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Abstract

In this thesis, we demonstrate the use of twistor inspired methods in the

calculation of gauge theory amplitudes. First, we describe how MHV rules

and the BCF recursion relations can be used in QED. Then we apply BCF

recursion to the problem of amplitudes with massive fermions in QCD, using

the process gg → bbg as an illustration.

Central exclusive production is a promising method of revealing new

physics at the LHC. Observing Higgs production in this scheme will be ham-

pered by dijet backgrounds. At leading order this background is strongly

suppressed by a Jz = 0 selection rule. However, at higher orders there is

no suppression and so it is important to calculate the contribution to the

cross section of these terms. Among the necessary theoretical inputs to this

calculation are the loop corrections to gg → bb and the amplitude describing

the emission of an extra gluon in the final state, gg → bbg. We provide

analytic formulae for both these ingredients, keeping the full spin and colour

information as is required.
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Chapter 1

Introduction

1.1 Basics of pQCD

Quantum Chromodynamics (QCD) is an SU(N) gauge theory describing

quarks and gluons withN = 3. It is part of the Standard Model of elementary

particle physics. Quarks are described in the theory using 4 component Dirac

spinors. Imposing SU(N) symmetry requires the introduction of N2 − 1

gauge bosons. These are vector particles (spin 1) and mediate interactions

between the quarks. In a non-Abelian theory such as QCD, the gluons also

interact among themselves. Omitting gauge fixing terms, we can write the

Lagrangian density as,

L = ψi(i /D −m)ijψj − 1

4
Ga
µνG

aµν . (1.1)

2
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The quark fields ψi live in the fundamental representation of the gauge group,

and carry a colour index i, while the gluon fields are in the adjoint repre-

sentation. They carry a colour index a which runs from 1 . . . N2 − 1. The

slash notation is conventional, and represents contraction with the gamma

matrices,

/D = Dµγµ. (1.2)

The gamma matrices satisfy the Clifford algebra,

γµγν + γνγµ = 2gµν . (1.3)

The symbol Dµ
ij is the covariant derivative. It is given by

Dµ
ij = ∂µδij − igtaijAµa . (1.4)

We see that the Lagrangian (1.1) contains the quark-gluon-gluon interaction

term. The matrices taij are the generators of the fundamental representation

of SU(N). They satisfy commutation relations characteristic of the gauge

group,

[ta, tb] = ifabctc. (1.5)

The second term in Eq. (1.1) describes the kinetic energy of the gluons. It

is written in terms of the field strength tensor, defined by

[Dµ, Dν ] = igtaGa
µν , (1.6)
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where

Ga
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν . (1.7)

We see that the kinetic energy part contains not only the expected quadratic

piece, describing a true kinetic energy term, but also terms trilinear and

quadrilinear in the gluon field. These terms are characteristic of a non-

Abelian theory, and indicate that the gauge bosons will interact among them-

selves.

Scattering amplitudes are related to objects called correlation functions,

which in turn are obtained from the generating functional of the theory,

Z[η, η, J ] =

∫
DψDψDA exp

[
i

∫
d4x(L+ ηψ + ηψ + JA)

]
, (1.8)

where η, η and J are source terms for the quark, anti-quark and photon fields

respectively. The generating functional Z is a sum over quantum states. Or-

dinarily this is equivalent to an integral over the space of all field configura-

tions, as written above. However, in the case of gauge theories such as QCD,

the same quantum state is represented by an entire subspace of gauge field

configurations, and so Eq. (1.8) as written effectively overcounts these states.

What is needed is a means of restricting the path integral to physical states,

i.e. those not related to each other by a gauge transformation. We can do

this by introducing extra terms into the Lagrangian,

L = Lclassical − 1

2ξ
(∂µA

µ
a)2 + (∂µχ

∗
a)(∂

µδab − gfabcAµc )χb, (1.9)
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where we have used the covariant gauge. We have introduced an extra field,

called the ghost field, which cancels unphysical polarisation modes of the

gluon. The ghost field is unphysical in that it cannot appear in external

states, but it does appear as an internal particle inside loop diagrams. For

more information on these issues the reader is directed to [1, 2].

1.1.1 The Feynman Rules

The physical quantities that we are interested in calculating are typically

cross sections describing the scattering of particles, or decay rates. Theoret-

ically, these processes are described by the S matrix. The elements of this

matrix describe the amplitudes for scattering (or decay) processes. Unfor-

tunately, calculating these elements is extremely difficult. Normally we are

restricted to perturbation theory, in which we expand a given S matrix ele-

ment as a series in a small parameter. The success of this procedure depends

on how small this parameter actually is (as well as the behaviour of the co-

efficients). In QCD we use the strong coupling αs, which is related to the

coupling g which appears in the Lagrangian by

αs =
g2

4π
. (1.10)

The terms in the perturbative expansion can be evaluated order by order

using Feynman diagrams. This is a pictorial method in which we draw all

possible diagrams, conforming to a set of rules, which can contribute to a
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B, ν

C, σA, µ

p

k

q

−igfABC [(p− k)σgµν + (k − q)µgσν + (q − p)νgσµ]

