Higgs Beyond the SM and SUSY

Adam Martin CERN/Notre Dame (adam.martin@cern.ch)

YETI Winter School, IPPP Durham UK, 2013

Wednesday, January 9, 2013

<u>Outline</u>

Lecture #1

- Where are we now and where do we go from here?
- Did it have to be a Higgs?
- EFT for beyond the SM
- Composite Higgs (Higgs as a Goldstone Boson)

Lecture #2

- more Composite Higgs (Higgs as a Goldstone Boson)
- where & how to look at LHC

Where are we now?

massive W[±]/Z⁰ fermions, massless γ, g:
 'electroweak symmetry is broken'

Where are we now?

massive W[±]/Z⁰ fermions, massless γ, g: 'electroweak symmetry is broken'

- As of July 4th, 2012...
 - we have a new boson X, with mass ~125 GeV

likely spin-0, likely CP-even

X is observed in channels and with rates similar to what we expect for a SM Higgs boson

What now?

• To what extent are EWSB and X related?

Meaning what are the similarities & differences between X and SM Higgs?

• What is the bigger picture?

Is there a bigger picture?

• LOTS we don't know.. many things we observe are not in the SM.

Dark Matter baryon vs. anti-baryon asymmetry

neutrino masses

generations, charge assignments

- Scale/properties of these other phenomena is unknown.
- Hope that understanding EWSB (& connection w/ X boson) will shed some light on these other topics

Was finding a Higgs-like boson inevitable? Is that the only path in nature for what we see?

Was finding a Higgs-like boson inevitable? Is that the only path in nature for what we see?

NOPE

Was finding a Higgs-like boson inevitable? Is that the only path in nature for what we see?

NOPE

we know how Higgs works

(see lectures by Mück, Englert, Duehrssen)

$$egin{aligned} H \in (2,1/2) & ext{of SU(2)_w} \otimes ext{U(1)_Y} \ & |D_\mu H|^2 - \lambda (H^\dagger H - rac{v^2}{2})^2 \end{aligned}$$

Instead lets add a field $\Sigma(\mathbf{x})$: Pauli matrices $\Sigma(x) = \exp\left(\frac{i 2\pi^a \tau_a}{v}\right) = \mathbf{1}_{2 \times 2} + 2i \frac{\pi_a \tau^a}{v} - 2\frac{\pi_a \pi_b \tau^a \tau^b}{v^2} + \cdots$ 3 "pion" fields EW scale

expanding out, we get a (2x2) matrix

$$\Sigma = \begin{pmatrix} \cos\left(\hat{\pi}/v\right) + i\hat{\pi}_{3}\sin\left(\hat{\pi}/v\right) & i(\hat{\pi}_{1} - i\hat{\pi}_{2})\sin\left(\hat{\pi}/v\right) \\ i(\hat{\pi}_{1} + i\hat{\pi}_{2})\sin\left(\hat{\pi}/v\right) & \cos\left(\hat{\pi}/v\right) - i\hat{\pi}_{3}\sin\left(\hat{\pi}/v\right) \end{pmatrix} \\ \hat{\pi} = \sqrt{\pi_{a}^{2}}, \quad \hat{\pi}_{a} = \pi_{a}/\hat{\pi}$$

remember, the SM Higgs doublet

$$H(x) = \frac{1}{\sqrt{2}} \left(\begin{array}{c} h_1 + i h_2 \\ h_0 + i h_3 \end{array} \right) \quad \begin{array}{l} \text{has 4 fields, our} \\ \Sigma \text{ has 3} \end{array}$$

under SU(2)_w x U(1)_Y: $U_L \Sigma U^{\dagger}_R$

$$D_{\mu}\Sigma = \partial_{\mu}\Sigma - ig\vec{W}_{\mu}\Sigma + ig'\Sigma B_{\mu}\tau_{3}$$

how is this different than H? (forget $U(1)_Y$ for now..)

$$U_L$$
 is a 2 x 2 matrix: $U_L = \exp(i\alpha_a(x)\tau^a)$

acting on the Higgs vs. on Σ :

 $\begin{array}{lll} U_L \ H(x): & \mbox{mixes up the 4 components } h_i \\ & \mbox{ex.}) \ h_3 \rightarrow h_3 + i \ h_0 \ \alpha_3 - i \ h_1 \ \alpha_1 + i \ h_2 \ \alpha_2 \end{array}$

$$U_{L} \Sigma(x)$$
 : shifts the π_{a} fields, $\pi_{3} \rightarrow \pi_{3} + \alpha_{3}$

out of Σ , we have:

$$\mathcal{L}_{\Sigma} = \frac{v^2}{4} \operatorname{tr}(D^{\mu} \Sigma D_{\mu} \Sigma^{\dagger}) + \cdots \quad \text{more derivatives,} \\ \quad \text{etc.}$$

by a gauge transformation:

$$U_L = \Sigma^{\dagger}, \ \Sigma \to \Sigma^{\dagger}\Sigma = \mathbf{1}, \ iD_{\mu}\Sigma = (g \vec{W}_{\mu} - g' B_{\mu})$$

$$\mathcal{L}_{\Sigma} = \frac{v^2}{4} \left(g \, \vec{W}_{\mu} - g' \, B_{\mu} \right)^2 = m_W^2 \, W_{\mu}^+ W^{\mu -} + m_Z^2 \, Z^{\mu} Z_{\mu}$$

so with only 3 degrees of freedom, we can give mass to W[±]/Z (fermions too: $y_t v Q \Sigma u_R^*$, etc.). 'Higgsless' EWSB

we haven't explained what dynamics gives Σ ... but no explanation for V(H) in SM.

