1.5 Factorisation

In this section we will derive the formalism that allows us to tackle computations

for processes with hadrons in the initial state. Reviews of this topic can be found

in [8–10].

The cross section for a hard scattering process initiated by two hadrons with

four-momenta P1 and P2 can be written as:

σ(P1, P2) =
∑
i,j

∫
dx1dx2fi(x1)fj(x2)σ̂ij(x1P1, x2P2, αs(µ

2), Q2/µ2) (1.39)

The formula (1.39) is called the parton-model formula and we must discuss its

validity when computing hadronic cross sections.

When applying (1.39) we must always require a very large momentum transfer

in the reaction. This is because if the scale of the event Q2 is much bigger than

the hadronic scale Λ, characteristic of the binding of the quarks and gluons, the

partons behave as free particles in the collision. This means that we can see the

hadronic reaction as a scattering of the partons, that is, the point-like constituents

of the hadrons. Soft processes will follow that create gluons and quark-antiquark

pairs that neutralise colour and respect confinement so that the scattered partons

appear as a jet of hadrons travelling in the direction of the momentum transfer.

This hadronisation process occurs at an energy scale much lower than the scale Q2

of the event and therefore has no influence on the hard scattering itself.

We have just stated that the initial state interactions happen too early to affect

short-time scale of the hard interaction while the final state interactions between

fragments happen too late. The hard scattering depends on the density of partons

and the hadronic cross section may be written as the probability of finding a parton

with given momentum fraction, in each of the colliding hadrons, times the cross

section for the scattering of the two partons as in (1.39).

These effects were first observed experimentally in deep inelastic scattering col-

lisions at SLAC in the 70’s. Analogously to the Rutherford experiment with α

particles that probed the structure of the atom and led to the discovery of the

atomic nucleus, large angle scattering of high-energy electrons probing the proton

suggested that the proton is made of smaller, point-like particles that can deflect
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the electron by a large amount.

In equation (1.39) the parton distribution functions are universal, that is, in-

dependent of the particular hard scattering process that we treat. Their non-

perturbative nature implies that they are not computable with the methods of per-

turbative QCD but instead are obtained by means of a global fit to experimental

data for one or more physical processes which can be calculated using perturbative

QCD. This is a legitimate procedure as the coupling is small at high energy and the

short-distance cross section can be calculated as a perturbation series in the running

coupling αs.

We will now look at the inclusion of higher-order corrections to the parton-

model. We will focus on initial-state radiative corrections because they will introduce

an important modification of the parton-model formula (1.39). The initial state

correction is described by the following diagram:

lp

p− l

A = gsM(p− l) p/−l/
(p−l)2

γµ u(p)ǫµ(l)

Figure 1.5: NLO corrections to the parton model.

where εµ(l) is the polarisation vector of the emitted gluon and M(p − l) is the

amplitude for a partonic cross section initiated by a quark with momentum p − l.
We are neglecting at this order a process in which an initial state gluon splits into

a quark-antiquark pair. As l becomes parallel to p we expect a collinear singularity

and thus it is convenient to write l in the following way:

lµ = (1− z)pµ + lµ⊥ + ξnµ (1.40)

with p2 = 0 and n is an arbitrary vector such that n2 = 0 and n · l⊥ = 0 but n ·p 6= 0.

In terms of these variables the phase space for the emission of the gluon is:

d3l

2l0(2π)3
=

d2l⊥
2(2π)3

dz

1− z (1.41)
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which yields, from the on-shell conditions for the gluon:

ξ =
|l2⊥|

2p · n(1− z)
and (p− l)2 = − |l

2
⊥|

1− z (1.42)

The amplitude for the radiative correction can now be written as:

A = gsM(p− l) /p− /l
−|l2⊥|/(1− z)

γµu(p)εµ(l) (1.43)

Using Dirac algebra and keeping only singular terms we can square (1.43) and obtain:

|A|2 = g2
s

2

|l2⊥|
(1 + z2)M(p− l)/p

2
M†(p− l) (1.44)

To get the cross section, we should multiply the above expression by N/p0 and

integrate over the phase space. We obtain:

σ(1)
q =

αsCF
2π

∫
σ(0)
q (zp)

1 + z2

1− z
dl2⊥
l2⊥
dz (1.45)

where

σ(0)
q (zp) = NM(p− l) /p

2p0
M†(p− l) (1.46)

and we have made use of the relation g2
s = 4παs and the factor CF = 4/3 arises

from the colour algebra. This is the contribution due to the real emission of a gluon.

Virtual corrections, where the gluon is emitted and reabsorbed by the same line, are

also present and when included the final result is:

σ(1)
q =

αsCF
2π

∫ [
σ(0)
q (zp)− σ(0)

q (p)
] 1 + z2

1− z
dl2⊥
l2⊥
dz (1.47)

We see that there is an apparent singularity at z = 1 corresponding to soft gluon

emission which cancels between real and virtual corrections. However the l2⊥ integral

is still divergent in the lower limit. Its upper limit is the scale Q of the typical

momenta involved in the hard process.

This is different from the case of final state collinear singularities where we obtain

a similar formula to equation (1.47) but with a very important difference: in the

born cross section for real emission we would have σ(0)(p) instead of σ(0)(zp). This

property is characteristic of splitting processes taking place in the final state rather

than in the initial state. The figure below illustrates this fact:
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Figure 1.6: Collinear processes in the final and in the initial state.

This means that collinear singularities cancel in the final state, between real

and virtual corrections, but the “naive” parton model has uncancelling collinear

divergences in the initial state.

In order to proceed we need to introduce some modifications to the parton model

to allow the computation of higher order corrections. First of all we define:

P (0)
qq (z) = CF

(
1 + z2

1− z
)

+

(1.48)

where the notation with the + suffix is called the plus prescription. This prescription

introduces a ’+’-distribution:

Dn(z) =

(
lnn(1− z)

(1− z)

)
+

(1.49)

defined by its action on a generic test function:∫ 1

0

dzg(z) [Dn(z)]+ =

∫ 1

0

dz[g(z)− g(1)]Dn(z) (1.50)

According to this, the expression in (1.48) is to be interpreted as a distribution and

its integral against a smooth function f(z) is given by:∫ 1

0

(
1 + z2

1− z
)
f(z)dz =

∫ 1

0

1 + z2

1− z (f(z)− f(1))dz (1.51)

The quark cross section including one-loop corrections can now be written as:

σq(p) = σ(0)
q (p) + σ(1)

q (p) =

∫ (
δ(1− z) +

αs
2π

log
Q2

λ2
P (0)
qq (z)

)
σ(0)
q (zp)dz (1.52)

where we have performed the l⊥ integral in (1.47) with an infrared cutoff λ. We can

see that the previous equation has the form of the parton model cross section (1.39)

except for the Q2 dependence. It is telling us that we should consider a parton as



1.5. Factorisation 20

having structure that depends upon the scale at which we are probing it. If we

multiply the previous formula by the parton density fq(y) and integrate in y we get:

σ(P ) =

∫
dydzfq(y)Γqq(z,Q

2)σ(0)(yzP ) (1.53)

where

Γqq(z,Q
2) =

(
δ(1− z) +

αs
2π

log
Q2

λ2
P (0)
qq (z)

)
(1.54)

The formula (1.53) is the probability to find a parton q in the hadron with a

fraction y of its momentum, times the probability to find a parton q in parton q

with a fraction z of its momentum, times the cross section for the final parton with

momentum yzP . It is more convenient to introduce the identity
∫
dxδ(x − yz) so

that we can finally obtain:

σ(P ) =

∫
dxfq(x, µ

2)σ̂(xP, µ2) (1.55)

where:

σ̂(xP, µ2) = σ(0)(xP ) +
αs
2π

log

(
Q2

µ2

)∫
dzPqq(z)(0)σ(0)(zxP ) (1.56)

and:

fq(x, µ
2) =

∫
dydzfq(y)Γqq(z, µ

2)δ(x− zy)

= fq(x) +
αs
2π

∫ 1

x

dy

y
fq(y) log

(
µ2

λ2

)
Pqq

(
x

y

)
(1.57)

The formula (1.55) is called the improved parton model formula and it is the gener-

alisation of the “naive” parton model formula (1.39). To achieve it we introduced a

new scale µ called factorisation scale that separates long and short distance physics.

A parton emitted with transverse momentum less than µ is considered to be part

of the hadron structure and is absorbed into the PDF by the redefinition given by

equation (1.57). Exactly as for the renormalisation of the coupling constant, we can

regard fq(x) as an unmeasurable bare distribution. The collinear singularities are

absorbed into this bare distribution at a factorisation scale µ which plays a similar

role to the renormalisation scale. The finite contribution which is absorbed into

the distribution defines the factorisation scheme. In the MS scheme in addition to
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the divergent piece a contribution of the form ln(4π) − γe is also absorbed. Once

a scheme has been fixed it must be used in all cross section calculations so that

the same results are obtained independent of the scheme used. For example the

higher-order corrections to a cross section in hadron-hadron collisions use the same

factorisation scheme used to define the parton distributions.

After this procedure is completed we can safely use equation (1.55) because

the partonic cross section σ̂(xP, µ2) is now free from collinear singularities and the

redefined parton distribution function fq(x, µ
2) which receives contributions from the

long-distance (non-perturbative) part of the strong interaction, can be determined

from experimental data at any particular scale. A schematic representation of the

improved parton model formula is given in figure 1.7.

Figure 1.7: Schematic representation of factorisation of hadron/hadron collisions

with the improved parton model formula.

In this case the improved parton model formula is:

σ(P1, P2) =
∑
i,j

∫
dx1dx2fi(x1, µ

2
F )fj(x2, µ

2
F )σ̂ij(p1, p2, αs(µ

2), s/µ2, s/µ2
F )

Also in analogy to the renormalisation group equations already mentioned before

we can too calculate the dependence of the parton distribution function on the

factorisation scale µ. This is done by demanding µ independence of the hadronic



1.6. Helicity method 22

cross section:

µ2 ∂

∂µ2
σ(P ) = 0 (1.58)

which gives in the general case the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equa-

tion [11–13]:

∂

∂ log µ2
fi(x, µ) =

∫ 1

x

dz

z

∑
j

Pij(αs(µ), z)fj(x/z, µ) (1.59)

With the equation above, given the parton distribution function at a specified value

of µ, we can compute it at any other value. The functions Pij are called splitting

functions and have a perturbative expansion in powers of αs(µ):

Pij(αs(µ), z) =
αs(µ)

2π
P

(0)
ij +

(
αs(µ)

2π

)2

P
(1)
ij +

(
αs(µ)

2π

)3

P
(2)
ij +O(α4

s) (1.60)

They can be found in [11] and in [14–17]. Their complete NNLO corrections have

been computed and are documented in [18,19].

The Factorisation Theorem [8] generalises our argument to the case of an ini-

tial state gluon splitting and proves that the factorisation holds to all orders in

perturbation theory.

1.6 Helicity method

In this section we review the helicity method for the computation of tree and loop

amplitudes. In this approach the amplitudes are calculated for fixed helicities of all

external particles with each possible configuration treated separately.

In the traditional Feynman diagram approach as the number of external particles

increases the number of diagrams increases factorially. This leads, in intermediate

stages of the calculation, to expressions which become much more complicated than

the full result. This is because of large cancellations between different diagrams

that are related by gauge invariance. By decomposing the calculation in colour

and helicity gauge-invariant pieces, called partial amplitudes, we not only reduce

the number of diagrams that need to be evaluated but also identify the ones that

vanish using the colour/helicity information. This formalism was first developed in

references [20–25].
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The number of fixed helicity amplitudes that need to be computed can be reduced

thanks to symmetries such as parity, that allows one to simultaneously reverse all

helicities in an amplitude, and, charge conjugation which allows one to exchange a

quark and an anti-quark. Further to this we will see in the next section that the

gluonic amplitudes used throughout this thesis decomposed in colour obey cyclic

invariance on the gluon indices, line reversal and Ward identities and this reduces the

number of independent objects to calculate. The use of supersymmetric identities

can also simplify the calculation of loop amplitudes by managing the spins of the

particles propagating around the loop.

Once the independent helicity configurations, according to the scattering process

that we are interested in, are known, we can evaluate them as complex numbers and

then square to obtain the amplitude summed over helicities numerically.

We will now review how to write the amplitude in the most compact form,

by using spinor products, and how to evaluate the spinor products numerically to

compute the amplitude. We follow closely the notation in [26].

The solutions of the massless Dirac equation contain positive and negative energy

solutions interpreted as particles and antiparticles u(k) and v(k). These solutions

are identical up to normalisation conventions. Applying the projection operator P =

1
2
(1± γ5) on u(k) and v(k) yields two helicity states for particles and antiparticles:

u±(k) =
1

2
(1± γ5)u(k)

v∓(k) =
1

2
(1± γ5)v(k) (1.61)

The opposing signs in the equation above reflect that for the negative energy solution

v(k) the helicity of the antiparticle is the opposite of its chirality. The conjugate

spinors are:

u±(k) = u(k)
1

2
(1∓ γ5)

v∓(k) = v(k)
1

2
(1∓ γ5) (1.62)

For amplitudes with a large number of lightlike momenta we use the shorthand

notation:

|i±〉 ≡ |k±i 〉 ≡ u±(ki) = v∓(ki) 〈i±| ≡ 〈k±i | ≡ u±(ki) = v∓(ki) (1.63)
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Amplitudes are expressed in terms of spinor inner products, combinations of the

spinor brackets above. They are defined by:

〈ij〉 ≡ 〈i−|j+〉 = u−(ki)u+(kj) [ij] ≡ 〈i+|j−〉 = u+(ki)u−(kj) (1.64)

For numerical evaluation of the spinor products it is useful to have explicit for-

mulae for them, for some representation of the Dirac γ matrices. In the Dirac

representation,

γ0 =

 1 0

0 -1

 γi =

 0 σi

−σi 0

 γ5 =

 0 1

1 0


the massless spinors can be chosen as follows,

u+(k) = v−(k) =
1√
2

=



√
k+

√
k−eiϕk
√
k+

√
k−eiϕk

 , u−(k) = v+(k) =
1√
2

=



√
k−e−iϕk

−√k+

−√k−e−iϕk
√
k+


where,

e±iϕk ≡ k1 ± ik2√
(k1)2 + (k2)2

=
k1 ± ik2

√
k+k−

, k± = k0 ± k3 (1.65)

We can obtain explicit formulae for spinor products for the case when both

energies are positive,

〈ij〉 =
√
k−i k

+
j e

iϕki −
√
k+
i k
−
j e

iϕkj =
√
|sij|eiφij

[ij] = −
√
k−i k

+
j e
−iϕki +

√
k+
i k
−
j e
−iϕkj =

√
|sij|e−i(φij+π) (1.66)

where sij = (ki + kj)
2 = 2ki · kj and

cos(φij) =
k1
i k

+
j − k1

jk
+
i√

|sij|k+
i k

+
j

, sin(φij) =
k2
i k

+
j − k2

jk
+
i√

|sij|k+
i k

+
j

(1.67)

The spinor products are, up to a phase, square roots of Lorentz products. If

both or one of the energies are negative we use the same formula (1.66) but with

ki replaced by −ki if k0
i < 0 and similarly for kj, and, with an extra multiplicative

factor of i for each negative energy particle. We define [ij] through the identity:

〈ij〉[ji] = 〈i−|j+〉〈j+|i−〉 = tr

(
1

2
(1− γ5) /ki /kj

)
= 2ki · kj = sij (1.68)
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We have showed that external fermions can be treated as helicity spinors |i±〉
and 〈i±|. For gluonic amplitudes we also can to construct polarisation vectors from

spinor products. Each outgoing gluon or photon is written as a polarisation vector

ε±(p, k) where p is the momentum of the gluon and k is a reference momentum:

ε±µ (p, k) = ±〈p
±|γµ|k±〉√
2〈k∓|p±〉 (1.69)

This form has the desired properties such that states with helicity ±1 are produced

by ε±. We can make different choices of reference momenta k for each gluon in an

amplitude because when all the different terms that contribute are added we always

obtain a gauge invariant expression. This can be used to simplify the calculation by

making many terms and diagrams vanish.

The convention adopted to label the amplitudes is to assign the helicities to

bosons as well as fermions when they are considered outgoing. If they are incoming

the helicity is reversed. This means that in the amplitudes derived all the momenta

are outgoing. We can then apply crossing symmetry, by exchanging momenta to the

initial state, to obtain different scattering amplitudes from the same expression.

1.7 Colour decomposition

Further simplification in the computation of matrix elements comes from treating

the colour degree of freedom in a similar manner to the spin degree of freedom

described in the previous section. By keeping track of the colour information of

external particles it will be possible to factorise the matrix elements as a colour

structure times partial amplitudes [27–29] . The partial amplitudes are functions of

the kinematic invariants only and are easier to calculate than the full amplitude.

To achieve this we begin by identifying all possible colour structures that can

appear. The colour, in a general SU(N) theory, comes from quarks carrying a

fundamental colour index i = 1, ..., N , antiquarks carrying antifundamental “anti-

colour” index ̄ = 1, ..., N and gluons carrying an adjoint colour index a = 1, ..., N2−
1.

The generators of the group T ai̄ connect the fundamental, antifundamental and

adjoint representations of the SU(N). This means that for each qq̄g vertex we
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introduce a term proportional to T ai̄ whereas gluons couple through fabc with f

being the structure constants of SU(N) defined by:

[T a, T b]i̄ = i
√

2fabcT ci̄ (1.70)

We proceed by eliminating any structure constants fabc appearing in Feynman dia-

grams in favour of the T a’s using:

Tr
(
T aT b

)
= δab (1.71)

fabc = − i√
2

(
Tr
(
T aT bT c

)− Tr
(
T cT bT a

) )
(1.72)

The first property represents the normalisation of the colour algebra that is used in

the remainder of this thesis. The advantage of the choice of normalisation in (1.71)

is to avoid a proliferation of
√

2’s in the partial amplitudes. If we now apply the

previous equation to eliminate the structure constants fabc in favour of the T a’s, we

can reduce any tree diagram for n-gluon scattering into a sum of single trace terms.

This leads to the following decomposition of the n-gluon tree amplitude:

Atree
n ({ki, λi, ai}) = gn−2

∑
σ∈Sn/Zn

Tr(T aσ(1) · · ·T aσ(n))Atreen (σ(1λ1), · · · , σ(nλn))

(1.73)

Here g is the gauge coupling ( g
2

4π
= αs), ki, λi are the gluon momenta and helicities,

and Atree
n (1λ1 , · · · , nλn) are the colour ordered partial amplitudes.

The colour ordered amplitudes are far simpler to calculate than the full amplitude

A because they only receive contributions from diagrams with a particular cyclic

ordering of the gluons. Most importantly they are all separately gauge invariant

and this allows us to choose a gauge which simplifies the calculation for each colour

ordered amplitude independently. They satisfy the following properties:

• An(1, 2, ..., n) is gauge invariant

• cyclic symmetry: An(1, 2, ..., n) = An(2, 3, ..., 1)

• reflection symmetry: An(1, 2, ..., n) = (−1)nAn(n, n− 1, ..., 1)

• dual Ward identity:

An(1, 2, 3, ..., n) + An(2, 1, 3, ..., n) + ...+ An(2, 3, ..., 1, n) = 0
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• factorisation of An(1, 2, ..., n) on multi-gluon poles

• incoherence to leading order in the number of colours:∑
colours

|An|2 = (g2)n−2Nn−2(N2 − 1)
∑

σ∈Sn/Zn

{ |An(σ(1λ1), · · · , σ(nλn))|2 +O(N−2)
}

To determine the singularities of the colour ordered amplitudes we must remem-

ber that fixing the ordering of the gluons means that the poles can only occur in

the invariants made out of cyclically adjacent momenta. But for now we leave the

discussion of the factorisation on multi-gluon poles mentioned to be done in more

detail in the next section.

For amplitudes involving external quarks there are in addition to traces some

strings of T a’s terminated by fundamental indices in the colour structure. In this

case the Fierz identity between the T matrices:

T ai1 ̄1T
a
i2 ̄2

= δi1 ̄2δi2 ̄1 −
1

N
δi1 ̄1δi2 ̄2 (1.74)

allows us to find the following colour decomposition for a q̄qgg · · · g amplitude at

tree level:

Atreen ({ki, λi, ai}) = gn−2
∑

σ∈Sn−2

(T aσ(3) · · ·T aσ(n))Atreen (1λ1
q̄ , 2

λ2
q , σ(3λ3), · · · , σ(nλn))

(1.75)

where numbers without subscripts refer to gluons.

This procedure can be continued at the loop level where new structures are

generated. This is again an important simplification as it makes possible to break

the calculation of even more complex loop matrix elements into many gauge invariant

components that can be worked out separately.

1.8 Universal behaviour of QCD gluonic ampli-

tudes

In this section we will recall the divergent behaviour of the colour ordered ampli-

tudes. Unlike QED [30], it is the colour ordered partial amplitudes mentioned in

the previous section that have nice factorisation properties in the unresolved limits.
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Following from the factorisation of the primitive amplitudes on multi-gluon poles

we want to look at the factorisation properties at the amplitude squared level which

is valid for the leading colour diagonal piece. These were first derived in [31]. We will

consider first one unresolved parton, which is appropriate for isolation of infrared

singularities of (n + 1) parton scattering processes contributing at next-to-leading

order and then, two unresolved partons relevant to isolate singularities of the (n+2)

scattering processes contributing at next-to-next-to-leading order.

In both cases we find that the factorisation is:

• universal, in the sense that we only need to specify the type of singular limit

and the singular behaviour (at leading order in colour) will have a characteristic

structure

• is process independent, in the sense that it does not depend on the detailed

structure of |An+1(1, 2, . . . , n+ 1)|2

• is always in the form of singular term×finite subamplitude squared

This study provides many insights into the infrared structure of QCD ampli-

tudes. In addition to this, subtraction methods to handle the occurrence of infrared

divergences at higher order, like the one used in this thesis, rely on constructing

counterterms with the same pointwise singular behaviour of the divergent ampli-

tudes. The precise formulation of the antenna subtraction method employed in

this work and how the counterterms are derived will be established in chapters 3,4.

However, the following results will be fundamental to guarantee that both matrix

elements and subtraction terms have the same infrared structure for one unresolved

parton (NLO) up to two unresolved partons (NNLO).

1.8.1 One unresolved particle

For an n tree gluon amplitude we have, in the limit where gluon b is soft, the QED-

like factorisation into an eikonal-type singular factor and a colour ordered tree-level

squared amplitude where gluon b has been removed:

|An+1(1, . . . , a, b, c, . . . , n+ 1)|2 bg→0−→ Sabc |An(1, . . . , a, c, . . . , n+ 1)|2 (1.76)
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with the eikonal factor given by:

Sabc =
2sac
sabsbc

(1.77)

Similarly in the limit where two gluons become collinear, the sub-amplitudes

factorise. If gluons a and b become collinear and form gluon c, then adjacent gluons

give a singular contribution:

|An+1(1, . . . , a, b, . . . , n+ 1)|2 a//b−→ 1

sab
Pgg→g(z)|An(1, . . . , c, . . . , n+ 1)|2

(1.78)

while separated gluons do not,

|An+1(1, . . . , a, . . . , b, . . . , n+ 1)|2 a//b−→ finite (1.79)

In equation (1.78), z is the fraction of momentum carried by one of the gluons

and, after integrating over the azimuthal angle of the plane containing the collinear

particles with respect to the hard process, the Altarelli-Parisi [11] collinear splitting

function Pgg→g is given by:

Pgg→g(z) = 2

(
z

1− z +
1− z
z

+ z(1− z)

)
(1.80)

As we mentioned before the singular limits (1.76) and (1.78) are of the form of

a singular term times a finite subamplitude squared with one less gluon.

1.8.2 Two unresolved particles

In the case of two real unresolved particles there are a variety of different configu-

rations extensively studied in [32–34]. The expressions for these universal limits are

organised according to whether the two unresolved particles are colour connected or

not. In the unconnected case, the singular limits are merely obtained by multiply-

ing single unresolved factors. However, when the particles are colour connected, the

structure is more involved.

To define colour connection we return to the equation (1.73) where the n gluon

subamplitude is associated with the colour structure Tr(T aσ(1) · · ·T aσ(n)) depicted in

figure 1.8.
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a1 a2
an−1 an

. . . . . 

Figure 1.8: Colour flow contained in the colour ordered amplitude

Atreen (1λ1 , · · · , nλn).

This is a colour antenna with ordered emission of gluons with colour a1, a2, . . . ,

an−1, an. Within this colour antenna, gluon 1 is colour connected to gluon 2 which is

colour connected to next gluon in the chain until gluon n which is colour connected

to gluon 1.

Two collinear pairs - colour unconnected

Two pairs of particles may become collinear separately, but the particle in one

or both the pairs themselves not “colour connected”. In these cases there are no

singular contributions containing both of the vanishing invariants. For instance if

partons {a, d} and {b, c} are collinear then,

|A(. . . , a, . . . , b, . . . , c, . . . , d, . . .)|2 → less singular (1.81)

By this we mean there is no contribution proportional to 1/sadsbc and, when inte-

grated over the small region of phase space relevant for this approximation yields a

negligible contribution.

The situation where two pairs of colour “connected“ gluons are collinear is rather

trivial. If gluons a and b form P while c and d cluster to form Q so that P and Q

are themselves colour unconnected then,

|A(. . . , a, b, . . . , c, d, . . .)|2 → 1

sab
Pgg→G(z1)

1

scd
Pgg→G(z2)|A(. . . , P, . . . , Q, . . .)|2

(1.82)

Here z1 and z2 are the momentum fractions carried by a and c respectively. As

before, azimuthal averaging of the collinear particle plane is understood.
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Triple collinear factorisation - colour unconnected

If three collinear particles are colour “unconnected” then there is no singularity. So

if a,b and c all become collinear,

|A(. . . , a, . . . , b, . . . , c, . . .)|2 → finite (1.83)

and there is no singular contribution involving the invariants sab,sbc or sabc. As

before, because the region of phase space where the triple collinear limit is valid is

extremely small, this gives a negligible contribution to the cross section. When two

of the three collinear particles are colour “unconnected” we find a singular result,

|A(. . . , a, . . . , b, c, . . .)|2 → 1/sbc

However, when integrated over the triple collinear region of phase space that requires

sab,sbc or sabc all to be small, we again obtain a negligible contribution that is

proportional to the small parameter defining the extent of the triple collinear phase

space. We therefore ignore contributions of this type.

Soft/collinear factorisation - colour unconnected

Two particles may be unresolved if one of them is a soft gluon and another gluon

pair is collinear. When the soft gluon g is not colour connected to either of the

colour “connected” collinear particles c and d, factorisation is straightforward,

|A(. . . , a, g, b, . . . , c, d, . . .)|2 → Sagb(sab, sag, sbg)
1

scd
Pgg→G(z)|A(. . . , a, b, . . . , P, . . .)|2

Two soft gluons - colour unconnected

When two unconnected gluons are soft, factorisation is again simple. For gluons g1

and g2 soft we find,

|A(. . . , a, g1, b, . . . , c, g2, d, . . .)|2 → Sag1b(sab, sag1 , sbg1)Scg2d(scd, scg2 , sdg2)

×|A(. . . , a, b, . . . , c, d, . . .)|2 (1.84)

so that the singular factor is merely the product of two single soft gluon emission

factors given by (1.77). Note that b = c is allowed.
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Triple collinear factorisation - colour connected

In this configuration three colour connected gluons cluster to form a single parent

gluon. The colour ordered sub-amplitude squared then factorises:

|A(. . . , a, b, c, . . .)|2 → Pggg→G(w, x, y, sab, sac, sbc, sabc)|A(. . . , P . . .)|2 (1.85)

where w, x and y are the momentum fractions of the clustered partons,

pa = wpP , pb = xpP , pc = ypP , with w + x+ y = 1 (1.86)

The colour ordered function Pggg → G is given by,

Pabc→G(w, x, y, sab, sbc, sabc) = 2×
{

+
(1− ε)
s2
abs

2
abc

(xsabc − (1− y)sbc)
2

(1− y)2
+

2(1− ε)sbc
sabs2

abc

+
3(1− ε)

2s2
abc

+
1

sabsabc

(
(1− y(1− y))2

yw(1− w)
− 2

x2 + xy + y2

1− y +
xw − x2y − 2

y(1− y)
+ 2ε

x

(1− y)

)
+

1

2sabsbc

(
3x2 − 2(2− w + w2)(x2 + w(1− w))

y(1− y)
+

1

yw
+

1

(1− y)(1− w)

)}
+ (sab ↔ sbc, w ↔ y) , (1.87)

This splitting function is symmetric under the exchange of the outer gluons (a and

c), and contains poles only in sab and sbc.

Soft/collinear factorisation - colour connected

In the situation when gluon a is soft, gluons b and c are collinear and colour connected

the gluonic subamplitude factorises as:

|A|(. . . , d, a, b, c, . . .)|2 → Pd;abc|A(. . . , d, P, . . .)|2 (1.88)

In this limit the collinear gluons form parton P and carry momentum fractions,

pb = zpP , pc = (1− z)pP (1.89)

and we write the soft/collinear factor as,

Pd;abc(z, sab, sbc, sabc, sad, sbd, scd) (1.90)
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This limit can be obtained directly from the triple collinear limit of the previous

section by keeping only terms proportional to 1/w and subsequently replacing 1/w

by (sbd + scd)/sad, 1/(1− w) by 1 and y by (1− z).

In fact in this limit we find a universal soft factor multiplied by a collinear

splitting function,

Pd;abc(z, sab, sbc, sabc, sad, sbd, scd) = Sd;abc(z, sab, sbc, sabc, sad, sbd, scd)
1

sbc
Pgg→G(z)

(1.91)

where,

Sd;abc(z, sab, sbc, sabc, sad, sbd, scd) =
(sbd + scd)

sabsad

(
z +

sab + zsbc
sabc

)
(1.92)

A similar result holds for gluon c becoming soft,

|A(. . . , a, b, c, e, . . .)|2 → Pabc;e|A(. . . , P, e, . . .)|2 (1.93)

where,

Pabc;e = Pd;abc(a↔ c, d↔ e) (1.94)

In the case that b is soft the matrix element do not possess sufficient singularities

since the collinear gluons a and c are not directly colour-connected,

|A(. . . , a, b, c, . . .)|2 → less singular (1.95)

Here, there may be two powers of small invariants in the denominator, but, when

integrated over the appropriate (small) region of phase space this yields a vanishing

contribution.

Two soft gluons factorisation - colour connected

For gluons b and c soft the colour ordered subamplitude factorises,

|A(. . . , a, b, c, d, . . .)|2 → Sabcd(sad, sab, scd, sbc, sabc, sbcd)|A(. . . , a, d, . . .)|2 (1.96)

where the connected double soft gluon function is given by,

Sabcd(sad, sab, scd, sbc, sabc, sbcd) =
2s2

ad

sabsbcdsabcscd
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+
2sad
sbc

(
1

sabscd
+

1

sabsbcd
+

1

scdsabc
− 4

sabcsbcd

)
+

2(1− ε)
s2
bc

(
sab
sabc

+
scd
sbcd
− 1

)2

.

(1.97)

Here a and d are the hard gluons surrounding the soft pair.

1.9 Summary

In this chapter we have collected all the ingredients required to calculate a perturba-

tive solution to QCD in powers of the strong coupling αs. By doing this we reviewed

some of the most important aspects of the theory and a practical application should

now be addressed. This will be the topic of the next chapter.



Chapter 2

Dijet production

In the previous chapter we described in a general way the technicalities that are

inherent in the theoretical description of a physical observable. Now we want to

apply those concepts to the study of dijet production at the LHC.

We proceed by making the definition of a jet from both the theoretical and ex-

perimental point of view in section 2.1. Subsequently, the first theoretical estimates

for jet production are given by the leading order cross section that we review in

section 2.2.

We already know that beyond leading order a method is required to handle the

infrared divergences present in the intermediate steps of the calculation. We will

address this problem in the next chapter.

2.1 Jet definition

Since the first propostion for the quark model was announced independently by

Gell-Mann [35] and Zweig [36,37] in 1964, several searches to disprove it or confirm

it were attempted. The quark model was able to classify the baryons and mesons

that were discovered throughout the 50’s and 60’s in a simple picture, where every

baryon is composed of three elementary quarks and every meson is composed of a

quark and an antiquark. New combinations of these states led to the prediction and

subsequent discovery of additional hadrons. So far combinations which are excluded

from the quark model have not been found.

35



2.1. Jet definition 36

Figure 2.1: (a) End view and (b) side view of a high ET event recorded at D0.

The structure of the proton in terms of quarks is one of the predictions of the

model and experiments carried out in the late 60’s at the Stanford Linear Accelerator

Center (SLAC), indicated that indeed the proton has substructure. By increasing

the energy in the collisions involving protons we would expect to be able to break

this substructure apart and observe the quarks in the detector. Signals of this should

be straightforward because quarks carry fractional electric charge and at least one of

them should be absolutely stable. However in successive generations of experiments

with more and more powerful colliders, isolated quarks have never been observed.

This problem with the quark model has been reformulated by introducing the

idea of quark confinement. In this notion quarks are absolutely confined within

baryons and mesons and cannot be studied or observed in any more direct way than

at a hadron level. This property of QCD is intuitively related to the fact that the

force-carrying gluons of the strong interaction are charged and as a consequence the

force between quarks increases as they are separated. In this picture free quarks fly

apart but when they reach a separation distance of around 10−15 m (the diameter

of a hadron) their strong interaction is so great that new quark-antiquark pairs are

produced mainly from gluons. Thus many quark and antiquark pairs are produced

in a typical modern experiment that subsequently join together in combinations of

mesons and baryons that are actually recorded by the detector. This results in a
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Figure 2.2: Display of an event recorded by ATLAS with jets from the first pp

collisions at center of mass energy of 2.36 TeV. (Taken on December 14th 2009).

“spray” of roughly collinear colourless hadrons that are called jets.

In figure 2.1 we show an example of a two-jet event recorded at the Tevatron

resulting from a pp̄ collision. We identify two clusters of energy appearing back to

back with high transverse energy which are composed of individual hadron tracks

highly collimated. We also see additional tracks and energy deposits between the

two outgoing hard scattered jets. These contain hadrons that do not fit in the jets

and constitutes the underlying event. This underlying event consists of particles

that arise from the beam-beam remnants and from multiple parton interactions. It

is an unavoidable background to most collider observables and it is the reason why

hadron-hadron collisions are more “messy” than electron-positron annihilations.

In figure 2.2 we show the first events with jets recorded by the ATLAS detector

with the LHC running at the highest center of mass energy achieved to date of 2.36

TeV.

To understand these reactions we have to proceed then by classifying the hadronic
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events according to the number of such clusters of energetic particles, referred to as

jets. The rate of these events can then be measured by introducing a procedure to

quantify the number of jets in the event at the detector level that we will discuss

below. On the theoretical side we use the concept of local parton-hadron duality

which postulates that the quantum numbers and momentum flow of the produced

hadrons closely follow those of the partons that initiated the jet. If we suppose that

the effects of hadronisation - the process whereby quarks and gluons cluster to form

hadrons - are small, we should obtain a reasonable agreement between theory and

experiment associating one jet with each parton.

This means that the measured cross section for high-ET jet production in hadron

colliders should follow closely the prediction obtained by computing the same cross

section in the parton model, considering the scattering of free partons given by the

matrix elements at fixed order in perturbative QCD.

To make this description more accurate and hence closer to the real world we

can compute the hard scattering cross section to higher order in the strong coupling

αs. This introduces additional partons in the final state that can cluster to form a

spray of partons, much like the spray of hadrons observed in the experiments.

However since it is impossible to calculate and integrate the matrix elements

for the typical large number of partons produced in a collision (of the order of 30)

another refinement is the inclusion of a parton shower, matched to the fixed-order

perturbative calculation, that simulates soft and collinear QCD radiation from the

hard scattering scale down to the hadronisation scale where hadronisation models

can be incorporated to describe the formation of hadrons from quarks and gluons.

Jet algorithms

As we mentioned in the previous section, we need to formulate a procedure to

quantify the meaning of a jet. The goal is to apply an algorithm both to data and

to the theoretical calculation without ambiguities such that a reliable comparison

can be made between the two. The jet algorithms must satisfy certain criteria. For

example, on the experimental side they should be:

• detector independent, as they should not depend on the details of the detector
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geometry.

• minimising energy smearing or angular biases.

• stable with luminosity, that is the jet size behaves well under multiple scatter-

ings and high detector occupancy.

• computationally efficient in the reconstruction of jets from N particles.

• easy to calibrate.

On the theoretical side the requirements are:

• infrared and collinear safety, as the cross sections must be finite at any order

of perturbation theory and emission of soft particles should not change the

number of jets in the event.

• low sensitivity to hadronisation.

• invariant under longitudinal boosts.

• produce the same number of jets at parton, particle and detector level.

According to this, two broad classes of jet algorithms are in widespread use at

modern colliders. These are the sequential recombination type algorithms and cone

type algorithms that we describe in the next subsections. A recent extensive review

on the topic of jet algorithms can be found in [38].

Sequential recombination type algorithms

Sequential recombination type algorithms such as kt [39,40] and Cambridge/Aachen

[41,42] define jets by repeatedly combining particles that are close in some distance

measure dij. For e+e− experiments the following steps are implemented:

1. For each pair of particles i, j compute the distance measure dij.

2. Find the minimum dmin of all the dij.

3. If dmin is below some jet resolution threshold dcut then recombine i and j into

a single new particle and repeat step 1.
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4. Otherwise, declare all remaining particles to be jets and terminate the itera-

tion.

For these algorithms a single parameter dcut controls the number of jets. As dcut

approaches zero we allow very narrow jets until eventually all hadrons are identified

as separate jets. Conversely, increasing the value of dcut produces broader jets with

far fewer multi-jet events.

When it comes to derive a corresponding hadron collider algorithm there is an

introduction of an additional particle-beam distance diB. In that case if diB is the

smallest distance we declare i to be a final state jet and remove it from the list of

particles before returning to step 1.

These type of algorithms are infrared and collinear safe because any soft or

collinear particle will get recombined right at the start of the clustering.

The choice of the distance measure dij is what defines the sequential recombina-

tion algorithm. This choice has to be adapted to e+e− experiments or experiments

with incoming hadrons. For example in pp collisions it is important that the choice

of distance is invariant under longitudinal boosts.

Problems with this type of algorithms are the irregular shape of the jets (which

makes them harder to calibrate at the detector level) and how to incorporate non-

perturbative corrections. They are also often quoted as computationally slow as

the procedures needed to cluster N particles scale like N3. We will look at new

developments that address these issues in the next section.

anti-kt jet clustering algorithm

The anti-kt [43] jet algorithm for hadron colliders generalises the distance measure

of the kt [39, 40] and Cambridge/Aachen [41,42]:

dij = min(k2p
ti , k

2p
tj )

∆R2
ij

R2
, ∆R2

ij = (yi − yj)2 + (φi − φj)2,

diB = p2p
ti (2.1)

where kti , yi and φi are respectively the transverse momentum, rapidity and azimuth

of particle i. The dij are the distances between entities i and j and diB is the distance
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between entity i and the beam (B). From their definitions we can easily see that the

distances are invariant under longitudinal boosts.

The clustering process proceeds by identifying the smallest of the distances and,

if it is a dij, recombining entities i and j, while if it is diB identifying i as a jet

and removing it from the list of entities. The distances are recalculated and the

procedure repeated until no entities are left. We have introduced a new parameter

R that acts as a size and defines what gets called a jet. The remaining parameter p

takes the values p = 1 for the kt algorithm and p = 0 for the Cambridge/Aachen.

The value p = −1 defines the anti-kt algorithm and the distance measure dij =

min(1/k2
ti
, 1/k2

tj
)∆2

ij/R
2 defines its general behaviour. According to the definition

of dij, the distance between similarly separated hard and soft particle or two soft

particles will be larger in the latter case due to the transverse momentum of the

hard particle. This causes soft particles to cluster with hard ones before they cluster

among themselves [43]. If a hard particle has no hard neighbours within a distance

2R then it will simply accumulate all the soft particles within a circle of radius R,

resulting in a perfectly conical jet.

The case of two hard particles within R < ∆12 < 2R creates two hard jets. If

kt1 � kt2 then jet 1 will be conical and jet 2 will be partly conical missing the

part overlapping with jet 1. Instead if kt1 = kt2 neither jet will be conical and the

overlapping part will simply be divided by a straight line equally between the two.

For the general case kt1 ∼ kt2 , both cones will be clipped, with the boundary b

between them defined by ∆R1b/kt1 = ∆R2b/kt2 .

Finally when we have ∆12 < R hard particles 1 and 2 will cluster to form a single

jet. If kt1 � kt2 then it will be a conical jet centered on kt1 . For kt1 ∼ kt2 the shape

will be the union of the cones (with radius < R) around each hard particle plus a

cone (of radius R) centred on the final jet.

The previous paragraphs tell us that soft particles do not modify the shape of

the jet, while hard particles do. The jet boundary in the anti-kt algorithm is then

resilient with respect to soft radiation, but flexible with respect to hard radiation.

To address the speed issue of the sequential-recombination clustering algorithms,

reference [44] proposed a solution that reduces the computational time for the re-
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construction of N particles from N3 to N lnN . This solution comes from rewriting

the problem of jet-finding into a two dimensional (rapidity and azimuth coordinates)

computational geometry nearest neighbour finding problem.

Technically, the problem is that of establishing and maintaining a nearest-neighbour

graph on the 2-dimensional surface of a cylinder. In computational geometry this is

addressed with Voronoi diagrams as a main structure. This has an approach imple-

mented in a public code CGAL that handles dynamic point sets in the construction

of Voronoi diagrams for N points with O(N lnN) operations.

Combining these ideas and other strategies an implementation of the anti-kt jet

clustering algorithm is publicly available in the FastJet [45] implementation.

Cone type algorithms

The cone type algorithms follow a different approach to the jet definition. In such

algorithms, a seed particle i sets some initial direction, and one sums the momenta

of all particles j within a circle (“cone”) of radius R around i in azimuthal angle φ

and rapidity y:

∆R2
ij = (yi − yj)2 + (φi − φj)2 < R2 (2.2)

where yi and φi are respectively the rapidity and azimuth of particle i. The direction

of the resulting sum is then used as a new seed direction and one iterates the

procedure until the direction of the resulting cone is stable.

Therefore seeded algorithms have to define how to pick the seeds and then two

main procedures, one to find a “stable cone” (a cone pointing in the same direction as

the momentum of its contents) and a “split-merge” procedure to convert those cones

into jets, somehow resolving the problem of cones that have particles in common.

One solution is to take as the first seed the particle with the largest transverse

momentum. Once a stable cone has been found with this seed, one calls it a jet

and removes all the particles contained in that jet. After that, the next seed is the

hardest particle among those that remain and use that to find the next jet, repeating

the procedure until no particles are left. This procedure guarantees that there are

no overlapping cones but it is collinear unsafe, as the splitting of the hardest particle
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(say p1) into a nearly collinear pair (p1a, p1b) can alter the ordering of the hardest

particles in the event and thus leading to a different final set of jets.

The split-merge approach merges a pair of cones if more than a fraction f of

the softer cone’s transverse momentum is in particles shared with the harder cone;

otherwise the shared particles are assigned to the cone to which they are closer.

Generally the overlap threshold f is chosen to be 0.5 or 0.75. One of the main issues

with this approach is again not being collinear safe since the addition of a new soft

seed particle can lead to new stable cones being found involving hard particles and

thus, altering the final set of jets.

Infrared and collinear unsafety problems have to be corrected since they can

violate the finiteness of perturbative QCD calculations, by altering the cancellation

between real and virtual corrections, but also invalidate the correspondence between

the complex hadron level and a simple few-parton picture of an event. This happens

when a random 1 GeV non-perturbative particle changes the multi-hundred GeV

events.

A solution to these problems is to carry out a seedless search for all stable cones.

We will see an example of that in the next section.

SISCone - Seedless infrared safe cone algorithm

In a seedless cone algorithm, the addition of a soft particle may lead to the presence

of new stable cones, however none of those new cones will involve hard particles and

therefore the multi-hundred GeV events are not altered and therefore the set of hard

stable cones is infrared safe.

To find the stable cones one takes all subsets of particles and draws a circle

around the jet axis of each particle, made from the momentum of all the particles

within a radius of it, and checks if the points contained in the circle are exactly as

those in the initial subset.