−ig2fXACfXBD[gµνgστ − gµτgνσ]

−ig2fXADfXBC[gµνgστ − gµσgντ ]

−ig2fXABfXCD[gµσgντ − gµτgνσ]

B, ν

C, σD, τ

A, µ B, νp
δAB[−gµν + (1− λ) pµpν

p2+iǫ]
i

p2+iǫ

pi j δij i
p−m+iǫ

A Bp δAB i
p2+iǫ

A, µ

Figure 1.1: Feynman rules in covariant gauge. In the rule for the three gluon
vertex all momenta are considered incoming.

certain process at a certain order. The diagrams are then evaluated using the

Feynman rules. Each piece of the diagram (lines, vertices etc.) are assigned a

certain mathematical object. Combining these in the appropriate way gives

us the amplitudes we require. Each amplitude will receive contributions from

various diagrams. Individual diagrams are not physical objects as they are

gauge-dependent, but when they are summed the gauge dependence drops

out. The Feynman rules for QCD are illustrated in Fig.(1.1) and Fig.(1.2).
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A, µ

i j

p

−igtAijγ
µ

A, µ

B C

p

gfABCpµ

Figure 1.2: Feynman rules in covariant gauge (cont’d)

1.2 Regularisation and Renormalisation

Loop amplitudes in QCD are generally divergent in the ultraviolet. By this

we mean that very high energy modes propagate unchecked and lead to in-

finities in four dimensions. In order to make sense mathematically, the loop

integrals must be regulated. This regularisation can be performed in a vari-

ety of ways, but by far the most convenient and widely used is dimensional

regularisation. In this scheme we perform the integrals in d = 4 − 2ε di-

mensions. What were infinities in four dimensions now appear as poles in

the parameter ε. The physically relevant case is of course ε → 0. The pres-

ence of the poles in ε is not a disaster, provided we admit that QCD is not

applicable at very high energies. In these regimes we imagine some form of



CHAPTER 1. INTRODUCTION 8

overarching unified theory to take over, which must contain QCD (and the

rest of the standard model) as a low energy effective theory. The problem

we face is that low energy physics appears to receive contributions from high

energy phenomena through the loop integrals. However, because QCD is a

renormalisable theory, we can still use it to make predictions of low energy

physics. This is achieved by a particular parameterisation. We have various

free parameters in the Lagrangian, such as the charge g, masses mi and nor-

malisations of the fields. These bare parameters are unphysical in that they

do not in general correspond to quantities measured experimentally. We can

organise the theory such that the influence of high energy modes is confined

to these parameters, and then define them operationally in terms of real-

world measurements. This amounts to taking the high-energy physics from

experiment and using QCD to predict the low energy physics.

In practise this means setting the bare parameters to be divergent in such

a way as to render all amplitudes UV finite. It is by no means obvious that

this is possible - there are only a small number of bare parameters, but a

large number of UV divergent amplitudes. The renormalisability of QCD

was proven by ’t Hooft and Veltman in [3]. We rewrite the bare Lagrangian

in terms of renormalised parameters,

L({FB
i }) = L({Fi}) + δL({Fi}) (1.11)

where Fi denotes any of the free parameters of the Lagrangian. The B su-
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perscript indicates that this is a bare quantity. The renormalised parameters

Fi are defined multiplicatively. For example, for the gluon field we write

Aaµ
∣∣
bare

= Z
1/2
3 Aaµ

∣∣
ren
. (1.12)

We can calculate Z3 order by order in perturbation theory. It will be diver-

gent, that is to say, it will contain poles in the dimensional regularisation

parameter ε. These poles will cancel some of the poles arising from the loop

integrals. The quark field is renormalised with a factor Z2,

ψ
∣∣
bare

= Z
1/2
2 ψ

∣∣
ren
, (1.13)

and similarly for all the parameters in the Lagrangian. Once renormalisation

has been carried out, we find extra Feynman rules correcting the vertices

and propagators. The contribution of the extra diagrams cancels the UV

divergent parts of the original set of diagrams.

1.2.1 The Running Coupling

When we use dimensional regularisation, we are forced to introduce a dimen-

sionful coupling gµε so that the action remains dimensionless. The parameter

µ is arbitrary, so physical quantities cannot depend on it. Once the diver-

gences are subtracted, the finite parts of the amplitudes retain a dependence

on µ, and so does the coupling g = g(µ). Predictions of a physical observable
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O therefore take the schematic form

O =
∑
n=n0

Cn(µ) αns (µ). (1.14)

We see that both the coupling and the coefficients of the perturbative ex-

pansion depend on the unphysical scale µ. This dependence cancels when

they are combined as in (1.14). Unfortunately, it is beyond our abilities to

calculate more than a few terms of this series, and so we must truncate it

at some order m. Our prediction Om will then suffer from a residual renor-

malisation scale dependence. One of the advantages of calculating higher

order corrections is the partial elimation of this unphysical dependence. In

practise we choose µ to be equal to one of the typical scales in the process

under consideration, in an effort to keep logarithms of the form

ln
µ2

sij
, (1.15)

where sij = 2 pi · pj is the Lorentz invariant product of two of the external

momenta, as small as possible. As we have described, the QCD coupling αs is

a function of the renormalisation scale µ. This dependence on an unphysical

scale is a result of the way in which we have shifted contributions of high-

energy modes out of the Feynman diagrams and into the coupling. The
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precise functional form of αs is governed by the beta function,