So what's the difference?

Look at $W_{L} W_{L} \rightarrow W_{L} W_{L}$ scattering in the H & Σ theories (at tree level)

in the SM:

extra contributions coming from Higgs exchange. amplitude \rightarrow constant $A \sim \frac{m_H^2}{s}$

hW⁺W⁻, etc. couplings set by gauge invariance

Unitarity imposes relations on QM amplitudes

tree level amplitude is real, at loop level A gets an imaginary part

<u> Σ theory</u>: A ~s/v², Re(A) grows with energy

bigger Re(A) is, bigger Im(A) must get to keep unitary relation.

If Im(A) = Re(A) then 1-loop is same size as tree level = loss of perturbativity = theory is strongly coupled

<u>SM theory:</u> A ~ m_{H}^2 , perturbativity retained for all s

Unitarity imposes relations on QM amplitudes

tree level amplitude is real, at loop level A gets an imaginary part

<u> Σ theory</u>: A ~s/v², Re(A) grows with energy

bigger Re(A) is, bigger Im(A) must get to keep unitary relation.

If Im(A) = Re(A) then 1-loop is same size as tree level = loss of perturbativity = theory is strongly coupled

<u>SM theory:</u> A ~ m_{H}^2 , perturbativity retained for all s

Unitarity imposes relations on QM amplitudes

tree level amplitude is real, at loop level A gets an imaginary part

<u> Σ theory</u>: A ~s/v², Re(A) grows with energy

bigger Re(A) is, bigger Im(A) must get to keep unitary relation.

If Im(A) = Re(A) then 1-loop is same size as tree level = loss of perturbativity = theory is strongly coupled

<u>SM theory:</u> A ~ m^2_H/s , perturbativity retained for all s

we've seen strong coupling before: QCD in the $\sim 100~\text{MeV} - 1~\text{GeV}$ range

in QCD, strong coupling tells us that above a certain energy there is a transition and quarks & gluons are the right degrees of freedom

<u>But...</u>

 \mathcal{L}_{Σ} has massive particles, but no new scalar state (X, or h) ... so it needs to be augmented

$$\begin{split} \mathcal{L}_{\Sigma} &= \frac{1}{2} (\partial_{\mu} h)^2 + \frac{v^2}{4} \mathrm{tr} (D_{\mu} \Sigma \, D^{\mu} \Sigma^{\dagger}) \left(1 + \frac{a^2 h}{v} + \frac{b^2}{v^2} + \cdots \right) \\ &- \frac{m_H^2}{2} h^2 + y_{ij} v \, Q_i \, \Sigma \, u_{Rj}^* \left(1 + \frac{c}{v} \frac{h}{v} + \cdots \right) + \text{h.c.} \end{split}$$

+ analogous terms for other fermions, + terms with more derivatives

Looks familiar? $a = b = c = 1 \rightarrow SM$ Higgs Lagrangian, where three π_a fields + h combine to the H doublet

but that is just a special case, L_{Σ} is more general: triplet of states eaten by W^{\pm}/Z^{0} + real scalar = EFT for LHC Higgs

<u>Higgs EFT</u>

What is the meaning of a, b, $c \neq 1$?

$$A \sim \frac{(s+t)}{v^2} (1-a) + O\left(\frac{m_H^2}{s}\right)$$

for a ≅ 1, energy growth in A is suppressed

pert. lost when $Re(A) \approx 1/2$

partial wave A_I $A_0 = \frac{E^2 (1 - a)}{32\pi v^2} = \frac{1}{2} \longrightarrow E_{lim} = \frac{4\sqrt{\pi v}}{\sqrt{1 - a}}$

above this scale (& without other terms), strong dynamics

- a=0, strong dynamics ~ TeV scale (Technicolor)
- a=1, theory stays perturbative (SM Higgs)
- $a \approx 1$, strong dynamics scale pushed higher

<u>Higgs EFT</u>

there are processes other than $W_LW_L \rightarrow W_LW_L$ that can grow with energy

<u>Higgs EFT</u>

there are existing, indirect constraints on a,b,c

similarly, off-diagonal c_{ij} strongly constrained by flavor physics diagonal c_{ii} , b are less constrained

Higgs EFT in action

several groups (theory & experiment) are already looking at LHC Higgs data in the a,b,c space

<u>Recap</u>

- to fit observation, we need massive W[±]/Z⁰/fermions
 + extra scalar
- general setup: L_{Σ} .. contains L_{SM} in special a = b = c = 1 limit
- for a,b,c \neq 1, L_{Σ} becomes strongly coupled at some energy E_{lim} ... expect (from QCD experience) some new dynamics to enter at that scale
- useful framework for LHC Higgs data
- BUT: What UV dynamics actually leads to L_Σ? What else (other states, couplings) is present in those scenarios?

Light scalar fields

 $\frac{m_H^2}{2}h^2$ masses of scalar fields are sensitive to the highest scales of a theory: $\delta m^2_H \sim \Lambda^2$

Having a scalar mass << theory cutoff requires delicate 'unnatural' cancellations = "hierarchy problem". Many BSM scenarios try to address this problem

who cares about natural?