However, this procedure takes O(N2N) time to compute all the subsets and

check the stable cone property, making it impossible to use at hadron or detector

level. The SISCone implementation [46] reduces this to O(N2 lnN), following the

observations in [44] that considering the geometrical aspects of the problem can be
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Figure 2.3: A sample parton-level event together with many random soft “ghosts”,

clustered with four different jet algorithms, illustrating the “active” catchment areas

of the resulting hard jets [38].

advantageous.

In the SISCone approach, the stable cone search reduces to a 2D “all distinct

circular enclosures” problem solved by considering all circles having a pair of par-

ticles on their circumference, resulting in an seedless infrared safe cone algorithm

that takes O(N2 lnN) time to reconstruct the jets. The code for the algorithm is

available publicly [47] both in standalone form and as a FastJet [45] plugin.

Jet algorithms - final remarks

We presented two types of strategies for jet definition: the use of sequential recom-

bination jet algorithms and cone algorithms. Both methods will be used in future

experiments, as it has been noted in [48], that for some observables they provide

complementary sensitivities to different classes of non-perturbative corrections.
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It is crucial that jets are defined in an infrared safe way to make measurements

meaningful when compared to fixed order (LO,NLO,NNLO) predictions. In addi-

tion, they should be computationally efficient in the jet reconstruction and we have

reviewed two examples that address both issues.

Figure 2.3 illustrates the jets that are produced with four different IRC-safe

algorithms, showing among other things the degree of regularity of the boundaries

of the resulting jets. Also in figure 2.4 the timings in terms of scaling with N are

shown for a subset of commonly used algorithms.
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Figure 2.4: Timings for the clustering of a simulated 50 GeV dijet event, to which

increasing numbers of simulated minimum-bias events have been added (both sim-

ulated with Pythia) [38].

At the time of writing both ATLAS and CMS will incorporate FastJet [45] within

their software frameworks. CMS will use the kt algorithm and SISCone as their

default jet collections whereas ATLAS has adopted the anti-kt jet clustering as the

standard choice.

2.2 LO cross section

In this section we review the leading order (LO) cross section for dijet production:

p+ p→ j + j (2.3)
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This reaction will be investigated at the LHC, i.e. pp collisions at
√
s = 14 TeV

where the jets arises from the large angle scattering of the elementary constituents

of the hadrons, the quarks and gluons. The use of a jet algorithm in the prediction

allows to determine also the single inclusive jet cross section pp→ j +X according

to the experimental cuts. This offers an important precision test of QCD since this

reaction can be measured to a very high experimental accuracy and therefore be

used for measurements of the strong coupling constant and of parton distribution

functions. It is also important if we want to look for a breakdown of the standard

model due, for example, to the composite structure of quarks or production of new

particles. For this we would analyse the scattering of quarks and gluons at the

largest pT scale possible and look for deviations in the form of resonances or in the

shape of the QCD prediction.

The hadronic cross section for the process initiated by two hadrons with four-

momenta P1 and P2 can be written in factorised form as:

dσ(P1, P2) =
∑
i,j

∫
dx1dx2f

(h1)
i (x1, µ

2
F )f

(h2)
j (x2, µ

2
F )dσ̂ij(p1, p2, αs(µ

2
R), Q2/µ2

R)

(2.4)

The sum is over the parton flavors i, j in the hadrons h1, h2 and f
(h1)
i , f

(h2)
j are the

corresponding parton densities. The initial state partons i,j for the hard scattering

partonic process carry momenta p1 = x1P1 and p2 = x2P2. The characteristic scale

of the hard scattering denoted by Q could be the transverse momentum of a jet. The

µF and µR are respectively the factorisation and renormalisation scales introduced

in chapter 1. The partonic cross section can be calculated perturbatively and it

gives at leading order:

dσ̂LOij = dΦ2(pk, pl; p1, p2)
1

S2

∑
colour
spin

|M0
ij→kl|2J (2)

2 (pk, pl) (2.5)

where the matrix elements that we need to consider are:

q + q′ → q + q′

q + q → q + q

q + q̄ → g + g
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(a)

(b)

(c)

(d)

Figure 2.5: Diagrams for jet production at leading order.

g + g → g + g (2.6)

which are shown in figure 2.5. These are the independent matrix elements squared

for 2 → 2 parton subprocesses with massless partons [49]. All other channels can

be obtained from the above by time reversal and crossing. S2 is the symmetry

factor for identical partons in the final state and
∑

denotes an appropriate sum

and average over spin and colour degrees of freedom for incoming and outgoing

particles. Each quark in the initial state is ascribed a colour average of 1/N while

gluons receive a factor 1/(N2− 1). Since a fermion has two spin degrees of freedom,

an additional factor of 1/2 has to be included for unpolarised quarks. For gluons

2(1 − ε) polarisation states are possible in d dimensions. dΦ2(pk, pl; p1, p2) is the
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2→ 2 phase space for a final state with total momentum pµ1 + pµ2 :

dΦ2(pk, pl; p1, p2) =
dd−1pk

2Ek(2π)d−1

dd−1pl
2El(2π)d−1

(2π)dδd(p1 + p2 − pk − pl) (2.7)

Finally the function J
(m)
n defines an n-jet final state through cuts on the m-parton

final state momenta. In this case, there are two partons, each of which must produce

a jet.

Because the center of mass of the parton-parton scattering is normally boosted

with respect to that of the two incoming hadrons, it is useful to classify the final

state in terms of variables which transform simply under longitudinal boosts. We

proceed by parameterising the four-momentum of a particle with mass m using the

rapidity y, the transverse momentum pT and the azimuthal angle φ:

pµ = (E, px, py, pz)

= (mT cosh y, pT sinφ, pT cosφ,mT sinh y) (2.8)

where the transverse mass is defined as mT =
√
p2
T +m2. The rapidity y is defined

by:

y =
1

2
ln

(
E + pz
E − pz

)
=

1

2
ln

(
1 + β cos θ

1− β cos θ

)
(2.9)

and is additive under the restricted class of Lorentz transformations corresponding

to a boost along the z direction. Rapidity differences are boost invariant.

In the high energy limit (β → 1) or in the massless case (m→ 0) the rapidity is

often replaced by the pseudorapidity variable η:

η = − ln tan(θ/2) (2.10)

It is a more convenient variable experimentally, since the angle θ from the beam

direction is measured directly in the detector. It is also standard to use the transverse

energy:

ET = E sin θ (2.11)

rather than the transverse momentum pT , because it is the former quantity which

is measured in the hadron calorimeter. For massless particles the rapidity y and
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pseudorapidity η may be used interchangeably, as may the transverse momentum

pT and transverse energy ET .

The cross section for a 2→ 2 scattering process is given by:

E3E4dσLO

d3p3d3p4

=
1

16π2

∑
colour
spin

|M|2δ4(p1 + p2 − p3 − p4) (2.12)

We can obtain the inclusive jet cross section at the parton level, in terms of the

new variables, by integrating (2.12) over the momentum of one of the jets:

EdσLO

d3p
≡ dσLO

dyd2pT
=

1

8π2

∑
colour
spin

|M|2δ(s+ t+ u) (2.13)

where t and u are fixed by s and the center of mass scattering angle,

t = −1

2
s(1− cos θ) u = −1

2
s(1 + cos θ) (2.14)

There are several limitations when we truncate the prediction at leading order.

The calculation becomes strongly dependent on the choice of renormalisation scale,

that enters using the running coupling constant, due to the absence of higher order

terms. Also, the absence of diagrams including initial sate radiation means that

at this order the jets always appear back to back. Furthermore, a single parton is

identified with a jet and there are no extra radiation to give the jet a shape. Thus

the cross section is independent of the parameter R that defines the jet size contrary

to what is measured in a detector and this also makes it impossible to study the

energy profile of a jet.

2.3 Summary

In this chapter we defined from the experimental and theoretical point of view the

jet production phenomena as observed in hadron colliders.

On the experimental side we discussed the need for good algorithms that can

classify the recorded events at the detector level according to the number of produced

jets. For hard scattering events we expect an agreement between the measured data

and QCD predictions. These also implement the same jet algorithms to define jet
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observables and are given by the partonic cross section which can be calculated

perturbatively as a power series in the coupling constant folded with the parton

distribution functions.

We analysed the LO term of the series for jet production in pp collisions and will

turn to the more interesting case of NLO contributions in the next chapter.



Chapter 3

NLO antenna subtraction

When we consider now the NLO corrections to an observable we expect to find the

divergences mentioned in chapter 1. As we have seen theorems guarantee that these

singularties cancel when all the divergent pieces are assembled together. That is

usually achieved within a subtraction formalism.

Therefore we introduce the antenna subtraction method as a solution to this

problem. We leave the next-to-next-to-leading order (NNLO) extension of this

method to the next chapter and concentrate for the moment on the next-to-leading

order (NLO) antenna subtraction. The building blocks are, as we will see, antenna

functions that we introduce in section 3.1. The numerical implementation for final-

final, initial-final and initial-initial kinematic configurations is also treated in section

3.2.

After that we illustrate the application of the method for the next-to-leading

order (NLO) real and virtual corrections to dijet production in sections 3.3, 3.4. As

we expect for an infrared safe observable, we will obtain the cancellation of infrared

divergences between the two contributions.

We finally end the chapter with the motivation to extend this calculation to

next-to-next-to-leading order (NNLO) accuracy.

51
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3.1 Antenna subtraction at NLO

Suppose we want to compute the m-jet cross section to NLO. According to the

considerations of chapter 1, we have to consider the exclusive cross section dσR with

(m+1)-partons in the final state, the one-loop correction dσV with m-partons in the

final state, and a mass factorisation counterterm dσMF to absorb the divergences

arising from initial state collinear radiation into the parton densities:

dσNLO =

∫
dΦm+1

dσRNLO +

∫
dΦm

dσVNLO +

∫
dΦm

dσMF
NLO (3.1)

The terms on the right hand side of (3.1) are separately divergent although their

sum is finite. To write a Monte Carlo program to compute those integrals we must

first isolate and cancel the singularities of the different pieces and then numerically

evaluate the finite remainders of the (m + 1) and m-parton channels to obtain the

NLO contribution to the cross section.

Subtraction schemes are a well established solution to this problem. They work

by finding a suitable counterterm dσSNLO for dσRNLO. It has to satisfy two properties,

namely it must have the same singular behaviour in all appropriate limits as dσRNLO

and yet be simple enough to be integrated analytically over all singular regions of

the (m + 1)-parton phase space in d dimensions. We proceed by rewriting (3.1) in

the following form:

dσNLO =

∫
dΦm+1

(
dσRNLO − dσSNLO

)
+

∫
dΦm

(∫
1

dσSNLO + dσVNLO + dσMF
NLO

)
(3.2)

In its unintegrated form dσSNLO has the same singular behaviour as dσRNLO such

that the first integral is finite by definition and can be integrated numerically in

four dimensions over the (m + 1)-parton phase space. The integrated form of the

counterterm dσSNLO then analytically cancels the explicit singularities of the virtual

contribution dσVNLO and the mass factorisation counterterm dσMF
NLO as required by

the KLN and Factorisation theorems mentioned in chapter 1. After checking the

cancellation of the pole pieces, we can take the finite remainders of these contribu-

tions and perform the last integral on the right hand side of (3.2) numerically over

the m-parton phase space.
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The actual form of the counterterm dσSNLO depends on the subtraction formalism

employed because there are many ways of approximating the (m+ 1)-parton matrix

elements in the neighbourhood of its soft and collinear singularities.

Using the general properties of soft and collinear emission Catani and Seymour

[50] proposed a subtraction method that is completely process independent. They

derived an improved factorisation formulae, called dipole formulae:

dσSNLO =
∑

dipoles

dσLO ⊗ dVdipole (3.3)

The dipole factors are universal, i.e., completely independent on the details of the

process and built from the physical knowledge of how the (m + 1)-parton matrix

elements behave in soft and collinear limits. They can be computed once and for

all and applied to any process to mimic any of the (m+ 1)-parton singularities that

are kinematically degenerate with a given m-parton state.

Alternative approaches include the FKS subtraction [51–53] and more recently

[54]. It is also important to mention that both the Catani-Seymour [50] and FKS [51]

subtraction terms have been implemented in an automated way in [55–60] and [61]

respectively. These packages aim to automatically generate the subtraction terms

and real emission amplitudes for any given process. Used in conjunction with recent

automated packages that compute the virtual contribution [62–65], there is the

exciting possibility of having an automated NLO QCD parton level event generator

available in the near future.

For the rest of this thesis we are going to employ the antenna subtraction

method [66–69]. This method has been extended to NNLO but we leave that dis-

cussion to the next chapter. Here we focus only on the antenna subtraction at

NLO. In this method, antenna functions describe the colour-ordered radiation of

unresolved partons between a pair of hard (radiator) partons. We must distinguish

three possible configurations of radiators: final-final when both radiators are final

state partons, initial-final when one radiator is an initial state parton and the other

radiator is a final state parton and, finally, initial-initial where both radiators are

initial state partons.

This means that we will derive subtraction formulae decomposed in these three
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final-final initial-final initial-initial

e+e− X 7 7

ep X X 7

pp X X X

Table 3.1: Antennae configurations needed according to the scattering process

configurations and label them with a superscript (ff), (if), (ii). In table 3.1 we

distinguish the configurations that are needed according to the scattering process

that we are interested in. Even though we will write down all formulae specifically for

pp collisions these formulae can be easily adapted to ep or e+e− for the configurations

they have in common. To achieve that we should only modify the number of partons

that enter the matrix elements in these formulae. This is because we obtain an m-jet

production at leading order from an m-parton matrix element in e+e−, an (m+ 1)-

parton matrix element in ep and an (m+ 2)-parton matrix element in pp.

To proceed we write down the m-jet real radiation cross section at NLO in pp

collisions:

dσRNLO = N
∑

perms

dΦm+1(k1, . . . , km+1; p1, p2)
1

Sm+1

×|Mm+3(k1, . . . , km+1; p1, p2)|2J (m+1)
m (k1, . . . , km+1) (3.4)

The normalisation factor N includes all QCD-independent factors as well as the de-

pendence on the renormalised QCD coupling constant αs. |Mm+3(k1, . . . , km+1; p1, p2)|2

is a colour ordered amplitude squared and the sum in (3.4) is over all colour order-

ings including a symmetry factor Sm+1 for identical partons in the final state. The

initial state momenta are labeled as usual as p1 and p2 whereas the (m+1)-momenta

in the final state are labeled k1, . . . , km+1. dΦm+1 is then the 2 → m + 1 particle

phase space:

dΦm+1(k1, . . . , km+1; p1, p2) =

dd−1k1

2E1(2π)d−1
. . .

dd−1km+1

2Em+1(2π)d−1
(2π)dδd(p1 + p2 − k1 − . . .− km+1) (3.5)

The jet function J
(m+1)
m (k1, . . . , km+1) defines the procedure for building m-jets from
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(m + 1)-partons. The main property of J
(m+1)
m is that the jet observable defined

above is collinear and infrared safe.

Antenna subtraction - final-final configuration

When summing over all colour orderings in equation (3.4) we find terms of this type:

|Mm+3(. . . , i, j, k, . . .)|2 (3.6)

where i, j, k are colour connected final state partons. This configuration contains a

singularity when j is unresolved between i and k which can be approximated by:

Xijk|Mm+2(. . . , ĨJ, J̃K, . . .)|2 (3.7)

where Xijk is a final-final antenna function that describes all configurations (for this

colour-ordered amplitude) where parton j is unresolved. The momenta for the new

partons ĨJ and J̃K are linear combinations of ki, kj, kk obtained with a final-final

mapping that we describe in section 3.2.1. Both radiator partons i and k are in

the final state and we call this situation a final-final antenna, depicted in figure

3.1. We still have to sum over all possible unresolved partons in this colour ordered

amplitude. After that we can then sum over all colour orderings to obtain the full

subtraction term, for the final-final configuration, to use with (3.4). The subtraction

term for this configuration reads:

dσS,(ff) = N
∑

perms

dΦm+1(k1, . . . , km+1; p1, p2)
1

Sm+1

×
∑
j

X0
ijk|Mm+2(k1, . . . , K̃IJ , K̃JK , . . . ; p1, p2)|2J (m)

m (k1, . . . , K̃IJ , K̃JK , . . . , km+1)

(3.8)

The subtraction term involves the (m + 2)-parton amplitude depending only

on the redefined on-shell momenta k1, . . . , K̃IJ , K̃JK , . . . , km+1, where K̃IJ , K̃JK are

linear combinations of ki, kj, kk, while the tree antenna function X0
ijk depends only

on ki, kj, kk. The momenta redefinition that generates on-shell momenta K̃IJ , K̃JK

and implements momentum conservation will be discussed in section 3.2.1.

The jet function J
(m)
m in (3.8) does not depend on the individual momenta ki, kj

and kk, but only on K̃IJ , K̃JK . One can therefore carry out the integration over the
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i

j

k

IJ

JK
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j

k

IJ

JK

Figure 3.1: Antenna factorisation for the final-final situation.

unresolved dipole phase space appropriate to ki, kj and kk analytically, exploiting

the factorisation of the phase space,

dΦm+1(k1, . . . , km+1; p1, p2) =

dΦm(k1, . . . , K̃IJ , K̃JK , . . . , km+1; p1, p2) · dΦXijk(ki, kj, kk; K̃IJ + K̃JK)(3.9)

The NLO antenna phase space dΦXijk is proportional to the three-particle phase

space relevant to a 1→ 3 decay.

For the analytic integration, we can use (3.9) to rewrite each of the subtraction

terms in the form:

|Mm+2|2 J (m)
m dΦm

∫
dΦXijk X

0
ijk,

The analytic integral of the subtraction term is therefore defined as the antenna

function integrated over the fully inclusive antenna phase space, normalised appro-

priately,

X 0
ijk(sijk) =

1

C(ε)

∫
dΦXijk X

0
ijk. (3.10)

where

C(ε) = (4π)ε
e−εγ

8π2
(3.11)

This integration is performed analytically in d dimensions to make the infrared

singularities explicit and added directly to the one-loop m-particle contributions.

The factor (8π2 (4π)−ε eεγ) in the above equation is related to the normalisation of

the renormalised coupling constant (1.35).

Factors of g2 that appear in real radiation and virtual contributions can be

combined with C(ε) to give:

g2C(ε) =
(αs

2π

)
C̄(ε) (3.12)
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where:

C̄(ε) = (4π)εe−εγ (3.13)

Antenna subtraction - initial-final configuration

In the presence of hadrons in the initial state, matrix elements exhibit singularities

that are not accounted by the subtraction terms discussed in the previous section.

These singularities are due to soft or collinear radiation within an antenna where

one or the two hard partons are in the initial state [68]. This occurs in equation

(3.4) when in the ordered amplitude parton j is unresolved between an initial state

parton and a final state parton:

|Mm+3(1̂, 2̂, j, k, . . .)|2 (3.14)

The hat denotes the initial state partons. The singularities of j between initial state

parton 2̂ and final state parton k can be approximated by:

X2,jk|Mm+2(1̂, x2̂, J̃K, . . .)|2 (3.15)

where X2,jk is an initial-final antenna function that describes configurations (for

this colour-ordered amplitude) where parton j is unresolved. The mapping that

generates the new momenta J̃K and the fraction x will be discussed in 3.2.2. This

configuration is depicted in figure 3.2. The full subtraction term for the the initial-

final configuration reads:

dσS,(if) = N
∑
perns

dΦm+1(k1, . . . , km+1; p1, p2)
1

Sm+1

×
∑
j

X0
2,jk

∣∣∣Mm+2(k1, . . . , K̃JK , . . . , km+1; p1, xp2)
∣∣∣2 J (m)

m (k1, . . . , K̃JK , . . . , km+1)

(3.16)

Replacing 1 → 2 generates the subtraction term associated with singularities with

the other incoming parton.

The terms necessary to subtract singularities associated with coloured particles in

the initial state can then be simply obtained by crossing the corresponding antennae

for final state singularities. Due to the different kinematics involved, the factorisa-

tion of the phase space is slightly more involved and the corresponding phase space
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Figure 3.2: Antenna factorisation for the initial-final situation.

mappings are different. To cancel explicit infrared poles in virtual contributions and

in terms arising from parton distribution mass factorisation, the crossed antennae

must be integrated, analytically, over the corresponding phase space.

The tree antenna X0
i,jk, depending only on the original momenta pi, kj and kk,

contains all the configurations in which parton j becomes unresolved. The (m+ 2)-

parton amplitude depends only on redefined on-shell momenta k1, . . . , K̃JK , . . . , and

on the momentum fraction x.

The jet function, J
(m)
m , in (3.16) depends on the momenta kj and kk only through

K̃JK . Thus, provided a suitable factorisation of the phase space, one can perform

the integration of the antennae analytically. Due to the hard particle in the initial

state, the factorisation of phase space is not as straightforward as for final-final

antennae.

The phase space can be factorised as an m-parton phase space convoluted with

a two particle phase space [68]:

dΦm+1(k1, . . . , km+1; p1, p2) = dΦm(k1, . . . , K̃JK , . . . , km+1; p1, xp2)

× Q2

2π
dΦ2(kj, kk; p2, q)

dx

x
(3.17)

with Q2 = −q2 and q = kj + kk − p2. Replacing the phase space in (3.16), we

can explicitly carry out the integration of the antenna factors over the two particle

phase space. When combining the integrated subtraction terms with virtual contri-

butions and mass factorisation terms, it turns out to be convenient to normalise the
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Figure 3.3: Antenna factorisation for the initial-initial situation.

integrated antennae as follows

Xi,jk =
1

C(ε)

∫
dΦ2

Q2

2π
Xi,jk , (3.18)

where C(ε) is given in (3.11).

Antenna subtraction - initial-initial configuration

The last situation to be considered is when the two hard radiators are in the initial

state. The following colour ordered amplitude:

|M(1̂, j, 2̂, k, l, . . .)|2 (3.19)

has the singularities of j between initial state partons 1̂ and 2̂. These singularities

can be approximated by:

X12,j|M(x1p1, x2p2, k̃, l̃, . . .)|2 (3.20)

where X12,j is an initial-initial antenna function that describes configurations (for

this colour-ordered amplitude) where parton j is unresolved. The momentum frac-

tions x1 and x2 as well as the tilde momenta will be discussed in section 3.2.3. This

configuration is displayed in figure 3.3. The full subtraction term for the initial-

initial configuration can be written as:

dσS,(ii) = N
∑

perms

dΦm+1(k1, . . . , kj−1, kj, kj+1, . . . , km+1; p1, p2)
1

Sm+1∑
j

X0
12,j

∣∣∣Mm+2(k̃1, . . . , k̃j−1, k̃j+1, . . . , k̃m+1;x1p1, x2p2)
∣∣∣2

×J (m)
m (k̃1, . . . , k̃j−1, k̃j+1, . . . , k̃m+1) . (3.21)
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In order to fulfill overall momentum conservation all the momenta in the arguments

of the reduced matrix elements and the jet functions have been redefined. The

two hard radiators are simply rescaled by factors x1 and x2 respectively that we

will discuss in section 3.2.3. The spectator momenta are boosted by a Lorentz

transformation onto the new set of momenta {k̃l, l 6= j}.
The phase space factorises into the convolution of an m particle phase space,

involving only the redefined momenta, with the phase space of parton j [68]:

dΦm+1(k1, . . . , km+1; p1, p2) = dΦm(k̃1, . . . , k̃j−1, k̃j+1, . . . , k̃m+1;x1p1, x2p2)

×δ(x1 − x̂1) δ(x2 − x̂2) [dkj] dx1 dx2 . (3.22)

Inserting the factorised expression for the phase space measure in eq. (3.21), the

subtraction terms can be integrated over the antenna phase space. The integrated

form of the subtraction terms must be, then, combined with the virtual and mass

factorisation terms to cancel the explicit poles in ε. In the case of initial-initial

subtraction terms, the antenna phase space is trivial: the two remaining Dirac delta

functions can be combined with the one particle phase space, such that there are no

integrals left. We define the initial-initial integrated antenna functions as follows:

Xik,j(x1, x2) =
1

C(ε)

∫
[dkj]x1 x2 δ(x1 − x̂1) δ(x2 − x̂2)Xik,j (3.23)

where C(ε) is given in (3.11).

Antenna functions

In the previous subsections we have seen that the subtraction term is constructed

from products of antenna functions with reduced matrix elements (with fewer final

state partons than the original matrix element), and integrated over a phase space

which is factorised into an antenna phase space (involving all unresolved partons

and the two radiators) multiplied with a reduced phase space (where the momenta

of radiators and unresolved radiation are replaced by two redefined momenta). The

full subtraction term is obtained by summing over all antennae required for the

problem under consideration. In the most general case (two partons in the initial

state, and two or more hard partons in the final state), this sum includes final-final,
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initial-final and initial-initial antennae. We will see an example of this in section 3.3

when we compute the NLO corrections to the dijet cross section.

To conclude this section we will briefly review how to derive the antenna func-

tions.

Each antenna is determined by both the external state and the pair of hard

partons it collapses to. In general we denote the antenna function as X. For

antennae that collapse onto a hard quark-antiquark pair, X = A for qgq̄. Similarly,

for quark-gluon antenna, we have X = D for qgg and X = E for qq′q̄′ final states.

Finally, we characterise the gluon-gluon antennae as X = F for ggg, X = G for gqq̄

final states.

We are considering only tree level three-particle antennae involving only one un-

resolved parton which suffices at NLO. At NNLO we will need four-particle antennae

involving two unresolved partons and one-loop three-particle antennae.

In all cases antenna functions are derived from physical matrix elements: the

quark-antiquark antenna functions from γ∗ → qq̄ + (partons) [70], the quark-gluon

antenna functions from χ̃ → g̃ + (partons) [71] and the gluon-gluon antenna func-

tions from H → (partons) [72]. The tree-level antenna functions are obtained by

normalising the colour-ordered three- and four-parton tree-level squared matrix el-

ements to the squared matrix element for the basic two-parton process,

X0
ijk = Sijk,IK

|M0
ijk|2

|M0
IK |2

,

X0
ijkl = Sijkl,IL

|M0
ijkl|2

|M0
IL|2

, (3.24)

where S denotes the symmetry factor associated with the antenna, which accounts

both for potential identical particle symmetries and for the presence of more than

one antenna in the basic two-parton process.

3.2 Numerical implementation of NLO antenna

functions

In the colour-ordered quark-gluon and gluon-gluon antenna functions derived from

physical matrix elements for neutralino decay [71] and Higgs boson decay [72], it is
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in general not possible to identify the hard radiators and the unresolved partons in

a unique manner. The reason for this ambiguity is in the cyclic nature of the colour

orderings, which is already evident in the three-parton antenna functions: each pair

of two partons can in principle act as hard radiators, resulting in more than one

antenna configuration present in a single antenna function. This means that we

have to disentangle the multiple singularities of these antennae into sub-antennae

where an appropriate mapping can be used.

We will concentrate on the pure gluon channel and describe the numerical im-

plementation of the gluon-gluon antenna function with a pure gluonic final state

F 0
3 .

3.2.1 Final-Final emitters

The tree level three-parton antenna corresponding to the gluon-gluon-gluon final

state is [67]:

F 0
3 (1g, 2g, 3g) =

2

s2
123

(
s2

123s12

s13s23

+
s2

123s13

s12s23

+
s2

123s23

s12s13

+
s12s13

s23

+
s12s23

s13

+
s13s23

s12

+4s123 +O(ε)

)
(3.25)

where the invariant masses between final-state momenta are always defined with a

plus sign:

sij = (ki + kj)
2

The simple unresolved limits of F 0
3 (1, 2, 3) are:

1. Soft limits:

F 0
3 (1, 2, 3)

1g→0−→ S213 ,

F 0
3 (1, 2, 3)

2g→0−→ S123 ,

F 0
3 (1, 2, 3)

3g→0−→ S132 , (3.26)

2. Collinear limits:

F 0
3 (1, 2, 3)

1g‖2g−→ 1

s12

Pgg→G(z) ,
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F 0
3 (1, 2, 3)

1g‖3g−→ 1

s13

Pgg→G(z) ,

F 0
3 (1, 2, 3)

2g‖3g−→ 1

s23

Pgg→G(z) (3.27)

where the single eikonal factor Sijk and the splitting function Pgg→G(z) were defined

in (1.77) and (1.80) respectively. As can be seen from the pole structure, this

tree level antenna function contains three antenna configurations, corresponding to

the three possible configurations of emitting a gluon in between a gluon pair. We

decompose [67]:

F 0
3 (1, 2, 3) = f 0

3 (1, 3, 2) + f 0
3 (3, 2, 1) + f 0

3 (2, 1, 3) (3.28)

where:

f 0
3 (1, 3, 2) =

1

s2
123

(
2
s2

123s12

s13s23

+
s12s13

s23

+
s12s23

s13

+
8

3
s123 +O(ε)

)
(3.29)

This sub-antenna f 0
3 (i, j, k) has the full j soft limit and some of the i ‖ j and j ‖ k

limits of the full antenna (3.25), such that i and k can be identified as hard radiators.

Therefore this is the antenna we use in the numerical implementation with a unique

{3→2} momenta mapping: (i, j, k)→ ((ĩj), (j̃k)):

K̃µ
(IJ) = x kµi + r kµj + z kµk

K̃µ
(JK) = (1− x) kµi + (1− r) kµj + (1− z) kµk (3.30)

where:

x =
1

2(sij + sik)

[
(1 + ρ) sijk − 2 r sjk

]
z =

1

2(sjk + sik)

[
(1− ρ) sijk − 2 r sij

]

ρ2 = 1 +
4 r(1− r) sijsjk

sijksik
(3.31)

The parameter r can be chosen conveniently, we use [73,74]:

r =
sjk

sij + sjk
.



3.2. Numerical implementation of NLO antenna functions 64

This mapping implements momentum conservation K̃(IJ) + K̃(JK) = ki + kj + kk

and satisfies the following properties:

K̃2
(IJ) = 0 K̃2

(JK) = 0

K̃(IJ) → ki K̃(JK) → kk when j is soft

K̃(IJ) → ki + kj K̃(JK) → kk when i becomes collinear with j

K̃(IJ) → ki K̃(JK) → kj + kk when j becomes collinear with k

This guarantees proper subtraction of infrared singularities.

As it was mentioned in the description of the antenna formulation we also need

the analytic integral of the subtraction term to combine it with the virtual correc-

tions and obtain the cancellation of the singularities analytically. That necessarily

implies that we need the integrated form of the antenna over the antenna phase

space (final state kinematics) which has been calculated and documented in [67].

3.2.2 Initial-Final emitters

In this section we use invariant masses between a final state momentum and an

initial state momentum that we define with a minus sign:

sif = (pi − kf )2

The initial-final gluon-gluon-gluon antenna function like all NLO initial-final

antenna functions can be obtained by appropriate crossing of particles from the

final to the initial state [68]. Its unintegrated form can then be obtained from (3.25)

by making the replacements:

s23 → (k2 + k3)2

s12 → (p1 − k2)2

s13 → (p1 − k3)2

Q2 = s12 + s13 + s23

and it reads [68]:

F 0
3 (1̂g, 2g, 3g) =

1

2(Q2)2

(
8s2

12

s13

+
8s2

12

s23

+
8s2

13

s12

+
8s2

13

s23

+
8s2

23

s12

+
8s2

23

s13
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+
12s12s13

s23

+
12s23s13

s12

+
12s12s23

s13

+
4s3

12

s23s13

+
4s3

13

s23s12

+
4s3

23

s12s13

+24s23 + 24s12 + 24s13 +O(ε)

)
(3.32)

where the hat identifies the gluon crossed to the initial state. It is convenient to

decompose this antenna in the following way:

F 0
3 (1̂, 2, 3) = f 0

3 (1̂, 2, 3) + f 0
3 (1̂, 3, 2) (3.33)

where:

f 0
3 (1̂, 2, 3) =

1

2(Q2)2

(8s2
13

s12

+
8s2

23

s12

+
12s23s13

s12

+
4s3

13

s23s12

+
4s3

23

s12(s12 + s13)

+
8s2

13

s23

+
6s12s13

s23

+ 12s23 + 12s12 + 12s13 +O(ε)
)

This sub-antenna f 0
3 (1̂, j, k) has the full j soft limit, the full 1 ‖ j limit and some

of the j ‖ k limit of the full antenna (3.32), such that we can identify 1̂ as the initial

state radiator and k the final state radiator. To numerically implement this antenna

we use the following {3→2} mapping: (1̂, j, k)→ (ˆ̄1, (j̃k)) [68]:

p̄µ1 = x pµ1

K̃µ
(JK) = kµj + kµk − (1− x) pµ1 (3.34)

where the bar denotes a rescalling of the initial state parton and x is given by:

x =
s1j + s1k + sjk
s1j + s1k

(3.35)

Proper subtraction of infrared singularities requires that the momenta mapping

satisfies:

xp1 → p1 , K̃(JK) → kk when j becomes soft ,

xp1 → p1 , K̃(JK) → kj + kk when j becomes collinear with k ,

xp1 → p1 − kj , K̃(JK) → kk when j becomes collinear with 1̂ .

In this way, infrared singularities are subtracted locally, except for angular corre-

lations, before convoluting with the parton distributions. That is, matrix elements
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and subtraction terms are convoluted together with PDFs. In addition, the re-

defined momentum K̃(JK) must be on shell and momentum must be conserved,

p1 − kj − kk = xp1 − K̃(JK), for the phase space to factorise in (3.17).

The integrated form of the antenna (3.32) over the antenna phase space (initial

state kinematics) has been calculated and documented in [68].

3.2.3 Initial-Initial emitters

In this section the invariant mass between two initial state momenta is defined with

a plus sign:

s12 = (p1 + p2)2

The initial-initial gluon-gluon-gluon antenna function is obtained immediately

from the corresponding initial-final (3.32), but the Mandelstam invariants have to

be replaced by:

s12 → (p1 + p2)2

s13 → (p1 − k3)2

s23 → (p2 − k3)2

Q2 = s12 + s13 + s23

and it reads [68]:

F 0
3 (1̂, 2̂, 3) =

1

2(Q2)2

(
8s2

13

s23

+
8s2

13

s12

+
8s2

23

s13

+
8s2

23

s12

+
8s2

12

s13

+
8s2

12

s23

+
12s13s23

s12

+
12s12s23

s13

+
12s13s12

s23

+
4s3

13

s12s23

+
4s3

23

s12s13

+
4s3

12

s13s23

+24s12 + 24s13 + 24s23 +O(ε)

)
(3.36)

where the hat identifies the gluons crossed to the initial state.

In the antenna F 0
3 (1̂, 2̂, j) the only gluon that can be soft is j, because the initial

state gluons are not allowed to be soft by kinematics, and it can also be collinear with

the initial state gluons 1̂ or 2̂. This antenna can then be used with a single initial-

initial mapping where j is unresolved and 1 and 2 act as the initial state radiators and
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therefore does not need to be further decomposed in sub-antennae. The mapping

used in this configuration is the following {1̂, 2̂, j, ..., l,m, ...} → {ˆ̄1, ˆ̄2, ..., l̃, m̃, ...}
[68]:

p̄µ1 = x1 p
µ
1

p̄µ2 = x2 p
µ
2

...

k̃µl = kµl −
2kl · (q + q̃)

(q + q̃)2
(qµ + q̃µ) +

2kl · q
q2

q̃µ

...

qµ = pµ1 + pµ2 − kµj
q̃µ = p̄µ1 + p̄µ2 (3.37)

where the bar denotes rescaling of both the initial state partons and the tilde mo-

menta are all the momenta in the final that are not actually part of the antenna

but require boosting in order to restore momentum conservation. This is because

q̃ ≡ p̄1 + p̄2 lies along the beam axis but the vector component of q ≡ p1 + p2 − pj
is in general not along the beam axis. The x1 and x2 are given by [68]:

x1 =

√
s12 + s2j

s12 + s1j

√
s12 + s1j + s2j

s12

x2 =

√
s12 + s1j

s12 + s2j

√
s12 + s2j + s1j

s12

(3.38)

It yields the correct soft and collinear limits:

1. j soft: x1 → 1, x2 → 1.

2. kj = z1p1 ‖ p1: x1 = (1− z1), x2 = 1.

3. kj = z2p2 ‖ p2: x1 = 1, x2 = (1− z2).

It should be pointed out the transformation is not unique. Possible transforma-

tions are however strongly constrained. If one requires a symmetrical treatment of

x1 and x2, rotations are not allowed as transformation. To show that, we take pj

to be transverse to the beam axis. Bringing q to the beam axis with a rotation will

force us to choose to rotate ~q either towards the p1 or the p2 side. This would favor
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either x1 or x2. The only way to bring q to the beam axis, without having to choose

between x1 and x2 is in this case a boost transverse to the beam axis.

The integrated form of the antenna (3.36) over the antenna phase space (initial

state kinematics) has been calculated and documented in [68].

3.3 NLO real corrections to dijet production

We are now ready to implement the antennae functions as building blocks for sub-

traction at NLO. We consider the real radiative corrections to dijet production from

the pure gluon channel where the antennae decompositions of the previous sections

can be immediately applied. In this case the LO cross section is:

dσBLO = dΦ2(p3, p4; p1, p2)
1

2!

∑
colour
spin

|M0
gg→gg|2J (2)

2 (p3, p4) (3.39)

Using the colour ordered decomposition of section 1.7 we can rewrite it in the fol-

lowing form:

dσBLO = NBorndΦ2(p3, p4; p1, p2)
1

2!

∑
{2,...,4}′

A0
4(1̂g, σ(2̂)g, σ(i)g, σ(j)g) J

(2)
2 (pi, pj)

= NBorndΦ2(p3, p4; p1, p2)
1

2!

∑
P (i,j)∈(3,4)

(
2A0

4(1̂g, 2̂g, ig, jg)J
(2)
2 (pi, pj)

+A0
4(1̂g, ig, 2̂g, jg)J

(2)
2 (pi, pj)

)
(3.40)

where the {2, ..., 4}′ are the 3! permutations in the four gluon amplitude where

index 1̂ is kept fixed. In the second equality we reduced these to 2! using the

cyclic symmetry of the amplitudes A0
4. Finally the factor NBorn contains the sum

and average over spin and colour degrees of freedom for incoming and outgoing

particles, as well as the coupling constant, that appears at leading order:

NBorn =
N2(N2 − 1)

4(N2 − 1)2
g4 (3.41)

Using the same colour ordered decomposition of section 1.7 we can write the five

gluon real radiation cross section in the following form:

dσRNLO = N Nborn

(αs
2π

) C̄(ε)

C(ε)
dΦ3(p3, p4, p5; p1, p2)

2

3!
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∑
P (i,j,k)∈(3,4,5)

(
A0

5(1̂g, 2̂g, ig, jg, kg) J
(3)
2 (pi, pj, pk)

+A0
5(1̂g, ig, 2̂g, jg, kg) J

(3)
2 (pi, pj, pk)

)
(3.42)

With the help of the antennae functions defined in the previous sections we will now

write the subtraction term for the single unresolved configurations of the gg → ggg

matrix element of (3.42). The real radiation subtraction term reads:

dσSNLO = N Nborn

(αs
2π

) C̄(ε)

C(ε)
dΦ3(p3, p4, p5; p1, p2)

2

3!

∑
P (i,j,k)∈(3,4,5)

{
f 0

3 (2̂g, ig, jg)A
0
4(1̂g, ˆ̄2g, (ĩj)g, kg) J

(2)
2 (p̃ij, pk)

+f 0
3 (ig, jg, kg)A

0
4(1̂g, 2̂g, (ĩj)g, (j̃k)g) J

(2)
2 (p̃ij, p̃jk)

+f 0
3 (jg, kg, 1̂g)A

0
4(ˆ̄1g, 2̂g, ig, (k̃j)g) J

(2)
2 (pi, p̃kj)

+F 0
3 (1̂g, ig, 2̂g)A

0
4(ˆ̄1g, ˆ̄2g, j̃g, k̃g) J

(2)
2 (p̃j, p̃k)

+f 0
3 (2̂g, jg, kg)A

0
4(1̂g, ig, ˆ̄2g, (j̃k)g) J

(2)
2 (pi, p̃jk)

+f 0
3 (jg, kg, 1̂g)A

0
4(ˆ̄1g, ig, 2̂g, (k̃j)g) J

(2)
2 (pi, p̃kj)}

(3.43)

where we have used a combination of gluon-gluon-gluon antenna functions with two

emitters in the final state, initial state and one emitter in the final state and one

in the initial state. Each of these antennae has a reduced matrix element evaluated

with hard momenta given by the momentum mappings of the previous sections. The

total number of antenna functions used is equal to the total number of unresolved

particles in the final state per colour ordered amplitude.

This subtraction term has been checked with phase space trajectories generated

with RAMBO [75]. In each singular region the ratio of the matrix element with the

subtraction approaches unity.
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3.4 NLO virtual corrections to dijet production

The virtual contribution has the following form:

dσVNLO = dΦ2(p3, p4; p1, p2)
1

2!

∑
colour
spin

2 Re(M∗
LOM1-loop)J

(2)
2 (pi, pj)

= N Nborn

(αs
2π

)
dΦ2(p3, p4; p1, p2)

1

2!
2 Re

∑
{2,...,4}′

M∗
4,0(1̂g, σ(2̂)g, σ(i)g, σ(j)g)M4,1(1̂g, ˆσ(2)g, σ(i)g, σ(j)g)J

(2)
2 (pi, pj)

(3.44)

where M∗
4,0 and M4,1 are the four gluon tree and one-loop primitive amplitudes.

The singular part of the loop amplitude is given by [76]:

M4,1(1̂g, 2̂g, ig, jg) =
Γ(1− ε)2Γ(1 + ε)(4π)ε

Γ(1− 2ε)[
− 2

ε2
− 11

3ε
+

1

ε

(
ln

(
−s12

µ2

)
+ ln

(
−s2i

µ2

))]
M4,0(1̂g, 2̂g, ig, jg)

+O(ε0) (3.45)

Keeping only the divergent poles in 1/ε2 and 1/ε we can rewrite the virtual correction

in a more appropriate form to perform the analytic cancellation of the infrared

singularities:

dσVNLO =

= N NBorn

(αs
2π

)
dΦ2(p3, p4; p1, p2)

1

2!

