Bill Murray RAL, STFC Bill.Murray@stfc.ac.uk ATLAS collaboration

IVY W LIANDID

•The data now •2013+

Outline

- Tease Frank
- The background
 - Where is this Higgs
- Higgs discovery for
 - (low mass) Standard Model Higgs
 - √s=14TeV
- Omitted for 2010/11
 - nMSSM
 - |+|+
 - Lepto-genic SUSY
 - Any other theory with discovery potential
- Omitted for 2013+
 - More models than I can remember

900GeV min bias

- The p_T spectrum around 4GeV looks an excellent place to distinguish models
- Where is the Sherpa curve for 7TeV?
- Data will be coming very soon....

Di-jet event

Why believe in a light Higgs?

 Electroweak fit (Z properties, W and top mass) give at 95%:

 $M_{\rm H}$ < 157 GeV/c²

 $M_{\rm H}$ < 186 GeV/c² (with search bound)^{*}

Likelihoods from EW/LEP/TeV

Assumes SM Higgs is it Sum of likelihoods: crude but instructive Higgs mass 115 to 120 (145)GeV Of course we all hope there is more to life...

Probability Density

Prior flat in m_μ yields above curve

- H to WW will reach upper side of this
- ⇒Higgs will not be found without serious luminosity
 - Or a lepton collider

Higgs production

Higgs Decay

Only decays considered for analysis are shown

Observables

- LHC cannot observe the Higgs
- We can only look for e.g. jets + I^+ + I^- + E_{T}^{miss}
 - VBF H to WW
 - VBF H to ZZ to IIvv
 - Countless backgrounds (tt, WW plus jets etc)
- Interference is a real issue for high mass
 - Small for SM Higgs ranges
 - Little studied
- Defining the process considered at NLO is not trivial
 - 'VBF' is not an easy concept to all orders

The Higgs Discovery

- If Higgs boson is heavy (>130GeV/c²)
 - Significant decays to WW^(*), ZZ^(*)
 - Clear leptonic decay modes
 - ZZ→4I is frankly nicer, but WW→IvIv more common
 - Relative sensitivity depends upon m_H
 - The discovery is statistically promising
- As Higgs boson is light (<130GeV/c²)
 - Use rare H→γγ
 - Or VBF H→ττ
 - Associated Higgs decays to bb
 - WW and ZZ search way off-shell

Higgs rates: m_H=120GeV

 Cross-section times branching ratio in channels examined

Higgs rates: m_H=160GeV

 Cross-section times branching ratio in channels examined • WW dominates ZZ similar

Others fall

Higgs sensitivity: m_H=160GeV

'?': my estimate.
ZZ VBF surely possible too
Cross-sections mimic sensitivity

From CERN-OPEN-2008-020

Higgs sensitivity: m_H=120GeV

'?': my estimate.
ττ VBF isolated
Several weak channels
Several weak chanels

From CERN-OPEN-2008-020 (* later)

H to WW^(*)

- High rate esp. near 160GeV
- I had assumed Bruce would discuss this.

Controls

- WW bkd from II angle
- W+jets from fake rate study

e-v candidate event

Run Number: 152409, Event Number: 5966801 Date: 2010-04-05 06:54:50 CEST

Data

W→ev candidate in 7 TeV collisions

 $p_{T}(e+) = 34 \text{ GeV}$ $\eta(e+) = -0.42$ $E_{T}^{miss} = 26 \text{ GeV}$ $M_{T} = 57 \text{ GeV}$

 $p_{T}(\mu+) = 29 \text{ GeV}$

 $\eta(\mu +) = 0.66$

 $E_{\tau}^{miss} = 24 \text{ GeV}$

 $M_{\tau} = 53 \text{ GeV}$

µ-v candidate event

Run Number: 152221, Event Number: 383185

Date: 2010-04-01 00:31:22 CEST

W→µv candidate in 7 TeV collisions

ATLAS

300

W.Murray PPD 19

Higgs to yy

Higgs plus 1 lepton. (ttH + WH)

Higgs plus 1 jet analysis (gluon fusion + VBF)