µ2∂αs
∂µ2

= β(αs). (1.16)

The beta function can be calculated in perturbation theory. It is expanded

in powers of the coupling,

β(αs) = −β0α
2
s − β1α

3
s. (1.17)

If we retain only the first term in the perturbative expansion of the beta

function, we can solve (1.16). We find

αs(µ
2) =

αs(µ
2
0)

1 + αs(µ2
0) β0 ln(µ2/µ2

0)
. (1.18)

This equation gives the running of the strong coupling. Given αs at a scale

µ0, we can evaluate it at any other scale µ. Experimental quotes of the

coupling must specify a scale. It has become customary to use the Z mass

for this purpose. At the time of writing the world average experimental value

is [4]

αs(MZ) = 0.1176± 0.002. (1.19)
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1.3 Cross Sections at NLO

Although the underlying SU(Nc) gauge theory is well understood, accurately

predicting the results of experiments involving quarks and gluons is far from

trivial. In this section we will outline the basic procedure. Suppose we are

interested in the cross section for two initial state partons to produce m final

state partons. This cross section can be written

σ = σLO + σNLO, (1.20)

where we have separated the contributions according to the power of αs.

The leading order (LO) contribution is obtained by integrating the Born

amplitude squared over the available phase space,

σLO =
1

2s

∫
|M |2 F (m) dΓ. (1.21)

Here we have introduced the measurement function F (m), which defines the

experimental observable under consideration. To ensure infrared safety, we

require that when an m + 1 parton configuration becomes degenerate with

an m parton configuration, as for instance when a soft or collinear parton is

emitted, the measurement function behaves similarly, i.e.

F (m+1) → Fm. (1.22)
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This allows the cancellation of soft and collinear singularities, in accordance

with the KLN [5, 6] theorem. Because Born level amplitudes are relatively

easy to obtain, if not analytically then via numerical routines such as MAD-

GRAPH [7], the Born level cross section poses few problems. In practise

the integral is impossible to perform analytically, but can be easily evaluated

using Monte Carlo numerical integration.

At next-to-leading order (NLO) we must consider two contributions to

σNLO

• the real contribution σR, obtained from final states with m+ 1 partons

• the virtual contribution σV , obtained from final states with m partons.

Note that these quantities are not by themselves physically well defined.

They are each afflicted by infrared singularities caused by soft and collinear

partons. The total NLO cross section is obtained from a sum of these two

contributions,

σNLO = σR + σV

=

∫
m+1

dσR +

∫
m

dσV (1.23)

=
1

2s

∫
m+1

|Mm+1|2 F (m+1) dΓm+1 +
1

2s

∫
m

|M1−loop
m | 2F (m) dΓm

The IR singularities appear directly in |M1−loop
m | 2 as poles in ε. They arise

from evaluating the (dimensionally regulated) loop integrals. These poles

will be cancelled by similar poles in the real contribution, which appear
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after the integral has been performed. Thus we see that bringing about

the cancellation of ε poles and integrating the finite remainder requires a

combination of analytic and numerical methods.

1.4 The Helicity Method

In this thesis we will be interested in polarised scattering cross sections, and

so we will need to calculate helicity sub-amplitudes. In fact, even for pro-

cesses where we intend to sum over all spins, it is often a great simplification

to consider first the separate helicity amplitudes, and then sum over these

numerically. For helicity amplitudes the kinematical invariants such as dot

products pi · pj are not the most suitable variables. Instead, they find their

simplest expression in terms of spinor products. In this section we outline

the basic formalism behind these objects, and describe how they can be nu-

merically evaluated.

It was discovered long ago [8, 9, 10, 11, 12, 13] that amplitudes involving

massless momenta pi and pj can be conveniently represented in terms of

spinor products defined as,

[ij] = ū+(pi)u
−(pj) and 〈ij〉 = ū−(pi)u

+(pj). (1.24)

In this way amplitudes find their simplest expression. The spinors in ques-

tion can be thought of either as two-component Weyl or 4-component Dirac
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spinors. Numerical evaluation of such amplitudes involves the use of the stan-

dard formulae for the spinor products in terms of the momentum 4-vectors.