UK, lead by new player Higgs, defeats Germany in World Cup Final 1000 - 0

theoretically possible, but hard to imagine within the rules we trust... either Higgs is unlike the other particles/players we know, or there is more going on

Light scalar fields

 $\frac{m_H^2}{2}h^2$ masses of scalar fields are sensitive to the highest scales of a theory: $\delta m^2_H \sim \Lambda^2$

Having a scalar mass << theory cutoff requires delicate 'unnatural' cancellations = "hierarchy problem". Many BSM scenarios try to address this problem

- links scalars to fermions via a symmetry. chiral symmetry protects mass = SUSY (lectures by Slavich)
- shift symmetry: $h \rightarrow h + c$, then h^2 forbidden = Higgs as a Goldstone boson

making these symmetries approximate, rather than exact -> light scalar (Higgs)

<u>For starters</u>: let's study a simpler setup, 2 flavor QCD. As we'll see, the pion of QCD is a pNGB, so many lessons from L_{π} will carry over to LH.

At high energy, QCD is quarks and gluons

 $\mathcal{L} = i\bar{u}_L \mathcal{D} u_L + i\bar{d}_L \mathcal{D} d_L + i\bar{u}_R \mathcal{D} u_R + i\bar{d}_R \mathcal{D} d_R$

this theory is invariant under rotations of LH, RH quarks among themselves

$$\left(\begin{array}{c}u_L'\\d_L'\end{array}\right) = U_L \left(\begin{array}{c}u_L\\d_L\end{array}\right) \qquad \qquad \left(\begin{array}{c}u_R'\\d_L'\end{array}\right) = U_R \left(\begin{array}{c}u_R\\d_R\end{array}\right)$$

global symmetry is $SU(2)_L \otimes SU(2)_R$

at E ~ 1 GeV, the strong force becomes confining, quarks & antiquarks get bound together.. only color singlet states allowed

color-singlet condensates form: $\langle \bar{Q}_L Q_R \rangle \neq 0$

under global symmetry: $\langle \bar{Q}_L Q_R \rangle \rightarrow \langle \bar{Q}_L U_L^{\dagger} U_R Q_R \rangle$

only invariant when $U_L = U_R$, the 'vectorial' subgroup

so, as a result of the strong dynamics, symmetry has been broken: $SU(2)_{L} \otimes SU(2)_{R} \rightarrow SU(2)_{V}$

Goldstone's theorem: for each generator of a spontaneously broken, continuous, global symmetry → a massless scalar (a Goldstone boson)

at E ~ 1 GeV, the strong force becomes confining, quarks & antiquarks get bound together.. only color singlet states allowed

color-singlet condensates form: $\langle \bar{Q}_L Q_R \rangle \neq 0$

under global symmetry: $\langle \bar{Q}_L Q_R \rangle \rightarrow \langle \bar{Q}_L U_L^{\dagger} U_R Q_R \rangle$

only invariant when $U_L = U_R$, the 'vectorial' subgroup

so, as a result of the strong dynamics, symmetry has been broken: $SU(2)_L \otimes SU(2)_R \rightarrow SU(2)_V + 3 \text{ NGB}$

Goldstone's theorem: for each generator of a spontaneously broken, continuous, global symmetry → a massless scalar (a Goldstone boson)

the interactions of the NGB can be described by the 'chiral lagrangian'

introduce:
$$U = \exp\left(\frac{2i\vec{\pi}}{f_{\pi}}\right)$$
 $\vec{\pi} = \pi_a \tau_a$
pion decay constant = 93 MeV

fix $U \rightarrow U_L \cup U_R^{\dagger}$ then **U** has the same transformation properties as $\langle Q_L \overline{Q}_R \rangle$

 $UU^{\dagger} = 1$, so terms in L_{π} must involve derivatives

$$\mathcal{L}_{\pi} = \frac{f_{\pi}^2}{4} \operatorname{tr}(\partial_{\mu} U \,\partial^{\mu} U^{\dagger}) + c_1 \operatorname{tr}(\partial_{\mu} U \,\partial^{\mu} U^{\dagger})^2 + \cdots$$
other 4-deriv. terms

expanded out:

$$\mathcal{L}_{\pi} = rac{1}{2} (\partial_{\mu} \pi_{a})^{2} + \cdots$$
 multiple- π interactions $(\pi \partial_{\mu} \pi)^{2}$, etc.

Look familiar? it should! same setup as triplet of fields in L_{Σ} , but with $v \rightarrow f_{\pi}$. Setup is the same because the symmetry (& symmetry breaking) is the same

but remember: our goal is to have a setup where triplet PLUS h are ALL NGBs.. needs more work

First, some more observations of L_{π} & QCD:

- \bullet number of π_a is set by the amount of symmetry broken
- the transformation properties of $\pi_{\rm a}$ under unbroken symmetry (SU(2)V) also set by pattern of symmetry breaking
- \bullet all interactions of $\pi_{\rm a}$ involve ∂_{μ}

more observations of L_{π} & QCD:

• there is more to QCD than just π_a ...

