

Susy and Higgs Physics Results at CDF

Giulia Manca

(University of Liverpool) for the CDF collaborations

Exotic Workshop, Durham (UK), 31st March – 2nd April 2004

Introduction

- Tevatron and CDF performances
- Exotic physics at CDF
 Higgs in the SM and not
 Supersymmetry
- Conclusions and future prospects

The detector CDF-II

• 3 generations of quarks and leptons interact via exchange of gauge bosons:

- → Electroweak SU(2)xU(1): W, Z, γ
- ➡ Strong SU(3): g
- Symmetry breaking caused by Higgs field
 - Generates Goldstone bosons
 - Longitudinal degrees of freedom for W and Z
 - 3 massive and one massless gauge bosons
- Standard Model survived all experimental challenges in past 30 years!
 - electroweak and QCD precision data

No New Physics despite many efforts!
 Giulia Manca, Exotic Workshop 2004, Durham(UK), April 2004

Gauge Bosons

Particle	Mass (GeV/c ²)	Force
Photon (γ)	0	Electroweak
WŦ	80.450	Electroweak
\mathbf{Z}^0	91.187	Electroweak
Gluons (g)	0	Strong

Higgs Boson

-Vacuum quantum numbers (0⁺⁺)

-Couples to mass

-M_h = ?

The Standard Model of Particle Physics

Why not the Standard Model?

- Radiative corrections to Higgs mass: electroweak scale (100 GeV) much much lower than Planck Scale (10¹⁹ GeV): "hierarchy" or "naturalness" problem
- No unification of forces at any scale -
- Higgs boson not yet found: is it there?
- No explanation for matter/ anti-matter asymmetry in universe
- No accounting for dark matter in universe
- Many free parameters, e.g. masses of all particles: unsatisfactory

Giulia Manca, Exotic Workshop 2004, Durham(UK), April 2004

WMAP satellite

- Supersymmetry (SUSY):
 - ➡ Each SM particle has a "super"-partner with same quantum numbers apart from spin (top ⇔stop, photon ⇔photino, etc.)
 - ➡ Masses are O(1 TeV)
 - Unification of forces at GUT scale (10¹⁶ GeV)
 - Hierarchy problem solved
- Extra Dimensions
 - String theory: links gravity to other forces
 - Could be large (0.1mm): probed at TeV scale
 - Hierarchy problem solved
- The unexpected...

- Physical SUSY sparticles: neutralinos (Higgs, Photon, Z partners), charginos (Higgs, W partners), squarks (quark partners), sleptons (lepton partners)
 Different SUSY models:
- Supergravity: SUSY broken near GUT scale
 - > GUT scale parameters: scalar mass m_0 , gaugino mass $m_{1/2}$, ratio of Higgs v.e.v's tan β , Higgs mixing parameter μ
 - > LSP is neutralino χ^0 or sneutrino v
- Gauge-mediated models (GMSB): SUSY broken at lower energies breaking scale F an important parameter.

> Gravitino G is the LSP (NLSP $\chi^0 \rightarrow G\gamma$)

- ➡ If "R-Parity" conserved:
 - SUSY particles can only be pair-produced

► Lightest SUSY Particle (LSP) stable and escapes detection \rightarrow <u>carries away missing E</u> *Giulia Manca, Exotic Workshop 2004, Durham(UK), April 2004*

Searches for New Physics: CDF Strategy

• In context of specific models of physics beyond the SM

predicted

 $1.8^{+0.8}_{-0.6}$

 $0.8^{+0.6}_{-0.5}$

 $0.9^{+0.4}_{-0.4}$

Evts

Motivation:

- Left-Right(LR) symmetric models
- Susy LR models: low mass (~100 GeV \rightarrow 1 TeV)
- Supposed to decay to Like-Sign di-leptons

Event Selection (L~ 240 pb⁻¹):

1 pair of LS ee, or $\mu\mu$, or eµ in mass window of $\pm 10\%*M(H^{++})$ (~3 σ detector resolution) Veto Z events, cosmics(for muons)

μμ

eμ

- cosmics(for muons)
- $Z/\gamma \rightarrow \ell \ell$, W jj $\rightarrow \ell \nu$ jj
- di-boson (WZ)

Sbottoms from Gluino decays

Giulia Manca, Exotic Workshop 2004, Durham(UK),A₁

Combined LEP limits, stable slepton

 $M > 99.4 \text{ GeV/c}^2$ (right-handed) $M > 99.6 \text{ GeV/c}^2$ (left -handed) Combined LEP limit, stable chargino: M> 101.2 GeV/c² (sneutrino mass > 41 GeV/c²)

Giulia Manca, Exotic Workshop 2004, Durham(UK), April 2004

30⁰

 τ decay

- narrow cluster in central calorimeter
- -search for matching high-Pt track
- -define 2 cones 10° and 30° around the track
- -let more tracks to enter in the inner cone
- -discard event if there are tracks between the

2 cones

- -reconstruct the cluster in the ShowerMax and create a π^0
- -select events with mass(π^0 ,tracks) < M(tau)
- -check $E(cal) = sum(P)(tracks + \pi^0)$

Tau event candidate

Giulia Manca, Moriond(EWK), 21-8 March 2004

- Physics at CDF is back:
 - Have twice the Run I luminosity and excellent detector
- Searches for New Physics have started:
 - Expect new physics at the TeV scale (hierarchy problem)
 - Z', Large extra dimensions, Leptoquarks (Tracey's talk), SUSY, Higgs
 - Cover broad range of possible signals
 - no signals yet but constraining theoretical models
- Work in progress :
 - Tri-lepton signature (e, mu and taus)
 - Gluino/squark production

Results expected by the summer !

Many New Exciting Results coming soon!