Following [14], let us first introduce two 4-vectors k0 and k1 such that

k0 · k0 = 0 , k1 · k1 = −1 , k0 · k1 = 0. (1.25)

We now define a basic spinor u−(k0) via

u−(k0)ū−(k0) =
1− γ5

2
/k0, (1.26)

and choose the corresponding positive helicity state to be

u+(k0) = /k1u
−(k0). (1.27)

Using these definitions it is possible to construct spinors for any null momen-

tum p as follows:

uλ(p) =
/p u−λ(k0)√

2p · k0

, (1.28)

with λ = ±. Note that this satisfies the massless Dirac equation /pu(p) = 0,
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as required. We can now simply evaluate spinor products. For example,

[ij] = ū+(pi)u
−(pj) (1.29)

=
ū−(k0) /pi /pj u

+(k0)√
4 (pi · k0)(pj · k0)

(1.30)

=
Tr( (1−γ5)

2
/k0 /pi /pj /k1)√

4 (pi · k0)(pj · k0)
(1.31)

=
(pi · k0)(pj · k1)− (pj · k0)(pi · k1)− iεµνρσkµ0pνi pρjkσ1√

(pi · k0)(pj · k0)
. (1.32)

The angle bracket product is related1 to the square bracket product by com-

plex conjugation and a sign, i.e. 〈ij〉 = −[ij]∗. The arbitrary k0 and k1 can

now be chosen so as to yield as simple an expression for the product [ij]

and 〈ij〉 as possible, to facilitate numerical evaluation of the ampitudes. The

choice2

k0 = (1, 0, 0, 1) (1.33)

k1 = (0, 0, 1, 0) (1.34)

is a good one, giving the familiar

[ij] = (pyi + ipxi )

[
p0
j − pzj
p0
i − pzi

] 1
2

− (pyj + ipxj )

[
p0
i − pzi
p0
j − pzj

] 1
2

. (1.35)

In the course of evaluating a Feynman diagram we will also encounter polar-

1The reader should note that a similar definition with the opposite sign is found in
some of the literature.

2The notation is kµ = (k0,k).
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isation vectors. These are the external wavefunctions of gauge bosons such

as gluons. In this thesis we will only be concerned with the massless external

gauge bosons (gluon, photon), and not the massive weak gauge bosons W±

and Z. Consequently we can restrict ourselves to ε(p) where p2 = 0. We can

write this in terms of spinors by introducing an auxiliary vector k for each

external gauge boson. In some sense this parameterises the gauge, and so

the final answers we obtain for gauge invariant quantities such as a partial

amplitude must be independent of k. In practise, we usually set k to be one

of the external momenta, though we are not allowed to set it parallel to its

associated p. There are different expressions depending on the helicity of the

boson,

ε+µ (p, k) =
ū−(k) γµ u

−(p)√
2 〈kp〉 , (1.36)

ε−µ (p, k) =
ū+(k) γµ u

+(p)√
2 [pk]

. (1.37)

Note that there are only two physical polarisations. It is also useful to have

at hand the ‘slashed’ form

/ε+(p, k) =
√

2
u+(k)ū+(p) + u−(p)ū−(k)

〈kp〉 , (1.38)

/ε−(p, k) =
√

2
u+(p)ū+(k) + u−(k)ū−(p)

[pk]
. (1.39)

Recall that Dirac-slashing refers to contraction with a gamma matrix, so that

for a four vector Aµ we have /A = Aµγµ.
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1.4.1 Massive spinors

For processes involving the light quarks u,d,s and to some extent also the

charm c, it is a good enough approximation to set the quark mass to zero.

This is because for the high energy processes with which we typically concern

ourselves, these quark masses are dwarfed by the high centre of mass ener-

gies involved. For bottom quarks this approximation starts to look a little

suspect, and for the top it is clearly not valid at all. So, it is important for us

to be able to handle the corresponding massive spinors. To evaluate spinor

products involving massive spinors, we need to find a definition analogous to

(1.28). One possibility is that outlined in [14],

uλ(p) =
(/p+m)u−λ(k0)√

2p · k0

, (1.40)

which satisfies the massive Dirac equation, (/p − m)uλ(p) = 0. The m in

(1.40) is positive or negative when uλ(p) describes a particle or antiparticle

respectively. This definition has the virtue3 of being smooth in the limit

m→ 0. We will use (1.40) to evaluate products involving massive spinors.

It is easily seen that the familiar [. .] and 〈. .〉 products take the same

form for massive spinors as they do for massless ones. Explicit mass terms

drop out due to various trace theorems. However, the product of like-helicity

3Care is needed when p · k0 also vanishes in this limit, as we will discuss later.



CHAPTER 1. INTRODUCTION 19

spinors is now non-zero:

(ij) = ū±(pi)u
±(pj), (1.41)

= mi

(
pj · k0

pi · k0

) 1
2

+ i↔ j (1.42)

= mi

(
p0
j − pzj
p0
i − pzi

) 1
2

+ i↔ j, (1.43)

where in the last line we have used k0 as given in (1.33). Note that the like-

helicity product is the same whatever the helicity of the spinors involved,

and that we use a round bracket as a shorthand notation for it.

