Selected topics of H->ττ analyses relevant to early data taking

A. Nikitenko, Imperial College for Theory-Experiment interplay workshop in Univ. of London, Royal Holloway, 8-9 April

Vorking Model for 2010 datase					
	Month	Linst (peak) [ave. of month]	Delivered Lumi (/pb/month) [end. of month]	Sum Delivered (/pb)	
April	2	8.6E29	0.5	0.5	
May	3	2.0E30	1.0	1.5	
June	4	4.8E30	2.5	4	
July	5	1.2E31	6	10	
Aug	6	2.7E31	15	25	
Sept	7	6.5E31	35	60	
Oct	8	1.0E32	50	110	

accumulate ~ 1 fb⁻¹ by the end of 2011

Selected topics

- Z+1b as benchmark for SUSY H+1b
- Energy calibration of tagging quarks for VBF H
- Rapidity gap selection methods in VBF H
- Z+jets background to VBF H->ττ from double parton scattering

Z+1b as benchmark for SUSY H+1b

H+1 b

Les Houches 2003 (hep-ph/0405302):

5F scheme (Campbell, Ellis, Maltoni, Willenbrock);

4F scheme (Dittmaier, Kramer, Spira, Dawson, Jackson, Riena, Wackeroth) LHC xs adreed within ~ 20 % uncertainties due to variation of μ_{F} , μ_{R} by factor 2

Z+1 b

Z + b as a test case

- The production of Z + b is very similar to that of H + b, even lying in a similar kinematic region for a low mass Higgs.
- Theoretically, the two processes have the same inputs and uncertainties.
 - same initial state, similar (x, Q^2)
 - the same H and Z decays
- Test the experimental analysis procedure by re-discovering the Z –
 - a) Z + one jet which is b-tagged ;
 - b) Z+ two jets, one or more b-tags.

^g cocco b b Z taus

Slide from J. Campbell talk

Different MCs for b(b)H production gives different predictions: => need bbZ data to tune/verify Monte Carlo

Campbell, Kalinowski and Nikitenko; Les Houches 2005 hep-ph/0604120

PYTHIA gg->bbH describes p_T^b spectra at NLO within 5-10 %; Kinnunen, Lehti, Moortgat, Nikitenko, Spira. Eur.Phys.J. C40n5:23-32,2005

want to measure Z + 1(2) b + X

at least 1 b tagged jet

- Campbell, Ellis, Maltoni, Willenbrock, McElmurry hepph/0312024, hep-ph/0505014. m_b = 0
- at least two jets with at least 1 b-tagged jets
 - Campbell, Ellis, Maltoni, Willenbrock hep-ph/0510362, m_b=0
- at least two jets with 2 b-tagged
 - Cordero, Reina, Wackeroth arXiv:0906.1923 [hep-ph], massive b
- MagGraph generator preselections (agreed with F. Maltoni):
 - LO gg->bbZ with massive b; $p_T^b > 10$ GeV for at least one b
 - corresponding σNLO needs 4- and 5-flavour merging. L. Rieina,
 F. Cordero work in progress

CMS expectations for Z+1b at 7 TeV (rescaling 10 TeV result)

A.M. Magnan, A. Nikitenko . CMS Analysis Note 2010/027

How Z+1(2)b can help SUSY H+1b measurement ?

Energy calibration for tagging quarks in VBF H

- first idea was to use W->qq from tt[~]
 - J.D'Hondt, P. Van Mulders, CMS Analysis Note
 2007/029. but small stats. at high η

Figure 18: Transverse momentum and η distribution of tagging quarks from VBF Higgs boson production (dashed line) and quarks from W decays in $t\bar{t}$ events (solid line).

another proposal is to use Z+1j events
 A. Nikitenko, E. Yazgan CMS Analysis Note 2010/044

Z+1j, j = q or g jet

The Method

data input: 200 pb⁻¹ at 10 TeV (for 7 TeV rescale by ~ 1.7)

theory input: Ratio of Z+g and Z+q cross-sections

Mean 49.99

WW→ 4j

Results obtaines with MadGraph Z+jets events (with MLM matching)

<E^{raw}>[GeV]

80 90 100

[GeV]

200 pb⁻¹ at 10 TeV

1800

1600

1400

1200

1000

800

600

400

200

0

0 0.5 1 1.5 2 2.5 3

Er /Er

200 pb⁻¹ at 10 TeV

ml=1.6-2.0

20

Inl=2.4-2.8

40

60

30 40 50 60

2

1.8

1.6

1.4

1.2

0.8

.8

1.7

1.6 1.5

1.4

1.3 1.2

1.1

10 20

1

- 20 40 60 80 100120140160180200 E^{quark}
- Overall Mean (raw) = 0.56 GeV, Mean (corr) = 1.00 GeV
- Rms/mean = 0.34 (raw), rms/mean = 0.28 (corr)
- Corrections restore the quark jet response with fluctuations of ≤5% around 1 (<~3% for E,quark <180 GeV).