Γ(1− ε)2Γ(1 + ε)(4π)ε

Γ(1− 2ε)

∑
P (i,j)∈(3,4)

2 Re

{
[
− 2

ε2
− 11

3ε
+

1

ε

(
ln

(
−s12

µ2

)
+ ln

(
−s2i

µ2

))]
2A0

4(1̂g, 2̂g, ig, jg)J
(2)
2 (pi, pj)

+

[
− 2

ε2
− 11

3ε
+

1

ε

(
ln

(
−s1i

µ2

)
+ ln

(
−s2i

µ2

))]
A0

4(1̂g, ig, 2̂g, jg)J
(2)
2 (pi, pj)

}
+O(ε0) (3.46)

Using the symmetry of the gluon phase space the 2! permutations precisely cancel

the identical particle factor of 1/2! and it is more convenient to keep one particular

ordering. The virtual contribution becomes:

dσVNLO = N NBorn

(αs
2π

)
dΦ2(p3, p4; p1, p2)

(4π)ε

Γ(1− ε)2 Re

{
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− 2

ε2
− 11

3ε
+

1

ε

(
ln

(
−s12

µ2

)
+ ln

(
−s23

µ2

))]
2A0

4(1̂g, 2̂g, 3g, 4g)J
(2)
2 (p3, p4)

+

[
− 2

ε2
− 11

3ε
+

1

ε

(
ln

(
−s13

µ2

)
+ ln

(
−s23

µ2

))]
A0

4(1̂g, 3g, 2̂g, 4g)J
(2)
2 (p3, p4)

}
+O(ε0) (3.47)

where we have used the identity:

Γ(1− ε)2Γ(1 + ε)

Γ(1− 2ε)
=

1

Γ(1− ε) +O(ε3) (3.48)

Introducing now the colour ordered infrared singularity operator:

I(1)
gg (sgg) = − eεγ

2Γ(1− ε)
[

1

ε2
+

11

6ε

]
Re

(
−sgg
µ2

)−ε
(3.49)

we can rewrite the virtual contribution as:

dσVNLO = N NBorn

(αs
2π

)
dΦ2(p3, p4; p1, p2)C̄(ε)2

{
[
I(1)
gg (s12) + I(1)

gg (s23) + I(1)
gg (s34) + I(1)

gg (s14)
]

2A0
4(1̂g, 2̂g, 3g, 4g)J

(2)
2 (p3, p4)

+
[
I(1)
gg (s13) + I(1)

gg (s23) + I(1)
gg (s24) + I(1)

gg (s14)
]
A0

4(1̂g, 3g, 2̂g, 4g)J
(2)
2 (p3, p4)

}
+O(ε0) (3.50)

3.5 Cancellation of infrared divergences

We will now collect the leading poles of the integrated antenna functions used to

write down the subtraction term dσS [67, 68]:

1

C(ε)

∫
dΦ123 f

0
3 (1, 2, 3) = −2I(1)

gg (s123) +O(ε0)

1

C(ε)

∫
dΦ1,23 f

0
3 (1̂, 2, 3) = −2I(1)

gg (Q2)δ(1− x)−
(
Q2

µ2

)−ε
1

2ε
p(0)
gg (x) +O(ε0)

1

C(ε)

∫
dΦ12,3 F

0
3 (1̂, 2̂, 3) = −I(1)

gg (Q2)δ(1− x1)δ(1− x2)− I(1)
gg (Q2)δ(1− x2)δ(1− x1)

−
(
Q2

µ2

)−ε
1

2ε
p(0)
gg (x1)δ(1− x2)−

(
Q2

µ2

)−ε
1

2ε
p(0)
gg (x2)δ(1− x1) +O(ε0)

where the colour ordered splitting kernel is:

p(0)
gg (x) =

11

6
δ(1− x) + 2D0(x) +

2

x
− 4 + 2x− 2x2 (3.51)
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and the distributions D0(x) were defined in (1.49). The analytic integration of the

subtraction term over the factorised phase space can be carried out using the pre-

vious results. Using the symmetry of the gluon phase space the 3! permutations in

(3.43) precisely cancels the identical particle factor of 1/3! and it is more convenient

to keep one particular ordering in (3.43). After relabeling the final state particles

we obtain the following for the poles of the integrated counterterm:∫
dσSNLO = N NBorn

(αs
2π

)
C̄(ε)2

{
dΦ2(p3, p4; p1, p2)2A

(0)
4 (1̂g, 2̂g, 3g, 4g)J

(2)
2 (p3, p4)[

−I(1)
gg (s23)− I(1)

gg (s34)− I(1)
gg (s14)− I(1)

gg (s12)
]

−dΦ2(p3, p4; p̄1, p2)2A
(0)
4 (ˆ̄1g, 2̂g, 3g, 4g)J

(2)
2 (p3, p4)

(
Q2

µ2

)−ε ∫
dx

x

1

2ε
p(0)
gg (x)

−dΦ2(p3, p4; p1, p̄2)2A
(0)
4 (1̂g, ˆ̄2g, 3g, 4g)J

(2)
2 (p3, p4)

(
Q2

µ2

)−ε ∫
dx

x

1

2ε
p(0)
gg (x)

+dΦ2(p3, p4; p1, p2)A
(0)
4 (1̂g, 3g, 2̂g, 4g)J

(2)
2 (p3, p4)[

−I(1)
gg (s24)− I(1)

gg (s14)− I(1)
gg (s13)− I(1)

gg (s23)
]

−dΦ2(p3, p4; p̄1, p2)A
(0)
4 (ˆ̄1g, 3g, 2̂g, 4g)J

(2)
2 (p3, p4)

(
Q2

µ2

)−ε ∫
dx

x

1

2ε
p(0)
gg (x)

−dΦ2(p3, p4; p1, p̄2)A
(0)
4 (1̂g, 3g, ˆ̄2g, 4g)J

(2)
2 (p3, p4)

(
Q2

µ2

)−ε ∫
dx

x

1

2ε
p(0)
gg (x)

(3.52)

The poles contained in the operator I(1)
gg match exactly the ones appearing with

opposite sign in the virtual contribution. The remaining poles correspond to the

mass factorisation contribution. The mass factorisation counterterm is given by [50]:

dσMF
NLO = −

(αs
2π

) 1

Γ(1− ε)
∫

dx1dx2 dσBLO(i, j; p̄1, p̄2)

{

δ(1− x2)

[
−1

ε

(
4πµ2

µ2
F

)ε
Np(0)

gg (x1) +Kgg
F.S.(x1)

]
+δ(1− x1)

[
−1

ε

(
4πµ2

µ2
F

)ε
Np(0)

gg (x2) +Kgg
F.S.(x2)

]}
(3.53)

where the actual form of the kernel Kgg
F.S.(x) specifies the factorisation scheme. Set-

ting Kgg
F.S.(x) = 0 defines the MS factorisation scheme. Introducing the expression
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Figure 3.4: (a) Single jet inclusive cross section at NLO compared to D0 data [77]

and (b) errors on extraction of αs at CDF [78].

for the born cross section (3.40) in the previous equation we achieve the cancellation

of the remaining collinear singularities in (3.52).

3.6 Beyond NLO

As we have argued in chapter 1 the inclusion of the NLO correction makes the QCD

prediction more accurate. This can be seen in figure 3.4(a) where a good agreement

(over 6 orders of magnitude) between NLO QCD and experimental data on the

single jet inclusive cross section is observed.

However, when using this data to determine the strong coupling constant αs,

it turns out that the dominant source of error in this extraction comes from the

unknown higher order corrections. Figure 3.4(b) shows the theoretical uncertainty

in the prediction in excess of the experimental errors. As a result, CDF find from

their Run I data

αs(MZ) = 0.1178± 0.0001(stat)+0.0081
−0.0095(sys) +0.0071

−0.0047(scale)± 0.0059(pdf).

To lower the theoretical error, it is mandatory to compute next-to-next-to-leading

order (NNLO) corrections to the single jet inclusive cross section.

Furthermore the high-ET jet data helps to constrain the gluon parton distribution

function at large values of x. However, as the truncated cross section depends on the
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(a) (b)

Figure 3.5: (a) Scale dependence of the jet cross section at ET = 70 GeV at the

Tevatron [79] and (b) total theoretical uncertainties at the LHC as a function of the

jet transverse momentum [80].

choice of scale, then, as the scale is varied, the parton distribution function will have

to change in order to be able to fit the data. Figure 3.5(a) shows that doing a fit

with a larger renormalisation scale causes the high-x gluon pdf to be larger since the

high-ET partonic cross section has decreased. Therefore the scale dependence of the

cross section makes a contribution to the pdf uncertainty. A better determination of

the gluon pdf, which requires all observables computed consistently at NNLO, can

then be used as a new input to improve the theoretical accuracy of any hadronic

scattering prediction such as the Higgs boson production.

Figure 3.5(b), taken from the CMS physics analysis summary [80], shows the dif-

ferent contributions to the total theoretical uncertainty at the LHC for the inclusive

jet cross section as a function of the jet transverse momentum.

It is hoped that the inclusion of the hitherto unknown NNLO contribution will

reduce the theoretical uncertainties. An example of this is given in Figure 3.6 that

shows, for the electroweak boson rapidity distribution, the excellent convergence of

the perturbative expansion when going from LO to NNLO and an increased stability

against scale variations.

At this order, the inclusion of initial state radiation (in figure 3.7) gives the final
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Figure 3.6: Electroweak rapidity gauge boson distributions at NNLO for the LHC.

The bands indicate the residual scale dependence [81].

state a transverse momentum kick. At LO the incoming particles have no transverse

momentum with respect to the beam such that the jets always appear back to back.

The effects of initial state radiation give a more complex final state and a more

theoretical accurate description of transverse momentum distributions.

Figure 3.7: Radiative corrections coming from the initial lines

Also at NNLO the reconstruction of the jets where up to two partons can cluster

to form a jet becomes more precise (figure 3.8). The additional radiation gives a

much more rich structure to the jet.

3.7 Summary

In this chapter we looked at the antenna subtraction method to perform calculations

at NLO. This formalism is completely general at this order in perturbation theory

for e+e−, ep and pp collisions for massless fermions [68]. In all cases it allows the

cancellation between real and virtual diverging pieces to be done analytically. An
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Figure 3.8: Jets modeled by extra partons at NNLO

extension to include massive fermions already appeared [69].

Also in this chapter we derived, as an example, an implementation of the method

for the NLO corrections to the dijet cross section. However we have seen that there

are strong arguments to extend this calculation to NNLO accuracy. This necessarily

implies the extension of the method to NNLO which is going to be the topic of the

next chapter.



Chapter 4

NNLO antenna subtraction

In this chapter we discuss the NNLO extension of the antenna subtraction method.

We begin by identifying the ingredients for the computation of a NNLO observable

and review the general subtraction formula at this order in section 4.1.

In section 4.2 we concentrate on the tree level double real subtraction term

that subtracts singularities corresponding to two partons becoming simultaneously

soft and/or collinear. In this derivation there are several configurations to consider

depending on the colour connection of the unresolved partons. It is very important

to understand this general formula as we will apply it in chapter 6 to build the NNLO

real corrections to gluon scattering, the dominant contribution for the two-jet cross

section at NNLO.

As we will see, subtraction terms for all these configurations can be constructed

using either single four-parton antenna functions or products of three-parton antenna

functions. The four-parton antenna functions are a new ingredient at NNLO. We

end the chapter discussing the numerical implementation of the gluon-gluon-gluon-

gluon antenna function F 0
4 for the three possible assignments of radiators: final-final,

initial-final and initial-initial.

4.1 NNLO general infrared subtraction term

There have been several approaches to build a general subtraction scheme at NNLO

[82–90]. We will follow the antenna subtraction method which was derived in [67].

77
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This formalism has been applied in the computation of NNLO corrections to three-

jet production in electron-positron annihilation [91–94] and related event shapes

[95–99], which were subsequently used in precision determinations of the strong

coupling constant [3, 100–103].

The aim of this thesis is to show that this method can also tackle computations

of NNLO processes with coloured particles in the initial-state, which is relevant for

both hadron-hadron or hadron-lepton colliders. We will concentrate on the double

real corrections within the pure gluon channel for the two-jet production at NNLO.

To achieve this we need a new ingredient - the 4-parton (or NNLO) F 0
4 antenna

function for the three possible assignments of radiators: final-final, initial-final and

initial-initial.

The unintegrated form of all NNLO antennae, derived from physical matrix ele-

ments, for the final-final configuration is documented in [67]. However, as we have

seen in the NLO example of the previous chapter, it is the inclusive integrated an-

tennae over the antenna phase space that explicitly cancels the singularities arising

from virtual contributions. Obtaining the analytic integration of all the NNLO an-

tennae functions is then crucial to establish the generality of the method at this

order. For the final-final configuration of radiators, reference [104] used a reduction

procedure based on methods developed for multi-loop integrals, to relate all anten-

nae integrals into four four-particle phase space master integrals. Their analytical

evaluation followed by direct analytic integration in closed form and by unitarity

relations between known multi-loop integrals and phase space integrals.

The results for these master integrals were also checked numerically with the

sector decomposition approach to the 1 → 4 particle phase space. We will look at

the sector decomposition method in the next chapter.

For the initial-final radiator configuration, we can obtain the unintegrated form

of all initial-final antennae by crossing particles to initial state in the corresponding

final-final antennae. These have to be analytically integrated over the appropri-

ate antenna phase-space (initial-state kinematics) and this was achieved recently

in [105]. These results can now be implemented in a parton-level event generator

programme and allow the full calculation of NNLO corrections to jet production
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A
(0)
6 (gg → gggg) A

(1)
5 (gg → ggg) A

(2)
4 (gg → gg)

Figure 4.1: Sample diagrams for matrix elements contributing to the dijet inclusive

rate at NNLO

observables in deeply inelastic electron-proton scattering.

For hadron-hadron scattering processes we still need initial-initial antennae func-

tions, which can again be obtained from the corresponding initial-final ones by

crossing. However the integrated initial-initial antenna functions are at the present

known only to NLO, and work on their integration at NNLO is ongoing. To proceed

we will now look now at the contributions that enter the NNLO corrections.

NNLO calculations for pp → m-jets require several ingredients: the two-loop

(m + 2)-parton matrix elements, the one-loop (m + 3)-parton matrix elements and

the tree level (m+ 4)-parton matrix elements:

σ̂NNLO ∼
∫ [〈M(0)|M(0)〉]

m+4
dΦm+2J

(m+2)
m

+

∫ [〈M(0)|M(1)〉+ 〈M(1)|M(0)〉]
m+3

dΦm+1J
(m+1)
m

+

∫ [〈M(1)|M(1)〉+ 〈M(0)|M(2)〉+ 〈M(2)|M(0)〉]
m+2

dΦmJ
(m)
m

where a sample diagram for each ingredient with m = 2 in the pure gluon channel is

given in figure 4.1. As usual the individual contributions in the (m+2), (m+3) and

(m+ 4)-parton channels are all separately divergent although their sum is finite.

In the 4-parton channel (or virtual-virtual channel), A
(2×0)
4 (gg → gg) represents

the interference between the tree level 2 → 2 matrix element with the two-loop

2 → 2 gluon matrix element. It was derived in [106, 107]. The remaining two-

loop matrix elements, for quark-quark and quark-gluon scattering, needed for the

NNLO contribution to inclusive jet production were obtained in [108–111]. This

contribution contains explicit infrared divergences coming from the integration over

the loop momentum. This singular behaviour is predictable with the Catani formula
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for the IR pole structure for a general on-shell QCD amplitude at two loop order

derived in [112]. Also the self interference of the one-loop A
(1×1)
4 (gg → gg) amplitude

contributes in the 4-parton channel and it was calculated in [113].

In the 5-parton channel (or real-virtual channel), A
(1×0)
5 (gg → ggg) is the in-

terference between the tree level 2 → 3 matrix element with the one-loop 2 → 3

matrix element. It was derived in [114]. This contribution contains explicit infrared

divergences coming from integrating over the loop momenta and implicit poles in

the regions of the phase space where 1 of the final state partons becomes unresolved.

This corresponds to the soft and collinear limits of the one-loop amplitude that were

analysed in [115,116].

Finally, in the 6-parton channel (or real-real channel), A
(0)
6 (gg → gggg) is the

2→ 4 tree level matrix element squared. It was derived in [25,27,28]. In this chan-

nel the singularities occur in the phase space regions corresponding to two gluons

becoming simultaneously soft and/or collinear. However this “double” unresolved

behaviour is universal and was discussed in section 1.8.

Understanding the origin of the singularities of the different contributions is

fundamental to constructing a subtraction procedure that can achieve their analytic

cancellation. In the antenna subtraction method we have the following general

formula for subtraction at NNLO [67]:

dσNNLO =

∫
dΦm+2

(
dσRNNLO − dσSNNLO

)
+

∫
dΦm+2

dσSNNLO

+

∫
dΦm+1

(
dσV,1NNLO − dσV S,1NNLO

)
+

∫
dΦm+1

dσV S,1NNLO

+

∫
dΦm

dσV,2NNLO (4.1)

where, for pp → m-jets, dσSNNLO denotes the real radiation subtraction term coin-

ciding with the (m+ 4)-parton tree level cross section dσRNNLO in all singular limits.

Likewise, dσV S,1NNLO is the one-loop virtual subtraction term coinciding with the one-

loop (m+3)-parton cross section dσV,1NNLO in all singular limits. Finally, the two-loop

correction to the (m+ 2)-parton cross section is denoted by dσV,2NNLO.

In chapter 6 we will give an explicit formula for dσSNNLO for gg → gggg and show

in chapter 7 that indeed the phase space singularities of the double real correction
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can be written in terms of antenna functions. In the next section we will show how

to derive the tree level double real radiation subtraction term dσSNNLO.

4.2 Tree level double real subtraction term dσSNNLO

Let us consider the construction of the subtraction term for the double radiation

contribution dσSNNLO, which shall correctly subtract all single and double unresolved

singularities contained in the (m+4)-parton real radiation contribution to m-jet final

states in pp collisions,

dσRNNLO = N
∑

perms

dΦm+2(k1, . . . , km+2; p1, p2)
1

Sm+2

× |Mm+4(k1, . . . , km+2; p1, p2)|2 J (m+2)
m (k1, . . . , km+2) . (4.2)

Single real radiation singularities correspond to one parton becoming soft or collinear,

while double real radiation singularities occur if two partons become soft or collinear

simultaneously. Singular terms in these limits can be identified by requiring a mini-

mum number of invariants tending to zero in a given kinematical configuration. This

number depends on the limit under consideration and follows from the phase space

volume available to a given configuration. A detailed discussion of the kinematical

definition of double unresolved limits was already given in section 1.8.

We must distinguish the following configurations according to the colour connec-

tion of the unresolved partons:

(a) One unresolved parton but the experimental observable selects only m jets.

(b) Two colour-connected unresolved partons (colour-connected).

(c) Two unresolved partons that are not colour connected but share a common

radiator (almost colour-unconnected).

(d) Two unresolved partons that are well separated from each other in the colour

chain (colour-unconnected).

For each configuration mentioned the subtraction formula has a characteristic

antenna structure. Therefore in the following subsections we will discuss the indi-

vidual formulae for each of the configurations (a) to (d).
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i j k Il L

Figure 4.2: Colour connection of the partons showing the parent and daughter

partons for the double unresolved antenna.

i j k l Im MK

Figure 4.3: Colour connection of the partons showing the parent and daughter

partons for two adjacent single unresolved antennae.

The first configuration was treated already in the context of antenna subtraction

at NLO in section 3.2. In the context of the construction of dσSNNLO, the same

single-particle subtraction terms can be used. These do however not yet guarantee

a finite (m+ 4)-parton contribution in all single unresolved regions for two reasons:

(1) while the jet function in dσSNLO ensured that the subtraction term is non-zero

only in the single unresolved limit it was constructed for, this is no longer the case

for single unresolved radiation at NNLO; (2) the subtraction terms for the remain-

ing three double unresolved configurations will in general be singular in the single

unresolved regions, where they do not match the matrix element. Both problems

will be addressed below.

The remaining three configurations (b)–(d) are illustrated in Figures 4.2, 4.3

and 4.4. The singular behaviour of the full (m+ 4)-parton matrix element in these

configurations is the product of double unresolved factors (see section 1.8) and re-

duced (m+2)-parton matrix elements. Subtraction terms for all these configurations

can be constructed using either single four-parton antenna functions or products of

two three-parton antenna functions. In all cases, attention has to be paid to the

matching of different double and single unresolved regions. This problem has been

addressed already in publications on subtraction at NNLO [70,82–84,117,118], the

most concise discussion can be found in [84].

In the following, we construct the subtraction terms for all four configurations.
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j k I Ki n o p N P

Figure 4.4: Colour connection of the partons showing the parent and daughter

partons for two disconnected single unresolved antennae.

4.2.1 Subtraction terms for single unresolved partons dσS,aNNLO

The starting point for the subtraction terms for single unresolved partons are the

NLO single unresolved antenna subtraction terms (3.8), (3.16), (3.21):

dσ
S,a,(ff)
NNLO = N

∑
perms

dΦm+2(k1, . . . , km+2; p1, p2)
1

Sm+2

×
[∑

j

X0
ijk |Mm+3(k1, . . . , K̃IJ , K̃JK , . . . , km+2; p1, p2)|2

J (m+1)
m (k1, . . . , K̃IJ , K̃JK , . . . , km+2)

]
,

(4.3)

dσ
S,a,(if)
NNLO = N

∑
perms

dΦm+2(k1, . . . , km+2; p1, p2)
1

Sm+2

×
[∑

j

X0
2,jk |Mm+3(k1, . . . , K̃JK , . . . , km+2; p1, xp2)|2

J (m+1)
m (k1, . . . , K̃JK , . . . , km+2)

]
, + (1↔ 2)

(4.4)

dσ
S,a,(ii)
NNLO = N

∑
perms

dΦm+2(k1, . . . , kj−1, kj, kj+1, . . . , km+2; p1, p2)
1

Sm+2

×
[∑

j

X0
12,j|Mm+3(k̃1, . . . , k̃j−1, k̃j+1, . . . , k̃m+2;x1p1, x2p2)|2

J (m+1)
m (k̃1, . . . , k̃j−1, k̃j+1, . . . , k̃m+2)

]
(4.5)

where the NLO jet function J
(m)
m is now replaced by J

(m+1)
m . The sum over j is the

sum over all unresolved partons in a colour ordered amplitude between radiators i

and k which can be both located in the final state (4.3), i in the initial state and k
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in the final state (4.4) or both in the initial state (4.5). Their position defines the

type of the three-parton antenna which is used Xijk, Xi,jk or Xij,k respectively and

the mapping used to generate the momenta in the reduced colour ordered amplitude

|Mm+3|2.

When j is unresolved, dσS,aNNLO coincides with the matrix element (4.2). However

at NNLO the jet function J
(m+1)
m allows one of the (m + 1) momenta to become

unresolved while at NLO J
(m)
m required all m momenta to be hard. In this limit

dσS,aNNLO does not coincide with the matrix element (4.2). We distinguish two cases:

(1) when one of the new momenta, K̃IJ or K̃JK , becomes unresolved and case (2)

where any other momentum ko or k̃o becomes unresolved.

Case (1) is necessarily a double unresolved limit since the new momenta K̃IJ ,

K̃JK , are linear combinations of two momenta and we discuss it below.

In case (2) dσS,aNNLO becomes singular as ko or k̃o become unresolved and it does

not coincide with the limit of the full (m + 4)-parton matrix element. However if

we take this limit we find that dσS,aNNLO collapses into the product of two almost

colour-connected or colour-unconnected antenna functions with reduced (m + 2)-

parton matrix element which coincide with the structures (c) and (d) that we will

define below. This means that this spurious limit cancels exactly against dσS,cNNLO

and dσS,dNNLO.

For the double unresolved limits we have on the one hand the limit where one of

the new momenta K̃IJ , K̃JK , is unresolved, or the colour-neighbouring limit, where

two pairs of momenta become independently collinear but one pair lies inside the

antenna while the other pair consists of the remaining antenna momentum and its

colour-connected neighbour. Each of these appears twice in the sum over j giving

the two possibilities of attributing the inside/outside pair. These spurious limits

will cancel exactly against similar terms that also appear twice in the structure

(b) of dσS,bNNLO that we will define below. Any other colour connected unresolved

configuration vanishes.

On the other hand, double unresolved limits involving kj and any other mo-

menta ko in the reduced matrix element that are almost colour connected or colour

unconnected are not vanishing in dσS,aNNLO. In fact they yield twice these double
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unresolved limits of the (m+4)-parton matrix element because the role of kj and ko

can be interchanged and having j = o in the sum results in two identical terms con-

tributing to the same limit. The formulas for dσS,cNNLO and dσS,dNNLO will be defined

to compensate this oversubtraction.

The analytic integration of this piece proceeds by using the formulas for the

phase space factorisations given in section 3.2 with the results for the integrated

antennae at NLO.

4.2.2 Subtraction terms for two colour-connected unresolved

partons dσS,bNNLO

When two unresolved partons j and k are adjacent, we construct the subtraction

term starting from the four-particle tree-level antennae Xijkl, Xi,jkl, Xil,jk. By con-

struction they contain all colour connected double unresolved limits of the (m+ 4)-

parton matrix element associated with partons j and k unresolved between radiators

i and l. However this antenna can also become singular in single unresolved limits

associated with j or k where it does not coincide with limits of the matrix element.

To ensure a finite subtraction term in all these single unresolved limits, we therefore

subtract the appropriate limits of the four-particle tree antennae, which are prod-

ucts of two tree-level three-particle antennae, such that the colour-connected double

subtraction term reads:

dσ
S,b,(ff)
NNLO = N

∑
perms

dΦm+2(k1, . . . , km+2; p1, p2)
1

Sm+2

×
[∑

jk

(
X0
ijkl −X0

ijkX
0
IKl −X0

jklX
0
iJL

)
|Mm+2(k1, . . . , K̃IJK , K̃LKJ , . . . , km+2; p1, p2)|2

J (m)
m (k1, . . . , K̃IJK , K̃LKJ , . . . , km+2)

]
, (4.6)

dσ
S,b,(if)
NNLO = N

∑
perms

dΦm+2(k1, . . . , km+2; p1, p2)
1

Sm+2

×
[∑

jk

(
X0

2,jkl −X0
2,jkX

0
2̄,Kl −X0

jklX
0
2,JL

)
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|Mm+2(k1, . . . , KJKL, . . . , km+2; p1, xp2)|2

J (m)
m (k1, . . . , KJKL, . . . , km+2) + (1↔ 2)

]
, (4.7)

dσ
S,b,(ii)
NNLO = N

∑
perms

dΦm+2(k1, . . . , kj, kl, . . . , km+2; p1, p2)
1

Sm+2

×
[∑

jk

(
X0

12,jk −X0
2,jkX

0
12̄,K −X0

1,kjX
0
1̄2,J

)
|Mm+2(k̃1, . . . , k̃j−1, k̃k+1, . . . , k̃m+2;x1p1, x2p2)|2

J (m)
m (k̃1, . . . , k̃j−1, k̃k+1, . . . , k̃m+2)

]
(4.8)

where the sum runs over all colour-adjacent pairs j, k and implies the appropriate

selection of hard momenta i, l which as usual have three possible assignments of

radiators. In all cases the (m + 2)-parton matrix element is evaluated with new

on-shell momenta given by a momentum mapping that we will discuss in section 4.3

when we describe the numerical implementation of this formula.

The products of three-parton antenna functions in dσS,bNNLO subtract the singular

limits of the associated four parton antenna and each contribute equally in the

colour-neighbouring configuration and spurious limits of dσS,aNNLO discussed in the

previous section. In all genuinely colour-connected limits, the four-parton antenna

functions correctly match the singular structure of the (m+4)-parton matrix element

(4.2). Singularities in the (m+ 2)-parton matrix element itself are forbidden by the

jet function.

The analytic integration of this counterterm follows from the antenna factorisa-

tion of both the squared matrix elements and the (m + 2)-particle phase space in

figures 4.5, 4.6, 4.7.

The factorisation of the phase space reads for final-final, initial-final and initial-

initial respectively:

dΦm+2(k1, . . . , km+2; p1, p2) = dΦm(k1, . . . , K̃IJK , K̃LKJ , . . . , km+2; p1, p2)

× dΦXijkl(ki, kj, kk, kl; K̃IJK + K̃LKJ) , (4.9)

dΦm+2(k1, . . . , km+2; p1, p2) = dΦm(k1, . . . , KJKL, . . . , km+2; p1, xp2)
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Figure 4.5: Illustration of NNLO antenna factorisation representing the factorisation

of both the squared matrix elements and the (m+ 2)-particle phase space when the

unresolved particles are colour connected between two final state radiators.
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j
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Figure 4.6: Illustration of NNLO antenna factorisation representing the factorisation

of both the squared matrix elements and the (m+ 2)-particle phase space when the

unresolved particles are colour connected between and initial state i and a final state

l radiator.

× Q2

2π
dΦ3(kj, kk, kl; p2, q)

dx

x
, (4.10)

dΦm+2(k1, . . . , km+2; p1, p2) = dΦm(k̃1, . . . , k̃j−1, k̃k+1, . . . , k̃m+2;x1p1, x2p2)

×δ(x1 − x̂1) δ(x2 − x̂2) [dkj][dkk] dx1 dx2 ,(4.11)

where in (4.10) Q2 = −q2, q = kj + kk + kl − p2. A similar factorisation holds with

(1 ↔ 2) for initial state singularities with parton 1. Using (4.9), (4.10), (4.11) we

can rewrite each of the genuine four-particle subtraction terms in the form,

|Mm+2|2 J (m)
m dΦm

∫
dΦXijkl X

0
ijkl, (4.12)



4.2. Tree level double real subtraction term dσSNNLO 88

1

2

j
x 

x 2

1

2

j

k

k

1

2

x 1

x 22

1

1

Figure 4.7: Illustration of NNLO antenna factorisation representing the factorisation

of both the squared matrix elements and the (m+ 2)-particle phase space when the

unresolved particles are colour connected between two initial state radiators.

|Mm+2|2 J (m)
m dΦm

∫
Q2

2π
dΦ3(kj, kk, kl; p, q) X

0
i,jkl

dx

x
, (4.13)

|Mm+2|2 J (m)
m dΦm

∫
[dkj][dkk]δ(x1 − x̂1) δ(x2 − x̂2) X0

il,jkdx1 dx2 (4.14)

The antennae integrals can be worked out separately once and for all to become

universal building blocks for subtraction at NNLO. The integrated antenna is the

antenna function integrated over the fully inclusive antenna phase space including

a normalisation factor to account for powers of the QCD coupling constant,

X 0
ijkl =

1

[C(ε)]2

∫
dΦXijkl X

0
ijkl (4.15)

X 0
i,jkl =

1

[C(ε)]2

∫
dΦ3

Q2

2π
X0
i,jkl (4.16)

X 0
il,jk =

1

[C(ε)]2

∫
[dkj][dkk] x1 x2 δ(x1 − x̂1) δ(x2 − x̂2)X0

il,jk (4.17)

where C(ε) is given in (3.11). These integrations are performed analytically in d

dimensions to make the infrared singularities explicit. Using the techniques in [104]

all integrated antennae in (4.15) were obtained and are documented in [67]. Also

all integrated antennae of (4.16) were computed recently in [105,119]. The remain-

ing integrals in (4.17) are the presently unknown NNLO initial-initial integrated

antennae functions. Work on their analytic evaluation is underway [120].
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4.2.3 Subtraction terms for two almost colour-unconnected

unresolved partons dσS,cNNLO

There are double unresolved configurations where the unresolved partons are sepa-

rated by a hard radiator parton, for example, i, j, k, l,m where j and l are unresolved.

In this case we take the strongly ordered approach where i, j, k form an antenna with

hard partons I and K yielding an ordered amplitude involving I,K, l,m. As usual,

the momenta of the hard radiator partons I and K are constructed from ki, kj, kk.

The cases where l is unresolved are then treated using an antenna K, l,m with hard

partons K and M . The momenta of the hard radiator partons K and M are made

from K̃JK , kl, km. The other case where first k, l,m form an antenna followed by

i, j,K is also included.

In this configuration there is a common radiator that can be in the final or the

initial state. The subtraction term for the almost colour-connected configuration

reads:

dσ
S,c,(ff)
NNLO = −N

∑
perms

dΦm+2(k1, . . . , km+2; p1, p2)
1

Sm+2

×
[∑

j,l

X0
ijk x

0
mlK |Mm+2(k1, . . . , K̃IJ ,

˜̃K(JK)L,
˜̃K(LM), . . . , km+2)|2

J (m)
m (k1, . . . , K̃IJ ,

˜̃K(JK)L,
˜̃K(LM), . . . , km+2)

+
∑
j,l

X0
klm x0

ijK |Mm+2(k1, . . . ,
˜̃K(IJ),

˜̃K(KL)J , K̃LM , . . . , km+2)|2

J (m)
m (k1, . . . ,

˜̃K(IJ),
˜̃K(KL)J , K̃LM , . . . , km+2)

]
, (4.18)

dσ
S,c1,(if)
NNLO = −N

∑
perms

dΦm+2(k1, . . . , km+2; p1, p2)
1

Sm+2

×
[∑

j,l

X0
2,jk x

0
mlK |Mm+2(k1, . . . ,

˜̃K(KJ)L, K̃LM , . . . , km+2; p1, xp2)|2

J (m)
m (k1, . . . ,

˜̃K(KJ)L, K̃LM , . . . , km+2)

+
∑
j,l

X0
klm x0

2,jK |Mm+2(k1, . . . ,
˜̃K(KL)J , K̃LM , . . . , km+2; p1, xp2)|2
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J (m)
m (k1, . . . ,

˜̃K(KL)J , K̃LM , . . . , km+2)

]
+ (1↔ 2)

, (4.19)

dσ
S,c2,(if)
NNLO = −N

∑
perms

dΦm+2(k1, . . . , km+2; p1, p2)
1

Sm+2

×
[∑

j,l

X0
2,jk x

0
2̄,lm |Mm+2(k1, . . . , K̃JK , K̃LM , . . . , km+2; p1, xx

′
p2)|2

J (m)
m (k1, . . . , K̃JK , K̃LM , . . . , km+2)

+
∑
j,l

X0
2,lm x0

2̄,jk |Mm+2(k1, . . . , K̃LM , K̃JK , . . . , km+2; p1, xx
′
p2)|2

×J (m)
m (k1, . . . , K̃LM , K̃JK , . . . , km+2)

]
+ (1↔ 2)

, (4.20)

dσ
S,c,(ii)
NNLO = −N

∑
perms

dΦm+2(k1, . . . , km+2; p1, p2)
1

Sm+2

×
[∑

j,l

X0
2,jk x

0
2̄1,l |Mm+2(k̃1, . . . , k̃j−1, k̃l+1, . . . , k̃m+2;x

′

1p1, x
′

2x2p2)|2

×J (m)
m (k̃1, . . . , k̃j−1, k̃l+1, . . . , k̃m+2)

+
∑
j,l

X0
21,l x

0
2̄,jk |Mm+2(k̃1, . . . , k̃j−1, k̃l+1, . . . , k̃m+2;x1p1, x2x

′

2p2)|2

×J (m)
m (k̃1, . . . , k̃j−1, k̃l+1, . . . , k̃m+2)

]
+ (1↔ 2)

, (4.21)

where x0
mlK denotes a sub-antenna, that contains only the collinear limit of m with

l, but not the collinear limit of l with K. In the soft limit of l, this sub-antenna

yields half the soft eikonal factor. (4.19) applies if the common radiator is in the

final state, while (4.20) applies if the common radiator is in the initial state.

In the almost colour connected configuration dσS,cNNLO yields minus the double

unresolved limit of the matrix element and therefore cancels the oversubtraction of

dσS,aNNLO in the same configuration. In the single unresolved limits when either j or

l is unresolved dσS,cNNLO exactly cancels the spurious single unresolved singularities
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encountered in dσS,aNNLO for the configuration of an unresolved momentum po in the

(m+ 3)-parton matrix element.

To obtain the integrated form of this counterterm we exploit the factorisation of

the (m + 2)-parton phase space into a m-parton phase space and the phase space

for the product of the two antennae.

4.2.4 Subtraction terms for two colour-unconnected unre-

solved partons dσS,dNNLO

When two unresolved partons j and o are completely disconnected i,j,k,. . .,n,o,p the

(m+4)-parton matrix element factorises into the product of two uncorrelated single

unresolved factors with a reduced (m+ 2)-parton matrix element. The subtraction

for the colour-unconnected configuration reads:

dσ
S,d,(ff)
NNLO = −N

∑
perms

dΦm+2(k1, . . . , km+2; p1, p2)
1

Sm+2

×
[∑

j,o

X0
ijk X

0
nop |Mm+2(k1, . . . , K̃IJ , K̃JK , . . . , K̃NO, K̃OP , . . . , km+2)|2

× J (m)
m (k1, . . . , K̃IJ , K̃JK , . . . , K̃NO, K̃OP , . . . , km+2)

]
, (4.22)

dσ
S,d,(if)
NNLO = −N

∑
perms

dΦm+2(k1, . . . , km+2; p1, p2)
1

Sm+2

[∑
j,o

X0
2,jk X

0
nop

× |Mm+2(k1, . . . , K̃JK , . . . , K̃NO, K̃OP , . . . , km+2; p1, xp2)|2

× J (m)
m (k1, . . . , K̃JK , . . . , K̃NO, K̃OP , . . . , km+2)

]
+ (1↔ 2) ,

(4.23)

dσ
S,d1,(ii)
NNLO = −N

∑
perms

dΦm+2(k1, . . . , km+2; p1, p2)
1

Sm+2

[∑
j,o

X0
1,jk X

0
2,op

× |Mm+2(k1, . . . , K̃JK , . . . , K̃OP , . . . , km+2;x1p1, x2p2)|2

× J (m)
m (k1, . . . , K̃JK , . . . , K̃OP , . . . , km+2)

]
, (4.24)

dσ
S,d2,(ii)
NNLO = −N

∑
perms

dΦm+2(k1, . . . , km+2; p1, p2)
1

Sm+2

[∑
j,o

X0
12,j X

0
nop
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× |Mm+2(k̃1, . . . , k̃j−1, k̃j+1, . . . , k̃NO, k̃OP , . . . , k̃m+2;x1p1, x2p2)|2

× J (m)
m (k1, . . . , k̃j−1, k̃j+1, . . . , k̃NO, k̃OP , . . . , k̃m+2)

]
, (4.25)

where the summation over o is such that it only includes two antenna configurations

with no common momenta. The nature of the radiator pairs i,k and n,p defines the

formula to be used.

In the colour unconnected configuration dσS,dNNLO yields minus the double un-

resolved limit of the matrix element and therefore cancels the oversubtraction of

dσS,aNNLO in the same configuration. In the single unresolved limits when either j or

o is unresolved dσS,dNNLO exactly cancels the spurious single unresolved singularities

encountered in dσS,aNNLO for the configuration of an unresolved momentum in the

(m+ 3)-parton matrix element.

To obtain the integrated form of this counterterm we exploit the factorisation of

the (m + 2)-parton phase space into a m-parton phase space and the phase space

for the product of the two antennae.

4.2.5 Subtraction terms for large angle soft emission

It was shown in [93, 94] that the previous antenna subtraction terms result in an

oversubtraction of large-angle soft gluon radiation. If we take a single soft gluon limit

j → 0 of the formulae of the previous sections we obtain the following contributions.

final-final:

Xilk |Mm+2(k1, . . . , K̃IL, K̃LK , . . . , km+2; p1, p2)|2 ×
(−S(il)j(lk) + Sijk + Shj(il) − Shji + S(lk)jm − Skjm) (4.26)

final-initial:

X2,lk |Mm+2(k1, . . . , kj−1, kj+1, . . . , K̃LK , . . . , km+2; p1, xp2)|2 ×
(−S2̄j(lk) + S2jk + Shj2̄ − Shj2 + S(lk)jm − Skjm) + (1↔ 2) (4.27)

initial-initial:

X12,l |Mm+2(k̃1, . . . , k̃j−1, k̃j+1, . . . , k̃k−1, k̃k+1, . . . , k̃m+2;x1p1, x2p2)|2 ×
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(−S1̄j2̄ + S1j2 + Shj1̄ − Shj1 + S2̄jm − S2jm) (4.28)

where

Sabc = 2
sac
sabsbc

(4.29)

are eikonal factors related with the remnant soft behaviour of the phase space map-

pings. To account for this large angle soft radiation, a new subtraction term dσANNLO

is introduced and added to the (m+ 4)-parton piece dσSNNLO:

dσ
A,(ff)
NNLO = X(ij)l(jk)|Mm+2(k1, . . . ,

˜̃K(IJ)L,
˜̃K(JK)L, . . . km+2; p1, p2)|2 ×

(S((ij)l)j((jk)l) − S(ij)j(jk) − Shj((ij)l) + Shj(ij) − S((jk)l)jm + S(jk)jm) (4.30)

dσ
A,(if)
NNLO = X2̄,l(jk)|Mm+2(k1, . . . , kj−1, kj+1, . . . ,

˜̃K(JK)L, . . . km+2; p1, xx
′
p2)|2 ×

(S¯̄2j((jk)l) − S2̄j(jk) − Shj¯̄2 + Shj2̄ − S((jk)l)jm + S(jk)jm) + (1↔ 2) (4.31)

dσ
A,(ii)
NNLO = X1̄2̄,l|Mm+2 (̃̃k1, . . . ,

˜̃kj−1,
˜̃kj+1, . . . ,

˜̃kk−1,
˜̃kk+1, . . . ,

˜̃km+2;x1x
′

1p1, x2x
′

2p2)|2 ×
(S¯̄1j̃¯̄2 − S1̄j2̄ − Shj̃¯̄1 + Shj1̄ − S¯̄2j̃m + S2̄jm) (4.32)

These large-angle soft subtraction terms dσANNLO contains soft antenna functions

of the form Sajc which is simply the eikonal factor for a soft gluon j emitted between

hard partons a and c, that precisely cancels the behaviour in (4.26), (4.27), (4.28).

Those soft factors are associated with an antenna phase space mapping (i, j, k) →
(IJ, JK) (final-final), (p, j, k) → (xp, JK) (initial-final), (p1, p2, j) → (x1p1, x2p2)

(initial-initial). The hard momenta a, c do not need to be equal to the hard momenta

i, k in the antenna phase space - they can be arbitrary on-shell momenta. In the l

soft limit the eikonal factors cancel between each other in (4.30), (4.31), (4.32) such

that no new spurious limits are introduced.

Once this terms is included in dσSNNLO the subtraction term for the (m + 4)-

parton matrix element becomes finite in the single soft limit.

4.2.6 Correction terms in the m-jet region

The full double radiation subtraction term is given as sum of all subtraction terms

constructed above:

dσSNNLO = dσS,aNNLO + dσS,bNNLO + dσS,cNNLO + dσS,dNNLO + dσANNLO . (4.33)
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As outlined in the previous subsections, this subtraction term correctly approximates

the (m + 4)-parton matrix element contribution to m-jet final states as defined in

(4.2) in all double and single unresolved regions. Although individual terms in (4.33)

contain spurious singularities in these limits, they cancel among each other in the

sum.

The integrated form of (a) corresponds to an (m+3)-parton configuration, while

the integrated forms of (b), (c) and (d) are either (m+ 3)-parton or (m+ 2)-parton

configurations (for all but the four-parton antenna terms in (b), we can actually

choose which type of configuration we want to integrate). They are added with the

two-loop (m + 2)-parton and the one-loop (m + 3)-parton contributions to m-jet

final states to yield an integrand free of explicit infrared poles.

4.3 Numerical implementation of NNLO antenna

functions

Having looked at the general formula for the double real radiation piece it is impor-

tant to discuss its numerical implementation and to do so, we focus on a specific

example. If we concentrate on the pure gluon channel contributing to the two-jet

cross section we find that the four gluon antenna F 0
4 (given in the appendix B.1) is

the genuinely new ingredient at NNLO. In F 0
4 , derived from H → gggg, the gluonic

emissions are colour ordered. The colour structure is a trace over the gluon indices

and F 0
4 is symmetric under cyclic interchanges of momenta. We will take this into

account when we discuss the numerical implementation of F 0
4 for the final-final,

initial-final and initial-initial arrangements of radiators.

4.3.1 Final-Final emitters

The decomposition of F 0
4 (1g, 2g, 3g, 4g) is needed since any pair of two gluons can

become soft. Its unintegrated and integrated form has been written down in [67].

In the case of the final-final configuration, this antenna has all the partons in the

final state and can be used to subtract double unresolved final state singularities
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of colour ordered matrix elements when the unresolved gluons are colour connected

between two final state gluons. We consider eight different mappings to achieve the

decomposition:

(a): (1, 2, 3, 4)→ (1̃23, 4̃32) , (b): (1, 2, 4, 3)→ (1̃24, 3̃42) ,

(c): (1, 4, 3, 2)→ (1̃43, 2̃34) , (d): (1, 4, 2, 3)→ (1̃42, 3̃24) ,

(e): (2, 3, 1, 4)→ (2̃31, 4̃13) , (f): (2, 1, 4, 3)→ (2̃14, 3̃41) ,

(g): (4, 3, 1, 2)→ (4̃31, 2̃13) , (h): (4, 1, 2, 3)→ (4̃12, 3̃21) (4.34)

In each mapping of the type {pi1 , pi2 , pi3 , pi4} → {p̃i1i2i3 , p̃i4i3i2} partons i2 and

i3 become unresolved and i1 and i4 are the hard radiators. The new momenta are

given by:

p̃(i1i2i3) = x pi1 + r1 pi2 + r2 pi3 + z pi4

p̃(i4i3i2) = (1− x) pi1 + (1− r1) pi2 + (1− r2) pi3 + (1− z) pi4 . (4.35)

Defining skl = (pik + pil)
2, the coefficients are given by [117]:

r1 =
s23 + s24

s12 + s23 + s24

r2 =
s34

s13 + s23 + s34

x =
1

2(s12 + s13 + s14)

[
(1 + ρ) s1234

−r1 (s23 + 2 s24)− r2 (s23 + 2 s34)

+(r1 − r2)
s12s34 − s13s24

s14

]
z =

1

2(s14 + s24 + s34)

[
(1− ρ) s1234

−r1 (s23 + 2 s12)− r2 (s23 + 2 s13)

−(r1 − r2)
s12s34 − s13s24

s14

]
ρ =

[
1 +

(r1 − r2)2

s2
14 s

2
1234

λ(s12 s34, s14 s23, s13 s24)

+
1

s14 s1234

{
2
(
r1 (1− r2) + r2(1− r1)

)(
s12s34 + s13s24 − s23s14

)
+ 4 r1 (1− r1) s12s24 + 4 r2 (1− r2) s13s34

}] 1
2
,

λ(u, v, w) = u2 + v2 + w2 − 2(uv + uw + vw) .
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This mapping smoothly interpolates all colour connected double unresolved singu-

larities. It satisfies the following properties:

p̃(i1i2i3) → pi1 p̃(i4i3i2) → pi4 when i2, i3 → 0

p̃(i1i2i3) → pi1 + pi2 + pi3 p̃(i4i3i2) → pi4 when i1//i2//i3

p̃(i1i2i3) → pi1 p̃(i4i3i2) → pi4 + pi3 + pi2 when i2//i3//i4

p̃(i1i2i3) → pi1 p̃(i4i3i2) → pi4 + pi3 when i2 → 0 + i3//i4

p̃(i1i2i3) → pi1 + pi2 p̃(i4i3i2) → pi2 when i3 → 0 + i1//i2

p̃(i1i2i3) → pi1 + pi2 p̃(i4i3i2) → pi3 + pi4 when i1//i2 + i3//i4

(4.36)

Moreover in single unresolved limits it collapses into an NLO mapping allowing the

subtraction of single unresolved limits of F 0
4 (1g, 2g, 3g, 4g) with products of three

parton antenna functions as in equation (4.6).