We have been using the word ‘helicity’ to refer to the spin projection of

massive fermions, but in fact this is only justified if the projection is onto the

direction of the momentum vector. For massive particles it is not obvious

that this is the case. However, one can define a unique polarisation vector,

that defines the direction along which we are projecting the particle’s spin,

σµ =
1

m

(
pµ − m2

p · k0

kµ0

)
. (1.44)

This vector depends on an arbitrary reference momentum k0. The spinors

(1.40) satisfy (
1− λγ5/σ

)
uλ = 0. (1.45)

We see that besides the momentum p there is an additional contribution to

the polarization vector proportional to k0. Suppose we have an anti-fermion
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i and fermion j in the initial state and they approach along the z axis, in

the positive and negative directions respectively. If we choose k0 to be a unit

vector in the z direction, i.e.

k0 =
(
1, 0, 0, 1

)
, (1.46)

then for momenta4

pi =
(
E, 0, 0, βE

)
, (1.47)

pj =
(
E, 0, 0,−βE), (1.48)

we have the following polarization vectors:

σµi =
1

mi

(− Eβ, 0, 0,−E), (1.49)

σµj =
1

mj

(
Eβ, 0, 0,−E). (1.50)

If we recall that mi is negative because i is an antiparticle, then we see that

each polarization vector points in the same direction as the corresponding

momentum, so that the spinors uλ(p) are indeed helicity eigenstates for this

choice of k0. However, choosing k0 to be parallel to one of the particle’s

momenta results, in the massless limit, in the denominators of products such

as that in (1.43) vanishing. By being careful to take the limit algebraically

4β =
(
1− m2

E2

)1/2
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this does not present a problem.5 But it should be noted that in such cases

products like (ij) do not necessarily vanish in the massless limit. We can

sidestep this issue by choosing a different k0, though we could not then talk

of the helicity of the fermion.

Useful Spinor Product Identities

We summarise here some of the identities which have proven useful during

the course of our calculations involving massive spinor products. Firstly, the

ubiquitous expression ū±(i) /p u±(j) can be handled by using the well known

formula

/p−m =
∑

uλ(p) uλ(p)

= u+(p) u+(p) + u−(p) u−(p),

which give us

ū+(i) /p u
+(j) = [ip]〈pj〉+ (ip)(pj) +m(ij),

ū−(i) /p u
−(j) = 〈ip〉[pj] + (ip)(pj) +m(ij),

ū+(i) /p u
−(j) = (ip)[pj] + [ip](pj) +m[ij],

ū−(i) /p u
+(j) = 〈ip〉(pj) + (ip)〈pj〉+m〈ij〉.

5If we take kµ0 = (1, 0, sin θ, cos θ), then for the momenta defined in (1.47) and (1.48),
with mj = −mi = m, we have (ij) = −2mβ cos θ(1 − β2 cos2 θ)−1/2. Thus (ij) ∼ O(m)
as m→ 0 except if θ = 0◦ when (ij) ∼ O(E).



CHAPTER 1. INTRODUCTION 22

Whereas for massless vectors ki,kj we have the familiar relation 2ki · kj =

〈ij〉[ji], in the massive case this is extended to

2pi · pj = 〈ij〉[ji] + (ij)2 − 2mimj. (1.51)

For any massive i,j and massless k, l we have

(ik)(jl) = (il)(jk), (1.52)

(ik)[li] + [ik](li) = mi[lk], (1.53)

ū±(pk) /pi u
∓(pl) = 0 (1.54)

Another useful formula is the Schouten identity,

〈a b〉〈c d〉+ 〈a c〉〈d b〉+ 〈a d〉〈b c〉 = 0. (1.55)

1.5 Colour Ordering

Even if one is interested primarily in spin-summed cross sections, it is useful

to evaluate the individual helicity amplitudes separately. Amplitudes typi-

cally find their most compact expression in this way, expressed in terms of

spinor products. If one wants to sum over all spins then this can be done

numerically at the end of the calculation. In fact, since in this thesis we are

interested in a polarised scattering process, we are obliged to use helicity am-

plitudes. The way we treat the colour structure of QCD processes is similar
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to this. The amplitudes can be expressed as a series of colour structures,

with gauge-independent coefficients. The coefficients are called partial sub-

amplitudes. Recall that the colour factors for each Feynman diagram come

from various ta matrices etc. originating in the Feynman rules. For example,

for the 2 → 2 scattering process gg → bb there are only three contributing

colour structures, namely

C1 = (tA tB)ij, C2 = (tB tA)ij, C3 = δABδij. (1.56)

In fact the third structure C3 does not contribute at tree level. Other pro-

cesses will be expanded in a different basis of colour structures. By defining

a modified set of Feynman rules, given in e.g. [15], in which there are no

colour dependent factors, and restricting the set of diagrams considered, we

can evaluate directly any of the partial sub-amplitudes. In particular, we

only consider diagrams with a particular ordering of the external partons.

The partial amplitudes are then evaluated separately, one for each ordering.

When we come to square the amplitude, the partial amplitudes are multiplied

numerically, and we evaluate the colour factors by hand.

So, by colour ordering we mean the separation of kinematic and group

theoretical factors. The price of this separation is that we now need to

evaluate various partial amplitudes, which are the kinematic coefficients of

the colour structures. Each partial amplitude is distinguished by a particular

ordering of the external partons and only those Feynman diagrams with the
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requisite parton ordering (and hence colour structure) contribute to a given

partial amplitude. Each partial amplitude is gauge independent, and as such

can be worked out in isolation to others. In this way we break up the problem

into smaller pieces. This is why the colour decomposition is so useful.

