

Investigation of the $\Lambda(1405)$ -Resonance with HADES

*Eliane Epple, Laura Fabbietti, Alexander Schmah, Johannes Siebenson Excellence Cluster Universe - Technische Universität München (Germany)

Introduction

The Reaction

The Λ(1405)	Th
$Mass = 1406 MeV/c^2$	spo
Width = 50 MeV/c^2	Δp
Quark content = uds	Re
Is the $\Lambda(1405)$ a K ⁻ p bound state ?	Sta
Information can be provided by the	Ge
resonace line shape .	rea

Measure these 4 charged particles in one event $p + p \xrightarrow{3.5 GeV} \Lambda(1405) + K^+ + p$

The Δ Mass (p,K⁺) spectra shows a peak of the Λ (1405) and the $\Sigma(1385)$. In order to get a pure signal one has to apply several cuts to supress the background.

50

The Spectrometer

e High Acceptance DiElectron ectrometer (HADES) @ GSI = 2-4 % p/peaction = p+p at $E_{beam} = 3.5 \text{ GeV}$ atistics = $1.2 \cdot 10^9$ Events eom. acceptance for the investigated reaction $\sim 0.12\%$

Hadron Identification

mass is necessary. - dE/dx in MDC

- dE/dx in TOF
- dE/dx in TOFino

- Cut on K⁺ mass
- Draw the Δ Mass (p,K⁺)

200

300

 $\Delta M_{p,K^{+},p,\pi} \text{ MeV/c}^2$

100

III) Cut on the mass of particles that were identified as K⁺ to improve the PID purity

Select events with a $\Lambda(1116)$ by a cut on the InvMass(p,π^{-})

The dE/dx over p shows a clear signal of p and π^+ . The K⁺ signal is hidden between these two particles. The PID is now made by graphical cuts. To improve the purity of the K⁺ an additional cut on the K⁺

- Select events with p_1, K^+, p_2, π^- - InvMass (p₂, π^-) ~ Λ - Δ Mass of all 4 particles > $\pi^0 \gamma$