Sensitive to all production processes! Exploit s/b if reliable models

Higgs plus 2 jet analysis (80% VBF, 20% gluon)

Higgs to yy

- Large and slowly-evolving backgrounds
- Good mass resolution
- Can extract background shape from data
 - As outlined by Glen Cowan: add parameters
 - But limit do/dM so peak is not explained away
 - Even in multi-dimensions
- Signal description required to good accuracy
 - p_T , η , $cos\theta^*$ dependence
 - Variation with jet characteristics
 - Such as Jet veto survival probability.
 - Mass resolution mostly experimental problem
 Primary vertex charged multiplicity for 0 jets?
- Want predictions allowing coupling variation

Kinematic Distributions

Material Distributions

- Material distribution makes electron/photon energy scale harder
 CDF 0.2 X₀ in silicon
 - D0 4X₀ before calorimeter
- Needs to be understood for photon reconstruction
- Electron/photon scale difference from MC

Effect on 120GeV H→γγ

Data

 $H \rightarrow ZZ \rightarrow |+|-|+|-$

- ZZ dominates 200-400GeV
- Dominant backgrounds
 - ZZ well predicted
 - Zbb contributes at low mass

$H \longrightarrow ZZ \longrightarrow [+] \cdot [+] \cdot$

Narrow mass peaks like gg

- Same questions about signal p_T , η , jet structure
- Z decays allow more spin analysis
 - Matrix element style analysis possible?
 - But how do we control backgrounds here?
 - Impact of detector systematics non-trivial
- Public analysis does not separate VBF
 - Not needed(?) for discovery, but useful later
- Low mass Higgs strains channel
 - lepton ID at low $p_{\scriptscriptstyle T}$
 - Heavy flavour backgrounds
 - Need Zbb background: data plus theory?

Fitting the mass spectrum

- Two fermi functions for background
 - Note the way the way the first changes with selection
 - Is this a good approach?

Electron/jet rejection

See ATLAS Conf 2010-005

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2010-005/

- Tight electrons eff. 71.5%
- Jet rejection: 1.38±0.06 x10⁵
- Background surviving:
 - 29.6% e from Z, W
 - 44.8% b, c
 - 11.5% photon conversions, π⁰ Dalitz decays
 - 14.1% hadrons

TRT electron ID

Soft electron candidates from minimum bias

$H \rightarrow tau tau$

- Should give good s/b if:
 - jet veto works and is understood
 - Also good modelling of Z background – as Bruce said

 Requires VBF
 The jet veto survival is debatable
 Underlying event?
 Multipleinteractions ?

• pile-up

Need to measure this

Can VBF Z provide enough?

$H \rightarrow \tau \tau$ and beamspot

- Track jets have less pileup problems
 - Long beamspot allows event separation
 - But beamspot is half length expected
 - But will beamspot stay short?

Mass resolution depends upon missing energy

- Underlying event must be well known
- Z production also measures this.

ttH, H to bb

 s/b poor
 Improving simulations always seems to add complication
 'Dead';
 S. Heinemeyer, Seattle, Jan 2009

ArXiV: 0905:0110 ttbb k-factor 1.8 Increases the background [Signal too, by 1.25]

ttH, H to bb: Doesn't lie down

Looks not much worse than Wbb at D0 to me
Wait – TeVatron plot has signal shown times 10!

tīH, H→bb

- Control of the background at 5% level required
 - Impossible to calculate
 - Can we fit it?
- Relating tījī to tībb backgrounds will help
 - ttjj has very similar jj mass distribution, no signal
- Is there more? e.g.
 - Does jjbb teach anything??

W/Z+H→bb:

Vents

- WH/ZH at LHC via subjets Use boosted (p₁>200GeV) Higgs
 - Decompose merged jets
- Combined significance like γγ or ττ

ATL-COM-PHYS-2009-351

W/Z+H→bb

- This was written off for years
 - The subjets revivied it
 - There must be other such tricks for other channels
 - Experience with data will bring them out
 - But theoretical suggestions are welcome
- Background level needs to be controlled
 - ybb is like Zbb but with no Higgs contribution
 - Can we get around the mass for background shape
 - Maybe use $\sqrt{(p_{T,jj}^2 + m_{jj}^2)}$
 - Or just verify simulation which regime?