Apart from the example above, the other process we will be concerned

with in this thesis is gg → bbg. Because there are more partons involved,

there are more colour structures that can contribute. It is not difficult to see

that the only structures present are of the form,

(tAtBtC)ij, (1.57)

for some ordering of {A,B,C}. There are therefore 3! = 6 different struc-

tures. Of course, the three-gluon vertices will contribute factors of fABC , but

these can always be re-written using the commutation relation,

[tA, tB] = ifABCtC . (1.58)

1.6 Outline of this Thesis

In the two chapters which follow this introduction, we describe alternatives

to the usual Feynman diagram method of evaluating gauge theory ampli-

tudes. These new techniques are inspired by a correspondence [16] due to

Witten between the superymmetric gauge theories and a certain string the-

ory defined in Twistor space. These new methods are distinguished by their
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use of on-shell building blocks, and thus avoid much of the computational

difficulty associated with Feynman diagrams, which use gauge-dependent,

off-shell quantities in intermediate steps. In Chapter 2 we will discuss the

applicability of these new methods to a simpler gauge theory - QED. The

on-shell techniques were originally envisioned as only applying to massless

partons. Gradually after their introduction it was found [17,18] how they can

be used for amplitudes with massive fermions, thus increasing still further

their appeal to phenomenologists. In Chapter 3 we explain one way in which

such massive partons can be accomodated.

In Chapter 4 we outline the calculation of the loop corrections to the

process gg → bb. We maintain full generality, that is we keep all the spin

and colour information. This calculation is a necessary input to any NLO

analysis of the central exclusive production of dijet final states. In Chapter

5 we describe in some detail the phenomenological appeal of this production

mechanism, and the relevance of the amplitudes presented in this thesis.



Chapter 2

QED Amplitudes from Twistor

Space

2.1 Introduction

The calculation of cross sections for multi-particle scattering processes is re-

stricted primarily by the technical difficulties associated with the evaluation

of the corresponding amplitudes. These difficulties are due to the factorial

growth in the number of diagrams as the number of external particles is

increased. Also, the number of terms in the expression for each diagram

quickly increases. Significant progress was made in 2004 when Witten [16]

discovered a connection between gauge field theories in four dimensions and

a string theory defined on twistor space. It was found that field theory am-

plitudes, when re-expressed in terms of twistor space variables, exhibited a

26
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structure that was not previously apparent. This development was interest-

ing from a theoretical point of view, because it suggested hitherto unknown

mathematical structure in familiar gauge field theories. It may be hoped

that such a reformulation will be the springboard for further progress. As

well as this, there was considerable interest among phenomenologists in the

promise of improved calculational methods, for this work suggested much

improved techniques for the calculation of tree level amplitudes. These new

techniques permitted analytical expressions to be worked out for the first

time for amplitudes with up to eight external particles. It also led to much

more compact forms for known amplitudes, which is important for practical

applications - the less time required for each function call the higher statistics

can be obtained in a numerical integration routine such as Monte Carlo.

The correspondence that Witten discovered applied only to purely glu-

onic N = 4 supersymmetric Yang-Mills theory at tree level. However, at

tree level the amplitudes of this theory coincide with those of QCD. This is

easily understood when one considers that the absence of loops means that

in purely gluonic diagrams there can be no involvement of the other fields in

the SUSY multiplet. This made the correspondence a useful phenomenolog-

ical tool. Gradually, the scope was extended - for example they were shown

to be useful also for amplitudes involving quarks [19,18]. In this chapter we

will describe the application of the so-called ‘MHV-rules’ and BCF recursion

relations (these terms will be explained in the proper place) to QED ampli-

tudes. We will begin by describing what MHV amplitudes are and how they
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are incorporated in a scalar perturbation theory. We will illustrate our find-

ings with numerous examples of increasing complexity, checking the results

against an old, yet impressively concise, formulation in terms of Feynman

diagrams.

2.1.1 MHV amplitudes

Let us consider colour ordered amplitudes at tree level involving only gluons.

Parke and Taylor [20] conjectured that these take remarkably simple forms

depending on the helicities of the external partons. This was later proven

using a recursive technique by Berends and Giele [21]. When all the helicities

are positive1, or if only one is negative, then the amplitude vanishes,

A(1+, 2+, ..., n+) = 0, (2.1)

A(1+, 2+, ..., i−, ..., n+) = 0. (2.2)

These amplitudes are colour ordered partial amplitudes - see Chapter 1 for an

explanation of this. In this chapter we adopt the convention that all particles

are incoming, so that momentum conservation reads
∑n

i=1 pi = 0. When two

of the partons have negative helicity, and the rest positive, the amplitude is

1We will consider only amplitudes with a majority of positive helicity partons. The
remaining configurations are obtained by parity invariance.
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no longer zero. It is, however, only one term [20,21],

A(1+, 2+, ..., i−, ..., j−, ..., n+) =
〈i j〉4∏n

k=1〈k k + 1〉 . (2.3)

This type of helicity configuration is described as being maximally helicity

violating (MHV). These results are valid for all n. This represents a large

scale cancellation of terms in a Feynman diagram expansion. Consider that

for high n many millions of terms are cancelling down to a single term. This

structure is in no way obvious at the level of the Lagrangian. Increasing be-

yond two the number of negative helicity particles leads to more complicated

expressions, but nonetheless, the simplicity of these results is impressive.