Calibration uncertainty

- Statistical
 - shown on previous slide
- Theoretical
 - $-\sigma$ (Z+g)/ σ (Z+q) uncertainty
 - Did not find in literature. Can assume the same uncertainty as for σ(z+1j) at LO , ~10 % from Campbell, Keith, Rainwater hep-ph/0308195

Does this calibration make sense for theorists ?

Central rapidity gap selection for VBF H analysis

Rapidity gap in VBF (WW->H) production first discussed in :

Yu. Dokshitzer, V. Khoze and S. Troyan, Sov.J.Nucl. Phys. 46 (1987) 712 Yu. Dokshitzer, V. Khoze and T. Sjostrand, Phys.Lett., B274 (1992) 116

From D. Zeppenfeld talk on TeV4LHC, 2004

Methods for central rapidity gap selection in CMS VBF Higgs analyses

- Central Jet Veto (CJV) in VBF Higgs analyses was firstly proposed and used, in particular in
 - D. Zeppenfeld et al. "Searching for H->tau tau in weak boson fusion at LHC", Phys. Rev., D59 (1999), 014037
 - The CJV is suffering from the pile up and electronic noise
 - the " α " method for fake jet reduction using the information from the vertex and tracks was proposed and described in
 - CMS Note 2006/088, N. Ilina, V. Gavrilov and A. Krokhotine
 - the " α " method was used in PTDR qqH and inclusive H->WW analyses
- Track Counting Veto (TCV) . It was inspired by the paper
 - Y.L. Dokshitzer, V.A. Khoze and T. Sjostrand, "Rapidity gaps in Higgs production", Phys. Lett. B274, 116-121, 1992

Reco level with pile up, L=2x10³³ cm⁻²s⁻¹ re-analyzed data from PTDR qqH, H->ττ analysis

CMS Analysis Note 2007/035, CMS-PAS-HIG-08-001, arXiv:0803.1154 [hep-ph]

TCV can reach the similar performance as CJV

Measure CJV or TCV with data Z+>=2 jet

- $E_T^{j} > 40 \text{ GeV}, |\eta^{j}| < 4.5, \eta^{j1} x \eta^{j2} < 0$
- "Soft" VBF: M_{j1j2} > 400 GeV, $|\Delta \eta_{j1j2}|$ > 2.5
- "Hard" VBF: M_{j1j2} > 800 GeV, $|\Delta \eta_{j1j2}|$ > 3.5

	Events with 1 fb ⁻¹ at 14 TeV			
Selections	QCD Z + 2 j	QCD+EWK Z+2 j		
"soft VBF"	1391	1496		
"hadr VBF"	278	334		

Rescale by ~ 2.2 for 7 TeV

Does TCV make sense for theorists ?

Z+jets background from DPS

Hard double parton interactions can produce an additional Z+jets background to qqH, H->ττ signal

 $\sigma^{D}_{(A,B)} = (m/2) \sigma_A \sigma_B / \sigma_{eff}$, (m=2 for A=Z, B=di-jets) σ_{eff} =16.4 mb from D0 γ +3j analysis: arXiv:0912.5104

Expectations at LHC: σ_{eff} ~20 mb (T. Sjostrand, private communication)
~12 mb (D. Treleani, talk on CMS QCD meeting)
Longitudinal correlations in double-parton PDF can have sizable effect
(Snigirev, arXiv;1001.0104 [hep-ph], Gaunt, Stirling arXiv:0910.4347 [hep-ph])

T. Sjostrand recipe to generate DPS with PYTHIA 6 was used

- "generate DY with full UE
- generate the di-jet with MSTP(81)=0 (UE is OFF). [Here at first remove all low p_T particles, say below 1 GeV. Then add a few of them back in, chosen to ensure that the retained event balances p_T to good enough precision. (This is easy to do iteratively, each time adding the particle that reduces the length of the pTmiss vector most.)] – was not done
- Graft event 2 into event 1"

40 % of "normal" Z+jets after cuts: E_T^j > 20 GeV, M_{j1j2} >1TeV, $\Delta \eta_{j1j2}$ >4.2

15 % of "normal" Z+jets after cuts: $E_T^j > 40$ GeV, $M_{j1j2} > 1$ TeV, $\Delta \eta_{j1j2} > 4.2$

BACKUP SLIDES

CMS expectations for Z+1b at 10 TeV (rescale by ~ 2 for 7 TeV)

A.M. Magnan, A. Nikitenko . CMS Analysis Note 2010/027

Nentries 2 *l* p_T > 20 GeV, |η|<2.1 tt+jets Z+jets • E_T^{miss} < 40 GeV $pp \rightarrow bbZ$ **Z**→ **ee,**μμ Zcc 200 200 pb⁻¹ • >= 1 b-jet, E_T >15 GeV, $|\eta| < 2.1$ Zbb 150 • N_s = 320 ev. 100 **Background:** 50 · - *Z*+*jets*: 111 ev. - *Z*+*cc*: 52 ev 100 120 140 160 180 20 40 60 80 Mass (GeV) - tt~: 23 ev

How Z+1(2)b can help SUSY H+1b measurement ?

Z & Jet Back to back