The task left now is to disentangle the various double and single unresolved limits

of the full antenna F 0
4 (1g, 2g, 3g, 4g) into eight sub-antennae such that each sub-

antenna (a),(b),...,(h) contains only those singularities appropriate to the mapping

(a),(b),...,(h).

These numerous double and single unresolved limits can be disentangled very

elegantly by repeatedly exploiting the N = 1 supersymmetry relation [31] among

the different triple collinear splitting functions [31–34,121,122]. Using this relation,

one can show that the following left-over combination is finite in all single unresolved

and double unresolved limits:

F 0
4,l(1, 2, 3, 4) = F 0

4 (1, 2, 3, 4)−[
D0

4(1, 2, 3, 4) +D0
4(2, 3, 4, 1) +D0

4(3, 4, 1, 2) +D0
4(4, 1, 2, 3)

−A0
4(1, 2, 3, 4)− A0

4(2, 3, 4, 1)− A0
4(3, 4, 1, 2)− A0

4(4, 1, 2, 3)

−Ã0
4(1, 2, 4, 3)− Ã0

4(2, 3, 1, 4) +H0
4 (2, 1, 4, 3) +H0

4 (4, 1, 2, 3)

+A0
3(4, 1, 2) J0

3 ((̃12), 3, (̃14)) + A0
3(1, 2, 3) J0

3 ((̃12), (̃23), 4)

+A0
3(2, 3, 4) J0

3 (1, (̃23), (̃34)) + A0
3(3, 4, 1) J0

3 ((̃14), 2, (̃34))

+
1

2
G0

3(4, 1, 2)K0
3((̃12), (̃14), 3) +

1

2
G0

3(1, 2, 3)K0
3((̃23), (̃12), 4)
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+
1

2
G0

3(2, 3, 4)K0
3((̃34), (̃23), 1) +

1

2
G0

3(3, 4, 1)K0
3((̃14), (̃34), 2)

+
1

2
G0

3(2, 1, 4)K0
3((̃14), (̃12), 3) +

1

2
G0

3(3, 1, 2)K0
3((̃12), (̃23), 4)

+
1

2
G0

3(4, 3, 2)K0
3((̃23), (̃34), 1) +

1

2
G0

3(1, 4, 3)K0
3((̃34), (̃14), 2)

]
(4.37)

where J0
3 and K0

3 are useful combinations of the following three parton antenna

functions:

J0
3 (1, 2, 3) = F 0

3 (1, 2, 3) + A0
3(3, 1, 2) + A0

3(1, 2, 3) + A0
3(1, 3, 2)

−D0
3(1, 2, 3)−D0

3(2, 3, 1)−D0
3(3, 1, 2) (4.38)

K0
3(1, 2, 3) = F 0

3 (1, 2, 3)−D0
3(2, 3, 1)−D0

3(3, 1, 2) + A0
3(3, 1, 2)

+G0
3(1, 2, 3) (4.39)

Neither J0
3 or K0

3 contains any soft or collinear limit, but to distribute the single

unresolved limits among the momentum mappings it is convenient to introduce the

following antennae:

T 0
3 (1, 2, 3) = f 0

3 (1, 2, 3) + A0
3(1, 2, 3)− d0

3(1, 2, 3)− d0
3(3, 2, 1) (4.40)

U0
3 (1, 2, 3) = f 0

3 (1, 2, 3)− d0
3(1, 2, 3) (4.41)

where T 0
3 is finite in all single unresolved limits but U0

3 contains the 1 ‖ 2 limit. We

can now rewrite J0
3 and K0

3 as:

J0
3 (1, 2, 3) = T 0

3 (1, 2, 3) + T 0
3 (1, 3, 2) + T 0

3 (2, 1, 3) (4.42)

K0
3(1, 2, 3) = U0

3 (2, 3, 1) + U0
3 (3, 2, 1) + T 0

3 (2, 1, 3) +G0
3(1, 2, 3) (4.43)

Starting from the terms in the expression (4.37) the following sub-antennae can be

constructed:

F 0
4,a(1, 2, 3, 4) =

1

4
F 0

4,l(1, 2, 3, 4) +D0
4,a(1, 2, 3, 4) +D0

4,a(4, 3, 2, 1)

−A0
4(1, 2, 3, 4) +

1

2
H0

4 (1, 2, 3, 4)

+A0
3(1, 2, 3)T 0

3 ((̃12), (̃23), 4) + A0
3(2, 3, 4)T 0

3 (1, (̃23), (̃34))

−1

2
G0

3(1, 2, 3)T 0
3 ((̃12), (̃23), 4) − 1

2
G0

3(4, 3, 2)T 0
3 ((̃34), (̃23), 1)
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F 0
4,b(1, 2, 3, 4) = D4,c(1, 2, 3, 4) +D4,c(3, 4, 1, 2)− Ã0

4,a(1, 2, 4, 3)

+a0
3(1, 2, 3)T 0

3 ((̃12), 4, (̃23)) + a0
3(3, 4, 1)T 0

3 ((̃14), 2, (̃34))

−1

2
G0

3(1, 4, 3)
(
U0

3 ((̃14), 2, (̃34)) + U0
3 (2, (̃14), (̃34)) +G0

3((̃34), (̃14), 2)
)

−1

2
G0

3(3, 2, 1)
(
U0

3 ((̃23), 4, (̃12)) + U0
3 (4, (̃23), (̃12)) +G0

3((̃12), (̃23), 4)
)

+
1

2
G0

3(4, 1, 2)
(
U0

3 ((̃41), 3, (̃12))− U0
3 (3, (̃41), (̃12))

)
−1

2
G0

3(1, 4, 3)
(
U0

3 ((̃14), 2, (̃43))− U0
3 (2, (̃14), (̃43))

)
F 0

4,c(1, 2, 3, 4) = F 0
4,a(1, 4, 3, 2)

F 0
4,d(1, 2, 3, 4) = F 0

4,b(1, 4, 3, 2)

F 0
4,e(1, 2, 3, 4) = F 0

4,b(2, 3, 4, 1)

F 0
4,f (1, 2, 3, 4) = F 0

4,a(2, 1, 4, 3)

F 0
4,g(1, 2, 3, 4) = F 0

4,b(4, 3, 2, 1)

F 0
4,h(1, 2, 3, 4) = F 0

4,a(4, 1, 2, 3) (4.44)

where the definition of D0
4,a and D0

4,c is given by decomposition:

D0
4 = D0

4,a +D0
4,b +D0

4,c +D0
4,d

obtained in [91].

The sum of the F 0
4,i is given by F 0

4 :

F 0
4 = F 0

4,a + F 0
4,b + F 0

4,c + F 0
4,d + F 0

4,e + F 0
4,f + F 0

4,g + F 0
4,h

such that we can organise the calculation in a way that only F 0
4 must be integrated

analytically over the antenna phase space. That integral has been calculated and

documented in [67]. For the numerical implementation we only need to implement

the sub-antennae F4,a and F4,b because we can rewrite the previous equation in the

following way:

F 0
4 (1, 2, 3, 4) = F 0

4,a(1
h, 2, 3, 4h) + F 0

4,b(1
h, 2, 3h, 4)

+F 0
4,a(1

h, 4, 3, 2h) + F 0
4,b(1

h, 4, 3h, 2)

+F 0
4,b(2

h, 3, 4h, 1) + F 0
4,a(2

h, 1, 4, 3h)

+F 0
4,b(4

h, 3, 2h, 1) + F 0
4,a(4

h, 1, 2, 3h) (4.45)
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We can then reconstruct the full F 0
4 (1g, 2g, 3g, 4g) by adding four F4,a and four

F4,b with different orderings of the gluon indices. The label h identifies the hard

momenta within each sub-antennae. This means that the sub-antenna vanishes if

we take the h soft limit and therefore each sub-antenna has only the singularities

appropriate to the mappings (4.34). This disentanglement of the different double

and single unresolved limits is the following:

F 0
4,h(1, 2, 3, 4)

1g→0,2g→0−→ S4123 ,

F 0
4,e(1, 2, 3, 4) + F4,g(1, 2, 3, 4)

1g→0,3g→0−→ S412S234 ,

F 0
4,f (1, 2, 3, 4)

1g→0,4g→0−→ S3412 ,

F 0
4,a(1, 2, 3, 4)

2g→0,3g→0−→ S1234 ,

F 0
4,b(1, 2, 3, 4) + F4,d(1, 2, 3, 4)

2g→0,4g→0−→ S123S341 ,

F 0
4,c(1, 2, 3, 4)

3g→0,4g→0−→ S2341 ,

F 0
4,a(1, 2, 3, 4) + F 0

4,e(1, 2, 3, 4) + F 0
4,g(1, 2, 3, 4)

1g‖2g ,3g→0−→ S4;312(z)
1

s12

Pgg→G(z) ,

F 0
4,b(1, 2, 3, 4) + F 0

4,d(1, 2, 3, 4) + F 0
4,f (1, 2, 3, 4)

1g‖2g ,4g→0−→ S3;412(z)
1

s12

Pgg→G(z) ,

F 0
4,e(1, 2, 3, 4) + F 0

4,g(1, 2, 3, 4) + F 0
4,h(1, 2, 3, 4)

2g‖3g ,1g→0−→ S4;123(z)
1

s23

Pgg→G(z) ,

F 0
4,b(1, 2, 3, 4) + F 0

4,c(1, 2, 3, 4) + F 0
4,d(1, 2, 3, 4)

2g‖3g ,4g→0−→ S1;432(z)
1

s23

Pgg→G(z) ,

F 0
4,e(1, 2, 3, 4) + F 0

4,f (1, 2, 3, 4) + F 0
4,g(1, 2, 3, 4)

3g‖4g ,1g→0−→ S2;143(z)
1

s34

Pgg→G(z) ,

F 0
4,a(1, 2, 3, 4) + F 0

4,b(1, 2, 3, 4) + F 0
4,d(1, 2, 3, 4)

3g‖4g ,2g→0−→ S1;234(z)
1

s34

Pgg→G(z) ,

F 0
4,b(1, 2, 3, 4) + F 0

4,d(1, 2, 3, 4) + F 0
4,h(1, 2, 3, 4)

4g‖1g ,2g→0−→ S3;214(z)
1

s14

Pgg→G(z) ,

F 0
4,c(1, 2, 3, 4) + F 0

4,e(1, 2, 3, 4) + F 0
4,g(1, 2, 3, 4)

4g‖1g ,3g→0−→ S2;341(z)
1

s14

Pgg→G(z) ,

F 0
4,a(1, 2, 3, 4) + F 0

4,e(1, 2, 3, 4) + F 0
4,g(1, 2, 3, 4) + F 0

4,h(1, 2, 3, 4)
1g‖2g‖3g−→ P123→G(w, x, y) ,

F 0
4,a(1, 2, 3, 4) + F 0

4,b(1, 2, 3, 4) + F 0
4,c(1, 2, 3, 4) + F 0

4,d(1, 2, 3, 4)
2g‖3g‖4g−→ P234→G(w, x, y) ,

F 0
4,c(1, 2, 3, 4) + F 0

4,e(1, 2, 3, 4) + F 0
4,f (1, 2, 3, 4) + F 0

4,g(1, 2, 3, 4)
3g‖4g‖1g−→ P341→G(w, x, y) ,

F 0
4,b(1, 2, 3, 4) + F 0

4,d(1, 2, 3, 4) + F 0
4,f (1, 2, 3, 4) + F 0

4,h(1, 2, 3, 4)
4g‖1g‖2g−→ P412→G(w, x, y) ,

F 0
4,a(1, 2, 3, 4) + F 0

4,b(1, 2, 3, 4) + F 0
4,f (1, 2, 3, 4) + F 0

4,g(1, 2, 3, 4)

1g‖2g ,3g‖4g−→ 1

s12s34

Pgg→G(z) Pgg→G(y) ,
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F 0
4,c(1, 2, 3, 4) + F 0

4,d(1, 2, 3, 4) + F 0
4,e(1, 2, 3, 4) + F 0

4,h(1, 2, 3, 4)

2g‖3g ,4g‖1g−→ 1

s23s14

Pgg→G(z) Pgg→G(y) ,

F 0
4,f (1, 2, 3, 4)

1g→0−→ S412 f
0
3 (3, 4, 2) ,

F 0
4,h(1, 2, 3, 4)

1g→0−→ S412 f
0
3 (3, 2, 4) ,

F 0
4,e(1, 2, 3, 4) + F 0

4,g(1, 2, 3, 4)
1g→0−→ S412 f

0
3 (2, 3, 4) ,

F 0
4,a(1, 2, 3, 4)

2g→0−→ S123 f
0
3 (1, 3, 4) ,

F 0
4,h(1, 2, 3, 4)

2g→0−→ S123 f
0
3 (3, 1, 4) ,

F 0
4,b(1, 2, 3, 4) + F 0

4,d(1, 2, 3, 4)
2g→0−→ S123 f

0
3 (3, 4, 1) ,

F 0
4,a(1, 2, 3, 4)

3g→0−→ S234 f
0
3 (1, 2, 4) ,

F 0
4,c(1, 2, 3, 4)

3g→0−→ S234 f
0
3 (1, 4, 2) ,

F 0
4,e(1, 2, 3, 4) + F 0

4,g(1, 2, 3, 4)
3g→0−→ S234 f

0
3 (2, 1, 4) ,

F 0
4,c(1, 2, 3, 4)

4g→0−→ S341 f
0
3 (1, 3, 2) ,

F 0
4,f (1, 2, 3, 4)

4g→0−→ S341 f
0
3 (2, 1, 3) ,

F 0
4,b(1, 2, 3, 4) + F 0

4,d(1, 2, 3, 4)
4g→0−→ S341 f

0
3 (3, 2, 1) ,

F 0
4,a(1, 2, 3, 4) + F 0

4,g(1, 2, 3, 4)
1g‖2g−→ 1

s12

Pgg→G(z) f 0
3 (4, 3, (12)) + ang. ,

F 0
4,b(1, 2, 3, 4) + F 0

4,f (1, 2, 3, 4)
1g‖2g−→ 1

s12

Pgg→G(z) f 0
3 ((12), 4, 3) + ang. ,

F 0
4,h(1, 2, 3, 4)

1g‖2g−→ 1

s12

Pgg→G(z) f 0
3 (3, (12), 4) + ang. ,

F 0
4,c(1, 2, 3, 4) + F 0

4,d(1, 2, 3, 4)
2g‖3g−→ 1

s23

Pgg→G(z) f 0
3 (1, 4, (23)) + ang. ,

F 0
4,e(1, 2, 3, 4) + F 0

4,h(1, 2, 3, 4)
2g‖3g−→ 1

s23

Pgg→G(z) f 0
3 ((23), 1, 4) + ang. ,

F 0
4,a(1, 2, 3, 4)

2g‖3g−→ 1

s12

Pgg→G(z) f 0
3 (4, (23), 1) + ang. ,

F 0
4,a(1, 2, 3, 4) + F 0

4,b(1, 2, 3, 4)
3g‖4g−→ 1

s34

Pgg→G(z) f 0
3 (1, 2, (34)) + ang. ,

F 0
4,f (1, 2, 3, 4) + F 0

4,g(1, 2, 3, 4)
3g‖4g−→ 1

s34

Pgg→G(z) f 0
3 ((34), 1, 2) + ang. ,

F 0
4,c(1, 2, 3, 4)

3g‖4g−→ 1

s34

Pgg→G(z) f 0
3 (2, (34), 1) + ang. ,

F 0
4,c(1, 2, 3, 4) + F 0

4,e(1, 2, 3, 4)
4g‖1g−→ 1

s14

Pgg→G(z) f 0
3 (2, 3, (14)) + ang. ,

F 0
4,d(1, 2, 3, 4) + F 0

4,h(1, 2, 3, 4)
4g‖1g−→ 1

s14

Pgg→G(z) f 0
3 ((14), 2, 3) + ang. ,
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F 0
4,f (1, 2, 3, 4)

4g‖1g−→ 1

s14

Pgg→G(z) f 0
3 (3, (14), 2) + ang.

(4.46)

All other limits are vanishing. It can be seen that certain limits are shared among

several antenna functions, which can be largely understood due to two reasons:

1. in a gluon-gluon collinear splitting, either gluon can become soft, and the

gluon-gluon splitting function is always shared between two sub-antennae, as

in (3.28) to disentangle the two soft limits.

2. the unresolved emission of gluon pairs 1g and 3g and also 2g and 4g is shared

between the mappings (e) and (g) and (b) and (d) respectively according to

the decomposition of the non-ordered antenna function Ã0
4, which distributes

the soft limit of both gluons between both mappings.

4.3.2 Angular terms

The angular terms in the single unresolved limits are associated with a gluon splitting

into two gluons or into a quark-antiquark pair. In this collinear configuration the

four-parton antenna functions factorise into the corresponding tensorial splitting

functions and tensorial three parton antenna functions [33,34,50], e.g.,

F 0
4 (1, 2, 3, 4)

ig‖jg−→ 1

sij
P µν
gg→G(z)(F 0

3 )µν((ij), k, l)

=
1

sij
Pgg→G(z)F 0

3 ((ij), k, l) + ang. (4.47)

P µν
ij→(ij) stands for the spin dependent gluon splitting function given by [33,34]:

P µν
gg = 2

[
−gµν

(
z

1− z +
1− z
z

)
− 2(1− ε)z(1− z)

kµ⊥k
ν
⊥

k2
⊥

]
(4.48)

while Pij→(ij) stands for the spin averaged gluon splitting function (1.80). The

tensorial three-parton antenna function (F 0
3 )µν can be derived by analogy with the

scalar three-parton antenna functions from physical matrix elements. Their tensorial

structure is obtained by leaving the polarisation index of the gluon associated with

momentum P µ uncontracted.
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Since we use scalar three parton antenna functions to remove the single unre-

solved limits of the four parton antenna function (this was discussed in eqs (4.6),

(4.7), (4.8)) we are left with uncancelling angular terms in (4.47). However, we will

show that the angular terms average to zero after integration over the antenna phase

space. The angular average in single collinear limits can be made using the standard

momentum parametrisation [50,123] for the ig ‖ jg limit:

pµi = zpµ + kµ⊥ −
k2
⊥
z

nµ

2p · n , pµj = (1− z)pµ − kµ⊥ −
k2
⊥

1− z
nµ

2p · n ,

with 2pi · pj = − k2
⊥

z(1− z)
, p2 = n2 = 0 . (4.49)

In this pµ denotes the collinear momentum direction, and nµ is an auxiliary vector.

The collinear limit is approached as k2
⊥ → 0.

In the simple collinear i ‖ j limit of the four-parton antenna functions F 0
4 (lg, ig, jg, kg),

one chooses n = pk to be one of the non-collinear momenta, such that the antenna

function can be expressed in terms of p, n, k⊥ and pl. Expanding in kµ⊥ yields only

non-vanishing scalar products of the form pl · k⊥. Expressing the integral over the

antenna phase space in the (p, n) centre-of-mass frame, the angular average can be

carried out as

1

2π

∫ 2π

0

dφ (pl · k⊥) = 0 ,
1

2π

∫ 2π

0

dφ (pl · k⊥)2 = −k2
⊥
p · pl n · pl
p · n . (4.50)

Higher powers of kµ⊥ are not sufficiently singular to contribute to the collinear

limit. Using the above average, we could analytically verify the cancellation of

angular terms within each single phase space mapping, which is independent on the

choice of the reference vector nµ. This is means that in a collinear limit which is

distributed between two mappings as in (4.46) the angular terms vanish within each

single phase space mapping that contributes to the limit.

However this cancellation was obtained only globally after performing the az-

imuthal integration analytically. This means that on a point-by-point check the

numerical behaviour of the subtraction terms won’t be correct in the presence of

a single collinear gluon splitting. One solution to this behaviour is to add a local

counterterm to every four parton antenna containing gluon-gluon collinear splittings.

This local counterterm should yield the correct behaviour in this particular limit and
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integrate to zero over the corresponding unresolved phase-space. We should add the

following replacement for an ig ‖ jg splitting:

F 0
4 (1, i, j, 2)→ F 0

4 (1, i, j, 2)−ΘF 0
3
(i, j, z, k⊥) (4.51)

where the function ΘF 0
3
(i, j, z, k⊥) isolates the angular terms and is given by:

ΘF 0
3
(i, j, z, k⊥) =

[
1

sij
P µν
ij→(ij)(z, k⊥)(F 0

3 )µν − 1

sij
Pij→(ij)(z)F 0

3 (1, (ij), 2)

]
=

4

s2
ijs

2
1p2

(
s2

12s
2
1p2 + s2

1ps
2
p2

s2
12s

2
1ps

2
p2

)[
s12s1psp2 k⊥ · k⊥

−4p1 · k⊥p2 · k⊥s1psp2 + 2(p1 · k⊥)2s2
p2 + 2(p2 · k⊥)2s2

1p

]
(4.52)

where p and k⊥ were defined in (4.49). Using (4.50) we can indeed check that (4.52)

integrates to zero.

However, due to the decomposition of F4 in eight sub-antennae (4.45) the an-

gular terms of the full F 0
4 antenna function given by (4.52) are distributed in the

subantennae that contribute in the singular limit. To make a local subtraction we

have to compute this singular limit in the subantennae and subtract it explicitly.

This is allowed since we checked that the angular terms vanish within each phase

space mapping. For the F 0
4 initial-final and initial-initial antennae functions we will

see in the next subsections that we implemented them with a single phase space

mapping. This means that in that the case we can perform a local subtraction with

(4.52) with appropriate crossing of particles to the initial state.

After these replacements the resulting four-parton antenna is locally free from

angular terms in the single collinear (sij → 0) unresolved region. However, in the

regions of the phase space where other invariants in the denominator of (4.52) vanish

new singularities are introduced. For example since:

pµ = pµi + pµj +
sij

sin + sjn
nµ (4.53)

the invariants s1p and s2p become singular in the 1//i//j and 2//i//j triple collinear

limits respectively. This means that introducing ΘF 0
3
(i, j, z, k⊥) may not be the best

strategy to achieve the cancellation of the angular terms. Even so, we will discuss in
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subsection 7.1.5 the numerical impact of introducing (4.52) for the single collinear

limit.

4.3.3 Initial-Final emitters

The NNLO antenna with one parton in the initial state F 0
4 (1̂g, 2g, 3g, 4g) is obtained

by crossing one gluon from the final state antenna F 0
4 (1g, 2g, 3g, 4g) to the initial

state. It is used to subtract double unresolved initial state singularities when both

the unresolved gluons are colour connected between an initial and a final state gluon.

The unintegrated form is then obtained by making the replacements:

s1i → (p1 − ki)2

sij → (ki + kj)
2 i, j = 2, 3, 4

In all single (double) unresolved limits this antenna collapses into a three (two)

parton antenna with a gluon in the initial state. There is no need to further split

this antenna since the reduced matrix elements that accompany it have a gluon in

the initial state and can be convoluted with a gluon parton distribution function.

However special care has to be taken with three parton or four parton gluon initiated

antennae with quarks in the final state since the splitting g → qg looks like q̄ → g

or g → g depending on the collinear limit. These collinear limits have to be split

for the antenna under consideration and the corresponding sub-antennae integrated

separately because each has a different reduced matrix element accompanying it.

The mapping used in the configuration F 0
4 (1̂, i, j, k) is the following {4 → 2}

mapping: {1̂, i, j, k} → {ˆ̄1, (̃ijk)} [68]:

p̄µ1 = x pµ1

k̃µ(ijk) = kµi + kµj + kµk − (1− x) pµ1 (4.54)

where the bar denotes a rescaling of the initial state parton and x is given by [68]:

x =
s1i + s1j + s1k + sij + sik + sjk

s1i + s1j + s1k

(4.55)

It satisfies the appropriate limits in all double singular configurations:

1. i and j soft: x→ 1, k̃(ijk) → kk,
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2. i soft and pj ‖ pk: x→ 1, k̃(ijk) → kj + kk,

3. ki = zp1 ‖ p1 and j soft: x→ 1− z, k̃(ijk) → kk,

4. ki = zp1 ‖ p1 and kj ‖ kk: x→ 1− z, k̃(ijk) → kj + kk,

5. ki ‖ kj ‖ kk: x→ 1, k̃(ijk) → ki + kj + kk,

6. ki + kj = zp1 ‖ p1: x→ 1− z, k̃(ijk) → kk,

where partons i and j can be interchanged in all the cases. In single unresolved limits

this mapping collapses into an NLO mapping (3.34) allowing their subtraction from

the four-parton antenna F 0
4 (1̂g, 2g, 3g, 4g) with products of three parton antennae.

We can identify the initial state parton as the hard radiator and because of

the symmetry under i ↔ j,i ↔ k,j ↔ k of the mapping (4.54) any of final state

partons i,j,k can act as a hard radiator. We could do a decomposition where the

radiator in the final state is uniquely identified but we would end up with three

sub-antennae where we would use the same mapping for each. Because of this we

use the full F 0
4 (1̂g, 2g, 3g, 4g) in the numerical implementation. Its integral over the

antenna phase space (initial-state kinematics) was obtained recently in [105,119].

4.3.4 Initial-Initial emitters

The NNLO antenna function with two partons in the initial state is obtained from

the corresponding initial-final antenna of the previous section by crossing one final-

state gluon to the initial state. We have to distinguish the cases where the two

initial state partons are adjacent F 0
4 (1̂g, 2̂g, 3g, 4g) or non-adjacent F 0

4 (1̂g, 3g, 2̂g, 4g).

In each case the unintegrated form is obtained by making the replacements:

s12 → (p1 + p2)2

s1i → (p1 − ki)2

s2i → (p2 − ki)2

sij → (ki + kj)
2 i, j = 3, 4

They are used to subtract double unresolved initial state singularities when both

the unresolved gluons are colour connected between two initial-state gluons. Since
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in the single (double) unresolved limits these antennae collapse into a three (two)

parton antenna with gluons in the initial state no further splitting is required. The

reduced matrix elements accompanying this antenna have gluons in the initial state

and can be doubly convoluted with a gluon parton distribution function.

The mapping used in the numerical implementation when i and j are the unre-

solved partons in the final state is the following mapping: {1̂, 2̂, i, j, ...,m, l, ...} →
{ˆ̄1, ˆ̄2, ...m̃, l̃, ...} [68]:

p̄µ1 = x1 p
µ
1

p̄µ2 = x2 p
µ
2

...

k̃µl = kµl −
2kl · (q + q̃)

(q + q̃)2
(qµ + q̃µ) +

2kl · q
q2

q̃µ

...

qµ = pµ1 + pµ2 − kµi − kµj
q̃µ = p̄µ1 + p̄µ2 (4.56)

where the bar denotes rescaling of both the initial state partons and the tilde mo-

menta are all the momenta in the final state that are not actually part of the antenna

but require boosting in order to restore momentum conservation. The x1 and x2 are

given by [68]:

x1 =

√
s12 + s2i + s2j

s12 + s1i + s1j

√
s12 + s1i + s1j + s2i + s2j + sij

s12

x2 =

√
s12 + s1i + s1j

s12 + s2i + s2j

√
s12 + s1i + s1j + s2i + s2j + sij

s12

(4.57)

These two momentum fractions satisfy the following limits in double unresolved

configurations:

1. i and j soft: x1 → 1, x2 → 1,

2. i soft and kj = z1p1 ‖ p1: x1 → 1− z1, x2 → 1,

3. ki = z1p1 ‖ p1 and kj = z2p2 ‖ p2: x1 → 1− z1, x2 → 1− z2,
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4. ki + kj = z1p1 ‖ p1: x1 → 1− z1, x2 → 1,

and all the limits obtained from the ones above by exchange of p1 with p2 and of ki

with kj. Moreover in single unresolved limits this mapping turns into a NLO map-

ping (3.37) allowing the subtraction of these limits from the four-parton antennae

functions.

The integrated form of the initial-initial four parton antenna over the antenna

phase space (initial state kinematics), for the adjacent and non-adjacent crossing is

underway [120].

4.4 Summary

In this chapter we examined the structure of perturbative calculations at next-to-

next-to leading order. We identified the new ingredients that appear at this order

in perturbation theory at the matrix element level and found out that there are

infrared divergences in the different pieces in intermediate steps of the calculation.

These are the real-real, virtual-real and virtual-virtual channels. Their cancellation

is very intricate since it occurs between phase spaces of different multiplicity.

The antenna subtraction method is a procedure that can solve this problem

by introducing subtraction terms with known building blocks that render the real-

virtual and double real contributions finite. The integrated form of the building

blocks makes their infrared divergences explicit such that they can be analytically

canceled against the virtual contributions.

We introduced a general formula in section 4.2 to generate a subtraction for the

real-real channel. We will apply it in a particular case in chapter 6.

The current status of the method at NNLO is that it is fully general for massless

fermions for colourless initial states [67] or one coloured parton in the initial state

[105, 119]. The extension to two coloured partons in the initial state is currently

underway and expected to be concluded soon.



Chapter 5

Sector decomposition

In this chapter we discuss the sector decomposition method used to isolate diver-

gences from parameter integrals occurring in perturbative quantum field theory. A

good review of this topic can be found in [124].

As we have seen in the previous two chapters precise theory predictions become

increasingly difficult at higher orders. The structure of the singularities is cumber-

some as the divergences overlap in regions of the Feynman parameter space. We

will illustrate this using the parametric form of both the virtual and real correc-

tions. The sector decomposition method is a solution to perform the extraction of

these singularities and we review in section 5.1 its application to the computation

of multi-loop Feynman integrals and, in section 5.2, its treatment of real radiation

phase space integrals at NNLO.

In both cases, working in D = 4− 2ε dimensions, the method isolates the over-

lapping singular parts and disentangles them producing a Laurent series in ε, where

the coefficients of the pole and finite terms are sums of regular parameter integrals

which can be evaluated numerically. The very algorithmic nature of method leads

to automatised programs to compute the Laurent series.

As an example, more related to the previous chapters of this thesis, we work out,

in section 5.3 a direct check with sector decomposition of the analytic result for the

integrated antenna F 0
4 obtained in [67] for final-final kinematics.

108
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5.1 The algorithm for multi-loop integrals

The original idea of sector decomposition goes back to the proof of the BPHZ the-

orem by Hepp [125], who used a decomposition of integration parameter space into

certain sectors in order to disentangle overlapping ultraviolet singularities.

The starting point application for a multi-loop diagram is the generic expression

for a scalar Feynman graph in d dimensions at L loops with N propagators, where

the propagators can have arbitrary powers:

G = (−1)Nν
Γ(Nν − Ld/2)∏N

j=1 Γ(νj)

∞∫
0

N∏
j=1

dxj x
νj−1
j δ(1−

N∑
l=1

xl)
UNν−(L+1)d/2

FNν−Ld/2

(5.1)

In this expression Nν =
∑N

j=1 νj where νj is the power of the j propagator in the

Feynman graph. Integration over loop momenta has been performed with the aid of

the Feynman parameters xj. The functions U and F can be constructed from the

topology of the corresponding Feynman graph and contain the Feynman parameters

xj as well as Lorentz invariants. For example for the massless double box:

p1

p2

p4

p3

1

2

3

4

5

6

7

Figure 5.1: Massless double box

we have:

G = −Γ(3 + 2ε)

∫ ∞
0

7∏
l=1

dxl δ(1−
7∑
l=1

xl)
U1+3ε

F3+2ε
(5.2)

U = (x1 + x2 + x3)(x5 + x6 + x7)

+x4(x1 + x2 + x3 + x5 + x6 + x7) (5.3)

F = (−s)
{
x2x3(x4 + x5 + x6 + x7)

+x5x6(x1 + x2 + x3 + x4)
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+x2x4x6 + x3x4x5

}
+(−t)x1x4x7 (5.4)

where s = (p1 + p2)2 and t = (p2 + p3)2.

A necessary condition for the infrared divergence is:

F = 0 (5.5)

and, from the example above, we see that singularities are overlapping as several xj

should vanish. The sector decomposition method proposed in [126,127] is a solution

to disentangle the regions of overlapping infrared divergences. The strategy adopted

is the following:

1 - Generate primary sectors

Decompose the integration range into N sectors, where in each sector l, xl is the

largest: ∫ ∞
0

dNx =
N∑
l=1

dNx
N∏
j=1
j 6=l

θ(xl ≥ xj) (5.6)

The θ-function is defined as

θ(x ≥ y) =

 1 if x ≥ y is true

0 otherwise.

This produces N new Gl integrals and in each we substitute:

xj =


xltj for j < l

xl for j = l

xltj−1 for j > l

(5.7)

As U (5.3), F (5.4) are homogeneous of degree L ,L+1, respectively, and xl factorises

completely, we have U(~x) → Ul(~t )xLl and F(~x) → Fl(~t )xL+1
l and thus, we can

integrate over xl in sector l using the delta function:
∫
dxl/xl δ(1−xl(1+

∑N−1
k=1 tk)) =

1. Performing the integration this way makes the θ function condition (5.6) produce

integrals from 0 and 1 and the singularities are located when a set of parameters ti

goes to zero. The sector l of the original Feynman graph is of the following form:

Gl =

∫ 1

0

N−1∏
j=1

dtj t
νj−1
j

UNν−(L+1)D/2
l (~t )

FNν−LD/2l (~t )
, l = 1, . . . , N . (5.8)
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2 - Iterated sector decomposition

For each of the Gl determine a set of parameters S = {tα1 , . . . , tαr}, such that Ul,
respectively Fl, vanish if the parameters of S are set to zero.

Once a set has been found decompose the sector l into a r−cube containing r

subsectors with:

r∏
j=1

θ(1 ≥ tαj ≥ 0) =
r∑

k=1

r∏
j=1

j 6=k

θ(tαk ≥ tαj ≥ 0) (5.9)

Remap the variables to the unit hypercube in each new subsector by the substitution

tαj →
 tαktαj for j 6= k

tαk for j = k .
(5.10)

This gives a Jacobian factor of tr−1
αk

. By construction tαk factorises from at least one

of the functions Ul, Fl. The resulting subsector integrals have the general form

Glk =

1∫
0

(
N−1∏
j=1

dtj t
aj−bjε
j

)
UNν−(L+1)D/2
lk

FNν−LD/2lk

, k = 1, . . . , r . (5.11)

This procedure is now repeated for each subsector Glk by looking at the set of param-

eters where now Ulk, Flk vanish. This means that for each subsector new subsectors

are created and the process grows in a tree-like structure until the functions Ulk1k2...
or Flk1k2... contain a constant term:

Ulk1k2... = 1 + u(~t ) (5.12)

Flk1k2... = −s0 +
∑
β

(−sβ)fβ(~t ) ,

where u(~t ) and fβ(~t ) are polynomials in the variables tj (without a constant term),

and sβ are kinematic invariants.

3 - Extraction of the poles

Let us consider Eq. (5.11) for a particular tj, i.e. let us focus on

Ij =

1∫
0

dtj t
(aj−bjε)
j I(tj, {ti 6=j}, ε) , (5.13)
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where I = UNν−(L+1)D/2
lk /FNν−LD/2lk in a particular subsector. If aj > −1, the

integration does not lead to an ε–pole. In this case no subtraction is needed and

one can go to the next variable tj+1. For aj = −1, which is the generic case for

renormalisable theories (logarithmic divergence), this simply amounts to

Ij = − 1

bjε
Ij(0, {ti 6=j}, ε) +

1∫
0

dtj t
−1−bjε
j

(
I(tj, {ti 6=j}, ε)− Ij(0, {ti 6=j}, ε)

)
,

which is equivalent to applying the “plus prescription”. We can then repeat the

same step for the remaining tj variables to extract all the poles in the subsector Glk

and expand the resulting expression in ε. The original Feynman graph G (5.1) is

now written as a Laurent series in ε with coefficients Clk,m for each subsector:

Glk =
2L∑

m=−r

Clk,m
εm

+O(εr+1) , G = (−1)NνΓ(Nν − LD/2)
N∑
l=1

α(l)∑
k=1

Glk . (5.14)

The Clk,m are finite integrals over parameters tj that can be evaluated numerically

for a given phase space point.

Using this technique numerical checks for the analytic formulae for massless

planar [128] and non-planar [129] two-loop box diagrams were done in [126]. In the

same work results for the same diagrams with one leg off-shell were given before any

analytic formulae as well as some 3-loop 3-point graphs with two on-shell legs.

Subsequently, sector decomposition was used to check a considerable number of

analytical results for two-loop [127,130–136], three-loop [137–139] and four-loop [127,

140] diagrams.

In references [141, 142] a combination of sector decomposition and contour de-

formation has been worked out to allow the evaluation of multi-loop Feynman dia-

grams with infrared and threshold singularities. In [143], an implementation of an

algorithm based on sector decomposition extracts the 1/ε poles as well as large loga-

rithms of type ln(s/M2) in the high-energy limit, contributing to the next-to-leading

logarithmic electroweak corrections of multi-loop diagrams.

Further improvements of the method were given in [144] where there is a formal

proof that the iterated sector decomposition procedure is guaranteed to stop and a

public code, with a implementation of the method, is available.
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5.2 Sector decomposition for infrared divergent

real radiation integrals

Following its application in multiloop calculations references [145–147] extended its

use to phase space integrals as well. To achieve this we begin by rewriting the

phase space integral into a dimensionally regulated multi-parameter integral over

the unit hypercube. In this case, the singularities arise in the unresolved configura-

tions obtained when a certain number of invariants tends to zero. These invariants

are located in the denominators of matrix elements and therefore, if they can be

written in a form amenable to sector decomposition, the extraction of the infrared

divergences can be done within this framework.

As an example we will work out the 1→ 4 (q → p1 + p2 + p3 + p4) phase space

treatment in sector decomposition. Setting m = 2 in equation (4.9) we find that the

antenna phase space for the four-parton antennae in the final-final configuration is

proportional to the four-particle phase space:

dΦ4 = P2 dΦXijkl (5.15)

where P2 is the volume of the two particle phase space:

P2 =

∫
dΦ2 = 2−3+2επ−1+ε Γ(1− ε)

Γ(2− 2ε)
(q2)−ε (5.16)

To proceed we start from the definition of the phase space for a 1 → 4 decay in d

dimensions:∫
dΦ1→4 =

(2π)d

(2π)4(d−1)

∫
dd−1p1

2E1

dd−1p2

2E2

dd−1p3

2E3

dd−1p4

2E4

δd(q − p1 − p2 − p3 − p4)

=
(2π)d

(2π)4(d−1)

∫
dd−1p1

2E1

dd−1p2

2E2

dd−1p3

2E3

δ((q − p1 − p2 − p3)2) (5.17)

where we used the delta function to perform one integration:∫
dd−1p4

2E4

=

∫
ddp4δ(p

2
4) (5.18)

Going to the rest frame of the decaying particle we parametrise the momenta in the

following way:

q = (E,~0(D−1))
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p1 = E1 (1,~0(D−2), 1)

p2 = E2 (1,~0(D−3), sin θ1, cos θ1)

p3 = E3 (1,~0(D−4), sin θ2 sin θ3, sin θ2 cos θ3, cos θ2)

p4 = Q− p1 − p2 − p3 , (5.19)

which leads to a description of the phase space in terms of energies and angles:∫
dΦ1→4 =

1

8
(2π)4−3d

∫
dE1 dE2 dE3 dθ1 dθ2 dθ3[E1E2E3 sin θ1 sin θ2]d−3 sin θd−4

3

dΩd−1 dΩd−2 dΩd−3Θ(E1) Θ(E2) Θ(E3)Θ(E − E1 − E2 − E3)

δ(E2 − 2E(E1 + E2 + E3) + 2(p1 · p2 + p1 · p3 + p2 · p3)) , (5.20)

since:

dd−1pr = Ed−2
r dErdΩd−1 (5.21)

and:

Vd =

∫
dΩd =

2π
d
2

Γ(d
2
)

(5.22)

is the solid angle in d dimensions. Now we carry out change of variables

{E1, E2, E3, θ1, θ2, θ3} → {s12, s13, s14, s23, s24, s34}

to obtain the phase space in terms of invariants. The jacobian of the transformation

is given by:

ds12ds13ds14ds23ds24ds34 =

∣∣∣∣ ∂(s..)

∂(Ei, θf )

∣∣∣∣ dE1dE2dE3dθ1dθ2dθ3

= 26E3E2
1E

2
2E

2
3 sin θ2

1 sin θ2
2 sin θ2

3dE1dE2dE3dθ1dθ2dθ3

which can be written as the determinant ∆4 of the Gram matrix Gij = 2pi · pj:

∆4(q, p1, p2, p3) = ∆4(p1, p2, p3, p4) =

∣∣∣∣∣∣∣∣∣∣∣∣

2p1 · p1 2p1 · p2 . . . 2p1 · p4

2p2 · p1 . . . . . . 2p2 · p4

. . . . . . . . . . . .

2p4 · p1 . . . . . . 2p4 · p4

∣∣∣∣∣∣∣∣∣∣∣∣
= λ(s12s34, s13s24, s14s23) = −(4EE1E2E3 sin θ1 sin θ2 sin θ3)2 (5.23)
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where we introduced the Källen function λ(x, y, z) = x2 +y2 + z2−2xy−2yz−2xz.

With the dimensionless variables:

y12 = s12/Q
2, y13 = s13/Q

2, y14 = s14/Q
2, y23 = s23/Q

2, y24 = s24/Q
2, y34 = s34/Q

2

(5.24)

we finally obtain the phase space written in terms of invariant variables:∫
dΦ1→4 = (2π)4−3 d(Q2)3d/2−4 2−2d+1 Vd−1 Vd−2 Vd−3∫

dy12dy13dy14dy23dy24dy34Θ(y12)Θ(y13)Θ(y14)Θ(y23)Θ(y24)Θ(y34)

Θ(−∆4) [−∆4]−1/2−εδ(1− y12 − y13 − y14 − y23 − y24 − y34) (5.25)

where we have:

∆4 = y2
12y

2
34 + y2

13y
2
24 + y2

14y
2
23

−2 (y12y23y34y14 + y13y23y24y14 + y12y24y34y13) (5.26)

Looking at (5.25) we see that ∆4 has to be negative semi-definite and this will

constrain the physical regions of the phase space.