There are other bound states of quarks = resonances like ρ , a_1 , ω . These resonances have various JPC, & interact strongly with the π_a .

$$M_{\rho} = 770 \text{ MeV}, \ J^{PC} = 1^{--}$$

$$M_{\omega} = 782 \text{ MeV}, \ J^{PC} = 1^{--}$$

$$M_{\alpha_{1}} = 1230 \text{ MeV}, \ J^{PC} = 1^{++}$$

$$M_{\eta} = 539 \text{ MeV}, \ J^{PC} = 0^{-+} \dots$$

$$M_{\eta} = 539 \text{ MeV}, \ J^{PC} = 0^{-+} \dots$$

They are not contained in L_{π} .. no first-principles way to include them, instead must use phenomenological models

adding electromagnetism:

 U(1)_{em} is part of the SU(2)_V that remains unbroken (LH, RH quarks have the same EM charge). What if we turn on this gauge interaction?

$$\partial_{\mu}U \to D_{\mu}U, \ D_{\mu}U = \partial_{\mu}U + ieA_{\mu}\hat{Q}U \qquad \hat{Q} = \begin{pmatrix} \frac{2}{3} & \\ & -\frac{1}{3} \end{pmatrix}$$

we get new interactions of pions and photons, some of which have no derivatives

loops of photons generate V(π)

Above is just an estimate... loops of strongly coupled particles involved. For more rigorous calculation, see: Contino 1005.4269 + ref. therein

With full calculation, can show V(π) has a min at $\pi = 0$

Π

π⁺, π⁻ get mass, π⁰, γ stay massless

is there a m_π "hierarchy problem": unnatural for $m_\pi \ll \Lambda$?

NO...we can't take Λ arbitrarily high

above a certain scale, π description no longer makes sense, the π falls apart into its quark constituents
<u>thought experiment</u>: what if π interacted with fields other than the photon (some fermions, other gauge interactions, etc.)?

these other interactions would also affect V(π). Shape of V(π) no longer set...

What if V(π) developed a non-trivial minima?

then $\langle \pi \rangle \neq 0$ breaks U(1)_{em}

$$e^2 A^{\mu} A_{\mu} \pi^+ \pi^- \rightarrow e^2 v_{\pi}^2 A^{\mu} A_{\mu}$$
 photon gets a mass
scale of the breaking is $v_{\pi} < f_{\pi}$

clearly this is not a situation we want for QCD!

then $\langle \pi \rangle \neq 0$ breaks U(1)_{em}

$$e^2 A^{\mu} A_{\mu} \pi^+ \pi^- \rightarrow e^2 v_{\pi}^2 A^{\mu} A_{\mu}$$
 photon gets a mass
scale of the breaking is $v_{\pi} < f_{\pi}$

clearly this is not a situation we want for QCD!

BUT: shows that NGB interactions lead to a potential, and can lead to breaking of symmetries the strong dynamics respected. New scale v_{π} develops

based on our QCD analogy, we have a recipe for a Goldstone Higgs scenario:

- assume some strong dynamics at a high scale **f**. EWS should remain unbroken: $\mathbf{G} \rightarrow \mathbf{H} \supset SU(2)_{w} \otimes U(1)_{Y}$
- that dynamics generates a bunch of Goldstone bosons, including the Higgs (4-plet of particles), as a doublet.
- interactions exterior to strong dynamics lead to V(h). Choose interactions such that V(h)_{min} is at $h \neq 0$. Instead h_{min} = **v**
 - Higgs is a composite particle \rightarrow no hierarchy problem
 - v < f means EWSB happens at a scale lower than the strong dynamics

based on our QCD analogy, we have a recipe for a Goldstone Higgs scenario:

step 1:

- assume some strong dynamics at a high scale **f**. EWS should remain unbroken: $\mathbf{G} \rightarrow \mathbf{H} \supset SU(2)_w \otimes U(1)_Y$
- that dynamics generates a bunch of Goldstone bosons, including the Higgs (4-plet of particles), as a doublet.
- interactions exterior to strong dynamics lead to V(h). Choose interactions such that V(h)_{min} is at h ≠ 0. Instead h_{min} = v
 - Higgs is a composite particle \rightarrow no hierarchy problem
 - v < f means EWSB happens at a scale lower than the strong dynamics

based on our QCD analogy, we have a recipe for a Goldstone Higgs scenario:

step 1:

- assume some strong dynamics at a high scale **f**. EWS should remain unbroken: $\mathbf{G} \rightarrow \mathbf{H} \supset SU(2)_w \otimes U(1)_Y$
- that dynamics generates a bunch of Goldstone bosons, including the Higgs (4-plet of particles), as a doublet.

step 2:

 interactions exterior to strong dynamics lead to V(h). Choose interactions such that V(h)_{min} is at h ≠ 0. Instead h_{min} = V

- Higgs is a composite particle \rightarrow no hierarchy problem
- v < f means EWSB happens at a scale lower than the strong dynamics

Higgs Beyond the SM and SUSY lecture #2

Adam Martin CERN/Notre Dame (<u>adam.martin@cern.ch</u>)

YETI Winter School, IPPP Durham UK, 2013

<u>Outline</u>

Lecture #1

- Where are we now and where do we go from here?
- Did it have to be a Higgs?
- EFT for beyond the SM
- Composite Higgs (Higgs as a Goldstone Boson)