2.2 Kleiss-Stirling approach to e+e− → nγ

Let us digress now to consider an old result. Consider the process

e−(pa) + e+(pb)→ γ(k1) + γ(k2) + ...+ γ(kn) (2.4)

In the massless (electron) limit, helicity is conserved at each fermion-photon

vertex and so the helicities of the electron and positron will be opposite, he− =

−he+ . There are therefore 2n+1 distinct spin amplitudes (two polarisations

for each photon and he− = ±). In the traditional approach, the (n!) Feynman

diagrams are obtained simply by joining the n photons to the fermion line in

all possible ways. Labelling the distinct polarisation states by S = 1, ..., 2n+1
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gives an expression for the unpolarised cross section of

dσn =
1

F
[dΦn]

1

n!

1

4

∑
S

|MS|2 (2.5)

where the terms on the right-hand side are the flux factor, the phase space

volume element, the symmetry factor and the spin-summed/averaged ampli-

tude squared respectively.

The KS result is2 [14]

MS =

(
n∏
j=1

p · kj
)−1/2 n!∑

D=1

〈pa a1〉 [pb bn]

×
n−1∏
i=1

{〈q̂i ai+1〉 [q̂i bi]

q2
i

+
〈p ai+1〉 [p bi]

2p · qi

}
(2.6)

where pµ is an arbitrary light-like four vector and

ai = p, bi = ki if hi = + ,

ai = ki, bi = p if hi = − . (2.7)

The sum in (2.6) is over the n! distinct permutations k̂1, k̂2, ... of the photon

2This expression corresponds to the choice he− = −. The corresponding he− = +
amplitudes are readily obtained using parity invariance.



CHAPTER 2. QED AMPLITUDES FROM TWISTOR SPACE 31

momenta k1, k2, ..., from which internal four-momenta are defined by

qi =
i∑

j=1

k̂j − pa , i = 1, ..., n (qn ≡ pb) ,

q̂i = qi − q2
i

2p · qipi , (q̂2
i = 0) . (2.8)

The 〈ij〉 and [ij] spinor products that appear in Eq. (2.6) are defined in the

introduction. The full expression for the amplitude for arbitrary n can then

be written in just a few lines of computer code. Note that the result for

the amplitude squared is independent of pµ (which is related to the choice

of photon gauge) and this provides a powerful check on the calculational

procedure.

2.2.1 Photons

The main difference when we consider QED is that there are no pure-photon

tree-level amplitudes, because photons do not self-interact. There must al-

ways be (at least) one pair of fermions present, which (if massless) must be of

opposite helicity due to our convention that all particles are incoming. Also,

in contrast to non-Abelian theories there is no concept of colour ordering, so

we will be concerned with full physical amplitudes rather than colour-ordered

partial amplitudes. It is again the case that amplitudes with only one nega-

tive helicity particle (which must be either the fermion or anti-fermion – we
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shall take it to be the former) vanish,

AQED(f
+
, f−, 1+, 2+, ..., I+, ..., n+) = 0 . (2.9)

Here I+ denotes a positive helicity photon with momentum pi, and f , f

denote fermion and anti-fermion respectively. The dots in Eq. (2.9) indicate

positive helicity photons. The MHV amplitudes, which are those with two

negative helicity particles, take the following form (for massless fermions):

AQED(f
+
, f−, 1+, 2+..., I−, ..., n+) =

2
n
2 en〈ff〉n−2〈fI〉3〈fI〉∏n

k=1〈fk〉〈fk〉
. (2.10)

This is the fundamental MHV amplitude in QED, and as before it consists

of only a single term. The factor en is the gauge coupling constant, which we

will normally omit in what follows. It is possible [13] to obtain the amplitude

in (2.10) by symmetrizing colour-ordered non-Abelian amplitudes,

AQED(f, f, 1, 2, 3, ..., n) = A(f, f, 1, 2, 3, ..., n) + A(f, f, 2, 1, 3, ..., n) + ... .

(2.11)

Each term on the right-hand side is a colour-ordered MHV (Parke-Taylor)

QCD amplitude, and we sum over n! permutations of n gluons. A factor of 2
n
2

must also be included to take account of different generator normalizations

– our QED generators are normalized to unity. It should be noted that in

writing (2.10) in this particular way we have made an apparently arbitrary

choice of phase. Since the phase of a full (i.e. not partial) amplitude is
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not a physical observable, any of the 〈..〉 products in (2.10) could, naively, be

replaced with the corresponding [..] product. We will come back to this point

later. It is worth mentioning that due to parity invariance the amplitude with

all the helicities flipped has the same magnitude as (2.10) above. Also, one

can use charge conjugation invariance to switch the fermion and anti-fermion.