In order to proceed and map the phase space integral into a parametric form

amenable to sector decomposition we must choose the phase space variables that

are convenient for our problem, that is, they should produce a simple formula for

the invariants in the denominators of the matrix element. We can choose the set of

five independent invariants to be {y134, y234, y34, y13, y23} introducing:

1 =

∫
dy134δ(y134 − y13 − y14 − y34)

∫
dy234δ(y234 − y23 − y24 − y34) (5.27)

and map the phase space integral to the unit hypercube with:

y234 = λ1

y34 = λ1λ2

y23 = λ1(1− λ2)λ4

y134 = λ2 + λ3(1− λ1)(1− λ2)

y13 = λ5(y+
13 − y−13) + y−13 (5.28)
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where λi vary between 0 and 1 and the formulas for the remaining invariants can be

obtained by linear dependence. The limits of integration on the variable y13 come

from solving the constraint (−∆4) = −(ay2
13 + by13 + c) ≥ 0 that gives:

y±13 = (1− λ1)
[√

λ3λ4 ±
√
λ2(1− λ3)(1− λ4)

]2

(5.29)

and for y134 we solve the constraint (b2 − 4ac) ≥ 0 that yields:

y−134 = λ2 y+
134 = λ2 + (1− λ1)(1− λ2) (5.30)

The jacobian for the transformation gives:

dy234dy34dy23dy134dy13 = 4λ2
1(1− λ1)2(1− λ2)2

√
λ2(1− λ3)λ3(1− λ4)λ4

dλ1dλ2dλ3dλ4dλ5 (5.31)

and the Gram determinant ∆4 factorises:

−∆4 = a(y13 − y+
13)(y13 − y−13) = a(1− λ1)λ5(1− λ5)(y+

13 − y−13)2

= 16λ2
1(1− λ1)2λ2(1− λ2)2λ3(1− λ3)λ4(1− λ4)λ5(1− λ5) (5.32)

leading to the following parametric form of the phase space:∫
dΦ1→4 = (2π)4−3d(Q2)3d/2−42−2d+1Vd−1Vd−2Vd−3

∫ 1

0

dλ1dλ2dλ3dλ4dλ5

[λ1(1− λ1)(1− λ2)]1−2ε [λ2λ3(1− λ3)λ4(1− λ4)]−ε [λ5(1− λ5)]−1/2−ε

(5.33)

When we substitute 1→ 4 matrix elements in massless QCD these contain denom-

inators of the form 1/s34s234s134. Using the mapping (5.28) we obtain:

1

s34s234s134

=
1

λ2
1λ2[λ2 + λ3(1− λ1)(1− λ2)]

(5.34)

The third term in this denominator contains the triple invariant s134 that can vanish

for double unresolved real radiation configurations at NNLO. This happens when

e.g. when both λ2,λ3 → 0, but not when only one does. Combining this denominator

with the integration measure (5.25) and expanding λ−1−ε
2 → −δ(λ2)/ε+ . . ., λ−ε3 →

1− ε ln(λ3) produces unregulated singularities as λ3 → 0. This means that there are

overlapping singularities in the phase space integral associated with the variables λ2
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and λ3. These can be disentangled with the sector decomposition method [145–147].

To illustrate this we consider the integral:

I =

∫ 1

0

dx dy x−1−εy−1−ε (x+ y)−ε . (5.35)

The 1/x and 1/y factors cannot be expanded in plus distributions, as the logarithms

from the expansion of x+ y will produce singular terms. We split this integral into

two parts,

I1 =

∫ 1

0

dx

∫ x

0

dy x−1−εy−1−ε (x+ y)−ε , I2 =

∫ 1

0

dy

∫ y

0

dx x−1−εy−1−ε (x+ y)−ε .

(5.36)

In I1 we set y
′
= y/x, and in I2 we set x

′
= x/y. Performing these variable changes,

we find

I1 =

∫ 1

0

dx dy x−1−3εy−1−ε (1 + y)−ε , I2 =

∫ 1

0

dx dy y−1−3εx−1−ε (1 + x)−ε .

(5.37)

The singularities in x and y of (5.35) are now separated in each integral (or sector)

of (5.37), and can be extracted using:

λ−1+ε =
1

ε
δ(λ) +

∞∑
n=0

εn

n!

[
lnn(λ)

λ

]
+

, (5.38)

where a plus distribution is defined via∫ 1

0

dλ

[
lnn(λ)

λ

]
+

f(λ) =

∫ 1

0

dλ lnn(λ)

[
f(λ)− f(0)

λ

]
. (5.39)

However, before implementing these transformations it is necessary that all singular-

ities in the λi occur at the origin λi → 0. In (5.28) some invariants vanish at λi → 1

and two cases can occur when we consider the denominators of matrix elements. In

the first case the denominator has singularities when one of the λi → 1. In this

case the transformation λi → 1 − λi remaps the singularity to the origin. In the

second case the denominator causes singularities when λi → 0 and λi → 1. In this

case it is convenient to separate the two singularities that can occur by splitting the

integration: ∫ 1

0

dλi →
∫ 1/2

0

dλi +

∫ 1

1/2

dλi, (5.40)
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and substitute λi = λ
′
i/2 in the first integral and λi = 1−λ′i/2 in the second integral

to move all singularities to the origin. After these checks and steps are performed

the remaining singularities are already factorised or are of the type of the example

(5.35) and amenable by sector decomposition.

The great advantage of this method is in its algorithmic procedure that can be

easily implemented in symbolic manipulation programs such as MAPLE or MATH-

EMATICA. To do that we carry out the following instructions:

1. read a term in the matrix element.

2. combine it with the phase space measure in equation (5.33) keeping the in-

variants in the numerator as functions of λi (sab(λi)) and the denominator

replaced with (5.28).

3. remap all the singularities in the denominator to the origin λi → 0 by making

the split (5.40).

4. search for entangled singularities in the expression generated by the previous

step. If it becomes singular when two variables λi, λj → 0, but remains finite

when either λi → 0 or λj → 0, then the transformation below (5.35) should

be performed.

5. all singularities are factorised and can be expanded in a Laurent series in ε

using (5.38).

6. proceed to the next term in the matrix element.

It should be mentioned now that it is possible [147] to combine the output of the

sector decomposition procedure with any infrared safe measurement function to

obtain differential results. In that case we arrive at an expansion with the following

form:

dσRRNNLO =
4∑
j=0

fj(λi)

εj
=
f4(λi)

ε4
+
f3(λi)

ε3
+
f2(λi)

ε2
+
f1(λi)

ε1
+ finite (5.41)

where we have used as an input the matrix element relevant to the double real

correction at NNLO. The functions fj are non-singular functions that can be inte-
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grated numerically to yield the pole coefficients. These can then be combined with

real-virtual and virtual-virtual contributions to verify their cancellation numerically.

To summarise, the key ideas to produce (5.41) is a parameterisation to the

unit hypercube of the phase space of the double real correction where the singular

invariants in the denominators of the matrix element can be brought to a factorised

form using sector decomposition. For example the parameterisation (5.33) given by

the mapping (5.28) is only convenient for expressions that do not contain s13 or s14 in

the denominator. These invariants, in terms of λi, contain square root terms (5.28),

that arise from solving the constraint −∆4 ≥ 0 for s13 (5.29). Because ∆4 (5.26)

is a quadratic equation the solutions always introduce square root terms and the

extraction of the singularities in this case is not amenable with sector decomposition.

In this case, 1/s13 develops a singularity when λ5 = 0 and y−13 = 0⇔ λ3λ4 = λ2(1−
λ3)(1−λ4) (5.28). One solution is to remap the momenta of the final state particles

in a way to eliminate the invariants s13 and s14 from appearing in the denominators.

However this is not possible in general for all the 1 → 4 massless matrix elements

to which this parameterisation applies. The other solution is to shuffle the square

root terms to the numerator with the following non-linear transformation of λ5 in

(5.33) to bring the limits of the s13 integration from 0 to 1 [147]:

λ̂5 =
y13 − y−13

y13+ − y−13

y+
13

y13

, y13(λ̂5) =
y+

13y
−
13

(y+
13 − y−13)(1− λ̂5) + y−13

(5.42)

The jacobian of the transformation is given by:

dλ5 =
y+

13y
−
13(

(y+
13 − y−13)(1− λ̂5) + y−13

)2 dλ̂5

=
y13(λ̂5)

(y+
13 − y−13)(1− λ̂5) + y−13

dλ̂5 (5.43)

and we derive the following parameterisation of the 1 → 4 phase space to the unit

hypercube:∫
dΦ1→4 = (2π)4−3d(Q2)3d/2−42−2d+1Vd−1Vd−2Vd−3

∫ 1

0

dλ1dλ2dλ3dλ4dλ̂5

[λ1(1− λ1)(1− λ2)]1−2ε [λ2λ3(1− λ3)λ4(1− λ4)]−ε
[
λ̂5(1− λ̂5)

]−1/2−ε

y13(λ̂5)
[
y+

13y
−
13

]−1/2−ε
{

(1− λ̂5)(y+
13 − y−13) + y−13

}2ε

(5.44)
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The jacobian of the non-linear transformation is proportional to s13 and therefore,

in this parameterisation, factors of s13 in denominators of matrix elements are can-

celled. The transformation of λ5 → λ̂5 (5.42) does not change the other invariants

in (5.28) that keep simple forms amenable to sector decomposition and there are no

singularities in (5.44) associated with λ̂5.

However, using (5.29) we find:

[
y+

13y
−
13

]−1/2−ε
= (1− λ1)−1−2ε|λ2(1− λ3)(1− λ4)− λ3λ4|−1−2ε (5.45)

This expression is singular on a manifold of points in the interior of the phase space.

It is a new type of singularity and, as before, we wish to move it to the boundary

of the integration region. The singularity occurs when:

λ4 → λs4 =
λ2(1− λ3)

λ3 + λ2(1− λ3)
(5.46)

and this value is always in the integration region. To remap the singularities we

split the λ4 integration: ∫ 1

0

dλ4 =

∫ λs4

0

dλ4 +

∫ 1

λs4

dλ4 (5.47)

and we substitute λ4 = λs4λ̂4 in the first integral and λ4 = 1 − (1 − λs4)λ̂4 in the

second to obtain integrals from zero to one. Doing this produces two integrals (or

sectors) where the invariants in (5.28) have now a slightly different form due to the

transformations in λ4 mentioned. However their singularities can be extracted using

the sector decomposition technique.

In conclusion, to extract the singularties in 1 → 4 massless matrix elements,

relevant to the computation of NNLO real corrections to 1 → 2 processes, it is

convenient to use as much as possible the phase space parameterisation of (5.33).

This means that it is better to avoid, with rotations of the final-state momenta,

terms with s13 or s14 in the denominator. This can be implemented as a new

step in the start of the algorithm. If this is not possible then proceed using the

parameterisation (5.44) of the phase space. The number of times this happens

should be kept minimal because using (5.44) introduces two sectors (5.47) in the

beginning of the algorithmic procedure. This number increases further according
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to the complexity of the structure of the denominator in terms of the λi making

the size of the functions fj in (5.41) considerably lengthy which means harder to

evaluate numerically and impossible analytically.

In general the NNLO matrix elements are lengthy to begin with, and, their

expansion in a Laurent series of the type (5.41), using sector decomposition leads

to unavoidable even lengthier formulas for the functions fj. The size of the matrix

element and the number of times (5.44) needs to be applied determines the number

of coefficients in (5.41) that can be computed analytically. In the best cases the

first three terms in the series, corresponding to the deepest poles, can be evaluated

analytically and the remaining ones numerically. We will see an example in the next

section.

It is important to understand these limitations when applying this method as

new ideas may be needed to improve its behaviour. For example a parameterisation

for the 1 → 5 massless phase space derived in [148] relevant to calculate e+e− → 3

jets at NNLO using sector decomposition leads to an unacceptable number of terms

to evaluate [124] with the necessary numerical precision. This is due to the large

number of massless particles in the final state generating an extremely complicated

infrared structure. On the other hand, if massive particles are involved, the infrared

structure is in this case less complex as the mass regulates some of the infrared

divergences and the number of terms produced by sector decomposition is reduced.

The invariants may have a complicated formula in the unit hypercube, but, as long

as they do not vanish, sector decomposition and the non-linear transformation (5.42)

used in the massless case is no longer needed.

Examples of differential results at NNLO using this method are e+e− → 2

jets [149], Higgs production [150–153], vector boson production [154]. In [155] the

complete O(α2) QED corrections to the electron energy spectrum in muon decay

were computed. O(α2
s) corrections to fully differential decay rates for b→ clν̄l were

derived in [156].

For the calculation of pp → 2 jets that this thesis refers to, an application of

the sector decomposition method is not straightforward. As we have discussed, the

most difficult part is to extract the divergences from the double real emission matrix
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element, without integrating over any kinematic parameter that describes the real

emission process. To achieve this we need to derive parameterisations for the 2→ 4

particle phase space to the unit hypercube. Although this is possible, the number of

massless particles in the final state makes the infrared structure very complicated. In

this case multiple invariants develop square root terms, making it impossible to find

a parameterisation that can handle simultaneously all the invariants that appear in

the most complicated denominators of six-parton matrix elements. In addition to

this, we want to avoid squaring the matrix elements and use the compact expressions

for scattering amplitudes derived in the helicity basis, but it is not clear how to use

the helicity amplitudes efficiently.

5.3 Numerical integration of final-final NNLO an-

tenna functions

In this section we are going to perform a direct check with sector decomposition of

the analytic results for the integrated antenna F 0
4 obtained in [67]. As we explained

in the previous chapter this antenna is the matrix element for H → gggg normalised

to the squared two-parton basic matrix element. Its unintegrated form is given in

appendix B.1. The terms ofO(ε) are omitted there but the integration of the antenna

over the antenna phase space has to be performed in d dimensions to obtain the full

singular structure. This is because at NNLO we expect poles up to 1/ε4 that can

hit the O(ε) terms and therefore contribute to the pole structure and finite pieces.

Also in the sector decomposition approach we need the O(ε) terms in the matrix

elements to expand the singular structure in a Laurent series.

By inspection of the formula for F 0
4 (1g, 2g, 3g, 4g) in B.1 we find that are denom-

inators that contain the invariant s13 or s14 that cannot be avoided by rotations of

the momenta of the final state particles. This means that in our implementation

of the sector decomposition procedure we use both the parameterisations given by

(5.33) and (5.44).

We also notice the presence of denominators of the type 1/(s2
12s

2
34). When we

combine this denominator with the phase space measure we produce a parameter



5.3. Numerical integration of final-final NNLO antenna functions 123

integral of the form: ∫ 1

0

dxxa+bεf(x) (5.48)

with a = −2. This is not expected because physical singularities in a renormalisable

theory are not worse than logarithmic and a ≥ −1 always. In these few cases we

may choose not to keep the numerator as a symbolic function f(x) but introduce

its explicit form at the level of the ε-expansion to cancel the quadratic singularity.

Alternatively we can expand these higher order singularities in plus distributions

using:∫ 1

0

dxx−n+bεf(x) =

∫ 1

0

dxxbε
f(x)−∑n−1

k=0 x
k f

(k)(0)
k!

xn
+
n−1∑
k=0

f (k)(0)

k!(k + 1− n+ bε)
(5.49)

and introduce f(x) only for the numerical integration.

As we mentioned in the previous section the antenna phase space is proportional

to the 1 → 4 phase space and we worked out there its treatment within sector

decomposition. With these ingredients we can do a check on the analytic results of

the integrated antennae functions for final-final kinematics.

The analytic integral of the F 0
4 antenna function was obtained in [67]. In this

work, the phase space integrals were related to loop integrals in the form of a cut

diagram. A reduction procedure using integration-by-parts (IBP) identities showed

that all antennae integrals can be expressed as a linear combination of four master

integrals. These were computed in [104] analytically and numerically with sector

decomposition. An analytic result for the F 0
4 antenna function was then obtained:

F (1g, 2g, 3g, 4g) = 2

[
5

2ε4
+

121

12ε3
+

1

ε2

(
436

9
− 11π2

13

)
+

1

ε

(
23455

108
− 1067π2

72

−379

6
ζ(3)

)
+

(
304951

324
− 7781π2

108
− 2288

9
ζ(3) +

479π4

720

)]
=

[
5

ε4
+

121

6ε3
+

24.51178992

ε2
− 10.03211182

ε
− 21.2942539

]
The same integral computed directly with the sector decomposition approach

gives:

F (1g, 2g, 3g, 4g) =

[
5

ε4
+

121

6ε3
+

24.49± 0.02

ε2
− 10.18± 0.14

ε
− 21.9± 1.1

]
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The output of the procedure were parameter integrals for all the coefficients. In

this case the first two poles contain fewer integrations and are simple functions that

could be evaluated analytically. For the remaining coefficients, the large size of

the parametric function to be evaluated where complicated logarithmic functions

involving multiple variables appear, makes an analytic result impossible.

We proceeded using VEGAS [157] to perform the multi-dimensional integral

over the unit hypercube and quote the errors produced in the integration routine.

The comparison reveals a good agreement but for the finite piece the precision

is worse. This can be improved with a more sophisticated numerical integration

technique. Numerical results for the remaining four-particle antennae functions

were also obtained as these are of the same level of complexity as the F 0
4 antenna

function and, for all, an agreement with the analytic results was observed.

5.4 Summary

In this chapter we examined the uses of the sector decomposition method for phe-

nomenological applications. As we have seen from its description, the method can

regarded as an universal method in the extraction of singularities from parame-

ter integrals. Within field theory and using dimensional regularisation it provides

factorisation and subtraction of infrared poles to (in principle) all orders in pertur-

bation theory, not only for individual integrals, but also for entire squared matrix

elements.

For multi-loop integrals it has been very successful to arrive at numerical results

before analytic formulae were available but it provides also a cross-check of subse-

quent cutting-edge analytic calculations of two and three loop integrals. Alternative

techniques include the Mellin-Barnes representation [158, 159] but this will not be

discussed.

For phase space integrals the method has been useful to obtain results for full

processes at NNLO where the advantages, compared to analytic subtraction, are an

automated procedure starting from suitable phase space parameterisations and the

production of expressions with good numerical behaviour. Also in this case there is
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no need for an analytic integration of subtraction terms over the singular regions of

the phase space.



Chapter 6

NNLO real corrections for gluon

scattering

In this chapter we describe the calculation of the NNLO real corrections to gluon

scattering. Infrared singularities due to double real radiation at tree level are sub-

tracted from the full QCD matrix element for gg → gggg using antenna functions.

All relevant formulae were written down in chapter 4 for the general case. Here

we will apply them to the pure gluon channel to obtain finite contributions for the

six-parton process.

In section 6.1 we write down the double real radiation contribution to the cross

section split into three topologies that we define. For each, the relevant counterterms

will be derived.

6.1 Six-gluon subtraction term

In this section we will consider the six-parton double real radiation contribution to

the NNLO cross section. In the gluon-gluon channel we have the tree-level six parton

process gg → gggg. This process requires subtraction of all double unresolved and

single unresolved singularities. The double real radiation is given by:

dσRNNLO = N2 Nborn

(αs
2π

)2

dΦ4(p3, . . . , p6; p1; p2)
1

4!∑
{2,...,6}′

A0
6(1̂g, 2̂g, ig, jg, kg, lg)J

(4)
2 (pi, . . . , pl) +O

(
1

N2

)
(6.1)

126
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where the sum with the prime,
∑
{2,...,6}′ is over all 5! non-cyclic permutations of

2̂, 3, ..., 6 and we have suppressed sub-leading colour terms. The squared amplitude

A0
6 summed over helicities is obtained by:

A0
6(1̂g, 2̂g, 3g, 4g, 5g, 6g) =

∑
h

M(1̂g, 2̂g, 3g, 4g, 5g, 6g)M∗(1̂g, 2̂g, 3g, 4g, 5g, 6g) (6.2)

where the sum includes MHV and next-to-MHV 6 gluon primitive amplitudes [25,

27, 28] that we evaluate as a complex number and square to obtain A0
6. These are

written down in the appendix A.6 and their evaluation was described in section 1.6.

We can now use the cyclic symmetry of the colour ordered squared amplitudes

A0
6 and reduce (6.1) to three independent topologies:

dσRNNLO = N2 Nborn

(αs
2π

)2

dΦ4(p3, . . . , p6; p1, p2)

(
2

4!

∑
P (i,j,k,l)∈(3,4,5,6)

A0
6(1̂g, 2̂g, ig, jg, kg, lg)J

(4)
2 (pi, . . . , pl)

+
2

4!

∑
P (i,j,k,l)∈(3,4,5,6)

A0
6(1̂g, ig, 2̂g, jg, kg, lg)J

(4)
2 (pi, . . . , pl)

+
2

4!

∑
PC(i,j,k,l)∈(3,4,5,6)

A0
6(1̂g, ig, jg, 2̂g, kg, lg)J

(4)
2 (pi, . . . , pl)

)
(6.3)

where the first two sums are over the 4! permutations of the gluon momenta in the

final state and in the last sum only 4!/2 cyclic permutations are summed. Therefore,

depending on the position of the initial state gluons we have different topologies.

These are labelled IIFFFF, IFIFFF, IFFIFF respectively. In the following subsec-

tions we will write down the counterterm that regularises the infrared divergences

of the double real correction for each topology separately.

6.1.1 IIFFFF topology

The real radiation contribution to the cross section for the first topology is obtained

by averaging over all possible 24 orderings:

dσRNNLO = N2 Nborn

(αs
2π

)2

dΦ4(p3, . . . , p6; p1, p2)
2

4!∑
(i,j,k,l)∈P (3,4,5,6)

A0
6(1̂g, 2̂g, ig, jg, kg, lg)J

(4)
2 (pi, . . . , pl)
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= N2 Nborn

(αs
2π

)2

dΦ4(p3, . . . , p6; p1, p2)
2

4![
X0

6 (1̂g, 2̂g, 3g, 4g, 5g, 6g) +X0
6 (1̂g, 2̂g, 3g, 5g, 4g, 6g)

+X0
6 (1̂g, 2̂g, 3g, 4g, 6g, 5g)

]
J

(4)
2 (p3, . . . , p6) (6.4)

where each X0
6 contains 8 colour ordered squared amplitudes given by the 4 cyclic

permutations of the final state gluons plus their line reversals:

X0
6 (1̂g, 2̂g, 3g, 4g, 5g, 6g) = A0

6(1̂g, 2̂g, 3g, 4g, 5g, 6g) + A0
6(1̂g, 2̂g, 6g, 5g, 4g, 3g)

+A0
6(1̂g, 2̂g, 4g, 5g, 6g, 3g) + A0

6(1̂g, 2̂g, 3g, 6g, 5g, 4g)

+A0
6(1̂g, 2̂g, 5g, 6g, 3g, 4g) + A0

6(1̂g, 2̂g, 4g, 3g, 6g, 5g)

+A0
6(1̂g, 2̂g, 6g, 3g, 4g, 5g) + A0

6(1̂g, 2̂g, 5g, 4g, 3g, 6g)

(6.5)

For the numerical implementation we use the X0
6 function because this form of

the real correction is more appropriate for the construction of the subtraction term.

It matches onto the full F 0
4 (ig, jg, kg, lg) final-final antenna function which has a

cyclic ambiguity in the momentum arrangements. This is because as it was men-

tioned in section 4.3.1 F 0
4 (ig, jg, kg, lg) contains four-different colour-ordered anten-

nae. The real correction should have 4 colour-ordered squared amplitudes per each

F 0
4 (ig, jg, kg, lg) in the subtraction term too. There is an extra factor of 2 because in

the subtraction term we will use initial-final antennae of the type F 0
4 (2̂, i, j, k) which

has the unresolved limits of i and j between 2̂ and k and the unresolved limits of k

and j between 2̂ and i that come from two different orderings in the real radiation.

This brings the total number of squared ordered amplitudes to implement in this

topology to 8 (6.5).

The remaining 16 orderings in this topology corresponding to the last two X0
6

functions are obtained by permutations of the gluon indices when calling the IIFFFF

routine. These actually yield the same contribution to the cross section and need

not to be evaluated. However if we sum over all orderings the topology becomes

symmetric with respect to all gluon indices and this is better for the Monte Carlo

integration.

The real radiation subtraction term for this topology to be used with
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X0
6 (1̂g, 2̂g, 3g, 4g, 5g, 6g) is given by the following sum where:

(i, j, k, l) = (3, 4, 5, 6), (4, 5, 6, 3), (5, 6, 3, 4), (6, 3, 4, 5)

dσSNNLO = N2 Nborn

(αs
2π

)2

dΦ4(p3, . . . , p6; p1, p2)
2

4!

∑
(ijkl)

{
f 0

3 (2̂g, ig, jg)A
0
5(1̂g, ˆ̄2g, (ĩj)g, kg, lg) J

(3)
2 (p̃ij, pk, pl)

+f 0
3 (ig, jg, kg)A

0
5(1̂g, 2̂g, (ĩj)g, (j̃k)g, lg)J

(3)
2 (p̃ij, p̃jk, pl)

+f 0
3 (jg, kg, lg)A

0
5(1̂g, 2̂g, ig, (j̃k)g, (k̃l)g)J

(3)
2 (pi, p̃jk, p̃kl)

+f 0
3 (kg, lg, 1̂g)A

0
5(ˆ̄1g, 2̂g, ig, jg, (k̃l)g)J

(3)
2 (pi, pj, p̃kl)

+f 0
3 (2̂g, lg, kg)A

0
5(1̂g, ˆ̄2g, (l̃k)g, jg, ig) J

(3)
2 (p̃lk, pj, pi)

+f 0
3 (lg, kg, jg)A

0
5(1̂g, 2̂g, (l̃k)g, (k̃j)g, ig)J

(3)
2 (p̃lk, p̃kj, pi)

+f 0
3 (kg, jg, ig)A

0
5(1̂g, 2̂g, lg, (k̃j)g, (j̃i)g)J

(3)
2 (pl, p̃kj, p̃ji)

+f 0
3 (jg, ig, 1̂g)A

0
5(ˆ̄1g, 2̂g, lg, kg, (j̃i)g)J

(3)
2 (pl, pk, p̃ji)

+

(
F 0

4,a(ig, jg, kg, lg)− f 0
3 (ig, jg, kg)f

0
3 ((̃ij)g, (̃jk)g, lg)

−f 0
3 (jg, kg, lg)f

0
3 (ig, (̃jk)g, (̃kl)g)

)
A0

4(1̂g, 2̂g, (̃ijk)g, (̃lkj)g)J
(2)
2 (p̃ijk, p̃lkj)

+

(
F 0

4,b(ig, jg, kg, lg)

−f 0
3 (ig, jg, kg)f

0
3 ((̃ij)g, lg, (̃jk)g)

)
A0

4(1̂g, 2̂g, (̃ijl)g, (̃klj)g)J
(2)
2 (p̃ijl, p̃klj)

+
1

2
f 0

3 (ig, jg, kg)f
0
3 ((̃ij)g, lg, (̃jk)g)A

0
4(1̂g, 2̂g, (̃(ij)l)g, (̃(jk)l)g)J

(2)
2 (p̃(ij)l, p̃(jk)l)

+

(
F 0

4,a(lg, kg, jg, ig)− f 0
3 (lg, kg, jg)f

0
3 ((̃lk)g, (̃kj)g, ig)

−f 0
3 (kg, jg, ig)f

0
3 (lg, (̃kj)g, (̃ji)g)

)
A0

4(1̂g, 2̂g, (̃lkj)g, (̃ijk)g)J
(2)
2 (p̃lkj, p̃ijk)

+

(
F 0

4,b(lg, kg, jg, ig)

−f 0
3 (lg, kg, jg)f

0
3 ((̃lk)g, ig, (̃kj)g)

)
A0

4(1̂g, 2̂g, (̃lki)g, (̃jik)g)J
(2)
2 (p̃lki, p̃jik)

+
1

2
f 0

3 (lg, kg, jg)f
0
3 ((̃lk)g, ig, (̃kj)g)A

0
4(1̂g, 2̂g, (̃(lk)i)g, (̃(kj)i)g)J

(2)
2 (p̃(lk)i, p̃(kj)i)
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+

(
F 0

4 (1̂g, lg, kg, jg)

−f 0
3 (1̂g, lg, kg)F

0
3 (ˆ̄1g, (̃lk)g, jg)− f 0

3 (lg, kg, jg)F
0
3 (1̂g, (̃lk)g, (̃kj)g)

−f 0
3 (kg, jg, 1̂g)F

0
3 (ˆ̄1g, lg, (̃jk)g)

)
A0

4(ˆ̄1g, 2̂g, ig, (̃lkj)g)J
(2)
2 (pi, p̃lkj)

+

(
F 0

4 (2̂g, ig, jg, kg)

−f 0
3 (2̂g, ig, jg)F

0
3 (ˆ̄2g, (̃ij)g, kg)− f 0

3 (ig, jg, kg)F
0
3 (2̂g, (̃ij)g, (̃jk)g)

−f 0
3 (jg, kg, 2̂g)F

0
3 (ˆ̄2g, ig, (̃kj)g)

)
A0

4(1̂g, ˆ̄2g, (̃ijk)g, lg)J
(2)
2 (pijk, pl)

+
1

2
f 0

3 (1̂g, lg, kg)f
0
3 (ˆ̄1g, jg, (̃lk)g)A

0
4(ˆ̄̄1g, 2̂g, ig, (̃(lk)j)g)J

(2)
2 (pi, p̃(lk)j)

+
1

2
f 0

3 (1̂g, jg, kg)f
0
3 (ˆ̄1g, lg, (̃jk)g)A

0
4(ˆ̄̄1g, 2̂g, ig, (̃(jk)l)g)J

(2)
2 (pi, p̃(jk)l)

+
1

2
f 0

3 (2̂g, ig, jg)f
0
3 (ˆ̄2g, kg, (̃ij)g)A

0
4(1̂g,

ˆ̄̄2g, (̃(ij)k)g, lg)J
(2)
2 (p̃(ij)k, pl)

+
1

2
f 0

3 (2̂g, kg, jg)f
0
3 (ˆ̄2g, ig, (̃kj)g)A

0
4(1̂g,

ˆ̄̄2g, (̃(jk)i)g, lg)J
(2)
2 (p̃(jk)i, pl)

−
(
F 0

4 (1̂g, ig, 2̂g, kg)− F 0
3 (1̂g, ig, 2̂g)F

0
3 (ˆ̄1g, ˆ̄2g, k̃g)

−F 0
3 (1̂g, kg, 2̂g)F

0
3 (ˆ̄1g, ˆ̄2g, ĩg)

)
A0

4(ˆ̄1g, ˆ̄2g, j̃g, l̃g)J
(2)
2 (p̃j, p̃l)

−1

2
F 0

3 (1̂g, ig, 2̂g)F
0
3 (ˆ̄1g, ˆ̄2g, k̃g)A

0
4(ˆ̄̄1g,

ˆ̄̄2g,
˜̃jg,

˜̃lg)J
(2)
2 ( ˜̃pj, ˜̃pl)

−1

2
F 0

3 (1̂g, kg, 2̂g)F
0
3 (ˆ̄1g, ˆ̄2g, ĩg)A

0
4(ˆ̄̄1g,

ˆ̄̄2g,
˜̃jg,

˜̃lg)J
(2)
2 ( ˜̃pj, ˜̃pl)

−1

2
f 0

3 (2̂g, ig, jg)f
0
3 (lg, kg, (̃ij)g)A

0
4(1̂g, ˆ̄2g, (̃(ij)k)g, (̃kl)g)J

(2)
2 (p̃(ij)k, p̃kl)

−1

2
f 0

3 (lg, kg, jg)f
0
3 (2̂g, ig, (̃kj)g)A

0
4(1̂g, ˆ̄2g, (̃(kj)i)g, (̃kl)g)J

(2)
2 (p̃(kj)i, p̃kl)

−1

2
f 0

3 (1̂g, lg, kg)f
0
3 (ig, jg, (̃lk)g)A

0
4(ˆ̄1g, 2̂g, (̃ij)g, (̃(lk)j)g)J

(2)
2 (p̃ij, p̃(lk)j)

−1

2
f 0

3 (ig, jg, kg)f
0
3 (1̂g, lg, (̃jk)g)A

0
4(ˆ̄1g, 2̂g, (̃ij)g, (̃(jk)l)g)J

(2)
2 (p̃ij, p̃(jk)l)

−1

2
f 0

3 (2̂g, lg, kg)f(ig, jg, (̃lk)g)A
0
4(1̂g, ˆ̄2g, (̃(lk)j)g, (̃ij)g)J

(2)
2 (p̃(lk)j, p̃ij)

−1

2
f 0

3 (ig, jg, kg)f
0
3 (2̂g, lg, (̃jk)g)A

0
4(1̂g, ˆ̄2g, (̃(jk)l)g, (̃ij)g)J

(2)
2 ( ˜p(jk)l, p̃ij)

−1

2
f 0

3 (1̂g, ig, jg)f
0
3 (lg, kg, (̃ij)g)A

0
4(ˆ̄1g, 2̂g, (̃kl)g, (̃(ij)l)g)J

(2)
2 (p̃kl, p̃(ij)l)
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−1

2
f 0

3 (lg, kg, jg)f
0
3 (1̂g, ig, (̃kj)g)A

0
4(ˆ̄1g, 2̂g, (̃kl)g, (̃(kj)i)g)J

(2)
2 (p̃kl, p̃(kj)i)

−f 0
3 (2̂g, ig, jg)f

0
3 (kg, lg, 1̂g)A

0
4(ˆ̄1g, ˆ̄2g, (̃ij)g, (̃lk)g)J

(2)
2 (p̃ij, p̃lk)

−f 0
3 (2̂g, lg, kg)f

0
3 (jg, ig, 1̂g)A

0
4(ˆ̄1g, ˆ̄2g, (̃lk)g, (̃ij)g)J

(2)
2 (p̃lk, p̃ij)

+
1

2
f 0

3 (2̂g, kg, jg)F
0
3 (1̂g, ˆ̄2g, ig)A

0
4(ˆ̄1g,

ˆ̄̄2g, (̃kj)g, l̃g)J
(2)
2 (p̃kl, p̃l)

−1

2
F 0

3 (1̂g, 2̂g, ig)f
0
3 (ˆ̄2g, k̃g, j̃g)A

0
4(ˆ̄1g,

ˆ̄̄2g, (̃kj)g, l̃g)J
(2)
2 (p̃kj, p̃l)

+
1

2
f 0

3 (2̂g, ig, jg)F
0
3 (1̂g, ˆ̄2g, kg)A

0
4(ˆ̄1g,

ˆ̄̄2g, (̃ij)g, l̃g)J
(2)
2 (p̃ij, p̃l)

−1

2
F 0

3 (1̂g, 2̂g, kg)f
0
3 (ˆ̄2g, ĩg, j̃g)A

0
4(ˆ̄1g,

ˆ̄̄2g, (̃ij)g, l̃g)J
(2)
2 (p̃ij, p̃l)

+
1

2
f 0

3 (1̂g, kg, jg)F
0
3 (ˆ̄1g, 2̂g, ig)A

0
4(ˆ̄̄1g, ˆ̄2g, l̃g, (̃kj)g)J

(2)
2 (p̃l, p̃kj)

−1

2
F 0

3 (1̂g, 2̂g, ig)f
0
3 (ˆ̄1g, k̃g, j̃g)A

0
4(ˆ̄̄1g, ˆ̄2g, l̃g, (̃kj)g)J

(2)
2 (p̃l, p̃kj)

+
1

2
f 0

3 (1̂g, ig, jg)F
0
3 (ˆ̄1g, 2̂g, lg)A

0
4(ˆ̄̄1g, ˆ̄2g, l̃g, (̃ij)g)J

(2)
2 (p̃l, p̃ij)

−1

2
F 0

3 (1̂g, ˆ̄2g, lg)f
0
3 (ˆ̄1g, ĩg, j̃g)A

0
4(ˆ̄̄1g, ˆ̄2g, l̃g, (̃ij)g)J

(2)
2 (p̃l, p̃ij)

}
(6.6)

In the numerics we explicitly implemented the summation over (i, j, k, l). This

is needed to reconstruct the full F 0
4 (ig, jg, kg, lg) from the F4,a and F4,b as in (4.45).

This makes sure that all the double unresolved limits of the amplitudes in (6.5) are

subtracted and only F 0
4 (ig, jg, kg, lg) must be analytically integrated over the antenna

phase-space. It is important to notice that this six-gluon subtraction term introduces

spurious limits from large angle soft radiation. The single soft limit of (6.6) is non-

vanishing. To account for this large angle soft radiation a new subtraction term

dσANNLO, defined in section 4.2.5, is introduced. Its contribution reads:

dσANNLO = N2 Nborn

(αs
2π

)2

dΦ4(p3, . . . , p6; p1, p2)
2

4!

∑
(ijkl)

{
1

2

(
− S2l((il)j) + S2l(il) − S1l((kl)j) + S1l(kl) + S((il)j)l((kl)j) − S(il)l(kl)

)
×f 0

3 ((̃il)g, jg, (̃kl)g)A
0
4(1̂g, 2̂g, (̃(il)j)g, (̃(kl)j)g)J

(2)
2 (p̃(il)j, p̃(kl)j)

+
1

2

(
− S2i((il)k) + S2i(il) − S1i((ij)k) + S1i(ij) + S((il)k)i((ij)k) − S(il)i(ij)

)
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×f 0
3 ((̃il)g, kg, (̃ij)g)A

0
4(1̂g, 2̂g, (̃(il)k)g, (̃(ij)k)g)J

(2)
2 (p̃(il)k, p̃(ij)k)

+
1

2

(
− Sil((kl)j) + Sil(kl) + S¯̄1l((kl)j) − S1̄l(kl) − S¯̄1l2 + S1̄l2

)
×f 0

3 (ˆ̄1g, jg, (̃kl)g)A
0
4(ˆ̄̄1g, 2̂g, ig, (̃(kl)j)g)J

(2)
2 (p̃i, p̃(kl)j)

+
1

2

(
− Sij((jk)l) + Sij(jk) + S¯̄1j((jk)l) − S1̄j(jk) − S¯̄1j2 + S1̄j2

)
×f 0

3 (ˆ̄1g, lg, (̃kj)g)A
0
4(ˆ̄̄1g, 2̂g, ig, (̃(kj)l)g)J

(2)
2 (pi, p̃(kj)l)

+
1

2

(
− Slk((jk)i) + Slk(jk) + S¯̄2k((jk)i) − S2̄k(jk) − S1k¯̄2 + S1k2̄

)
×f 0

3 (ˆ̄2g, ig, (̃jk)g)A
0
4(1̂g,

ˆ̄̄2g, (̃(jk)i)g, lg)J
(2)
2 (p̃(jk)i, pl)

+
1

2

(
− Sli((ij)k) + Sli(ij) + S¯̄2i((ij)k) − S2̄i(ij) − S1i¯̄2 + S1i2̄

)
×f 0

3 (ˆ̄2g, kg, (̃ij)g)A
0
4(1̂g,

ˆ̄̄2g, (̃(ij)k)g, lg)J
(2)
2 (p̃(ij)k, pl)

+
1

2

(
− S¯̄1̃i¯̄2 + S1̄i2̄ − S2̄ij̃ + S¯̄2̃i˜̃j

− S1̄il̃ + S¯̄1̃i
˜̃
l

)
×F 0

3 (ˆ̄1g, k̃g, ˆ̄2g)A
0
4(ˆ̄̄1g,

ˆ̄̄2g,
˜̃jg,

˜̃lg)J
(2)
2 ( ˜̃pj, ˜̃pl)

+
1

2

(
− S¯̄1k̃¯̄2 + S1̄k2̄ − S2̄kj̃ + S¯̄2k̃˜̃j

− S1̄kl̃ + S¯̄1k̃
˜̃
l

)
×F 0

3 (ˆ̄1g, ĩg, ˆ̄2g)A
0
4(ˆ̄̄1g,

ˆ̄̄2g,
˜̃jg,

˜̃lg)J
(2)
2 ( ˜̃pj, ˜̃pl) (6.7)

6.1.2 IFIFFF topology

The real radiation contribution to the cross section for the second topology is ob-

tained by averaging over all possible twenty-four orderings:

dσRNNLO = N2 Nborn

(αs
2π

)2

dΦ4(p3, . . . , p6; p1, p2)
2

4!∑
(i,j,k,l)∈P (3,4,5,6)

A0
6(1̂g, ig, 2̂g, jg, kg, lg)J

(4)
2 (p3, . . . , p6)

= N2 Nborn

(αs
2π

)2

dΦ4(p3, . . . , p6; p1, p2)
2

4![
X0

6 (1̂g, 3g, 2̂g, 4g, 5g, 6g) +X0
6 (1̂g, 4g, 2̂g, 5g, 6g, 3g)

+X0
6 (1̂g, 5g, 2̂g, 6g, 3g, 4g) +X0

6 (1̂g, 6g, 2̂g, 3g, 4g, 5g)
]

J
(4)
2 (p3, . . . , p6) (6.8)

where each X0
6 contains 6 colour ordered squared amplitudes where the first final

state gluon index is kept fixed and we sum the 3 cyclic permutations of the remaining

final state gluons:

X0
6 (1̂, 3, 2̂, 4, 5, 6) = A0

6(1̂, 3, 2̂, 4, 5, 6) + A0
6(1̂, 3, 2̂, 4, 6, 5) + A0

6(1̂, 3, 2̂, 5, 4, 6)
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+A0
6(1̂, 3, 2̂, 5, 6, 4) + A0

6(1̂, 3, 2̂, 6, 4, 5) + A0
6(1̂, 3, 2̂, 6, 5, 4)

(6.9)

This form (6.8) is more appropriate for the construction of the real radiation sub-

traction term, since it matches onto the symmetry of the full F 0
4 initial-final antenna

function. F 0
4 (2̂, j, k, l) contains the unresolved limits of j and k between 2̂ and l and

the unresolved limits of k and l between 2̂ and j. It is suitable to use it when subtract-

ing the singular limits of the ordered emissions A0
6(1̂, i, 2̂, j, k, l) + A0

6(1̂, i, 2̂, l, k, j).

Also the initial-initial antenna function F 0
4 (1̂, i, 2̂, j) subtracts double unresolved

limits of the ordered emissions A0
6(1̂, i, 2̂, j, k, l) +A0

6(1̂, i, 2̂, k, l, j). Combining these

symmetries brings the total number of ordered squared amplitudes to implement in

this topology to 6 and the remaining 18, corresponding to the remaining 3 X0
6 func-

tions, can be obtained by permutations of the gluon indices when calling the IFIFFF

routine. The real radiation subtraction term to be used with X0
6 (1̂, i, 2̂, j, k, l) is the

following:

dσSNNLO = N2 Nborn

(αs
2π

)2

dΦ4(p3, . . . , p6; p1, p2)
2

4!