Higgs combination at 14TeV

- At full energy, 10fb⁻¹ gives good discovery sensitivity
 - Except below 130GeV
 - No ZH, WH
 add ~3σ at 120
- Nb: ZZ channels comparable to WW at 150 and 190GeV

$H \rightarrow W^+W^- 1fb^{-1} v \sqrt{s}$

Combination of 0j and 2j, H to WW to II m_H = 130 GeV • 1 fb⁻¹ m_H = 150 GeV ▲ m_H = 160 GeV ▼ $m_{H} = 170 \text{ GeV} \star$ m_H = 180 GeV ■ ATLAS preliminary estimate 12 10 14 6 √s (TeV)

ATLAS options for 2010/11

- What would you like us to do?
 - Real searches in all channels ASAP?
 - Real searches in all SM channels ASAP?
 - Search in WW for 200pb⁻¹
 - SM Sensitivity at 7TeV ASAP?
 - SM Sensitivity at 7TeV after data cross-checks?
 - Combined SM studies at 1000pb⁻¹
 - MSSM plane sensitivity:
 - At 7TeV? 14TeV?
 - MSSM plane limits/discoveries:
 - 200pb⁻¹? 1000pb⁻¹?
 - Something else?

Conclusions

- We are ringing Peter's doorbell
- It will be ~2014 before we know who answers

Backup

Higgs mass

• 120GeV

- Higgs to yy dominates
- Statistical precision 1.4-1.7GeV per event
- ⇒Dominated by photon scale, O(0.5%) or better
- Assumes luminosity ~10³³cm²s⁻¹; pileup degrades vertex reconstruction
- 160GeV
 - Measured by H→ZZ→IIII
 - Resolution 2-2.5GeV per event
 - ⇒Dominated by lepton scale O(0.5-0.2%) or better

Non-SM Higgs may suppress bosonic decays
 ττ has best measurement – outside this scope

Higgs Couplings

• Lifetime/Width:

- Standard Model Higgs < 200GeV
- Lifetime ~ 10⁻²²s decay length not measurable
 But we must check consistency with zero <u>Accuracy set</u>
- Width rises with mass
- <10MeV below 140GeV</p>
- Measurable from ~200 GeV
- Branching Ratios:
 - Much more promising...
 - But without total rate
 - Only relative BR's

Couplings Extraction

- Only relative rates can be measured
 - More assumptions needed
 - Here HWW/HZZ couplings forced <= SM values
- Find couplings squared for 30fb⁻¹, 2 expts, to:
 - 40% W, Z, τ, and t
 60% for b
- Will improve with more data

Discrimination from MSSM

- In many cases several MSSM Higgs bosons can be found
- If only one, can we distinguish from SM?
- Use Br. $h \rightarrow \tau \tau / h \rightarrow WW$ in VBF production, c/f SM $\rightarrow \Delta$
- Ratio cancels production effects
- Δ>2 in black region is two- / sigma separation

arXiv:hep-ph/0410112

Spin Measurement

- All channels naturally exclude fermionic source
- H to γγ observation excludes spin 1.
- ZZ angular distributions will confirm spin 0
 - Low mass: Z* mass distribution

High mass: ZZ decay correlations
Also H→WW I-I

mass

Parity Extraction

VBF angles also sensitive.

Anomalous couplings

- CPO (odd) and CPE (even) anomalous WWH couplings could exist in addition to SM ones.
- H to WW decay gives a test
- The VBF H→ττ also:
 - Interjet angle
 - High statistics
 - 10fb⁻¹ in ATLAS
 - CPE ~ distinguishable with this dataset

1.5

30 fb

Higgs self-coupling

- Very desirable test of the theory
 - Quartic self-coupling drives VeV

Extremely challenging

 SLHC required, plus luck

 hep-ph/0304015 finds

 160-180GeV plausible
 No pileup, fast-sim,
 backgrounds look low
 Now ~ excluded!