Lecture #2

- more Composite Higgs (Higgs as a Goldstone Boson)
- where & how to look at LHC

recap from yesterday:

idea behind composite Higgs scenario:

assume there exists some new strong dynamics in the multi-TeV range

composite objects, including H, are formed

electroweak symmetry unbroken

m_H = 0 at tree level. Potential V(h) generated by loops involving gauge/Yukawa interactions

recap from yesterday:

pions of QCD are a well-known example of similar physics: $SU(2)_L \otimes SU(2)_R \rightarrow SU(2)_V + 3 \text{ NGB}$ $U(1)_{em} \in SU(2)_V \text{ generates } m_{\pi} \text{ (more generally, V(}_{\pi}\text{))}$

pions in U:
$$U = \mathbf{1}_{2 \times 2} \exp\left(\frac{2i\vec{\pi}}{f_{\pi}}\right)$$
, $\mathbf{U} \to \mathbf{U}_{\mathsf{L}} \mathbf{U} \mathbf{U}^{\dagger}_{\mathsf{R}}$

CH setup will get us:

- a naturally light Higgs: no hierarchy problem since the Higgs falls apart into constituents above some scale
- Higgs couplings in the $L_{\Sigma}(a,b,c)$ form
- separation of EW physics (W/Z/h, etc.) from the strong dynamics by f/v

based on our QCD analogy, we have a recipe for a Goldstone Higgs scenario:

- assume some strong dynamics at a high scale **f**. EWS should remain unbroken: $\mathbf{G} \rightarrow \mathbf{H} \supset SU(2)_{w} \otimes U(1)_{Y}$
- that dynamics generates a bunch of Goldstone bosons, including the Higgs (4-plet of particles), as a doublet.
- interactions exterior to strong dynamics lead to V(h). Choose interactions such that V(h)_{min} is at $h \neq 0$. Instead h_{min} = **v**
 - Higgs is a composite particle \rightarrow no hierarchy problem
 - v < f means EWSB happens at a scale lower than the strong dynamics

based on our QCD analogy, we have a recipe for a Goldstone Higgs scenario:

step 1:

- assume some strong dynamics at a high scale **f**. EWS should remain unbroken: $\mathbf{G} \rightarrow \mathbf{H} \supset SU(2)_w \otimes U(1)_Y$
- that dynamics generates a bunch of Goldstone bosons, including the Higgs (4-plet of particles), as a doublet.
- interactions exterior to strong dynamics lead to V(h). Choose interactions such that V(h)_{min} is at h ≠ 0. Instead h_{min} = v
 - Higgs is a composite particle \rightarrow no hierarchy problem
 - v < f means EWSB happens at a scale lower than the strong dynamics

based on our QCD analogy, we have a recipe for a Goldstone Higgs scenario:

step 1:

- assume some strong dynamics at a high scale **f**. EWS should remain unbroken: $\mathbf{G} \rightarrow \mathbf{H} \supset SU(2)_w \otimes U(1)_Y$
- that dynamics generates a bunch of Goldstone bosons, including the Higgs (4-plet of particles), as a doublet.

step 2:

 interactions exterior to strong dynamics lead to V(h). Choose interactions such that V(h)_{min} is at h ≠ 0. Instead h_{min} = V

- Higgs is a composite particle \rightarrow no hierarchy problem
- v < f means EWSB happens at a scale lower than the strong dynamics

step 1: the art in these models is picking the right pattern of symmetry breaking...

the (global) group left unbroken by the strong dynamics:

- must contain SU(2) \otimes U(1)...
- actually SU(2) \otimes SU(2) \cong SO(4) works better (T parameter)

step 1: the art in these models is picking the right pattern of symmetry breaking...

the (global) group left unbroken by the strong dynamics:

- must contain SU(2) \otimes U(1)...
- actually $SU(2) \otimes SU(2) \cong SO(4)$ works better (T parameter)

starting group must be bigger than ending group: choice that works: SO(5)

 $\frac{SO(5)}{SO(4)}$: 10 generators → 6 generators just enough! SO(4) : = 4 broken generators = 4 NGB

step 1: the art in these models is picking the right pattern of symmetry breaking...

the (global) group left unbroken by the strong dynamics:

- must contain SU(2) \otimes U(1)...
- actually $SU(2) \otimes SU(2) \cong SO(4)$ works better (T parameter)

starting group must be bigger than ending group: choice that works: SO(5)

SO(5)
SO(4) : ¹⁰ generators → 6 generators just enough!
= 4 broken generators = 4 NGB
assemble:
$$\Sigma = \exp\left(\frac{2i\chi_a T^a}{f}\right) \Sigma_0$$
 broken generator
symmetry-
breaking 'vev'

<u>Huh?</u> use $SU(3)/(SU(2)\otimes U(1))$ as an explicit example:

$$\Sigma_{ex} = \exp\left\{ \frac{i}{f} \begin{pmatrix} & \chi_4 - i\chi_5 \\ \chi_4 + i\chi_5 & \chi_6 + i\chi_7 \end{pmatrix} \right\} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\Sigma_0$$

<u>Huh?</u> use $SU(3)/(SU(2)\otimes U(1))$ as an explicit example:

$$\Sigma_{ex} = \exp\left\{ \frac{i}{f} \left(\begin{array}{cc} & \chi_4 - i\chi_5 \\ \chi_4 + i\chi_5 & \chi_6 + i\chi_7 \end{array} \right) \right\} \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right)$$

 Σ_0

 $SU(2) \otimes U(1)$ correspond to these (unbroken) generators

<u>Huh?</u> use $SU(3)/(SU(2)\otimes U(1))$ as an explicit example:

$$\Sigma_{ex} = \exp\left\{ \frac{i}{f} \left(\begin{array}{c} & \chi_4 - i\chi_5 \\ \chi_4 + i\chi_5 & \chi_6 + i\chi_7 \end{array} \right) \right\} \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right)$$

 $SU(2) \otimes U(1)$ correspond to these (unbroken) generators

NGB come with broken generators.