∑
PC(j,k,l)

{
F 0

3 (1̂g, ig, 2̂g)A
0
5(ˆ̄1g, ˆ̄2g, j̃g, k̃g, l̃g) J

(3)
2 (p̃j, p̃k, p̃l)

+f 0
3 (2̂g, jg, kg)A

0
5(1̂g, ig, ˆ̄2g, (̃jk)g, lg) J

(3)
2 (pi, p̃jk, pl)

+f 0
3 (jg, kg, lg)A

0
5(1̂g, ig, 2̂g, (̃jk)g, (̃kl)g) J

(3)
2 (pi, p̃jk, p̃kl)

+f 0
3 (kg, lg, 1̂g)A

0
5(ˆ̄1g, ig, 2̂g, jg, (̃kl)g) J

(3)
2 (pi, pj, p̃kl)

+F 0
3 (1̂g, ig, 2̂g)A

0
5(ˆ̄1g, ˆ̄2g, l̃g, k̃g, j̃g) J

(3)
2 (p̃l, p̃k, p̃j)

+f 0
3 (2̂g, lg, kg)A

0
5(1̂g, ig, ˆ̄2g, (̃lk)g, jg) J

(3)
2 (pi, p̃lk, pj)

+f 0
3 (lg, kg, jg)A

0
5(1̂g, ig, 2̂g, (̃lk)g, (̃kj)g) J

(3)
2 (pi, p̃lk, p̃kj)

+f 0
3 (kg, jg, 1̂g)A

0
5(ˆ̄1g, ig, 2̂g, lg, (̃jk)g) J

(3)
2 (pi, pl, p̃jk)

+

(
F 0

4 (2̂g, jg, kg, lg)

−f 0
3 (2̂g, jg, kg)F

0
3 (ˆ̄2g, (̃jk)g, lg)− f 0

3 (jg, kg, lg)F
0
3 (2̂g, (̃jk)g, (̃kl)g)
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−f 0
3 (kg, lg, 2̂g)F

0
3 (ˆ̄2g, jg, (̃kl)g)

)
A0

4(1̂g, ig, ˆ̄2g, (̃jkl)g) J
(2)
2 (pi, p̃jkl)

+

(
F 0

4 (1̂g, lg, kg, jg)

−f 0
3 (1̂g, lg, kg)F

0
3 (ˆ̄1g, (̃kl)g, jg)− f 0

3 (lg, kg, jg)F
0
3 (1̂g, (̃lk)g, (̃kj)g)

−f 0
3 (kg, jg, 1̂g)F

0
3 (ˆ̄1g, lg, (̃jk)g)

)
A0

4(ˆ̄1g, ig, 2̂g, (̃lkj)g) J
(2)
2 (pi, p̃lkj)

+
1

2
f 0

3 (2̂g, jg, kg)f
0
3 (ˆ̄2g, lg, (̃jk)g)A

0
4(1̂g, ig,

ˆ̄̄2g, (̃jk)lg) J
(2)
2 (pi, p̃(jk)l)

+
1

2
f 0

3 (2̂g, lg, kg)f
0
3 (ˆ̄2g, jg, (̃lk)g)A

0
4(1̂g, ig,

ˆ̄̄2g, (̃lk)jg) J
(2)
2 (pi, p̃(lk)j)

+
1

2
f 0

3 (1̂g, lg, kg)f
0
3 (ˆ̄1g, jg, (̃lk)g)A

0
4(ˆ̄̄1g, ig, 2̂g, (̃lk)jg) J

(2)
2 (pi, p̃(lk)j)

+
1

2
f 0

3 (1̂g, jg, kg)f
0
3 (ˆ̄1g, lg, (̃jk)g)A

0
4(ˆ̄̄1g, ig, 2̂g, (̃jk)lg) J

(2)
2 (pi, p̃(jk)l)

+

(
F 0

4 (1̂g, ig, 2̂g, jg)− F 0
3 (1̂g, ig, 2̂g)F

0
3 (ˆ̄1g, ˆ̄2g, j̃g)

−F 0
3 (2̂g, jg, 1̂g)F

0
3 (ˆ̄1g, ĩg, ˆ̄2g)

)
A0

4(ˆ̄1g, ˆ̄2g, k̃g, l̃g) J
(2)
2 (p̃k, p̃l)

+

(
F 0

4 (1̂g, ig, 2̂g, lg)− F 0
3 (1̂g, ig, 2̂g)F

0
3 (ˆ̄1g, ˆ̄2g, l̃g)

−F 0
3 (2̂g, lg, 1̂g)F

0
3 (ˆ̄1g, ĩg, ˆ̄2g)

)
A0

4(ˆ̄1g, ˆ̄2g, k̃g, j̃g) J
(2)
2 (p̃k, p̃j)

+
1

2
F 0

3 (2̂g, jg, 1̂g)F
0
3 (ˆ̄1g, ĩg, ˆ̄2g)A

0
4(ˆ̄̄1g,

ˆ̄̄2g,
˜̃kg,

˜̃lg) J
(2)
2 ( ˜̃pk, ˜̃pl)

+
1

2
F 0

3 (1̂g, ig, 2̂g)F
0
3 (ˆ̄1g, j̃g, ˆ̄2g)A

0
4(ˆ̄̄1g,

ˆ̄̄2g,
˜̃kg,

˜̃lg) J
(2)
2 ( ˜̃pk, ˜̃pl)

+
1

2
F 0

3 (2̂g, lg, 1̂g)F
0
3 (ˆ̄1g, ĩg, ˆ̄2g)A

0
4(ˆ̄̄1g,

ˆ̄̄2g,
˜̃kg,

˜̃jg) J
(2)
2 ( ˜̃pk, ˜̃pj)

+
1

2
F 0

3 (1̂g, ig, 2̂g)F
0
3 (ˆ̄1g, l̃g, ˆ̄2g)A

0
4(ˆ̄̄1g,

ˆ̄̄2g,
˜̃kg,

˜̃jg) J
(2)
2 ( ˜̃pk, ˜̃pj)

−
(
F 0

4 (1̂g, lg, 2̂g, jg)− F 0
3 (1̂g, lg, 2̂g)F

0
3 (ˆ̄1g, ˆ̄2g, j̃g)

−F 0
3 (2̂g, jg, 1̂g)F

0
3 (ˆ̄1g, l̃g, ˆ̄2g)

)
A0

4(ˆ̄1g, ĩg, ˆ̄2g, k̃g) J
(2)
2 (p̃i, p̃k)
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−1

2
F 0

3 (1̂g, lg, 2̂g)F
0
3 (ˆ̄1g, ˆ̄2g, j̃g)A

0
4(ˆ̄̄1g,

˜̃ig,
ˆ̄̄2g,

˜̃kg) J
(2)
2 ( ˜̃pi, ˜̃pk)

−1

2
F 0

3 (2̂g, jg, 1̂g)F
0
3 (ˆ̄1g, l̃g, ˆ̄2g)A

0
4(ˆ̄̄1g,

˜̃ig,
ˆ̄̄2g,

˜̃kg) J
(2)
2 ( ˜̃pi, ˜̃pk)

−1

2
f 0

3 (2̂g, jg, kg)F
0
3 (1̂g, ig, ˆ̄2g)A

0
4(ˆ̄1g,

ˆ̄̄2g, (̃jk)g, l̃g) J
(2)
2 (p̃jk, p̃l)

−1

2
F 0

3 (1̂g, ig, 2̂g)f
0
3 (ˆ̄2g, j̃g, k̃g)A

0
4(ˆ̄1g,

ˆ̄̄2g, (̃jk)g, l̃g) J
(2)
2 (p̃jk, p̃l)

−1

2
f 0

3 (1̂g, lg, kg)F
0
3 (ˆ̄1g, ig, 2̂g)A

0
4(ˆ̄̄1g, ˆ̄2g, j̃g, (̃lk)g) J

(2)
2 (p̃j, p̃lk)

−1

2
F 0

3 (1̂g, ig, 2̂g)f
0
3 (ˆ̄1g, l̃g, k̃g)A

0
4(ˆ̄̄1g, ˆ̄2g, j̃g, (̃lk)g) J

(2)
2 (p̃j, p̃lk)

−1

2
f 0

3 (2̂g, jg, kg)f
0
3 (1̂g, lg, (̃jk)g)A

0
4(ˆ̄1g, ig, ˆ̄2g, (̃jk)lg) J

(2)
2 (pi, p̃(jk)l)

−1

2
f 0

3 (1̂g, lg, kg)f
0
3 (2̂g, jg, (̃lk)g)A

0
4(ˆ̄1g, ig, ˆ̄2g, (̃lk)jg) J

(2)
2 (pi, p̃(lk)j)

−1

2
f 0

3 (2̂g, lg, kg)F
0
3 (1̂g, ig, ˆ̄2g)A

0
4(ˆ̄1g,

ˆ̄̄2g, (̃lk)g, j̃g) J
(2)
2 (p̃lk, p̃j)

−1

2
F 0

3 (1̂g, ig, 2̂g)f
0
3 (ˆ̄2g, l̃g, k̃g)A

0
4(ˆ̄1g,

ˆ̄̄2g, (̃lk)g, j̃g) J
(2)
2 (p̃lk, p̃j)

−1

2
f 0

3 (1̂g, jg, kg)F
0
3 (ˆ̄1g, ig, 2̂g)A

0
4(ˆ̄̄1g, ˆ̄2g, l̃g, (̃jk)g) J

(2)
2 (p̃l, p̃jk)

−1

2
F 0

3 (1̂g, ig, 2̂g)f
0
3 (ˆ̄1g, j̃g, l̃g)A

0
4(ˆ̄̄1g, ˆ̄2g, l̃g, (̃jk)g) J

(2)
2 (p̃l, p̃jk)

−1

2
f 0

3 (2̂g, lg, kg)f
0
3 (1̂g, jg, (̃lk)g)A

0
4(ˆ̄1g, ig, ˆ̄2g, (̃lk)jg) J

(2)
2 (pi, p̃(lk)j)

−1

2
f 0

3 (1̂g, jg, kg)f
0
3 (2̂g, lg, (̃jk)g)A

0
4(ˆ̄1g, ig, ˆ̄2g, (̃jk)lg) J

(2)
2 (pi, p̃(jk)l)

−F 0
3 (1̂g, ig, 2̂g)f

0
3 (j̃g, k̃g, l̃g)A

0
4(ˆ̄1g, ˆ̄2g, (j̃k̃)g, (k̃l̃)g) J

(2)
2 (p(j̃k̃), p(k̃l̃))

−F 0
3 (1̂g, ig, 2̂g)f

0
3 (l̃g, k̃g, j̃g)A

0
4(ˆ̄1g, ˆ̄2g, (l̃k̃)g, (k̃j̃)g) J

(2)
2 (p(l̃k̃), p(k̃j̃))

+
1

2
f 0

3 (2̂g, jg, kg)F
0
3 (1̂g, ˆ̄2g, lg)A

0
4(ˆ̄1g, ĩg,

ˆ̄̄2g, (̃jk)g)J
(2)
2 (p̃i, p̃jk)

−1

2
F 0

3 (1̂g, 2̂g, lg)f
0
3 (ˆ̄2g, j̃g, k̃g)A

0
4(ˆ̄1g, ĩg,

ˆ̄̄2g, (j̃k̃)g)J
(2)
2 (p̃i, pj̃k̃)

+
1

2
f 0

3 (2̂g, jg, lg)F
0
3 (1̂g, ˆ̄2g, kg)A

0
4(ˆ̄1g, ĩg,

ˆ̄̄2g, (̃jl)g)J
(2)
2 (p̃i, p̃jl)

−1

2
F 0

3 (1̂g, 2̂g, kg)f
0
3 (ˆ̄2g, j̃g, l̃g)A

0
4(ˆ̄1g, ĩg,

ˆ̄̄2g, (j̃ l̃)g)J
(2)
2 (p̃i, pj̃ l̃)
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+
1

2
f 0

3 (1̂g, jg, kg)F
0
3 (1̂g, ˆ̄2g, lg)A

0
4(ˆ̄1g, ĩg,

ˆ̄̄2g, (̃jk)g)J
(2)
2 (p̃i, p̃jk)

−1

2
F 0

3 (1̂g, 2̂g, lg)f
0
3 (ˆ̄1g, j̃g, k̃g)A

0
4(ˆ̄1g, ĩg,

ˆ̄̄2g, (j̃k̃)g)J
(2)
2 (p̃i, pj̃k̃)

+
1

2
f 0

3 (1̂g, jg, lg)F
0
3 (1̂g, ˆ̄2g, kg)A

0
4(ˆ̄1g, ĩg,

ˆ̄̄2g, (̃jl)g)J
(2)
2 (p̃i, p̃jl)

−1

2
F 0

3 (1̂g, 2̂g, kg)f
0
3 (ˆ̄1g, j̃g, l̃g)A

0
4(ˆ̄1g, ĩg,

ˆ̄̄2g, (j̃ l̃)g)J
(2)
2 (p̃i, pj̃ l̃)

+
1

2
f 0

3 (2̂g, ig, lg)f
0
3 (ˆ̄2g, jg, kg)A

0
4(1̂g,

ˆ̄̄2g, (̃jk)g, (̃il)g)J
(2)
2 (p̃jk, p̃il)

−1

2
f 0

3 (2̂g, jg, kg)f
0
3 (ˆ̄2g, ig, lg)A

0
4(1̂g,

ˆ̄̄2g, (̃jk)g, (̃il)g)J
(2)
2 (p̃jk, p̃il)

−1

2
f 0

3 (2̂g, ig, lg)F
0
3 (1̂g, jg, ˆ̄2g)A

0
4(ˆ̄1g,

ˆ̄̄2g, k̃g, (̃il)g)J
(2)
2 (p̃k, p̃il)

+
1

2
F 0

3 (1̂g, jg, 2̂g)f
0
3 (ˆ̄2g, ĩg, l̃g)A

0
4(ˆ̄1g,

ˆ̄̄2g, k̃g, (̃il̃)g)J
(2)
2 (p̃k, pĩl̃)

+
1

2
f 0

3 (2̂g, ig, jg)f
0
3 (ˆ̄2g, lg, kg)A

0
4(1̂g,

ˆ̄̄2g, (̃lk)g, (̃ij)g)J
(2)
2 (p̃lk, p̃ij)

−1

2
f 0

3 (2̂g, lg, kg)f
0
3 (ˆ̄2g, ig, jg)A

0
4(1̂g,

ˆ̄̄2g, (̃lk)g, (̃ij)g)J
(2)
2 (p̃lk, p̃ij)

−1

2
f 0

3 (2̂g, ig, jg)F
0
3 (1̂g, lg, ˆ̄2g)A

0
4(ˆ̄1g,

ˆ̄̄2g, k̃g, (̃ij)g)J
(2)
2 (p̃k, p̃ij)

+
1

2
F 0

3 (1̂g, lg, 2̂g)f
0
3 (ˆ̄2g, ĩg, j̃g)A

0
4(ˆ̄1g,

ˆ̄̄2g, k̃g, (̃ij̃)g)J
(2)
2 (p̃k, pĩj̃)

+
1

2
f 0

3 (1̂g, ig, lg)f
0
3 (ˆ̄1g, jg, kg)A

0
4(ˆ̄̄1g, 2̂g, (̃il)g, (̃jk)g)J

(2)
2 (p̃il, p̃jk)

−1

2
f 0

3 (1̂g, jg, kg)f
0
3 (ˆ̄1g, ig, lg)A

0
4(ˆ̄̄1g, 2̂g, (̃il)g, (̃jk)g)J

(2)
2 (p̃il, p̃jk)

−1

2
f 0

3 (1̂g, ig, lg)F
0
3 (ˆ̄1g, jg, 2̂g)A

0
4(ˆ̄̄1g, ˆ̄2g, (̃il)g, k̃g)J

(2)
2 (p̃il, p̃k)

+
1

2
F 0

3 (1̂g, jg, 2̂g)f
0
3 (ˆ̄1g, ĩg, l̃g)A

0
4(ˆ̄̄1g, ˆ̄2g, (̃il̃)g, k̃g)J

(2)
2 (pĩl̃, p̃k)

+
1

2
f 0

3 (1̂g, ig, jg)f
0
3 (ˆ̄1g, lg, kg)A

0
4(ˆ̄̄1g, 2̂g, (̃ij)g, (̃lk)g)J

(2)
2 (p̃ij, p̃lk)

−1

2
f 0

3 (1̂g, lg, kg)f
0
3 (ˆ̄1g, ig, jg)A

0
4(ˆ̄̄1g, 2̂g, (̃ij)g, (̃lk)g)J

(2)
2 (p̃ij, p̃lk)

−1

2
f 0

3 (1̂g, ig, jg)F
0
3 (ˆ̄1g, lg, 2̂g)A

0
4(ˆ̄̄1g, ˆ̄2g, (̃ij)g, k̃g)J

(2)
2 (p̃ij, p̃k)

+
1

2
F 0

3 (1̂g, lg, 2̂g)f
0
3 (ˆ̄1g, ĩg, j̃g)A

0
4(ˆ̄̄1g, ˆ̄2g, (̃ij̃)g, k̃g)J

(2)
2 (pĩj̃, p̃k)

}
(6.10)



6.1. Six-gluon subtraction term 137

It is important to notice that this six-gluon subtraction term introduces spurious

limits from large angle soft radiation. The single soft limit of (6.10) is non-vanishing.

To account for this large angle soft radiation a new subtraction term dσANNLO is

introduced. Its contribution reads:

dσANNLO = N2 Nborn

(αs
2π

)2

dΦ4(p3, . . . , p6; p1, p2)
2

4!

∑
PC(j,k,l)

{
1

2

(
−S¯̄2j̃

˜̃
k

+ S2̄jk̃ − S¯̄1j̃
˜̃
l
+ S1̄jl̃ − S2̄j1̄ + S¯̄2j̃¯̄1

)
F 0

3 (ˆ̄1g, ĩg, ˆ̄2g)

×A0
4(ˆ̄̄1g,

ˆ̄̄2g,
˜̃kg,

˜̃lg)J
(2)
2 (p˜̃

k
, p˜̃

l
)

+
1

2

(
−S¯̄2l̃

˜̃
k

+ S2̄lk̃ − S¯̄1l̃˜̃j
+ S1̄lj̃ − S2̄l1̄ + S¯̄2l̃¯̄1

)
F 0

3 (ˆ̄1g, ĩg, ˆ̄2g)

×A0
4(ˆ̄̄1g,

ˆ̄̄2g,
˜̃kg,

˜̃jg)J
(2)
2 (p˜̃

k
, p˜̃j

)

+
1

2

(
S¯̄2j̃

˜̃
k
− S2̄jk̃ + S¯̄1j̃

˜̃
k
− S1̄jk̃ + S2̄j1̄ − S¯̄2j̃¯̄1

)
F 0

3 (ˆ̄1g, l̃g, ˆ̄2g)

×A0
4(ˆ̄̄1g,

˜̃ig,
ˆ̄̄2g,

˜̃kg)J
(2)
2 (p˜̃i

, p˜̃
k
)

+
1

2

(
S¯̄2l̃

˜̃
k
− S2̄lk̃ + S¯̄1l̃

˜̃
k
− S1̄lk̃ + S2̄l1̄ − S¯̄2l̃¯̄1

)
F 0

3 (ˆ̄1g, j̃g, ˆ̄2g)

×A0
4(ˆ̄̄1g,

˜̃ig,
ˆ̄̄2g,

˜̃kg)J
(2)
2 (p˜̃i

, p˜̃
k
)

+
1

2

(
−S2j((kj)l) + S2j(kj) − S1̄j(kj) + S¯̄1j(l(kj)) − S2j¯̄1 + S2j1̄

)
f 0

3 (ˆ̄1g, lg, (kj)g)

×A0
4(ˆ̄̄1g, ig, 2̂g, (̃kj)l)gJ

(2)
2 (pi, p̃(kj)l))

+
1

2

(
−S2l((kl)j) + S2l(kl) − S1̄l(kl) + S¯̄1l(j(kl)) − S2l¯̄1 + S2l1̄

)
f 0

3 (ˆ̄1g, jg, (kl)g)

×A0
4(ˆ̄̄1g, ig, 2̂g, (̃kl)jg)J

(2)
2 (pi, p̃(kl)j))

+
1

2

(
−S1j((kj)l) + S1j(kj) − S2̄j(kj) + S¯̄2j(l(kj)) − S1j¯̄2 + S1j2̄

)
f 0

3 (ˆ̄2g, lg, (kj)g)

×A0
4(1̂g, ig,

ˆ̄̄2g, (̃kj)lg)J
(2)
2 (p3, p̃(kj)l))

+
1

2

(
−S1l((kl)j) + S1l(kl) − S2̄l(kl) + S¯̄2l(j(kl)) − S1l¯̄2 + S1l2̄

)
f 0

3 (ˆ̄2g, jg, (kl)g)

×A0
4(1̂g, ig,

ˆ̄̄2g, (̃kl)jg)J
(2)
2 (pi, p̃(kl)j))

+
1

2

(
−S¯̄2̃i

˜̃
l
+ S2̄il̃ − S¯̄1̃i

˜̃
l
+ S1̄il̃ − S1̄i2̄ + S¯̄1̃i¯̄2

)
F 0

3 (ˆ̄1g, j̃g, ˆ̄2g)

×A0
4(ˆ̄̄1g,

ˆ̄̄2g,
˜̃kg,

˜̃lg)J
(2)
2 (p˜̃

k
, p˜̃

l
)

+
1

2

(
−S¯̄2̃i˜̃j

+ S2̄ij̃ − S¯̄1̃i˜̃j
+ S1̄ij̃ − S1̄i2̄ + S¯̄1̃i¯̄2

)
F 0

3 (ˆ̄1g, l̃g, ˆ̄2g)

×A0
4(ˆ̄̄1g,

ˆ̄̄2g,
˜̃kg,

˜̃jg)J
(2)
2 (p˜̃

k
, p˜̃j

)}
(6.11)
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6.1.3 IFFIFF topology

The real radiation contribution to the cross section for the third topology is obtained

by averaging over all possible twelve orderings:

dσRNNLO = N2 Nborn

(αs
2π

)2

dΦ4(p3, . . . , p6; p1, p2)
2

4!∑
(i,j,k,l)∈PC(3,4,5,6)

A0
6(1̂, i, j, 2̂, k, l)J

(4)
2 (pi, . . . , pl)

= N2 Nborn

(αs
2π

)2

dΦ4(p3, . . . , p6; p1, p2)
2

4!

[
X0

6 (1̂, 3, 4, 2̂, 5, 6)

+X0
6 (1̂, 3, 4, 2̂, 6, 5) +X0

6 (1̂, 3, 5, 2̂, 4, 6) +X0
6 (1̂, 3, 5, 2̂, 6, 4)

+X0
6 (1̂, 3, 6, 2̂, 4, 5) +X0

6 (1̂, 3, 6, 2̂, 5, 4)
]
J

(4)
2 (pi, . . . , pl) (6.12)

where each X0
6 contains 2 colour ordered amplitudes given by:

X0
6 (1̂, 3, 4, 2̂, 5, 6) = A0

6(1̂, 3, 4, 2̂, 5, 6) + A0
6(1̂, 4, 3, 2̂, 6, 5) (6.13)

This form (6.12) is more appropriate for the construction of the real radiation

subtraction term, since it matches onto the symmetry of the full F 0
4 (1̂g, jg, 2̂g, kg)

initial-initial antenna function. The real radiation subtraction term to be used with

X0
6 (1̂g, ig, jg, 2̂g, kg, lg) is:

dσSNNLO = N2 Nborn

(αs
2π

)2

dΦ4(p3, . . . , p6; p1, p2)
2

4!

{
f 0

3 (1̂g, ig, jg)A
0
5(ˆ̄1g, (̃ij)g, 2̂g, kg, lg) J

(3)
2 (p̃ij, pk, pl)

+f 0
3 (ig, jg, 2̂g)A

0
5(1̂g, (̃ji)g,

ˆ̄2g, kg, lg) J
(3)
2 (p̃ji, pk, pl)

+f 0
3 (2̂g, kg, lg)A

0
5(1̂g, ig, jg, ˆ̄2g, (̃kl)g) J

(3)
2 (pi, pj, p̃kl)

+f 0
3 (kg, lg, 1̂g)A

0
5(ˆ̄1g, ig, jg, 2̂g, (̃lk)g) J

(3)
2 (pi, pj, p̃lk)

+f 0
3 (1̂g, jg, ig)A

0
5(ˆ̄1g, (̃ji)g, 2̂g, lg, kg) J

(3)
2 (p̃ji, pl, pk)

+f 0
3 (jg, ig, 2̂g)A

0
5(1̂g, (̃ij)g,

ˆ̄2g, lg, kg) J
(3)
2 (p̃ij, pl, pk)

+f 0
3 (2̂g, lg, kg)A

0
5(1̂g, jg, ig, ˆ̄2g, (̃lk)g) J

(3)
2 (pj, pi, p̃lk)

+f 0
3 (lg, kg, 1̂g)A

0
5(ˆ̄1g, jg, ig, 2̂g, (̃kl)g) J

(3)
2 (pj, pi, p̃kl)
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+

(
F 0

4 (1̂g, ig, jg, 2̂g)− f 0
3 (1̂g, ig, jg)F

0
3 (ˆ̄1g, (̃ij)g, 2̂g)

−f 0
3 (ig, jg, 2̂g)F

0
3 (1̂g, (̃ji)g,

ˆ̄2g)

)
A0

4(ˆ̄1g, ˆ̄2g, k̃g, l̃g) J
(2)
2 (p̃k, p̃l)

+

(
F 0

4 (2̂g, kg, lg, 1̂g)− f 0
3 (2̂g, kg, lg)F

0
3 (ˆ̄2g, (̃kl)g, 1̂g)

−f 0
3 (kg, lg, 1̂g)F

0
3 (2̂g, (̃lk)g,

ˆ̄1g)

)
A0

4(ˆ̄1g, ˆ̄2g, j̃g, ĩg) J
(2)
2 (p̃j, p̃i)

+

(
F 0

4 (1̂g, jg, ig, 2̂g)− f 0
3 (1̂g, jg, ig)F

0
3 (ˆ̄1g, (̃ji)g, 2̂g)

−f 0
3 (jg, ig, 2̂g)F

0
3 (1̂g, (̃ij)g,

ˆ̄2g)

)
A0

4(ˆ̄1g, ˆ̄2g, l̃g, k̃g) J
(2)
2 (p̃l, p̃k)

+

(
F 0

4 (2̂g, lg, kg, 1̂g)− f 0
3 (2̂g, lg, kg)F

0
3 (ˆ̄2g, (̃lk)g, 1̂g)

−f 0
3 (lg, kg, 1̂g)F

0
3 (2̂g, (̃kl)g,

ˆ̄1g)

)
A0

4(ˆ̄1g, ˆ̄2g, ĩg, j̃g) J
(2)
2 (p̃j, p̃i)

+

(
F 0

4 (1̂g, jg, 2̂g, kg)− F 0
3 (1̂g, jg, 2̂g)F

0
3 (ˆ̄1g, ˆ̄2g, k̃g)

−F 0
3 (2̂g, kg, 1̂g)F

0
3 (ˆ̄1g, j̃g, ˆ̄2g)

)
A0

4(ˆ̄1g, ĩg, ˆ̄2g, l̃g) J
(2)
2 (p̃i, p̃l)

+

(
F 0

4 (1̂g, ig, 2̂g, lg)− F 0
3 (1̂g, ig, 2̂g)F

0
3 (ˆ̄1g, ˆ̄2g, l̃g)

−F 0
3 (2̂g, lg, 1̂g)F

0
3 (ˆ̄1g, ĩg, ˆ̄2g)

)
A0

4(ˆ̄1g, j̃g, ˆ̄2g, k̃g) J
(2)
2 (p̃j, p̃k)

+
1

2
F 0

3 (1̂g, jg, 2̂g)F
0
3 (ˆ̄1g, ˆ̄2g, k̃g)A

0
4(ˆ̄̄1g,

˜̃ig,
ˆ̄̄2g,

˜̃lg) J
(2)
2 ( ˜̃pi, ˜̃pl)

+
1

2
F 0

3 (2̂g, kg, 1̂g)F
0
3 (ˆ̄1g, j̃g, ˆ̄2g)A

0
4(ˆ̄̄1g,

˜̃ig,
ˆ̄̄2g,

˜̃lg) J
(2)
2 ( ˜̃pi, ˜̃pl)

+
1

2
F 0

3 (1̂g, ig, 2̂g)F
0
3 (ˆ̄1g, ˆ̄2g, l̃g)A

0
4(ˆ̄̄1g,

˜̃jg,
ˆ̄̄2g,

˜̃kg) J
(2)
2 ( ˜̃pj, ˜̃pk)

+
1

2
F 0

3 (2̂g, lg, 1̂g)F
0
3 (ˆ̄1g, ĩg, ˆ̄2g)A

0
4(ˆ̄̄1g,

˜̃jg,
ˆ̄̄2g,

˜̃kg) J
(2)
2 ( ˜̃pj, ˜̃pk)

−1

2
f 0

3 (ig, jg, 2̂g)f
0
3 (ˆ̄2g, kg, lg)A

0
4(1̂g, (̃ji)g,

ˆ̄̄2g, (̃kl)g) J
(2)
2 (p̃ji, p̃kl)

−1

2
f 0

3 (lg, kg, 2̂g)f
0
3 (ˆ̄2g, jg, ig)A

0
4(1̂g, (̃ji)g,

ˆ̄̄2g, (̃kl)g) J
(2)
2 (p̃ji, p̃kl)
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−1

2
f 0

3 (jg, ig, 1̂g)f
0
3 (ˆ̄1g, lg, kg)A

0
4(ˆ̄̄1g, (̃ij)g, 2̂g, (̃lk)g) J

(2)
2 (p̃ij, p̃lk)

−1

2
f 0

3 (kg, lg, 1̂g)f
0
3 (ˆ̄1g, ig, jg)A

0
4(ˆ̄̄1g, (̃ij)g, 2̂g, (̃lk)g) J

(2)
2 (p̃ij, p̃lk)

−1

2
f 0

3 (jg, ig, 2̂g)f
0
3 (ˆ̄2g, lg, kg)A

0
4(1̂g, (̃ij)g,

ˆ̄̄2g, (̃lk)g) J
(2)
2 (p̃ij, p̃lk)

−1

2
f 0

3 (kg, lg, 2̂g)f
0
3 (ˆ̄2g, ig, jg)A

0
4(1̂g, (̃ij)g,

ˆ̄̄2g, (̃lk)g) J
(2)
2 (p̃ij, p̃lk)

−1

2
f 0

3 (ig, jg, 1̂g)f
0
3 (ˆ̄1g, kg, lg)A

0
4(ˆ̄̄1g, (̃ji)g, 2̂g, (̃kl)g) J

(2)
2 (p̃ji, p̃kl)

−1

2
f 0

3 (lg, kg, 1̂g)f
0
3 (ˆ̄1g, jg, ig)A

0
4(ˆ̄̄1g, (̃ji)g, 2̂g, (̃kl)g) J

(2)
2 (p̃ji, p̃kl)

−f 0
3 (1̂g, ig, jg)f

0
3 (2̂g, kg, lg)A

0
4(ˆ̄1g, (̃ij)g,

ˆ̄2g, (̃kl)g) J
(2)
2 (p̃ij, p̃kl)

−f 0
3 (ig, jg, 2̂g)f

0
3 (kg, lg, 1̂g)A

0
4(ˆ̄1g, (̃ji)g,

ˆ̄2g, (̃lk)g) J
(2)
2 (p̃ji, p̃lk)

−f 0
3 (1̂g, jg, ig)f

0
3 (2̂g, lg, kg)A

0
4(ˆ̄1g, (̃ji)g,

ˆ̄2g, (̃lk)g) J
(2)
2 (p̃ji, p̃lk)

−f 0
3 (jg, ig, 2̂g)f

0
3 (lg, kg, 1̂g)A

0
4(ˆ̄1g, (̃ij)g,

ˆ̄2g, (̃kl)g) J
(2)
2 (p̃ij, p̃kl)

−1

2
f 0

3 (kg, lg, 2̂g)F
0
3 (1̂g, ˆ̄2g, ig)A

0
4(ˆ̄1g, j̃g,

ˆ̄̄2g, (̃lk)g)J
(2)
2 (p̃j, p̃lk)

+
1

2
F 0

3 (1̂g, 2̂g, ig)f
0
3 (k̃g, l̃g, ˆ̄2g)A

0
4(ˆ̄1g, j̃g,

ˆ̄̄2g, (l̃k̃)g)J
(2)
2 (p̃j, pl̃k̃)

−1

2
f 0

3 (lg, kg, 2̂g)F
0
3 (1̂g, ˆ̄2g, jg)A

0
4(ˆ̄1g, ĩg,

ˆ̄̄2g, (̃kl)g)J
(2)
2 (p̃i, p̃kl)

+
1

2
F 0

3 (1̂g, 2̂g, jg)f
0
3 (l̃g, k̃g, ˆ̄2g)A

0
4(ˆ̄1g, ĩg,

ˆ̄̄2g, (k̃l̃)g)J
(2)
2 (p̃i, pk̃l̃)

−1

2
f 0

3 (ig, jg, 2̂g)F
0
3 (1̂g, ˆ̄2g, kg)A

0
4(ˆ̄1g, (̃ji)g,

ˆ̄̄2g, l̃g)J
(2)
2 (p̃ji, p̃l)

+
1

2
F 0

3 (1̂g, 2̂g, kg)f
0
3 (̃ig, j̃g, ˆ̄2g)A

0
4(ˆ̄1g, (j̃ ĩ)g,

ˆ̄̄2g, l̃g)J
(2)
2 (pj̃ĩ, p̃l)

−1

2
f 0

3 (jg, ig, 2̂g)F
0
3 (1̂g, ˆ̄2g, lg)A

0
4(ˆ̄1g, (̃ij)g,

ˆ̄̄2g, k̃g)J
(2)
2 (p̃ij, p̃k)

+
1

2
F 0

3 (1̂g, 2̂g, lg)f
0
3 (j̃g, ĩg, ˆ̄2g)A

0
4(ˆ̄1g, (̃ij̃)g,

ˆ̄̄2g, k̃g)J
(2)
2 (pĩj̃, p̃k)

−1

2
f 0

3 (kg, lg, 1̂g)F
0
3 (ˆ̄1g, 2̂g, ig)A

0
4(ˆ̄̄1g, (̃lk)g,

ˆ̄2g, j̃g)J
(2)
2 (p̃lk, p̃j)

+
1

2
F 0

3 (1̂g, 2̂g, ig)f
0
3 (k̃g, l̃g, ˆ̄1g)A

0
4(ˆ̄̄1g, (l̃k̃)g, ˆ̄2g, j̃g)J

(2)
2 (pl̃k̃, p̃j)

−1

2
f 0

3 (lg, kg, 1̂g)F
0
3 (ˆ̄1g, 2̂g, jg)A

0
4(ˆ̄̄1g, (̃kl)g,

ˆ̄2g, ĩg)J
(2)
2 (p̃kl, p̃i)

+
1

2
F 0

3 (1̂g, 2̂g, jg)f
0
3 (l̃g, k̃g, ˆ̄1g)A

0
4(ˆ̄̄1g, (k̃l̃)g, ˆ̄2g, ĩg)J

(2)
2 (pk̃l̃, p̃i)
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−1

2
f 0

3 (ig, jg, 1̂g)F
0
3 (ˆ̄1g, 2̂g, kg)A

0
4(ˆ̄̄1g, l̃g,

ˆ̄̄2g, (̃ji)g)J
(2)
2 (p̃l, p̃ji)

+
1

2
F 0

3 (1̂g, 2̂g, kg)f
0
3 (̃ig, j̃g, ˆ̄1g)A

0
4(ˆ̄̄1g, l̃g,

ˆ̄̄2g, (j̃ ĩ)g)J
(2)
2 (p̃l, pj̃ĩ)

−1

2
f 0

3 (jg, ig, 1̂g)F
0
3 (ˆ̄1g, 2̂g, lg)A

0
4(ˆ̄̄1g, k̃g, ˆ̄2g, (̃ij)g)J

(2)
2 (p̃k, p̃ij)

+
1

2
F 0

3 (1̂g, 2̂g, lg)f
0
3 (j̃g, ĩg, ˆ̄1g)A

0
4(ˆ̄̄1g, k̃g, ˆ̄2g, (̃ij̃)g)J

(2)
2 (p̃k, pĩj̃)

}
(6.14)

It is important to notice that this six-gluon subtraction term introduces spurious

limits from large angle soft radiation. The single soft limit of (6.14) is non-vanishing.

To account for this large angle soft radiation a new subtraction term dσANNLO is

introduced. Its contribution reads:

dσSNNLO = N2 Nborn

(αs
2π

)2

dΦ4(p3, . . . , p6; p1, p2)
2

4!

{
1

2

(
−S1̄i2̄ + S¯̄1̃i¯̄2 + S2̄ij̃ − S¯̄2̃i˜̃j

+ S1̄ij̃ − S¯̄1̃i˜̃j

)
F 0

3 (ˆ̄1g, ˆ̄2g, l̃g)

×A0
4(ˆ̄̄1g,

˜̃jg,
ˆ̄̄2g,

˜̃kg)J
(2)
2 (p˜̃j

, p˜̃
k
)

+
1

2

(
−S1̄j2̄ + S¯̄1j̃¯̄2 + S2̄jĩ − S¯̄2j̃˜̃i

+ S1̄jĩ − S¯̄1j̃˜̃i

)
F 0

3 (ˆ̄1g, ˆ̄2g, k̃g)

×A0
4(ˆ̄̄1g,

˜̃ig,
ˆ̄̄2g,

˜̃lg)J
(2)
2 (p˜̃i

, p˜̃
l
)

+
1

2

(
−S1̄k2̄ + S¯̄1k̃¯̄2 + S2̄kl̃ − S¯̄2k̃

˜̃
l
+ S1̄kl̃ − S¯̄1k̃

˜̃
l

)
F 0

3 (ˆ̄1g, ˆ̄2g, j̃g)

×A0
4(ˆ̄̄1g,

˜̃ig,
ˆ̄̄2g,

˜̃lg)J
(2)
2 (p˜̃i

, p˜̃
l
)

+
1

2

(
−S1̄l2̄ + S¯̄1l̃¯̄2 + S2̄lk̃ − S¯̄2l̃

˜̃
k

+ S1̄lk̃ − S¯̄1l̃
˜̃
k

)
F 0

3 (ˆ̄1g, ˆ̄2g, ĩg)

×A0
4(ˆ̄̄1g,

˜̃jg,
ˆ̄̄2g,

˜̃kg)J
(2)
2 (p˜̃j

, p˜̃
k
)

}
(6.15)

6.2 Summary

In this chapter we derived the counterterms to compute the double real correction to

gluon scattering relevant to the calculation of pp→ 2 jets at NNLO. Remembering
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the formula for subtraction at NNLO,

dσNNLO =

∫
dΦm+2

(
dσRNNLO − dσSNNLO

)
+

∫
dΦm+2

dσSNNLO

+

∫
dΦm+1

(
dσV,1NNLO − dσV S,1NNLO

)
+

∫
dΦm+1

dσV S,1NNLO

+

∫
dΦm

dσV,2NNLO (6.16)

the results of this chapter correspond to
(
dσRNNLO − dσSNNLO

)
.

To derive the counterterm we analysed the singularities present in the double

real correction, that we know from the universal behaviour of the colour ordered

gluonic amplitudes. The factorisation of these amplitudes for one and two unresolved

gluons was discussed in section 1.8. To generate the counterterm we considered

all the possible colour configurations for the double unresolved pair and used the

appropriate antennae subtraction formulae written down in chapter 4.

We concentrated on the pure gluon channel and for this reason we made extensive

use of the F 0
3 and F 0

4 antennae functions in different kinematic configurations (initial-

initial, initial-final and final-final). This is expected since calculations for hadronic

collisions require subtraction of both final and initial state singularities, described

by these antennae with the three possible assignments of radiators. In all cases their

numerical implementation was discussed in chapters 3, 4 respectively.

The output is a numerical routine that receives as an argument a phase space

point given by a set of four-momenta P and computes the matrix element and the

subtraction term. This can then be incorporated in a flexible parton-level generator

to compute the pure gluon contribution to infrared-safe observables related to two

jet states to NNLO accuracy at the LHC. However, this still requires a numerical

implementation for the second line in equation 6.16. This term represents the mixed

real-virtual contribution and subtraction of singularities in this channel can also be

completed using the antenna subtraction method. That treatment is beyond the

scope of this thesis.

In both cases, the analytical integration of the subtraction terms still needs the

integrated form of the four-parton tree level initial-initial and three-parton one loop

antenna functions. This work is currently underway and is expected to be completed
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soon. Combining it with the results for the integrated antennae at NLO [67,68] and

NNLO [67, 105, 119, 120] will show the infrared poles of the antennae analytically

cancelling with the infrared poles of the two-loop virtual correction.

In the next chapter we show that the infrared structure of both the matrix

element and the subtraction term of this chapter coincide in all double and single

unresolved regions of the phase space of the real-real correction.



Chapter 7

Numerical implementation

In this chapter we will test the limits of the matrix element and subtraction term

written down in the previous chapter. We will do this numerically by generating a

series of phase space points using RAMBO [75] that approach a given double or single

unresolved limit. For each generated point we compute:

R =
|MRR|2
Sterm

(7.1)

where |MRR|2 is the matrix element squared given in equation (6.3) and Sterm is the

subtraction term given by equations (6.6), (6.10), (6.14) summed over all orderings

and including large angle soft gluon terms of equations (6.7), (6.11), (6.15). The

ratio of the matrix element and the subtraction term should approach unity as

we get closer to any singularity. This tests if the subtraction term has the same

infrared behaviour as the matrix element so that their difference can be integrated

numerically over the unconstrained phase space in four dimensions.

7.1 Numerical checks

In this section we will discuss the numerical simulations that check if the subtraction

term was implemented correctly and argue that the various unresolved singularities

are in fact correctly described by the subtraction term. For each unresolved con-

figuration, we will define a variable that controls how we approach the singularity

subject to the requirement that there are at least two jets in the final state with

pT >50 GeV.

144
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7.1.1 Double soft limit

A double soft configuration can be obtained by generating a four particle final state

where one of the invariant masses sij of two final state particles takes nearly the full

energy of the event s as illustrated in figure 7.1 (a).

1 2

i

j

l

k

(a)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.99997  0.99998  0.99999  1  1.00001  1.00002  1.00003

#
 e

v
en

ts

R

double soft limit for gg→gggg
ratio |MRR|

2
/Sterm

#PS points=10000
x=(s-sij)/s

x=10
-4

x=10
-5

x=10
-6

1487 outside the plot
 317 outside the plot
  59 outside the plot

(b)

Figure 7.1: (a) Example configuration of a double soft event with sij ≈ s12 = s. (b)

Distribution of R for 10000 double soft phase space points.

In figure 7.1(b) we generated 10000 random double soft phase space points and

show the distribution of the ratio between the matrix element and the subtraction

term. The three colours represent different values of x = (s−sij)/s [x = 10−4 (red),

x = 10−5 (green), x = 10−6 (blue)] and we can see that for smaller values of x we

go closer to the singularity and the distribution peaks more sharply around unity.

For x = 10−6 we obtained an average of R = 0.9999994 and a standard deviation

of σ = 4.02 × 10−5. Also in the plot we give for each distribution the number of

points that lie on the outliers of the histogram. As expected this number is always

decreasing as we move closer to the singular region.

In figure 7.2 we explicitly show the behaviour of the matrix element squared and

the subtraction term as a function of x. It is clear that both diverge in the double

soft limit x→ 0 but their ratio goes to 1.

7.1.2 Triple collinear limit

In this subsection we generate phase space points with three hard particles sharing a

collinear direction. This probes the triple collinear region of the phase space where
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Figure 7.2: Matrix element squared (solid lines) and the subtraction term (dashed

lines) as a function of x = (s − sij)/s for three different values of pT for the final

state. Also plotted is the ratio |MRR|2/Sterm.

we demand the vanishing of the triple invariant formed by both final state (figure

7.3 (a)) and initial state particles (figure 7.4 (a)).
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Figure 7.3: (a) Example configuration of a triple collinear event with sijk → 0. (b)

Distribution of R for 10000 triple collinear phase space points.

In figure 7.3 (b) we use again three colours to denote different values of x = sijk/s

[x = 10−7 (red), x = 10−8 (green), x = 10−9 (blue)] that control how we approach the

singular region and for each we plot distribution of the ratio of the matrix element

squared and the subtraction term for 10000 phase space points. For x = 10−9 we

obtained an average of R = 1.0000004 and a standard deviation of σ = 4.2× 10−5.

This shows that, as we wanted, the subtraction term coincides with the matrix

element squared in this limit. The number of points that lie on the outliers is also
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Figure 7.4: (a) Example configuration of a triple collinear event with s1jk → 0. (b)

Distribution of R for 10000 triple collinear phase space points.

shown on the plot.

In figure 7.4 (b) we do the same analysis for the initial state singularity. In this

case x = s1jk/s [x = −10−7 (red), x = −10−8 (green), x = −10−9 (blue)] and we

have a configuration with two final state gluons collinear with the initial state gluon.

The triple collinear configurations involving p2 produce identical results and are not

shown. For the blue distribution again with 10000 phase space points we obtained

an average of R = 0.99954 and a standard deviation of σ = 0.04. The plot shows

that this singular region is also accounted for by the subtraction term.

7.1.3 Soft and collinear limit

To probe the soft and collinear regions of the phase space, we generate an event

configuration with a soft final state gluon by making a triple invariant sijk close to

the full center of mass energy s. For a final state singularity we then produce a

decay into two particles sharing a collinear direction making their invariant mass

small (in figure 7.5 (a)), and, for an initial state singularity, we rotate the momenta

to make one of the emitted gluons collinear with the initial state (in figure 7.6 (a)).

In the first case (figure 7.5 (b)) we plot three distributions in different colours

where now we use two variables to approach this unresolved limit. We define x =

(s−sijk)/s and y = sij/s and make x→ 0 and y → 0. In red we have x = y = 10−4,

green x = y = 10−5 and in blue x = y = 10−6. For x = y = 10−6 again with
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Figure 7.5: (a) Example configuration of a soft and collinear event with sijk ≈ s12 =

s and sij → 0. (b) Distribution of R for 10000 soft and collinear phase space points.
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Figure 7.6: (a) Example configuration of a soft and collinear event with sijk ≈ s12 =

s and s1i → 0. (b) Distribution of R for 10000 soft and collinear phase space points.
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10000 phase space points we obtained an average of R = 0.99999993 and a standard

deviation of σ = 0.0001.

For the initial state singularity (figure 7.6 (b)) we define x = (s − sijk)/s and

y = s1i/s and make x → 0 and y → 0. In this case in red we have x = |y| = 10−5,

green x = |y| = 10−6 and in blue x = |y| = 10−7, where we obtained an average of

R = 0.99999998 and a standard deviation of σ = 1.6× 10−7.

The combination of the antennae implemented with the formulae of the previous

chapter also converges in this limit to the matrix element.

7.1.4 Double collinear limit
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Figure 7.7: (a) Example configuration of a double collinear event with sij → 0 and

skl → 0 simultaneously. (b) Distribution of R for 10000 double collinear phase space

points.

In this section we analyse the various double collinear limits. This is the last

double unresolved configuration in the real correction at NNLO. In this case, we

generate three different topologies where two pairs of particles can become collinear

separately by demanding that two invariants vanish simultaneously. The double

invariants pair can involve only final state momenta (illustrated in figure 7.7(a)), or

initial and final state momenta (illustrated in figures 7.8 (a) and 7.9 (a)).

In all cases we generate 10000 phase space points that will approach the double

collinear limit. For each we compute the ratio between the matrix element squared

and the subtraction term and plot the distribution obtained. For the first case (in
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Figure 7.8: (a) Example configuration of a double collinear event with sjk → 0 and

s1i → 0. (b) Distribution of R for 10000 double collinear phase space points.
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Figure 7.9: (a) Example configuration of a double collinear event with s1i → 0 and

s2j → 0 simultaneously. (b) Distribution of R for 10000 double collinear phase space

points.
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figure 7.7 (b)) we have x = sij/s, y = skl/s and we make x = y = 10−4 in red,

x = y = 10−6 in green and finally x = y = 10−8 in blue. As we approach the

double collinear limit the subtraction converges to the matrix element squared. We

obtained, for x = y = 10−8 an average of R = 0.9999995 and a standard deviation

of σ = 0.00037.

For the second configuration (in figure 7.8 (b)) we have x = sjk, y = s1i and we

make x = |y| = 10−6 in red, x = |y| = 10−8 in green and x = |y| = 10−10 in blue.

The average obtained for x = |y| = 10−10 was R = 1.00012 and a standard deviation

of σ = 0.018.

In the last case (in figure 7.9 (b)) we have x = s1i, y = s2j and we make

x = y = −10−6 in red, x = y = −10−8 in green and x = y = −10−10 in blue. The

average obtained for x = y = −10−10 was R = 1.00001 and a standard deviation of

σ = 0.004.

In all cases we found convergence of the matrix element and the counterterm as

we approach these singular limits.

7.1.5 Subtraction of single unresolved final and initial state

singularities

In this subsection we will check that the integrand defined in chapter 6 is integrable

over the single unresolved phase space regions. Single unresolved subtraction is

well understood at NLO, but, in this case it is necessary to verify that the new

NNLO subtraction term does not introduce divergences when one parton becomes

unresolved. In other words it has to be correct simultaneously for both double

unresolved and single unresolved configurations. In the 2 → 4 phase space these

correspond to three jet configurations and, depending on the observable, these are

allowed by the jet defining function through cuts on the final state momenta.

Soft limit

In figure 7.10(a) we analyse the single soft limit. To produce these distributions we

generate configurations where a triple invariant sijk is close to the full center of mass
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Figure 7.10: (a) Example configuration of a single soft event with sijk ≈ s12 = s.

(b) Distribution of R for 10000 single soft phase space points.

energy s. We defined x = (s − sijk)/s and plot in figure 7.10 (b) the distributions

for x = 10−5 in red, x = 10−6 in green and x = 10−7 in blue. The distributions

show that the subtraction term converges to the matrix element as we approach this

singular limit. In this case the singularities related to soft gluons cancel and, the

piece of the subtraction term described in section 4.2.5 correctly subtracts point by

point the oversubtraction of large-angle soft gluon radiation. When x = 10−7 we

obtained an average R = 0.999998 and a standard deviation of σ = 1.9× 10−5.
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Figure 7.11: (a) Example configuration of a single collinear event with sjk → 0. (b)

Distribution of R for 10000 single collinear phase space points.
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Figure 7.12: (a) Example configuration of a single collinear event with s1i → 0. (b)

Distribution of R for 10000 single collinear phase space points.

Finally we generate points corresponding to the final and initial state single

collinear regions of the phase space. These are shown in figures 7.11 (a) and 7.12 (a)

respectively. As we have discussed in section 4.3.2, using scalar four-parton antennae

functions the factorisation in the collinear limits where a final state gluon splits into

two gluons introduces angular terms. This is the reason why the distributions in

figures 7.11(b) and 7.12(b) have a much broader shape than the previous examples.

For the final-final collinear singularity, we introduce the variable x = sij/s12 and

7.11(b) shows the distribution for x = 10−8 (red), x = 10−9 (green) and x = 10−10

(blue). Similarly in the initial-final collinear limit, we define x = s1i/s12 and show the

distributions of R for the same x-values in 7.12(b). It is clear that as we approach the

collinear limits x→ 0, the azimuthal terms are not suppressed and the subtraction

term is not, point by point, a better representation of the matrix element.

Nevertheless, the azimuthal terms coming from the single collinear limits were

shown to vanish in section 4.3.2. This happens only globally after an azimuthal

integration over the unresolved phase space. Here we are performing a point-by-point

analysis on the integrand defined by the matrix element squared and the subtraction

term. One solution to proceed is to introduce the angular ΘF 0
3
(i, j, z, k⊥) function

defined in 4.3.2 to reconstruct the angular terms. Subtracting this additional term

from the F 0
4 four-parton antenna functions for the final-final and, initial-final and

initial-initial configurations (by crossing momenta to the initial state) produces a
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Figure 7.13: (a) Example configuration of a single collinear event with sjk → 0. (b)

Distribution of R for 10000 single collinear phase space points.
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Figure 7.14: (a) Example configuration of a single collinear event with s1i → 0. (b)

Distribution of R for 10000 single collinear phase space points.

subtraction term that is locally free of angular terms.

With this azimuthally modified subtraction term, we recompute the distributions

in figures 7.13(b) and 7.14(b). In figure 7.13(b) we show the R distribution for 10000

single collinear phase space points and x = 10−8 (red), in green x = 10−10 (green)

and in blue x = 10−12 (blue). For x = 10−12 we obtained an average R = 0.99994

and a standard deviation of σ = 0.015.

We repeat the same analysis for the initial state singularity in figure 7.14(b) for

x = −10−8 (red), in green x = −10−10 (green) and in blue x = −10−12 (blue). For

x = −10−12 we obtained an average of R = 1.00007 and a standard deviation of

σ = 0.012.
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For both cases, the distributions now peaks around R = 1 with a more pro-

nounced peak as the limit is approached, just as in the double unresolved and single

soft limits discussed earlier. This demonstrates the the convergence of the countert-

erm to the matrix element.

We note however that introducing ΘF 0
3
(i, j, z, k⊥) may have an unfortunate side

effect by generating new singularities in the previously analysed (double unresolved)

phase space regions. For example, looking into equation (4.52) for ΘF 0
3
(i, j, z, k⊥) we

see a invariants in the denominator of that expression that are not compensated by a

small quantity in the numerator when they vanish. This introduces new divergences

in triple collinear regions which are not present in the matrix element. More work

is needed to decide the best strategy for these single collinear limits. Alternative

techniques include the cancellation of the angular terms by combining phase space

points related to each other by a rotation of the system of unresolved partons in the

integration routine [91].

7.2 Summary

In this chapter we demonstrated that the results of our numerical implementation

of the antenna subtraction behave in the expected way. This follows from checking

the same limits analytically with the known singular behaviour of both the colour

ordered amplitudes in the matrix element and the three-parton F 0
3 and four-parton

F 0
4 antennae functions in the subtraction term. The agreement between the analytic

limits of the formula for dσSNNLO written in chapter 6 and the numerical limits of its

implementation represent the first sanity check on the NNLO subtraction method

that we are developing.

All the singular regions of the phase space corresponding to a certain number of

invariants tending to zero were analysed separately. With the caveat of the correct

handling of the azimuthal terms associated with the single collinear limit, all of the

double unresolved and single soft singularities present in the matrix elements are

cancelled in a point-by point manner by the subtraction term of chapter 6.



Chapter 8

Conclusions

The aim of this thesis was to show that the antenna subtraction method can also

tackle computations of NNLO processes with coloured particles in the initial state.

We have particularly focused on jet production in hadron-hadron collisions.

As we have discussed, the quality of the data already collected at the Tevatron

and the improved experimental accuracy which is expected with the forthcoming

runs at the LHC drives an ambitious effort to perform precision studies of QCD.

At the moment, the experimental error on single jet production is lower than the

error of the prediction obtained with NLO QCD. This means that the measurements

are sensitive to NNLO effects which are described by Feynman diagrams involving

two virtual particles propagating in internal loops, diagrams with unresolved real

emission of an amplitude with a virtual particle propagating and finally diagrams

related with the emission of two unresolved on-shell particles.

All the matrix elements of QCD that describe these contributions are available

in the literature. We list the matrix elements relating to gluon scattering in the

appendix. Each of the separate building blocks is infrared divergent. The major

remaining difficulty is to derive a procedure to obtain an analytic cancellation of the

IR divergences between the various matrix elements to produce a physical prediction.

In this thesis we made a first attempt to tackle this problem and presented an

implementation based on the antenna subtraction method.

We started in chapter 1 by demonstrating that we can compute the theoretical

predictions by means of a perturbative expansion in a power series of the strong cou-

156
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pling constant. Truncation of this series leaves a residual dependence of the calcula-

tion on unphysical scales, which we saw that can only be ameliorated by computing

higher order terms. We then discussed the procedure to make these higher order

terms well defined. They contain ultraviolet (UV) divergences in virtual corrections

arising from the high momentum limit of the loop momenta. The renormalisability

of the theory guarantees that this type of divergences can be shifted to the fields and

parameters of the QCD Lagrangian order by order by a multiplicative redefinition

of the fields and coupling constant.

Another type of divergence, the infrared divergence (IR), is present in both the

virtual and real contributions. In the virtual contribution, internal massless propa-

gators can vanish in the low momentum limit thereby giving rise to infrared singu-

larities. In this limit the virtual diagram is indistinguishable from the real emission

diagram which also becomes singular when the emitted particle becomes unresolved.

Using dimensional regularisation for both contributions at next-to-leading order, we

find that the singularities appear with opposite sign and can be combined to give

a finite physical prediction. Similarly, at NNLO the double virtual, real-virtual

and double real contributions all have infrared singularities that ultimately cancel

between the three contributions.

To conclude chapter 1 we described the techniques of helicity and colour decom-

position, essential to simplify the computation of tree and loop matrix elements from

which the predictions at a given order are derived. Within the colour decomposition

basis we discussed the universal behaviour of the colour ordered gluonic QCD tree

amplitudes when one or two particles become unresolved. As mentioned earlier, the

tree amplitudes (which constitute the real corrections) become divergent in these re-

gions of the phase space. Knowing how they factorise allows us to construct suitable

counterterms, using simpler building blocks, that coincide with the matrix element

of the real correction in the diverging limits. This yields a proper subtraction of

infrared divergences which can be carried out at NLO or NNLO.

Chapter 2 dealt with the definition of a jet from the experimental and theoretical

point of view. Jets are a spray of roughly collinear colourless hadrons that show up

in the detectors as tracks with hadronic energy being deposited in the form of clus-
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ters. Events can be classified by the number of such clusters of energy that appear

in a given event. This procedure depends on the jet algorithm that is employed in

both the experimental analysis and in the theoretical calculation. To make com-

parisons of experimental and theoretical results the same jet algorithm should be

used. The details on the implementation of some jet algorithms were given and we

also described the convenient variables to compute jet distributions from fixed-order

perturbative QCD.

In chapter 3 we examined the antenna subtraction method at NLO. As we have

discussed there, this method can be applied at this order for e+e−, ep and pp pro-

cesses with massless fermions. We introduced the antennae functions that describe

single unresolved emission between a hard pair of radiators. Details of the numerical

implementation of NLO antennae for a pure gluon channel relevant to this thesis

were also given there. As an example we performed the analytic subtraction of IR

singularities between real and virtual corrections for dijet production using the an-

tenna method at NLO. The aim of this thesis is to extend this calculation to NNLO

accuracy and a brief motivation for work on this direction was discussed.

Chapter 4 described the antenna subtraction method at NNLO. We discussed

the formulae necessary for the construction of the subtraction of infrared divergences

from double real emission diagrams at this order. The singular structure is much

more complicated than at NLO because both double and single unresolved limits

must be subtracted to obtain a physical prediction. We gave details of the numerical

implementation of the NNLO antennae functions for a pure gluon channel which is

the new ingredient developed in this thesis. The gluon scattering channel is expected

to be the dominant contribution at NNLO. Other channels involving quark and gluon

matrix elements will make use of the same antenna building blocks and momentum

mappings given in this chapter but the flavour of the antennae in the counterterm

will change accordingly.

An alternative numerical method to isolate infrared divergences from parameter

integrals is the sector decomposition method. We discussed in chapter 5 its appli-

cations for multi-loop Feynman integrals as well as phase space integrals. For the

specific case of extraction of real radiation singularities we argued that this method
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can produce differential results at NNLO. We gave an example to show how this pro-

cedure works in practice. Based on this experience, the advantages and limitations

of this approach to our problem were then identified.

In chapter 6 we described the implementation of the NNLO real corrections for

gluon scattering using the antenna subtraction method. The formulae given there

follow from applying the general formulae discussed in chapter 4, but adapted to

this particular case. By construction the counterterm subtracts double and single

unresolved singularities in the final and initial state. To achieve this we used a

combination of NNLO final-final, initial-final and initial-initial antennae functions.

The analytic integration of the NNLO antennae functions is presently known for

the final-final [67] and initial-final [105, 119] assignments of radiators. Work on the

initial-initial case is expected to be concluded soon [120].

Chapter 7 constitutes the numerical check of the implementation of the double

real correction derived in chapter 6. We tested the matrix element and the sub-

traction term in all double and single unresolved regions of the phase space. The

numerical results showed that the combination of the antennae correctly describes

the infrared singularity structure of the matrix element. The antenna subtraction

method, which has been successfully applied to the calculation of NNLO corrections

to the 3-jet cross section and related event shape distributions in electron-positron

annihilation, is now being applied for an NNLO computation of a process with

coloured particles in the initial state.

Future steps include the subtraction of infrared divergences in the mixed real-

virtual correction. Both real-real and real-virtual subtractions are integrated analyt-

ically with the results for the NNLO integrated antennae and added to the two loop

contribution. This will enable the construction of a numerical program to compute

NNLO QCD estimates of jet production in hadron collisions.



Appendix A

QCD Matrix elements for gluon

scattering

A.1 gg → gg tree level

For four-gluon helicity amplitudes the only non-zero sub-amplitudes will be of the

form (−−++) up to permutations of the indices. These were initially conjectured

by [160] and proven later by [161]. They are written in the following form:

m2+2−(g1, g2, g3, g4) = ig2 〈IJ〉4
〈12〉〈23〉〈34〉〈41〉 (A.1.1)

where I and J are the indices of negative helicity gluons. We can square this sub-

amplitude and sum over helicities to obtain the colour-ordered amplitude squared:

A0
4(g1, g2, g3, g4) = g4

(∑
i>j

s4
ij

)
1

s12s23s34s41

(A.1.2)

This is the colour ordered amplitude that accompanies the antenna functions in the

counterterms in chapter 6.

A.2 gg → gg one-loop

We denote the squared amplitude summed over spins and colours by

〈M|M〉 =
∑
|M(g + g → g + g)|2 = D(s, t, u) (A.2.3)
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that corresponds to the process:

g(p1) + g(p2)→ g(p3) + g(p4) (A.2.4)

D(s, t, u) is symmetric under the exchange of s, t and u that are given by:

s = (p1 + p2)2, t = (p1 − p3)2, u = (p2 − p3)2, s+ t+ u = 0. (A.2.5)

The function D can be expanded perturbatively to yield:

D(s, t, u) = 16π2α2
s

[
D4(s, t, u) +

(αs
2π

)
D6(s, t, u) +O (α2

s

)]
,

where:

D4(s, t, u) = 〈M(0)|M(0)〉
= 16V N2(1− ε)2

(
3− ut

s2
− us

t2
− st

u2

)
, (A.2.6)

D6(s, t, u) =
(〈M(0)|M(1)〉+ 〈M(1)|M(0)〉) , (A.2.7)

and N is the number of colours and V = N2 − 1. D4(s, t, u) is the standard four

gluon matrix element given by (A.1.2) summed over all orderings. The expression

for D6(s, t, u) can be obtained from [162]:

D6(s, t, u) =

(
4πµ2

Q2

)ε
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)

×
[
D4(s, t, u)

(
− 4N

ε2
− 22N

3ε
+

8TR
3ε
− 67N

9
+

20TR
9

+Nπ2 +
11N

3
l(−µ2)− 4TR

3
l(−µ2)

)

+
16NV 3

ε
l(s)

(
3− 2tu

s2
+
t4 + u4

t2u2

)
+

16NV 3

ε
l(t)

(
3− 2us

t2
+
u4 + s4

u2s2

)
+

16NV 3

ε
l(u)

(
3− 2st

u2
+
s4 + t4

s2t2

)]
+ 4V N2(fd(s, t, u) + fd(t, u, s) + fd(u, s, t)) +O(ε) (A.2.8)

where fd is given by

fd(s, t, u) = N

[(
2(t2 + u2)

tu

)
l2(s) +

(
4s(t3 + u3)

t2u2
− 6

)
l(t)l(u)
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+

(
4

3

tu

s2
− 14

3

t2 + u2

tu
− 14− 8

(
t2

u2
+
u2

t2

))
l(s)− 1− π2

]

+ TR

[(
10

3

t2 + u2

tu
+

16

3

tu

s2
− 2

)
l(s)− s2 + tu

tu
l2(s)

− 2
t2 + u2

tu
l(t)l(u) + 2− π2

]
(A.2.9)

The poles present in eq (A.2.8) are a consequence of the singularities due to the

emission of soft and collinear radiation. The notation l(x) denotes the logarithm,

l(x) = ln

(
− x

Q2

)
. (A.2.10)

If x is greater than zero l(x) has an imaginary part since Q2 > 0. In equations

(A.2.8) and (A.2.9) it is understood that only the real part is kept. Explicitly:

l2(x) → ln2 x

Q2
− π2, x > 0,

l2(x) → ln2

(−x
Q2

)
, x < 0,

l(x) → ln

∣∣∣∣ xQ2

∣∣∣∣ (A.2.11)

These assignments should be made after crossing to the appropriate region. Q2 is

an arbitrary momentum scale. It will often be most convenient to make the choice

Q2 = s but the scale is left arbitrary to make the behaviour under crossing manifest.

The colour structure is fixed in terms of the quantities,

V = N2 − 1, N = 3, TR =
1

2
nf (A.2.12)

and nf is the number of quark flavours.

A.3 gg → gg two-loop

This matrix element is not implemented in our program but we reproduce it here

for convenience. Subsection A.3.1 through subsection A.3.3 are taken from reference

[106] and similarly, subsection A.3.4 and subsection A.3.5 are taken from [113]. The

same matrix element was also computed in [107]. It corresponds to the process:

g(p1) + g(p2) + g(p3) + g(p4)→ 0, (A.3.13)
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where the gluons are all incoming with light-like momenta, satisfying

pµ1 + pµ2 + pµ3 + pµ4 = 0, p2
i = 0.

The associated Mandelstam variables are given by

s = (p1 + p2)2, t = (p2 + p3)2, u = (p1 + p3)2, s+ t+ u = 0. (A.3.14)

The renormalised four point amplitude in the MS scheme can be written

|M〉 = 4παs

[
|M(0)〉+

(αs
2π

)
|M(1)〉+

(αs
2π

)2

|M(2)〉+O (α3
s

)]
,

(A.3.15)

where αs ≡ αs(µ
2) is the running coupling at renormalisation scale µ and the |M(i)〉

represents the colour-space vector describing the renormalised i-loop amplitude. We

denote the squared amplitude summed over spins and colours by

〈M|M〉 =
∑
|M(g + g → g + g)|2 = D(s, t, u). (A.3.16)

which is symmetric under the exchange of s, t and u. The function D can be

expanded perturbatively to yield

D(s, t, u) = 16π2α2
s

[
D4(s, t, u) +

(αs
2π

)
D6(s, t, u) +

(αs
2π

)2

D8(s, t, u) +O (α3
s

)]
,

(A.3.17)

where

D4(s, t, u) = 〈M(0)|M(0)〉
= 16V N2(1− ε)2

(
3− ut

s2
− us

t2
− st

u2

)
, (A.3.18)

D6(s, t, u) =
(〈M(0)|M(1)〉+ 〈M(1)|M(0)〉) , (A.3.19)

D8(s, t, u) =
(〈M(1)|M(1)〉+ 〈M(0)|M(2)〉+ 〈M(2)|M(0)〉) , (A.3.20)

where N is the number of colours and V = N2 − 1. Expressions for D6 are given in

A.2 using dimensional regularisation to isolate the infrared and ultraviolet singular-

ities.

In the next subsections the pole and finite pieces for both the two-loop contri-

bution and one-loop self interference of (A.3.20) are given.
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A.3.1 Two loop contribution - Pole piece

In the following sections, we present expressions for the infrared singular and finite

two-loop contributions to D8

D8 (2×0)(s, t, u) = 〈M(0)|M(2)〉+ 〈M(2)|M(0)〉. (A.3.21)

The two-loop contribution are decomposed as a sum of two terms

D8 (2×0)(s, t, u) = Poles(s, t, u) + Finite(s, t, u). (A.3.22)

Poles contains infrared singularities that will be analytically canceled by those oc-

curring in radiative processes of the same order (ultraviolet divergences are removed

by renormalisation). Finite is the remainder which is finite as ε → 0. Following

the procedure outlined in Ref. [112], the infrared pole structure of the two loop con-

tributions renormalised in the MS scheme in terms of the tree and unrenormalised

one-loop amplitudes, |M(0)〉 and |M(1,un)〉 respectively, can be written as

Poles = 2 Re

[
−1

2
〈M(0)|I(1)(ε)I(1)(ε)|M(0)〉 − 2β0

ε
〈M(0)|I(1)(ε)|M(0)〉

+ 〈M(0)|I(1)(ε)|M(1,un)〉
+e−εγ

Γ(1− 2ε)

Γ(1− ε)
(
β0

ε
+K

)
〈M(0)|I(1)(2ε)|M(0)〉

+ 〈M(0)|H(2)(ε)|M(0)〉
]

(A.3.23)

where the Euler constant γ = 0.5772 . . .. The first coefficient of the QCD beta

function, β0, for NF (massless) quark flavours is

β0 =
11CA − 4TRNF

6
, CA = N, TR =

1

2
, (A.3.24)

and the constant K is

K =

(
67

18
− π2

6

)
CA − 10

9
TRNF . (A.3.25)

Note that the unrenormalised one-loop amplitude |M(1,un)〉 is what is obtained by

direct Feynman diagram evaluation of the one-loop graphs.

It is convenient to decompose |M(0)〉 and |M(1,un)〉 in terms of SU(N) matrices

in the fundamental representation, T a, so that the tree amplitude may be written
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as:

|M(0)〉 =
∑

P (2,3,4)

Tr (T a1T a2T a3T a4)Atree
4 (1, 2, 3, 4), (A.3.26)

while the one-loop amplitude has the form:

|M(1,un)〉 = N
∑

P (2,3,4)

Tr (T a1T a2T a3T a4)A[1]
4;1(1, 2, 3, 4)

+
∑

Q(2,3,4)

Tr (T a1T a2) Tr (T a3T a4)A[1]
4;3(1, 2, 3, 4)

+ NF

∑
P (2,3,4)

Tr (T a1T a2T a3T a4)A[1/2]
4;1 (1, 2, 3, 4). (A.3.27)

To evaluate Eq. (A.3.23) it is convenient to express |M(0)〉 and |M(1,un)〉 as nine-

dimensional vectors in colour space

|M(0)〉 = (T1, T2, T3, T4, T5, T6, 0, 0, 0)T , (A.3.28)

|M(1,un)〉 = (L1, L2, L3, L4, L5, L6, L7, L8, L9)T , (A.3.29)

where ()T indicates the transpose vector. Here the Ti and Li are the components of

|M(0)〉 and |M(1,un)〉 in the colour space spanned by the (non-orthogonal) basis

C1 = Tr (T a1T a2T a3T a4) ,

C2 = Tr (T a1T a2T a4T a3) ,

C3 = Tr (T a1T a4T a2T a3) ,

C4 = Tr (T a1T a3T a2T a4) ,

C5 = Tr (T a1T a3T a4T a2) ,

C6 = Tr (T a1T a4T a3T a2) ,

C7 = Tr (T a1T a2) Tr (T a3T a4) ,

C8 = Tr (T a1T a3) Tr (T a2T a4) ,

C9 = Tr (T a1T a4) Tr (T a2T a3) . (A.3.30)

The tree and loop amplitudes Ti and Li are directly obtained in terms of Atree
4 ,

A[1]
4;1, A[1]

4;3 and A[1/2]
4;1 by reading off from Eqs. (A.3.26) and (A.3.27). However, the

amplitudes themselves are not required since the computation of the interference of

tree and loop amplitudes is given directly.
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In the same colour basis, the infrared-singularity operator I(1)(ε) introduced by

Catani [112] has the form

I(1)(ε) = − eεγ

Γ(1− ε)
(

1

ε2
+
β0

Nε

)

×



N(S + T) 0 0 0 0 0 (T− U) 0 (S− U)

0 N(S + U) 0 0 0 0 (U− T) (S− T) 0

0 0 N(T + U) 0 0 0 0 (T− S) (U− S)

0 0 0 N(T + U) 0 0 0 (T− S) (U− S)

0 0 0 0 N(S + U) 0 (U− T) (S− T) 0

0 0 0 0 0 N(S + T) (T− U) 0 (S− U)

(S− U) (S− T) 0 0 (S− T) (S− U) 2NS 0 0

0 (U− T) (U− S) (U− S) (U− T) 0 0 2NU 0

(T− U) 0 (T− S) (T− S) 0 (T− U) 0 0 2NT


(A.3.31)

where

S =

(
−µ

2

s

)ε
, T =

(
−µ

2

t

)ε
, U =

(
−µ

2

u

)ε
. (A.3.32)

The matrix I(1)(ε) acts directly as a rotation matrix on |M(0)〉 and |M(1,un)〉 in colour

space, to give a new colour vector |X〉, equal to I(1)(ε)|M(0)〉, I(1)(ε)I(1)(ε)|M(0)〉
or I(1)(ε)|M(1,un)〉. The contraction of the colour vector |X〉 with the conjugate tree

amplitude obeys the rule

〈M(0)|X〉 =
∑
spins

∑
colours

9∑
i,j=1

T ∗i Xj C∗i Cj. (A.3.33)

In evaluating these contractions, there are terms of the type
∑

colours C∗i Cj which are

given by the ij component of the symmetric matrix CC

CC =
V

16N2



C1 C2 C2 C2 C2 C3 NV −N NV

C2 C1 C2 C2 C3 C2 NV NV −N
C2 C2 C1 C3 C2 C2 −N NV NV

C2 C2 C3 C1 C2 C2 −N NV NV

C2 C3 C2 C2 C1 C2 NV NV −N
C3 C2 C2 C2 C2 C1 NV −N NV

NV NV −N −N NV NV N2V N2 N2

−N NV NV NV NV −N N2 N2V N2

NV −N NV NV −N NV N2 N2 N2V



, (A.3.34)
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with

C1 = N4 − 3N2 + 3, C2 = 3−N2, C3 = 3 +N2. (A.3.35)

Similarly, the interference of the tree-level amplitudes
∑

spins T ∗i Tj is given by TT ij,
where

TT =
64(1− ε)2(t2 + ut+ u2)2

s2t2u2
VTV , (A.3.36)

and the vector V is

V = (u, t, s, s, t, u, 0, 0, 0) , (A.3.37)

while the interference of the tree-level amplitudes with one-loop amplitudes
∑

spins T ∗i Lj
is given by TLij, where

TL = VTW , (A.3.38)

and the vector W is

W =
(
F(s, t), F(s, u), F(u, t), F(u, t), F(s, u), F(s, t), G, G, G

)
. (A.3.39)

Here the function F(s, t) is symmetric under the exchange of s and t, while G is

symmetric under the exchange of any two Mandelstam invariants, so that

F(s, t) = f1(s, t, u) + f1(t, s, u), (A.3.40)

G = f2(s, t, u) + f2(s, u, t) + f2(t, s, u) + f2(t, u, s) + f2(u, s, t) + f2(u, t, s).

(A.3.41)

Here f1 and f2 are given in terms of the one-loop box integral in D = 6 − 2ε

dimensions and the one-loop bubble graph in D = 4− 2ε,

f1(s, t, u) =
16N(1− 2ε)

s2t2
[
2(1− ε)2

(
s4 + s3t+ st3 + t4

)
+ 3(1− 5ε)s2t2

]
Box6(s, t)

+
8NF (1− 2ε)

st

[
(1− ε)2

(
s2 + t2

)
+ ε(1 + 3ε)st

]
Box6(s, t)

− 16N(1− ε)
s2t2uε(3− 2ε)

[(
12− 22ε+ 12ε2 + 2ε3

)
s4 +

(
24− 58ε+ 50ε2 − 6ε3 − 2ε4

)
s3t

+
(
36− 99ε+ 93ε2 − 24ε3 − 2ε4

)
s2t2 + (1− ε) (24− 50ε+ 23ε2

)
st3

+4(1− ε)(1− 2ε)(3− 2ε)t4
]

Bub(t)

+
16NF

st2u(3− 2ε)
[(

4− 12ε+ 16ε2 − 4ε3
)
s3 +

(
3− 10ε+ 23ε2 − 8ε3

)
s2t

+
(
6− 15ε+ 21ε2 − 8ε3

)
st2 + (1− ε) (5− 6ε+ 2ε2

)
t3
]

Bub(t), (A.3.42)
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f2(s, t, u) =
32(1− 2ε)

u2

[−4(1− ε)2st+ 3(1− 5ε)u2
]

Box6(u, t)

+
32(1− ε)
εsu2

[
4(1− 2ε)(1− ε)t2 + (8− 17ε)(1− ε)ut

+
(
6− 20ε+ 15ε2 + ε3

)
u2
]

Bub(s). (A.3.43)

Series expansions around ε = 0 for the one-loop integrals are given in section A.3.3.

Finally, the last term of Eq. (A.3.23) that involves H(2)(ε) produces only a single

pole in ε and is given by

〈M(0)|H(2)(ε)|M(0)〉 =
eεγ

4 εΓ(1− ε)H
(2)〈M(0)|M(0)〉

where the constant H(2) is

H(2) =

(
2ζ3 +

5

3
+

11

36
π2

)
N2 +

20

27
N2
F +

(
−π

2

18
− 89

27

)
NNF − NF

N
, (A.3.44)

and ζn is the Riemann Zeta function with ζ2 = π2/6 and ζ3 = 1.202056 . . . In this

case H(2) is renormalisation-scheme dependent and Eq. (A.3.44) is valid in the MS

scheme.

A.3.2 Two loop contribution - Finite piece

The finite two-loop contribution to D8(s, t, u) is defined as

Finite(s, t, u) = D8 (2×0)(s, t, u)− Poles(s, t, u), (A.3.45)

where the series expansions of both D8 (2×0)(s, t, u) and Poles(s, t, u) are subtracted

and set ε→ 0. As usual, the polylogarithms Lin(w) are defined by

Lin(w) =

∫ w

0

dt

t
Lin−1(t) for n = 2, 3, 4

Li2(w) = −
∫ w

0

dt

t
log(1− t). (A.3.46)

Using the standard polylogarithm identities, polylogarithms with arguments x, 1−x
and (x− 1)/x are retained, where

x = − t
s
, y = −u

s
= 1− x, z = −u

t
=
x− 1

x
. (A.3.47)

For convenience, the following logarithms are introduced

X = log

(−t
s

)
, Y = log

(−u
s

)
, Ls = log

(
s

µ2

)
, (A.3.48)
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where µ is the renormalisation scale.

The results are shown by grouping terms according to the power of the number

of colours N and the number of light quarks NF , so that

Finite(s, t, u) = V

(
N4A+N2B+N3NFC+NNFD+N2N2

FE+N2
FF

)
, (A.3.49)

where

A =

{(
48 Li4(x)− 48 Li4(y)− 128 Li4(z) + 40 Li3(x)X − 64 Li3(x)Y − 98

3
Li3(x)

+64 Li3(y)X − 40 Li3(y)Y + 18 Li3(y) +
98
3

Li2(x)X − 16
3

Li2(x)π2 − 18 Li2(y)Y

−37
6
X4 + 28X3 Y − 23

3
X3 − 16X2 Y 2 +

49
3
X2 Y − 35

3
X2 π2 − 38

3
X2 − 22

3
LsX2

−20
3
X Y 3 − 9X Y 2 + 8X Y π2 + 10X Y − 31

12
X π2 − 22 ζ3X +

22
3

LsX +
37
27
X

+
11
6
Y 4 − 41

9
Y 3 − 11

3
Y 2 π2 − 22

3
LsY 2 +

266
9
Y 2 − 35

12
Y π2 +

418
9

LsY +
257
9
Y

+18 ζ3 Y − 31
30
π4 − 11

9
Lsπ2 +

31
9
π2 +

242
9

Ls2 +
418
9
ζ3 +

2156
27

Ls

−11093
81

− 8 Ls ζ3

)
t2

s2

+

(
− 256 Li4(x)− 96 Li4(y) + 96 Li4(z) + 80 Li3(x)X + 48 Li3(x)Y − 64

3
Li3(x)

−48 Li3(y)X + 96 Li3(y)Y − 304
3

Li3(y) +
64
3

Li2(x)X − 32
3

Li2(x)π2 +
304
3

Li2(y)Y

+
26
3
X4 − 64

3
X3 Y − 64

3
X3 + 20X2 Y 2 +

136
3
X2 Y + 24X2 π2 + 76X2 − 88

3
LsX2

+
8
3
X Y 3 +

104
3
X Y 2 − 16

3
X Y π2 +

176
3

LsX Y − 136
3
X Y − 50

3
X π2 − 48 ζ3X

+
2350
27

X +
440
3

LsX + 4Y 4 − 176
9
Y 3 +

4
3
Y 2 π2 − 176

3
LsY 2 − 494

9
Y π2 +

5392
27

Y

−64 ζ3 Y +
496
45

π4 − 308
9

Lsπ2 +
200
9
π2 +

968
9

Ls2 +
8624
27

Ls− 44372
81

+
1864

9
ζ3 − 32 Ls ζ3

)
t

u

+

(
88
3

Li3(x)− 88
3

Li2(x)X + 2X4 − 8X3 Y − 220
9
X3 + 12X2 Y 2 +

88
3
X2 Y +

8
3
X2 π2

−88
3

LsX2 +
304
9
X2 − 8X Y 3 − 16

3
X Y π2 +

176
3

LsX Y − 77
3
X π2 +

1616
27

X

+
968
9

LsX − 8 ζ3X + 4Y 4 − 176
9
Y 3 − 20

3
Y 2 π2 − 176

3
LsY 2 − 638

9
Y π2 − 16 ζ3 Y

+
5392
27

Y − 4
15
π4 − 308

9
Lsπ2 − 20π2 − 32 Ls ζ3 +

1408
9

ζ3 +
968
9

Ls2 − 44372
81

+
8624
27

Ls

)
t2

u2

+

(
44
3

Li3(x)− 44
3

Li2(x)X −X4 +
110
9
X3 − 22

3
X2 Y +

14
3
X2 π2 +

44
3

LsX2
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−152
9
X2 − 10X Y +

11
2
X π2 + 4 ζ3X − 484

9
LsX − 808

27
X +

7
30
π4 − 31

9
π2

+
11
9

Lsπ2 − 418
9
ζ3 − 242

9
Ls2 − 2156

27
Ls + 8 Ls ζ3 +

11093
81

)
ut

s2

+

(
− 176 Li4(x) + 88 Li3(x)X − 168 Li3(x)Y − 206

3
Li3(x) +

206
3

Li2(x)X

+
65
6
X4 − 40

3
X3 Y − 295

9
X3 − 15X2 Y 2 +

115
3
X2 Y +

29
3
X2 π2 − 670

9
X2

−242
3

LsX2 +
64
3
X Y π2 +

209
3
X Y + 44 LsX Y − 1811

36
X π2 +

8983
27

X

+
1870

9
LsX − 18 ζ3X +

31
20
π4 − 361

18
π2 − 517

18
Lsπ2 +

1331
9

Ls2 +
12452

27
Ls

+
1543

9
ζ3 − 129475

162
− 44 Ls ζ3

)}
+

{
u↔ t

}
, (A.3.50)

B =

{(
− 288 Li4(x) + 480 Li4(y)− 288 Li4(z) + 240 Li3(x)X − 144 Li3(x)Y

+224 Li3(x) + 144 Li3(y)X − 432 Li3(y)Y − 224 Li3(y) + 48 Li2(x)X2

−224 Li2(x)X − 176 Li2(x)π2 + 48 Li2(y)Y 2 + 224 Li2(y)Y − 16X4 + 112X3 Y

−556
3
X3 − 48X2 Y 2 + 180X2 Y − 40X2 π2 + 220X2 − 32X Y 3 − 92X Y 2

−16X Y π2 − 376
3
X Y − 16X π2 − 80X + 96 ζ3X + 8Y 4 +

292
3
Y 3 − 32Y 2 π2

−284
3
Y 2 + 16Y π2 + 80Y − 96 ζ3 Y +

38
5
π4 − 18π2

)
t2

s2

+

(
− 576 Li4(x) + 384 Li4(y)− 1152 Li4(z) + 1056 Li3(x)X − 768 Li3(x)Y

+448 Li3(x) + 768 Li3(y)X − 768 Li3(y)Y + 896 Li3(y)− 192 Li2(x)X2

−448 Li2(x)X − 544 Li2(x)π2 − 384 Li2(y)X Y − 896 Li2(y)Y − 28X4 + 144X3 Y

+
320
3
X3 − 336X2 Y 2 − 224X2 Y − 40X2 π2 − 64X2 − 32X Y 3 + 128X Y 2

−64X Y π2 +
1888

3
X Y − 288X π2 + 160X − 1248 ζ3X − 240Y 2 π2 − 928Y π2

+768 ζ3 Y +
1216
15

π4 − 1912
3

π2 − 448 ζ3

)
t

u

+

(
− 384 Li4(y)− 384 Li4(z) + 384 Li3(x)X − 384 Li3(x)Y + 384 Li3(y)X

−192 Li2(x)X2 − 192 Li2(x)π2 − 384 Li2(y)X Y − 8X4 − 32X3 Y − 176X3

−192X2 Y 2 + 352X2 Y − 80X2 π2 +
752
3
X2 − 32X Y π2 − 176X π2 − 384 ζ3X

−96Y 2 π2 − 352Y π2 + 384 ζ3 Y + 56π4 − 968
3
π2

)
t2

u2

+

(
− 192 Li4(x) + 192 Li3(x)X − 96 Li2(x)X2 − 4X4 − 32X3 Y + 88X3

+12X2 Y 2 − 88X2 Y + 48X2 π2 − 376
3
X2 − 48X Y π2 +

376
3
X Y
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+
64
15
π4 + 18π2

)
ut

s2

+

(
48 Li3(x)X + 144 Li3(x)Y + 672 Li3(x)− 48 Li2(x)X2 − 672 Li2(x)X + 16X4

−32X3 Y − 4
3
X3 + 24X2 Y 2 + 12X2 Y − 192X2 π2 +

1444
3

X2 + 72X Y π2

+
80
3
X Y − 624X π2 + 80X − 288 ζ3X +

509
15

π4 − 707π2 − 36− 2800 ζ3

)}

+

{
u↔ t

}
, (A.3.51)

C =

{(
− 24 Li4(x) + 24 Li4(y) + 112 Li4(z)− 44 Li3(x)X + 56 Li3(x)Y +

74
3

Li3(x)

−56 Li3(y)X + 44 Li3(y)Y − 22 Li3(y)− 74
3

Li2(x)X +
32
3

Li2(x)π2 + 22 Li2(y)Y

+
25
4
X4 − 26X3 Y + 4X3 + 14X2 Y 2 − 37

3
X2 Y + 7X2 π2 +

27
2
X2 + 5 LsX2

+
22
3
X Y 3 + 11X Y 2 − 4X Y π2 − 11X Y +

31
6
X π2 + 12 ζ3X − 637

27
X − 26

3
LsX

−19
12
Y 4 − 16

9
Y 3 +

7
3
Y 2 π2 − 221

18
Y 2 − 7

3
LsY 2 − 25

6
Y π2 +

175
9
Y − 12 ζ3 Y

−98
9

LsY +
1
5
π4 +

2
9

Lsπ2 +
203
54

π2 − 4
9
ζ3 − 88

9
Ls2 +

4849
162

− 386
27

Ls

)
t2

s2

+

(
224 Li4(x) + 48 Li4(y)− 48 Li4(z)− 88 Li3(x)X − 24 Li3(x)Y +

124
3

Li3(x)

+24 Li3(y)X − 48 Li3(y)Y +
280
3

Li3(y)− 124
3

Li2(x)X +
64
3

Li2(x)π2

−280
3

Li2(y)Y − 31
6
X4 + 6X3 Y − 4

3
X3 − 3X2 Y 2 − 56

3
X2 Y − 55

3
X2 π2 − 2 LsX2

−70
3
X2 − 6X Y 3 − 26X Y 2 − 2

3
X Y π2 + 4 LsX Y +

148
3
X Y − 22

3
X π2

−124
3

LsX +
938
27

X + 64 ζ3X +
32
9
Y 3 − 3Y 2 π2 +

32
3

LsY 2 − 4
9
Y π2 − 1096

27
Y

+24 ζ3 Y − 829
90

π4 − 10
9

Lsπ2 − 356
27

π2 − 352
9

Ls2 − 1544
27

Ls− 388
9
ζ3 +

9698
81

)
t

u

+

(
− 16

3
Li3(x) +

16
3

Li2(x)X +
40
9
X3 − 16

3
X2 Y +

22
9
X2 +

16
3

LsX2 − 32
3

LsX Y

+
14
3
X π2 − 224

27
X − 352

9
LsX +

32
9
Y 3 +

32
3

LsY 2 +
116
9
Y π2 − 1096

27
Y +

56
9

Lsπ2

+
340
27

π2 − 1544
27

Ls +
9698
81

+
32
9
ζ3 − 352

9
Ls2
)
t2

u2

+

(
− 8

3
Li3(x) +

8
3

Li2(x)X − 20
9
X3 +

4
3
X2 Y − 11

9
X2 − 8

3
LsX2 + 11X Y −X π2

+
112
27

X +
176
9

LsX − 2
9

Lsπ2 − 203
54

π2 +
88
9

Ls2 − 4849
162

+
386
27

Ls +
4
9
ζ3

)
ut

s2
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+

(
136 Li4(x)− 68 Li3(x)X + 120 Li3(x)Y +

206
3

Li3(x)− 206
3

Li2(x)X − 71
12
X4

+
14
3
X3 Y − 68

9
X3 + 15X2 Y 2 +

5
3
X2 Y − 29

3
X2 π2 +

973
18

X2 +
77
3

LsX2

−62
3
X Y π2 − 139

6
X Y − 8 LsX Y − 317

18
X π2 − 1375

27
X − 626

9
LsX + 4 ζ3X

−47
30
π4 +

3799
108

π2 +
47
9

Lsπ2 − 484
9

Ls2 − 2825
27

Ls +
932
9
ζ3 +

70025
324

)}

+

{
u↔ t

}
, (A.3.52)

D =

{(
24 Li4(x)− 24 Li4(y) + 88 Li4(z)− 52 Li3(x)X + 36 Li3(x)Y − 46

3
Li3(x)

−36 Li3(y)X + 52 Li3(y)Y +
46
3

Li3(y)− 4 Li2(x)X2 +
46
3

Li2(x)X +
44
3

Li2(x)π2

−16 Li2(y)X Y + 4 Li2(y)Y 2 − 46
3

Li2(y)Y +
79
12
X4 − 82

3
X3 Y +

817
18

X3 + 3X2 Y 2

−184
3
X2 Y +

13
3
X2 π2 − 545

6
X2 +

38
3
X Y 3 +

136
3
X Y 2 +

4
3
X Y π2 +

155
3
X Y

−10X π2 − 32 ζ3X +
76
3
X − 35

12
Y 4 − 529

18
Y 3 + 3Y 2 π2 +

235
6
Y 2 + 10Y π2 − 76

3
Y

+32 ζ3 Y − 11
30
π4 +

7
2
π2 + 8 ζ3 + 2 Ls− 55

6

)
t2

s2

+

(
176 Li4(x)− 48 Li4(y) + 48 Li4(z)− 104 Li3(x)X + 32 Li3(x)Y − 92

3
Li3(x)

−32 Li3(y)X + 64 Li3(y)Y − 184
3

Li3(y)− 8 Li2(x)X2 +
92
3

Li2(x)X +
160
3

Li2(x)π2

+16 Li2(y)X Y − 16 Li2(y)Y 2 +
184
3

Li2(y)Y − 23
6
X4 − 10X3 Y − 385

9
X3 + 19X2 Y 2

+
161
3
X2 Y − 17X2 π2 +

80
3
X2 − 14

3
X Y 3 − 87X Y 2 − 26

3
X Y π2 − 260X Y

+
215
3
X π2 − 152

3
X + 168 ζ3X + 7Y 2 π2 +

545
3
Y π2 + 8Y − 32 ζ3 Y − 571

90
π4

+
742
3
π2 +

188
3
ζ3 − 110

3
+ 8 Ls

)
t

u

+

(
32X3 − 64X2 Y − 310

3
X2 + 32X π2 + 64Y π2 + 8Y +

352
3
π2 + 8 Ls

−110
3

+ 32 ζ3

)
t2

u2

+

(
− 16X3 + 16X2 Y +

155
3
X2 − 155

3
X Y − 7

2
π2 − 8 ζ3 − 2 Ls +

55
6

)
ut

s2

+

(
64 Li4(x)− 20 Li3(x)X − 108 Li3(x)Y − 46 Li3(x)− 12 Li2(x)X2

+46 Li2(x)X +
5
12
X4 − 10X3 Y − 401

18
X3 − 21

2
X2 Y 2 − 34

3
X2 Y − 1

3
X2 π2

−1303
6

X2 − 16
3
X Y π2 − 11

6
X Y +

340
3
X π2 + 104 ζ3X − 52

3
X − 67

20
π4
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+
2981
12

π2 + 11 Ls +
1166

3
ζ3 − 461

12

)}
+

{
u↔ t

}
, (A.3.53)

E =

{(
− 1

3
X3 − 2

3
LsX2 +

2
3
X2 − 2

3
X π2 +

4
3

LsX − 2
3
X +

1
3
Y 3 +

2
9
Y 2 +

2
3

LsY 2

+
2
3
Y π2 +

4
9

LsY +
2
3
Y +

2
27
π2 +

8
9

Ls2
)
t2

s2

+

(
2
3
X3 − 2

3
X2 Y +

4
3
X2 +

4
3

LsX2 − 2
3
X Y 2 − 8

3
LsX Y +

2
3
X π2 +

8
3

LsX

+
4
3
X − 2

3
Y π2 − 52

27
π2 +

4
3

Lsπ2 +
32
9

Ls2
)
t

u

+

(
16
9
X2 +

32
9

LsX − 40
27
π2 +

32
9

Ls2
)
t2

u2

+

(
− 8

9
X2 − 16

9
LsX − 2

27
π2 − 8

9
Ls2
)
ut

s2

+

(
−X3 − 2 LsX2 +

26
9
X2 − 2X π2 +

10
3
X +

52
9

LsX − 43
27
π2 +

44
9

Ls2

+
1
2

+ 4 Ls

)}
+

{
u↔ t

}
, (A.3.54)

F =

{
2
3

(
−X + Y

)(
3X2 − 4X Y − 14X + 3Y 2 − 6Y + 2π2 + 4

)
t2

s2

+

(
4X3 − 8

3
X2 Y − 8

3
X2 +

8
3
X Y 2 +

80
3
X Y − 4X π2 +

16
3
X − 8

3
Y π2 − 24π2

)
t

u

−32
3

(
−X2 + π2

)
t2

u2
+

(
− 16

3
X2 +

16
3
X Y

)
ut

s2

+

(
2
3
X3 + 2X2 Y + 20X2 +

4
3
X Y − 16

3
X π2 +

8
3
X − 64

3
π2

)}
+

{
u↔ t

}
.