The set of 4: $\chi_{4,5,6,7}$ form a doublet under the SU(2)_w \otimes U(1)_Y

<u>Huh?</u> use $SU(3)/(SU(2)\otimes U(1))$ as an explicit example:

$$\Sigma_{ex} = \exp\left\{ \frac{i}{f} \left(\begin{array}{c} \chi_4 + i\chi_5 & \chi_6 + i\chi_7 \\ \chi_4 + i\chi_5 & \chi_6 + i\chi_7 \end{array} \right) \right\} \left(\begin{array}{c} 0\\0\\1 \\ \ddots \\ \Sigma_0 \end{array} \right)$$

 $SU(2) \otimes U(1)$ correspond to these (unbroken) generators

NGB come with broken generators.

The set of 4: $\chi_{4,5,6,7}$ form a doublet under the SU(2)_w \otimes U(1)_Y

$$\mathcal{L}_{\Sigma} = \frac{f^2}{4} \operatorname{tr}(D^{\mu} \Sigma_{ex} D_{\mu} \Sigma_{ex}^{\dagger}) + \cdots \qquad \text{Contains interactions of } \chi_{4,5,6,7} \text{ with}$$

$$W/Z/\gamma \text{ and each other}$$

Now for the real thing: SO(5)/SO(4)

$$\mathcal{L}_{\Sigma} = \frac{f^2}{4} \operatorname{tr}(D^{\mu} \Sigma D_{\mu} \Sigma^T) + \cdots$$

after LOTS of ugly group theory & algebra

$$\mathcal{L}_{\Sigma} = \frac{(\partial_{\mu}h)^2}{2} + \frac{g^2 f^2}{4} \sin^2\left(\frac{h}{f}\right) W^+_{\mu} W^{-\mu} + \frac{g^2 f^2}{8\cos^2\theta} \sin^2\left(\frac{h}{f}\right) Z^0_{\mu} Z^{0\mu}$$

Now for the real thing: SO(5)/SO(4)

$$\mathcal{L}_{\Sigma} = \frac{f^2}{4} \operatorname{tr}(D^{\mu} \Sigma D_{\mu} \Sigma^T) + \cdots$$

after LOTS of ugly group theory & algebra

$$\mathcal{L}_{\Sigma} = \frac{(\partial_{\mu}h)^2}{2} + \frac{g^2 f^2}{4} \sin^2\left(\frac{h}{f}\right) W^+_{\mu} W^{-\mu} + \frac{g^2 f^2}{8\cos^2\theta} \sin^2\left(\frac{h}{f}\right) Z^0_{\mu} Z^{0\mu}$$

$$ASSUMING: \neq 0 \quad (have to justify later with V(h))$$

$$set h \to h + in above, and expand$$

define:
$$v = f \sin\left(\frac{\langle h \rangle}{f}\right)$$

EW scale v < scale of strong dynamics f

Keep expanding:
$$\frac{g^2 f^2}{4} \sin^2\left(\frac{h}{f}\right) W^+_{\mu} W^{-\mu}$$

$$f^{2} \sin^{2}\left(\frac{h}{f}\right) = v^{2} + 2vh\sqrt{1-\xi} + h^{2}\left(1-2\xi\right) + \cdots$$

where: $\xi = \frac{v^{2}}{f^{2}}$

recall our Higgs EFT:
$$m_W^2 \left(1 + \frac{a^2 h}{v} + \frac{b^2}{v^2} + \cdots \right)$$

 \therefore in the SO(5)/SO(4) composite Higgs model

$$a = \sqrt{1 - \frac{v^2}{f^2}}$$
 , $b = 1 - 2\frac{v^2}{f^2}$

bad behavior in $W_{L}W_{L}$ amplitudes delayed by a factor of

$$(1-a)^{-1/2} \sim \frac{f^2}{v^2}$$

 eventual strong dynamics...
 ∴ expect resonances at scale ~f in analogy with to QCD

recall: precision EW bounds a require
$$\frac{v}{f} \lesssim 0.5$$

so strong coupling scale pushed to ~ 10 TeV (at least)

other patterns of symmetry breaking would have different values for a,b,c, as well as more states

ex.) SO(6)/SO(5) has 5 NGBs, many other $4 \in H + 1$ extra scalar η possibilities

Higgs potential

How do we get $\langle h \rangle \neq 0$ in the first place?

right now our h_i interact with gauge fields, but we know from QCD experience that V(h) generated from these interactions alone has a minimum at h = 0

Solution: Yukawa couplings

even forgetting V(h), our theory was incomplete, because it **did not explain how fermion masses arise**

we can write $y f Q_L \Sigma u_R^* + h.c.$

but why does such a term exist? for gauge bosons, gauge invariant demanded W, Z talk to h. No such reason for the fermion mass term

Higgs potential

Also: If we imagine Σ is a bound state of more fundamental fermions (the things that the composite Higgs is made of), analogous to QCD pion = $\langle q\gamma_5 q \rangle$

$$y f Q_L \Sigma u_R^* \to y \frac{(Q_L u_R^*)(\psi\psi)}{\Lambda^2}$$

previous term is dimension-6, suppressed by some scale

need Λ low to make fermion masses big enough $(m_t!)$, but low Λ would cause large flavor problems

i.e.)
$$\frac{(Q_L d_R^*)^2}{\Lambda^2}$$

leads to large $K^0 - \overline{K}^0$, B⁰- \overline{B}^0 mixing, etc.