(A.3.55)

A.3.3 Master integrals

In this appendix, the expansions for the one-loop box integrals in D = 6 − 2ε

are listed. The results are given in the physical region s > 0, u, t < 0, with the

coefficients written in terms of logarithms and polylogarithms that are real in this

domain. More precisely, the notation of Eqs. (A.3.47) and (A.3.48) is used to define

the arguments of the logarithms and polylogarithms. The polylogarithms are defined

as in Eq. (A.3.46).
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The box integrals have the expansion

Box6(u, t) =
eεγΓ (1 + ε) Γ (1− ε)2

2sΓ (1− 2ε) (1− 2ε)

(
µ2

s

)ε{
1

2

[
(X − Y )2 + π2

]
+2ε

[
Li3(x)−XLi2(x)− 1

3
X3 − π2

2
X

]
−2ε2

[
Li4(x) + Y Li3(x)− 1

2
X2Li2(x)− 1

8
X4 − 1

6
X3Y +

1

4
X2Y 2

−π
2

4
X2 − π2

3
XY − π4

45

]
+ (u↔ t)

}
+O (ε3) , (A.3.56)

and

Box6(s, t) =
eεγΓ(1 + ε)Γ(1− ε)2

2uΓ(1− 2ε)(1− 2ε)

(
−µ

2

u

)ε{(
X2 + 2iπX

)
+ε

[(
−2Li3(x) + 2XLi2(x)− 2

3
X3 + 2Y X2 − π2X + 2ζ3

)

+iπ

(
2Li2(x) + 4Y X −X2 − π2

3

)]

+ε2

[(
2Li4(z) + 2Li4(y)− 2Y Li3(x)− 2XLi3(y) + (2XY −X2 − π2)Li2(x)

+
1

3
X4 − 5

3
X3Y +

3

2
X2Y 2 +

2

3
π2X2 − 2π2XY + 2Y ζ3 +

1

6
π4

)

+iπ

(
−2Li3(x)− 2Li3(y) + 2Y Li2(x) +

1

3
X3 − 2X2Y + 3XY 2

−π
2

3
Y + 2ζ3

)]}
+O (ε3) . (A.3.57)

Box6(s, u) is obtained from Eq. (A.3.57) by exchanging u and t.

Finally, the one-loop bubble integral in D = 4− 2ε dimensions is given by

Bub(s) =
eεγΓ (1 + ε) Γ (1− ε)2

Γ (2− 2ε) ε

(
−µ

2

s

)ε
. (A.3.58)

A.3.4 One-loop self-interference contribution - Pole piece

The one-loop contribution is decomposed as a sum of two terms

D8 (1×1)(s, t, u) = Poles(s, t, u) + Finite(s, t, u). (A.3.59)
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Poles contains infrared singularities that will be analytically canceled by those oc-

curring in radiative processes of the same order (ultraviolet divergences are removed

by renormalisation). Finite is the remainder which is finite as ε→ 0.

The contraction of the colour vector |X〉 with the conjugate colour vector 〈Y |
obeys the rule

〈Y |X〉 =
∑
spins

∑
colours

9∑
i,j=1

Y ∗i Xj C∗i Cj. (A.3.60)

In evaluating these contractions, the terms are typically of the type
∑

colours C∗i Cj
which are given by (A.3.34).

For the expansion of the pole structure coming from this contribution, eqs

(A.3.31) through to (A.3.43) are valid.

A.3.5 One-loop self-interference contribution - Finite piece

The finite two-loop contribution to D8(s, t, u) is defined as

Finite(s, t, u) = D8 (1×1)(s, t, u)− Poles(s, t, u), (A.3.61)

where the series expansions of both D8 (1×1)(s, t, u) and Poles(s, t, u) is subtracted

and set ε→ 0.

The results are shown by grouping terms according to the power of the number

of colours N and the number of light quarks NF , so that

Finite(s, t, u) = V

(
N4A+N2B +N3NFC +NNFD +N2N2

FE +N2
FF +

N2
F

N2
G

)
,

(A.3.62)

where

A =

{
1
2

(
X2 − 2X Y + Y 2 + π2

)(
X2 − 2X Y − 2X + Y 2 + 2Y + π2

)
t4

s4

+

(
3X4 − 4X3 Y − 56

3
X3 + 6X2 Y 2 + 20X2 Y − 22

3
X2 Ls + 10X2 π2 +

56
9
X2

− 4X Y 3 − 20X Y 2 − 4X Y π2 − 6X Y +
154
9
X Ls− 16X π2 +

785
27

X + Y 4

+ 4Y 3 − 22
3
Y 2 Ls + 2Y 2 π2 − 28

9
Y 2 +

110
3
Y Ls + 16Y π2 +

721
9
Y +

242
9

Ls2

+
2948
27

Ls + π4 + π2 +
9014
81

)
t2

s2

+

(
4X4 + 12X3 +

4
3
X2 Y − 44

3
X2 Ls + 16X2 π2 − 56

9
X2 +

40
3
X Y 2
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+
88
3
X Y Ls +

880
9
X Y +

220
3
X Ls +

88
3
X π2 +

1442
9

X + 4Y 4 − 88
3
Y 2 Ls

+ 16Y 2 π2 − 536
9
Y 2 +

116
3
Y π2 +

484
9

Ls2 − 44
3

Lsπ2 +
5896
27

Ls +
58
9
π2 +

18028
81

)
t

u

+X2

(
X2 + 4π2

)
t4

u4

+ 2X

(
X3 + 2X2 + 4X π2 + 4π2

)
t3

u3

+

(
7X4 − 8X3 Y − 26

3
X3 + 12X2 Y 2 +

88
3
X2 Y − 44

3
X2 Ls + 24X2 π2 +

28
9
X2

− 8X Y 3 − 44
3
X Y 2 +

88
3
X Y Ls− 8X Y π2 +

536
9
X Y +

484
9
X Ls− 8

3
X π2

+
2948
27

X + 4Y 4 − 88
3
Y 2 Ls + 12Y 2 π2 − 536

9
Y 2 +

88
3
Y π2 +

484
9

Ls2 − 44
3

Lsπ2

+
5896
27

Ls + 2π4 +
10
9
π2 +

18028
81

)
t2

u2

+

(
17
2
X4 − 10X3 Y − 7

3
X3 +

15
2
X2 Y 2 + 11X2 Y − 110

3
X2 Ls + 29X2 π2

− 122
3
X2 + 22X Y Ls− 5X Y π2 +

596
9
X Y +

814
9
X Ls +

107
3
X π2

+
5309
27

X +
605
9

Ls2 − 11 Lsπ2 +
7667
27

Ls +
5
4
π4 +

113
18

π2 +
24533

81

)}
+

{
u↔ t

}
(A.3.63)

B =

{
6

(
X2 − 2X Y + Y 2 + π2

)(
X2 − 2X Y − 2X + Y 2 + 2Y + π2

)
t4

s4

+

(
72X4 − 120X3 Y − 356X3 + 48X2 Y 2 + 580X2 Y + 156X2 π2 +

1280
3

X2

+24X Y 3 − 404X Y 2 − 144X Y π2 − 1184
3

X Y − 392X π2 − 112X − 24Y 4

+180Y 3 − 12Y 2 π2 − 32Y 2 + 392Y π2 + 112Y + 12π4 + 12π2

)
t2

s2

+

(
− 24X4 + 144X3 Y + 408X3 − 48X2 Y 2 − 272X2 Y + 120X2 π2 − 64X2

+96X Y 3 + 624X Y 2 + 288X Y π2 +
2752

3
X Y + 792X π2 + 224X

+144Y 2 π2 + 528Y π2 +
2200

3
π2

)
t

u

+12X2

(
X2 + 4π2

)
t4

u4

+24X

(
X3 + 2X2 + 4X π2 + 4π2

)
t3

u3

+

(
84X4 − 96X3 Y − 104X3 + 96X2 Y 2 + 352X2 Y + 288X2 π2 +

1184
3

X2
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−96X Y π2 − 32X π2 + 96Y 2 π2 + 352Y π2 + 24π4 +
1112

3
π2

)
t2

u2

+

(
42X4 + 32X3 + 66X2 Y 2 + 416X2 Y + 288X2 π2 +

1808
3

X2 + 84X Y π2

+
424
3
X Y + 716X π2 + 112X + 15π4 + 666π2 + 48

)}
+

{
u↔ t

}
(A.3.64)

C =

{
−
(
X2 − 2X Y + Y 2 + π2

)(
X2 − 2X Y − 2X + Y 2 + 2Y + π2

)
t4

s4

+

(
−X4 + 2X3 Y +

73
6
X3 − 3X2 Y 2 − 22X2 Y +

19
6
X2 Ls− 3X2 π2

−185
18

X2 + 2X Y 3 + 22X Y 2 + 2X Y π2 + 12X Y − 83
9
X Ls +

32
3
X π2

−250
27

X − 19
2
Y 3 − 1

2
Y 2 Ls + Y 2 π2 − 127

18
Y 2 − 31

3
Y Ls− 32

3
Y π2 − 242

9
Y

−88
9

Ls2 − 976
27

Ls− 1
2
π4 − 2π2 − 2752

81

)
t2

s2

+

(
− 4X4 − 4X3 Y − 27X3 + 6X2 Y 2 + 12X2 Y −X2 Ls− 18X2 π2

−127
9
X2 − 4X Y 3 − 11X Y 2 + 2X Y Ls− 4X Y π2 − 148

9
X Y − 62

3
X Ls

−149
3
X π2 − 484

9
X +

16
3
Y 2 Ls− 2Y 2 π2 +

80
9
Y 2 − 16Y π2 − 176

9
Ls2

−Lsπ2 − 1952
27

Ls + π4 − 247
9
π2 − 5504

81

)
t

u

−2X2

(
X2 + 4π2

)
t4

u4

−4X

(
X3 + 2X2 + 4X π2 + 4π2

)
t3

u3

+

(
− 7X4 − 28

3
X3 − 16

3
X2 Y +

8
3
X2 Ls− 28X2 π2 − 52

3
X2 +

8
3
X Y 2

−16
3
X Y Ls− 80

9
X Y − 176

9
X Ls− 64

3
X π2 − 976

27
X +

16
3
Y 2 Ls +

80
9
Y 2

−16
3
Y π2 − 176

9
Ls2 +

8
3

Lsπ2 − 1952
27

Ls− 40
3
π2 − 5504

81

)
t2

u2

+

(
− 4X4 + 2X3 Y − 13

2
X3 − 3

2
X2 Y 2 − 2X2 Y +

73
6
X2 Ls− 15X2 π2

−131
18

X2 − 4X Y Ls +X Y π2 − 97
9
X Y − 269

9
X Ls− 94

3
X π2 − 1936

27
X

−220
9

Ls2 + 2 Lsπ2 − 2791
27

Ls− 1
4
π4 − 367

18
π2 − 9337

81

)}
+

{
u↔ t

}
(A.3.65)

D =

{
− 2

(
X2 − 2X Y + Y 2 + π2

)(
X2 − 2X Y − 2X + Y 2 + 2Y + π2

)
t4

s4



A.3. gg → gg two-loop 178

+

(
− 4X4 + 8X3 Y + 75X3 − 6X2 Y 2 − 389

3
X2 Y − 8X2 π2 − 446

3
X2

+
293
3
X Y 2 + 4X Y π2 +

424
3
X Y +

232
3
X π2 +

116
3
X + 2Y 4 − 43Y 3

+4Y 2 π2 +
22
3
Y 2 − 232

3
Y π2 − 116

3
Y − π4 − 4π2

)
t2

s2

+

(
− 4X4 − 16X3 Y − 102X3 + 12X2 Y 2 +

188
3
X2 Y − 32X2 π2 +

44
3
X2

−8X Y 3 − 380
3
X Y 2 − 24X Y π2 − 312X Y − 578

3
X π2 − 232

3
X − 4Y 2 π2

−332
3
Y π2 + 2π4 − 820

3
π2

)
t

u

−4X2

(
X2 + 4π2

)
t4

u4

−8X

(
X3 + 2X2 + 4X π2 + 4π2

)
t3

u3

+

(
− 14X4 + 8X3 − 64X2 Y − 56X2 π2 − 424

3
X2 − 16X π2 − 64Y π2

−400
3
π2

)
t2

u2

+

(
− 4X4 − 4X3 Y − 35

3
X3 − 85X2 Y − 26X2 π2 − 206X2 − 2X Y π2

−148
3
X Y − 484

3
X π2 − 116

3
X − 1

2
π4 − 721

3
π2 − 16

)}
+

{
u↔ t

}
(A.3.66)

E =

{
1
2

(
X2 − 2X Y + Y 2 + π2

)(
X2 − 2X Y − 2X + Y 2 + 2Y + π2

)
t4

s4

+

(
− 1

2
X4 + 2X3 Y −X3 − 3X2 Y 2 + 2X2 Y − 1

3
X2 Ls−X2 π2 +

32
9
X2

+2X Y 3 − 2X Y 2 + 2X Y π2 − 6X Y +
10
9
X Ls− 2

3
X π2 − 22

27
X − 1

2
Y 4

+Y 3 +
1
3
Y 2 Ls− Y 2 π2 +

10
3
Y 2 +

2
3
Y Ls +

2
3
Y π2 +

34
9
Y +

8
9

Ls2 +
80
27

Ls

−1
2
π4 + π2 +

236
81

)
t2

s2

+

(
X4 + 6X3 − 4

3
X2 Y +

2
3
X2 Ls + 4X2 π2 +

20
3
X2 +

2
3
X Y 2 − 4

3
X Y Ls

+
4
3
X Ls +

34
3
X π2 +

68
9
X +

4
3
Y π2 +

16
9

Ls2 +
2
3

Lsπ2 +
160
27

Ls

+
22
3
π2 +

472
81

)
t

u

+X2

(
X2 + 4π2

)
t4

u4



A.3. gg → gg two-loop 179

+2X

(
X3 + 2X2 + 4X π2 + 4π2

)
t3

u3
+

(
2X4 + 6X3 + 8X2 π2 +

62
9
X2 +

16
9
X Ls + 12X π2 +

80
27
X +

16
9

Ls2

+
160
27

Ls +
44
9
π2 +

472
81

)
t2

u2

+

(
1
2
X4 −X3 Y +

4
3
X3 +

3
4
X2 Y 2 −X2 Ls +

3
2
X2 π2 +

28
9
X2 − 1

2
X Y π2

+
5
9
X Y +

22
9
X Ls +

14
3
X π2 +

218
27

X +
20
9

Ls2 +
254
27

Ls +
1
8
π4

+
37
9
π2 +

1049
81

)}
+

{
u↔ t

}
(A.3.67)

F =

{
−
(
X2 − 2X Y + Y 2 + π2

)(
X2 − 2X Y − 2X + Y 2 + 2Y + π2

)
t4

s4

+

(
X4 − 4X3 Y − 2X3 + 6X2 Y 2 +

14
3
X2 Y + 2X2 π2 + 6X2 − 4X Y 3

−14
3
X Y 2 − 4X Y π2 +

4
3
X Y − 4

3
X π2 +

4
3
X + Y 4 + 2Y 3 + 2Y 2 π2 − 22

3
Y 2

+
4
3
Y π2 − 4

3
Y + π4 − 2π2

)
t2

s2

+

(
− 2X4 − 4X3 − 8

3
X2 Y − 8X2 π2 − 44

3
X2 +

8
3
X Y 2 +

80
3
X Y − 28

3
X π2

−8
3
X +

8
3
Y π2 + 16π2

)
t

u

−2X2

(
X2 + 4π2

)
t4

u4

−4X

(
X3 + 2X2 + 4X π2 + 4π2

)
t3

u3

+

(
− 4X4 − 12X3 − 16X2 π2 − 4

3
X2 − 24X π2 +

8
3
π2

)
t2

u2

+

(
−X4 + 2X3 Y − 4

3
X3 − 3

2
X2 Y 2 + 2X2 Y − 3X2 π2 +

46
3
X2

+X Y π2 + 2X Y +
4
3
X π2 − 4

3
X − 1

4
π4 +

58
3
π2 − 8

)}
+

{
u↔ t

}
(A.3.68)

G =

{
3

(
X2 − 2X Y + Y 2 + π2

)(
X2 − 2X Y − 2X + Y 2 + 2Y + π2

)
t4

s4

−3

(
X2 − 2X Y + 2X + Y 2 − 2Y + π2 − 2

)(
X2 − 2X Y − 2X + Y 2 + 2Y + π2

)
t2

s2

+

(
6X4 + 24X3 + 24X2 π2 + 36X2 + 48X π2 + 24X + 24π2

)
t

u



A.4. gg → ggg tree level 180

+6X2

(
X2 + 4π2

)
t4

u4

+12X

(
X3 + 2X2 + 4X π2 + 4π2

)
t3

u3

+

(
12X4 + 36X3 + 48X2 π2 + 36X2 + 72X π2 + 24π2

)
t2

u2

+

(
3X4 − 6X3 Y + 6X3 +

9
2
X2 Y 2 + 9X2 π2 + 6X2 − 3X Y π2 + 6X Y

+12X π2 + 12X +
3
4
π4 + 6π2 + 24

)}
+

{
u↔ t

}
(A.3.69)

Although it is expected that the finite piece contains polylogarithms, they are

all predicted by the infrared singular structure and are obtained by expanding

Eq. (A.3.23) through to O (ε). This is because the polylogarithms appear as the

O (ε) and O (ε2) terms in the expansion of the box integral in D = 6 and must

be multiplied by an infrared singular term to contribute at O (1). At O (1), the

interference of one box graph with another only collects the O (1) terms in each and

therefore yields only logarithms.

A.4 gg → ggg tree level

For five-gluon helicity amplitudes the only non-zero sub-amplitudes will be of the

form (−−+++) up to permutations of the indices. They are written in the following

form [160,161]:

m3+2−(g1, g2, g3, g4, g5) = ig3 〈IJ〉4
〈12〉〈23〉〈34〉〈45〉〈51〉 (A.4.70)

where I and J are the indices of negative helicity gluons. We can square this sub-

amplitude and sum over helicities to obtain the colour-ordered amplitude squared:

A0
5(g1, g2, g3, g4, g5) = 2g6

(∑
i>j

s4
ij

)
1

s12s23s34s45s51

(A.4.71)

This is the colour ordered amplitude that accompanies the antenna functions in the

counterterms in chapter 6.
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A.5 gg → ggg one-loop

This matrix element is not implemented in our program. We reproduce it here from

reference [114] for convenience.

In this case one first decomposes the n-gluon amplitude, depending on the ex-

ternal momenta, helicities, and colour indices ki, λi, and ai, into sums over certain

permutations of colour factors, times partial amplitudes, in analogy to the helic-

ity [20–25] and colour decomposition [27–29] of tree amplitudes. At one-loop order

in an SU(N) theory, one must also sum over the different spins J of the internal

particles; this takes the following form when all internal particles transform as colour

adjoints,

An ({k,λi, ai}) =
∑
J

nJ

bn/2c+1∑
c=1

∑
σ∈Sn/Sn;c

Grn;c (σ) A[J ]
n;c(σ) (A.5.72)

where Grn;1(1) = N Tr (T a1 · · ·T an), Grn;c(1) = Tr (T a1 · · ·T ac−1) Tr (T ac · · ·T an),

Sn is the set of all permutations of n objects, and Sn;c is the subset leaving the trace

structure Grn;c invariant. The T a are the set of hermitian traceless N ×N matrices,

normalised so that Tr
(
T aT b

)
= δab. For internal particles in the fundamental

(N + N̄) representation, only the single-trace colour structure (c = 1) is present,

and it is smaller by a factor of N . In each case a spin-J particle has two states:

gauge bosons, Weyl fermions, and complex scalars.

The objects one calculates are the partial amplitudes A
[J ]
n;c, which depend only on

the external momenta and helicities. For the five-point function, there is only one

independent partial amplitude for each configuration of external helicities; A5;2 and

A5;3 are related to the adjoint contributions to A5;1 via decoupling equations [163].

Taking the fifth leg to be a photon, and setting the coefficient of Tr(T a1T a2T a3T a4)

to zero yields the first decoupling equation [163],∑
σ∈Z4

A5;1(σ(1), σ(2), σ(3), σ(4), 5) + A5;2(5, 1, 2, 3, 4) = 0 (A.5.73)

A new feature of the five-point amplitude is the emergence of additional con-

straints from other trace structures, still considering the one-photon substitution;

the coefficient of Tr(T a1T a2)(T a3T a4) must vanish, which means that [163]

A5;3(1, 2, 3, 4, 5)+A5;3(1, 2, 4, 3, 5)+A5;3(3, 4, 1, 2, 5)+A5;3(3, 4, 2, 1, 5) = 0. (A.5.74)
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Substituting two photons for gluons, only one equation emerges [163],∑
σ∈COP

(123)
4

A5;1(σ(1), σ(2), σ(3), σ(4), 5)

+
∑
σ∈Z3

(A5;2(5, σ(1), σ(2), σ(3), 4) + A5;2(4, σ(1), σ(2), σ(3), 5))

+A5;3(4, 5, 1, 2, 3) = 0 (A.5.75)

where COP (cyclic ordered permutations) denotes the subsets of Sn that leaves the

ordering of the aj unchanged up to a cyclic transformation. These equations can be

solved to eliminate the partial amplitudes A5;2 and A5;3. Using the one-photon single

trace equation (A.5.73) to substitute for A5;2 in the two-photon equation (A.5.75)

gives [163]

A5;3(4, 5, 1, 2, 3) =
∑

σ∈COP123
4

A5;1 (σ(1), σ(2), σ(3), σ(4), 5) . (A.5.76)

From this equation along with the one-photon double trace equation (A.5.74) gen-

erates the constraint [163]∑
σ∈S5/Z5

A5;1 (σ(1), σ(2), σ(3), σ(4), σ(5)) = 0 (A.5.77)

Additional equations obtained by substituting three or more photon legs are

not independent. For the finite helicity amplitudes, supersymmetric identities [164]

imply that the contributions of particles of different spin circulating around the

loop are related, A
[1]
n;c = −A[1/2]

n;c = A
[0]
n;c. (This holds true for the partial amplitudes

whether or not the theory as a whole is supersymmetric.) Indeed, in the string-based

method, these identities hold for the integrands of each diagram. The amplitudes

are [114]

A
[1]
5;1

(
1+, 2+, 3+, 4+, 5+

)
=

i

96π2

s12s23 + s23s34 + s34s45 + s45s51 + s51s12 + ε(1, 2, 3, 4)

〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉
(A.5.78)

A
[1]
5;1

(
1−, 2+, 3+, 4+, 5+

)
=

i

48π2

1

[1 2] 〈2 3〉 〈3 4〉 〈4 5〉 [5 1]

[
(s23 + s34 + s45)[2 5]2

− [2 4] 〈4 3〉 [3 5] [2 5] − [1 2] [1 5]

〈1 2〉 〈1 5〉

(
〈1 2〉2〈1 3〉2 [2 3]

〈2 3〉
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+ 〈1 3〉2〈1 4〉2 [3 4]

〈3 4〉 + 〈1 4〉2〈1 5〉2 [4 5]

〈4 5〉

)]
(A.5.79)

In order to present the results for the remaining, infrared-divergent amplitudes

in a compact form, it is helpful to define the following functions,

L0(r) =
ln(r)

1− r , L1(r) =
ln(r) + 1− r

(1− r)2
, L2(r) =

ln(r)− (r − 1/r)/2

(1− r)3
,

Ls1(r1, r2) =
1

(1− r1 − r2)2

[
Li2(1− r1) + Li2(1− r2) + ln r1 ln r2 − π2

6

+ (1− r1 − r2) (L0(r1) + L0(r2))

]
(A.5.80)

where Li2 is the dilogarithm; a prefactor,

cΓ =
(4π)ε

16π2

Γ(1 + ε)Γ2(1− ε)
Γ(1− 2ε)

(A.5.81)

a universal function,

V g = − 1

ε2

5∑
j=1

(
µ2

−sj,j+1

)ε
+

5∑
j=1

ln

( −sj,j+1

−sj+1,j+2

)
ln

(−sj+2,j−2

−sj−2,j−1

)
+

5

6
π2 − δR

3
,

(A.5.82)

the following functions for the (1−, 2−, 3+, 4+, 5+) helicity configuration [114],

V f = − 5

2ε
− 1

2

[
ln

(
µ2

−s23

)
+ ln

(
µ2

−s51

)]
− 2, V s = −1

3
V f +

2

9

F f = −1

2

〈1 2〉2 (〈2 3〉 [3 4] 〈4 1〉+ 〈2 4〉 [4 5] 〈5 1〉)
〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉

L0

(
−s23
−s51

)
s51

F s = −1

3

[3 4] 〈4 1〉 〈2 4〉 [4 5] (〈2 3〉 [3 4] 〈4 1〉+ 〈2 4〉 [4 5] 〈5 1〉)
〈3 4〉 〈4 5〉

L2

(
−s23
−s51

)
s3

51

− 1

3
F f

− 1

3

〈3 5〉 [3 5]3

[1 2] [2 3] 〈3 4〉 〈4 5〉 [5 1]
+

1

3

〈1 2〉 [3 5]2

[2 3] 〈3 4〉 〈4 5〉 [5 1]
+

1

6

〈1 2〉 [3 4] 〈4 1〉 〈2 4〉 [4 5]

s23 〈3 4〉 〈4 5〉 s51

,

(A.5.83)

and the corresponding ones for the (1−, 2+, 3−, 4+, 5+) helicity configuration [114],

V f = − 5

2ε
− 1

2

[
ln

(
µ2

−s34

)
+ ln

(
µ2

−s51

)]
− 2, V s = −1

3
V f +

2

9

F f = −〈1 3〉2〈4 1〉[2 4]2

〈4 5〉〈5 1〉
Ls1

(
−s23
−s51 ,

−s34
−s51

)
s2

51

+
〈1 3〉2〈5 3〉[2 5]2

〈3 4〉〈4 5〉
Ls1

(
−s12
−s34 ,

−s51
−s34

)
s2

34
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− 1

2

〈1 3〉3(〈1 5〉 [5 2] 〈2 3〉 − 〈3 4〉 [4 2] 〈2 1〉)
〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉

L0

(
−s34
−s51

)
s51

F s = −〈1 2〉〈2 3〉〈3 4〉〈4 1〉2[2 4]2

〈4 5〉〈5 1〉〈2 4〉2
2 Ls1

(
−s23
−s51 ,

−s34
−s51

)
+ L1

(
−s23
−s51

)
+ L1

(
−s34
−s51

)
s2

51

+
〈3 2〉〈2 1〉〈1 5〉〈5 3〉2[2 5]2

〈5 4〉〈4 3〉〈2 5〉2
2 Ls1

(
−s12
−s34 ,

−s51
−s34

)
+ L1

(
−s12
−s34

)
+ L1

(
−s51
−s34

)
s2

34

+
2

3

〈2 3〉2〈4 1〉3[2 4]3

〈4 5〉〈5 1〉〈2 4〉
L2

(
−s23
−s51

)
s3

51

− 2

3

〈2 1〉2〈5 3〉3[2 5]3

〈5 4〉〈4 3〉〈2 5〉
L2

(
−s12
−s34

)
s3

34

+
L2

(
−s34
−s51

)
s3

51

(
1

3

〈1 3〉 [2 4] [2 5] (〈1 5〉 [5 2] 〈2 3〉 − 〈3 4〉 [4 2] 〈2 1〉)
〈4 5〉

+
2

3

〈1 2〉2〈3 4〉2 〈4 1〉 [2 4]3

〈4 5〉 〈5 1〉 〈2 4〉 − 2

3

〈3 2〉2〈1 5〉2 〈5 3〉 [2 5]3

〈5 4〉 〈4 3〉 〈2 5〉
)

+
1

6

〈1 3〉3 (〈1 5〉 [5 2] 〈2 3〉 − 〈3 4〉 [4 2] 〈2 1〉)
〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉

L0

(
−s34
−s51

)
s51

+
1

3

[2 4]2[2 5]2

[1 2][2 3][3 4]〈4 5〉[5 1]

− 1

3

〈1 2〉〈4 1〉2[2 4]3

〈4 5〉〈5 1〉〈2 4〉[2 3][3 4]s51

+
1

3

〈3 2〉〈5 3〉2[2 5]3

〈5 4〉〈4 3〉〈2 5〉[2 1][1 5]s34

+
1

6

〈1 3〉2 [2 4] [2 5]

s34 〈4 5〉 s51

.

For positive values of sij, the logarithms and dilogarithms develop imaginary parts

according to the prescription sij → sij + iε. The correspoding tree amplitudes are,

Atree
5 (1−, 2−, 3+, 4+, 5+) = i〈1 2〉4/(〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉) and

Atree
5 (1−, 2+, 3−, 4+, 5+) = i〈1 3〉4/(〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉).

In terms of these functions, the MS renormalised amplitudes are

A
[0]
5;1 = cΓ

(
V sAtree

5 + iF s
)
,

A
[1/2]
5;1 = −cΓ

(
(V f + V s)Atree

5 + i(F f + F s)
)
,

A
[1]
5;1 = cΓ

(
(V g + 4V f + V s)Atree

5 + i(4F f + F s)
)
.

(A.5.84)

The rest of the helicity amplitudes are related by cyclic permutations or complex

conjugation to those given above. It is interesting to note that in supersymmet-

ric theories, the V s and F s terms cancel out of the final amplitude, and that in

N = 4 supersymmetric theories only the V g term survives. The separation implied

above into g, f , and s pieces arises naturally on a diagram-by-diagram basis within

the string-based approach. In this approach the V g term represents the only cal-
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culational difference between the contributions with gluons circulating around the

loop, and those with fermions; this term has a particularly simple expression at

every intermediate stage of the calculation. The parameter δR controls the variant

of dimensional regularisation scheme [76, 165]: for δR = 0, one obtains the four-

dimensional helicity scheme, while for δR = 1 one obtains the ’t Hooft–Veltman

scheme.

At next-to-leading order, only the infrared-divergent helicity amplitudes enter

into the construction of a program for physical quantities. In order to construct

such a program for three-jet quantities, one must form the interference of the tree

amplitude with the loop amplitude; this has the form [163]:

∑
colours

[A∗5A5]NLO = 2g8N4
(
N2 − 1

)Re
∑

σ∈S5/Z5

Atree ∗
5 (σ)A5;1(σ)

+
1

N2
Re

∑
ρ∈S5/Z5

[
Atree ∗

5 (r · ρ)A5;1(ρ)− Atree ∗
5 (ρ)A5;1(r · ρ)

]

+
2

N2
Re
∑
h∈H5

∑
p∈P
(

5
3

)Atree ∗
5 (h · p)A5;3(p)

 , (A.5.85)

where r is the permutation (2 4 1 3 5); P
(

5
3

)
is the ten-element set of distinct parti-

tions of five elements into lists of length two and three; and

H5 = {(1 2 3 4 5), (3 4 1 2 5), (3 1 2 4 5), (2 1 3 4 5), (3 2 1 4 5), (3 4 2 1 5)}. For QCD with

nf flavors of massless quarks, one substitutes A5;1 → A
[1]
5;1 +

nf
N
A

[1/2]
5;1 and A5;3 → A

[1]
5;3

into equation (A.5.85).

A.6 gg → gggg tree level

For six-parton amplitudes two sets of helicity amplitudes are needed: m2−4+ and

m3+3−. The first ones are [160,161]:

m2−4+(g1, g2, g3, g4, g5, g6) = ig3 〈IJ〉4
〈12〉〈23〉〈34〉〈45〉〈56〉〈61〉 (A.6.86)

where I and J are the indices of negative helicity gluons. The second ones are de-

scribed by three distinct sub-amplitudes, characterised by three inequivalent helicity
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orderings: (+ + +−−−), (+ +−+−−) and (+−+−+−). For the pure gluonic

case they can be written in the following form [25,27,28]:

m3+3−(g1, g2, . . . , g6) = ig4

[
α2

t123s12s23s45s56

+
β2

t234s23s34s56s61

+
γ2

t345s34s45s61s12

+
t123βγ + t234γα + t345αβ

s12s23s34s45s56s61

]
, (A.6.87)

where tijk ≡ (pi + pj + pk)
2 = sij + sjk + ski. The coefficients for α, β, γ are given

in table [25].

1+2+3+4−5−6− 1+2+3−4+5−6− 1+2−3+4−5+6−

X = p1 + p2 + p3 Y = p1 + p2 + p4 Z = p1 + p3 + p5

α 0 −[12]〈56〉〈4|Y |3〉 [13]〈46〉〈5|Z|2〉

β [23]〈56〉〈1|X|4〉 [24]〈56〉〈1|Y |3〉 [51]〈24〉〈3|Z|6〉

γ [12]〈45〉〈3|X|6〉 [12]〈35〉〈4|Y |6〉 [35]〈62〉〈1|Z|4〉

Table A.1: Coefficients for the m3+3−(g1, g2, g3, g4, g5, g6) sub-amplitudes. We define

〈I|K|J〉 ≡ 〈I + |K · γ|J+〉

The evaluation of the spinor products proceeds as described in 1.6.



Appendix B

Gluon-Gluon antenna functions

B.1 F 0
4 (g1, g2, g3, g4)

The tree-level four-parton gluon-gluon antenna contains three final states: gluon-

gluon-gluon-gluon, F 0
4 , and gluon-quark-antiquark-gluon at leading and subleading

colour, G0
4 and G̃0

4 and quark-antiquark-quark-antiquark, H0
4 . The antenna for the

gggg final state is [67]:

F 0
4 (g1, g2, g3, g4) = f 0

4 (1, 2, 3, 4) + f 0
4 (4, 3, 2, 1) + f 0

4 (2, 3, 4, 1) + f 0
4 (1, 4, 3, 2)

+f 0
4 (3, 4, 1, 2) + f 0

4 (2, 1, 4, 3) + f 0
4 (4, 1, 2, 3) + f 0

4 (3, 2, 1, 4) ,

(B.1.1)

with

f 0
4 (1, 2, 3, 4) =

1

s2
1234

{
− 2s34s13s

2
14

s2
23s123s234

+
1

s2
23

[
2s12s14 − 2s12s24 + 2s12s34

+s2
12 − 2s13s14 − 2s13s24 − 2s13s34 − 2s14s24 + 2s14s34 + s2

14 + s2
34

]
+

s13

s2
23s123

[
4s13s14 + 4s13s24 + 4s13s34 − 8s14s34 − 2s2

14 − 4s24s34 − 4s2
34

]
+

s2
13

s2
23s

2
123

[
4s14s24 + 4s14s34 + 2s2

14 + 4s24s34 + 2s2
24 + 2s2

34

]
+

1

4s23s12s34s14

[
2s13s

3
24 + 3s2

13s
2
24 + 2s3

13s24 + s4
13 + s4

24

]
+

1

s23s12s34

[
6s13s14s24 + 2s13s

2
14 + 6s13s

2
24 + 3s2

13s14 + 6s2
13s24 + 2s3

13

+3s14s
2
24 + 2s2

14s24 + s3
14 + 2s3

24

]
+

s24

s23s12s124

[
s24s34 + s2

24 + 2s2
34

]
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+
1

s23s12s234s124

[
2s13s

3
34 + 3s2

13s
2
34 + 2s3

13s34 + s4
13 + s4

34

]
+

1

s23s12s234

[
2s13s14s34 + 2s13s

2
14 + 2s13s

2
34 + 3s2

13s14 + 3s2
13s34 + 2s3

13

+2s14s
2
34 − s2

14s34 + s3
14

]
+

1

s23s12

[
20s13s14 + 14s13s24 + 9s2

13 + 16s14s24

+4s14s34 + 19s2
14 + 7s2

24 − 10s2
34

]
+

s14

s23s123s234

[
− s13s14 − 4s13s34 − 4s2

13

+s14s34 − 4s2
14 − 4s2

34

]
+

1

s23s123s134

[
6s14s24s34 + 6s14s

2
24 + 6s2

14s24 + s3
14

+6s24s
2
34 + 9s2

24s34 + 6s3
24 + s3

34

]
+

1

s23s123s124

[
− 3s14s24s34 − 3

2
s14s

2
24

−3

2
s14s

2
34 − s2

14s24 − s2
14s34 +

3

4
s3

14 − 3s24s
2
34 − 3s2

24s34 − s3
24 − s3

34

]
+

1

4s23s123

[
− 7s13s14 + 18s13s24 − 16s13s34 − 11s2

13 − 41s14s24 − 36s14s34

−63s2
14 − 16s24s34 − 21s2

24 − 18s2
34

]
+

1

s23s134

[
7s12s14 + 2s12s24 + 8s12s34

−4s2
12 + 4s14s24 − 3s14s34 − s2

14 + 2s24s34 + 3s2
24 − 3s2

34

]
+

1

8s23

[
21s12 + 69s13 + 14s14 + 69s24 + 21s34

]
+

1

2s2
12s

2
34

[−2s13s14s23s24 + s2
13s

2
24 + s2

14s
2
23

]
+

1

s12s34s123s234

[
4s14s

3
24 + 6s2

14s
2
24 + 4s3

14s24 + s4
14 + s4

24

]
+

1

s12s34s123s134

[
4s14s

3
24 + 6s2

14s
2
24 + 4s3

14s24 + s4
14 + s4

24

]
+

1

8s12s34s123

[
12s14s23s24 + 12s14s

2
23 − 12s14s

2
24 − 6s2

14s23 − 18s2
14s24

−4s3
14 + 27s23s

2
24 + 21s2

23s24 + 3s3
23 + 5s3

24

]
+

1

8s12s34s234

[
12s13s14s24

+18s13s
2
14 + 3s13s

2
24 + 12s2

13s14 + 3s2
13s24 + 3s3

13 + 12s14s
2
24 + 18s2

14s24

+12s3
14 + 3s3

24

]
+

1

8s12s34

[
16s13s14 + 31s13s23 + 45s13s24 + 25s2

13

−8s14s23 + 16s14s24 + 6s2
14 + 31s23s24 + 21s2

23 + 25s2
24

]
+

5

8s12s123s234

[
12s14s24s34 + 12s14s

2
24 + 4s14s

2
34 + 12s2

14s24 + 6s2
14s34

+4s3
14 + 4s24s

2
34 + 6s2

24s34 + 4s3
24 + s3

34

]
+

5

8s12s123

[
4s14s23 − 8s14s24

−4s14s34 − 6s2
14 + 2s23s24 + s23s34 − s2

23 − 3s24s34 − 3s2
24 − s2

34

]
+

3

8s12s234

[
4s13s14 + 2s13s24 + s13s34 + s2

13 + 8s14s24 + 4s14s34 + 6s2
14
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+3s24s34 + 3s2
24 + s2

34

]
+

3

8s12

[−s13 − 4s14 + s23 − 2s24 − s34]

+
3

8s34s123s234

[
− 4s13s14s24 − 6s13s

2
14 − s13s

2
24 − 4s2

13s14 − s2
13s24 − s3

13

−4s14s
2
24 − 6s2

14s24 − 4s3
14 − s3

24

]
+

3

8s34s123

[
4s13s14 − s13s23 + s13s24

+s2
13 − 4s14s23 + 4s14s24 + 6s2

14 − s23s24 + s2
23 + s2

24

]
+

1

s24s123s134

[−2s14 + s24 − 2s34] +
1

s2
123

[
2s14s24 + 2s14s34 + s2

14

+2s24s34 + s2
24 + s2

34

]
+

1

8s123s234

[
− 12s13s14 − 6s13s24 − 3s13s34

−3s2
13 − 24s14s24 − 12s14s34 + 38s2

14 − 9s24s34 − 9s2
24 − 3s2

34

]
+

1

8s123

[−6s13 + 45s14 − 3s23 + 58s24 + 36s34] +
35

8
+O(ε)

}
. (B.1.2)

The above expression for f 0
4 is not related to the decomposition of section 4.3.1

which is used in the numerical implementation.
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