So, try a different approach: 'partial compositeness'

- new strong dynamics makes mesons (including the h), so it can make 'baryons' = composite fermions too
- composite baryons are massive even without EWSB, just as proton would have mass even without quark masses.
- proton interacts strongly with QCD pion ... composite fermions will interact strongly with composite higgs.

- new strong dynamics makes mesons (including the h), so it can make 'baryons' = composite fermions too
- composite baryons are massive even without EWSB, just as proton would have mass even without quark masses.
- proton interacts strongly with QCD pion ... composite fermions will interact strongly with composite higgs.
- by mixing the SM fermions with the composite fermions, the SM fermions can acquire mass

- new strong dynamics makes mesons (including the h), so it can make 'baryons' = composite fermions too
- composite baryons are massive even without EWSB, just as proton would have mass even without quark masses.
- proton interacts strongly with QCD pion ... composite fermions will interact strongly with composite higgs.
- by mixing the SM fermions with the composite fermions, the SM fermions can acquire mass
- the price we pay for massive SM fermions is new states, the composite fermions. New states -> new LHC signals

in practice (schematically)

blue terms: come from strong sector & therefore obey same SO(5) symmetry

there are several choices for what representations composite fermions sit in (4, 5, 10, etc.), leading to slightly different structure of the interactions

Note: Q_L , Q_R , etc. must be colored particles

Undo the mixing

 $\mathcal{L}_F = \Delta_L Q_L \mathcal{Q}_R + \Delta_R t_R \mathcal{T}_L + \mathcal{M}_Q \mathcal{Q}_L \mathcal{Q}_R + M_T \mathcal{T}_L \mathcal{T}_R + Y_T \mathcal{Q}_L \Sigma \mathcal{T}_R + h.c.$

 $\begin{pmatrix} \mathcal{Q}_H \\ q_L \end{pmatrix} = \begin{pmatrix} \Delta_L & \mathcal{M}_Q \\ 0 & 0 \end{pmatrix} \begin{pmatrix} Q_L \\ \mathcal{Q}_L \end{pmatrix} + \text{similar for } \mathbf{t}_{\mathsf{R}} \mathsf{T}_{\mathsf{L},\mathsf{R}}$

$$Q_L = \cos(\phi_L) Q_H + \sin(\phi_L) q_L$$
$$Q_L = -\sin(\phi_L) Q_H + \cos(\phi_L) q_L$$

+ similar for $t_R T_{L,R}$

*depends on representation of Q_L , Q_R , etc.

yields $(q_L h t_R^*) Y_T \sin(\phi_L) \sin(\phi_R)$ SM fermions get mass by mixing with composites

expanding h about
$$c = \sqrt{1 - \frac{v^2}{f^2}}$$
 vev, find c*:

About that potential

within this setup, we can calculate the V(h) from loops of fermions, in same fashion as done before

About that potential

 V_{min} at $h \neq 0$ is possible, requires delicate balance between +ve and -ve contributions to obtain v \ll f = requires some 'tuning' of parameters

ex.) large N, extra dimensions

<u>Review</u>

<u>Review</u>

<u>Review</u>

<u>Review</u>

<u>Review</u>

<u>Review</u>

1.) Higgs couplings: a, b, c

study all possible Higgs production and decay process to extract a, c intricate process, as different production mechanisms scale differently with a, c, and contribute differently to each final state

1.) Higgs couplings: a, b, c

study all possible Higgs production and decay process to extract a, c intricate process, as different production mechanisms scale differently with a, c, and contribute differently to each final state

different composite Higgs models → different a, c, possibly even extra Higgs decay modes from new particles

BUT, careful: H + jj is not VBF alone, H+0j is not just gg \rightarrow H also, $\Gamma_{\rm H}$ knows about all $c_{\rm i}$

company of the contract of the

[from J. Galloway]

coupling b is trickier.. requires studying multi-Higgs production in detail

low cross section and b must be disentangled from other hh production diagrams

see ex.) [Dolan, Englert, Spannowsky 1206.5001,1210.8166]

W⁺W⁻h³ signal .. from further expansion of f sin²(h/f)

doesn't exist at tree level in the SM

coupling b is trickier.. requires studying multi-Higgs production in detail

low cross section and b must be disentangled from other hh production diagrams

high-luminosity needed!

see ex.) [Dolan, Englert, Spannowsky 1206.5001,1210.8166]

W⁺W⁻h³ signal .. from further expansion of f sin²(h/f)

doesn't exist at tree level in the SM

2.) production of new particles

we've seen that composite Higgs models generically have new vector (spin-1: W', Z',W'') and fermion (T', B') resonances

- interactions of Higgs with W/Z set by choice of symmetry breaking... much more model dependence for resonances & their interactions
- additional complication: we know the theory is strongly coupled.. no obvious 'best' way to proceed.

One idea: rescale properties of QCD resonances

$$\rho \to W'$$
 , $M_{W'} = \sqrt{\frac{3}{N_C}} \frac{f}{f_\pi} M_\rho~$ ~ 4 TeV for f = 2 v

not very quantitative

Extra dimensional models on a slide

One way to model the strong dynamics is with an extra dimension

but not fundamental, just a model

<u>spin-1 resonances:</u>

slight mixing between W', Z' and W, Z, means new resonances produced most easily in *ŝ*-channel

may look like usual W', Z'

BUT: W',Z' couple strongest to other strong-sector states, like the longitudinal W, Z & h (even t). Big couplings mean $\Gamma_{W'}$, etc. can be big.

usual W', Z' LHC searches assume zero (or very small) W'WZ interactions... these **need to be reinterpreted** for particles w/ strong interactions with W, Z, etc.

cleanest signal for W/Z decay products is the fully leptonic mode: W' \rightarrow WZ \rightarrow 3 ℓ + v

semi-leptonic modes ($\ell \ \ell \ + jj$, $\ell \nu + jj$) look swamped by background (W/Z + jets) ...

but we can use the fact that W, Z from a ~few TeV W' will be **highly boosted**

angular sepn. of W→jj ~ 2 m_W/p_T ~ 0.3 for p_T ~ 500 GeV .. both decay products fall into the same 'jet'

jet 'substructure' will be an essential tool for uncovering such signals [Butterworth et al '08, Kaplan et al '08, ...]

tutorial session at work!

<u>fermionic resonances = new heavy fermions</u>

exactly what states are present & their masses depends on details of the composite fermions (masses M, representations)

simple example, to show some general features: t_R mixing with composites T, $T^c \in (3,1)_{2/3}$

$$y_t Q_3 H t^c + M T T^c + \delta T t^c + h.c.$$

$$(t T) \begin{pmatrix} m & 0 \\ \delta & M \end{pmatrix} \begin{pmatrix} t^c \\ T^c \end{pmatrix}$$

$$\mathcal{L} \supset \frac{m_t \cos^2 \theta_l}{v} h \bar{T}_D(\tan \theta_r P_L + \tan \theta_l P_R) t_D$$

$$+ \frac{g_2 \sin \theta_l \cos \theta_l}{2 \cos \theta_W} Z_\mu (\bar{T}_D \gamma^\mu P_L t_D + \bar{t}_D \gamma^\mu P_L T_D)$$

$$+ \frac{g_2 \sin \theta_l}{\sqrt{2}} (W_\mu^+ \bar{T}_D \gamma^\mu P_L b_D + W_\mu^- \bar{b}_D \gamma^\mu P_L T_D)$$

Branching ratio, up to small corrections, set by Goldstone equivalence:

Branching ratio, up to small corrections, set by Goldstone equivalence:

 $T \longrightarrow t$

 $\sim 25\%$

T decay modes

 $\sim 50\%$

Branching ratio, up to small corrections, set by Goldstone equivalence:

T decay modes

 $\sim 25\%$

 $\sim 25\%$

 $\sim 50\%$

 \boldsymbol{b}

in large mass limit, only parameter is M_T

Branching ratio, up to small corrections, set by Goldstone equivalence:

 $\sim 25\%$

T decay modes

 $\sim 25\%$

in large mass limit, only parameter is M⊤ extra 'chiral' quarks (4th generation) only have this decay mode

both pair-production (T \overline{T}) and single production possible. Pair production dominates for $M_T \leq 1 \text{ TeV}$

- fairly large cross section
- lots of W,Z,h, b in the final state $T\overline{T} \rightarrow tZ^{0}\overline{b}W^{-} + c.c.$ $T\overline{T} \rightarrow tZ^{0}\overline{b}W^{\mp}\ell^{\mp}\mathfrak{G}+(W)$ $(W) = \overline{\ell\nu} \text{ or } bjj\ell^{+}\ell^{-}b + (W)$ $(W) = \ell\nu \text{ or } tZ^{0}\overline{t}h^{0} + c.c.$ $\rightarrow bjj\ell^{+}\ell^{-}b\ell\nu bb$

existing limits on T', B':

assume 100% BR into one mode: $T \rightarrow W b$ (4th gen), $T \rightarrow t Z$

so, limits need to be reinterpreted. Mixed modes likely to yield stronger constraints.

substructure could be useful for identifying hadronic W/Z

more exotic possibilities:

In some scenarios, Q_{3L} doublet is extended & includes higher charge states: X_{5/3}, or X_{7/6}

cascade decays of $X \rightarrow t W \rightarrow W b$ gives like-sign dileptons

low SM background

LHC signals: summary

• the era of precision Higgs: composite-ness of the Higgs is encoded in deviations of couplings from their SM values

mass scale of new particles ~f is constrained via Higgs coupling measurements. More SM-like couplings → smaller v/f → heavier new states

• direct production of new particles:

both spin-1 and fermionic resonances have large couplings to W/Z/h/t: W/Z/h/t-rich final states

W'/Z'/T' have different properties than LHC searches usually assume -- care required in interpreting limits

Conclusions:

- immediate LHC focus: how SM Higgs-like is X(125)?
 L_Σ EFT is a good framework to use, look for deviations a,b,c≠1
 a,b,c≠1 indicate strong coupling enters at some scale
- <u>Composite Higgs</u>: Higgs as a Goldstone boson. UV setup that gives light Higgs + a,b,c≠1

gauge and Yukawa interactions generate nontrivial V(h) and lead to EWSB. tuning of different contributions to get $v \ll f$

other composites (spin-1, fermions) in spectra, possible targets for LHC searches.

different than 'generic' W'Z'/T': large couplings to W/Z/h/t