We can write (2.10) in a physically more illuminating way, emphasizing

the pole structure:

A(f
+
, f−, 1+, 2+..., I−, ..., n+) =

〈fI〉3〈fI〉
〈ff〉2

n∏
k=1

e
√

2〈ff〉
〈fk〉〈fk〉

=
〈fI〉3〈fI〉
〈ff〉2

n∏
k=1

Sk . (2.12)

It is a fundamental result of general quantum field theories that scattering

amplitudes have a universal behaviour in the soft gauge boson limit. When

all components of a particular photon’s momentum are taken to zero, the am-

plitude factorizes into the amplitude in the absence of that photon multiplied

by an ‘eikonal factor’,

Sk =
e
√

2〈ff〉
〈fk〉〈fk〉 . (2.13)

The form of this factor is universal, by which we mean that any QED am-

plitude (not only MHV ones) will have a similar behaviour in the soft limit,

with the same form for the eikonal factor. Since the QED MHV amplitude

is just a single term, it follows that the eikonal factors must be present as

factors – and indeed they are.
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2.3 The MHV Rules

There has been much recent progress in calculating scattering amplitudes in

perturbative Yang-Mills theory. Cachazo, Svrcek and Witten [22] introduced

a novel diagrammatic technique, known as the ‘MHV rules’, in which max-

imally helicity violating (MHV) amplitudes are used as vertices in a scalar

perturbation theory. These vertices are connected by scalar propagators

1/p2. This arrangement vastly reduces the number of diagrams that must be

evaluated relative to the traditional Feynman rules case. It also means that

each diagram requires much less effort to evaluate than with Feynman rules,

due mainly to the absence of complicated multi-gluon vertices.

Although the original CSW paper dealt only with purely gluonic ampli-

tudes, the formalism has since then been successfully extended to include

quarks [19,18], Higgs [23,24] and massive gauge bosons [25]. In this chapter

we will use the amplitudes shown in Eq. (2.10) as building blocks, and thereby

apply the MHV rules to QED processes. We will derive relatively simple for-

mulae for three, four and five photon amplitudes (an electron and positron

are understood to be present also). We first pause to describe in more detail

the Weyl spinors and bispinor representation of external momenta that we

will use.

The Lorentz group consists of rotations and boosts. Physical theories

must be invariant under Lorentz transformations, which means that the fun-

damental objects we use to describe physical systems must transform in well-
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defined ways under the group. The generators of rotations J and boosts B

do not commute with each other, but one can show that the following com-

binations do commute:

M = J + iB,

N = J− iB, (2.14)

and that, furthermore, M and N obey the SU(2) algebra. This means that

the Lorentz group is equivalent to two copies of SU(2). Representations of

the former can thus be characterised as m ⊗ n, where m and n label the

representations of each of the SU(2) sub-groups. We call objects living in

the 1
2
⊗ 0 representation left-handed Weyl spinors. They carry one index

only as they are singlets under the second SU(2). Similarly, right-handed

Weyl spinors live in the 0 ⊗ 1
2

representation. They also carry one index,

though it refers to a different representation space and is commonly dotted to

emphasise this. The vector representation is 1
2
⊗ 1

2
, and objects transforming

under it carry two indices, one dotted and one undotted. It is more common

to write vectors with a single index as follows,

paȧ = σµaȧ pµ, (2.15)

where σµaȧ are the chiral gamma matrices. One can show that massless vectors
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can be written using two Weyl spinors,

paȧ = λaλ̃ȧ, (2.16)

so that each massless external leg of an amplitude can be thought of as a

pair of Weyl spinors, of opposite chirality3.

In order to use MHV amplitudes as vertices, it is necessary to continue

them off-shell, since internal momenta will not be light-like. We need to

define spinors λ for the internal lines. The convention established in [22],

which we shall follow, defines λ to be

λa = paȧη
ȧ (2.17)

for an internal line of momentum paȧ, where ηȧ is arbitrary. The same η must

be used for all internal lines and in all diagrams contributing to a particular

amplitude. In practice, it proves convenient to choose η to be one of the

conjugate (opposite chirality) spinors λ̃ of the external fermion legs. Note

that for external lines, which remain on-shell, λ is defined in the usual way.

Having defined the MHV amplitudes, and the manner in which they are

to be continued off-shell, we are now in a position to calculate non-MHV

amplitudes. These are simply those with more than two negative-helicity

particles.

3Left handed spinors have chirality +1 and right handed spinors have chirality -1,
though the opposite convention can be found in the literature.
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2.3.1 Simple Examples

As a first example let us calculate A(f+
1 , f

−
2 , 3

−, 4−).4 This is expected to

vanish, see (2.9). There are two contributing MHV diagrams, though they

differ only by a permutation of photons. Note that the external legs are

not constrained to be positioned cyclically as in the case of colour-ordered

partial amplitudes. The absence of a pure-photon vertex means that the

internal lines of MHV diagrams for QED processes with two fermions can

only be fermionic. Consider Figure 2.1, which shows the first of the two

diagrams. We assign the internal helicities in such a way that each vertex

has two negative helicity lines, with the remainder positive. They are then

MHV amplitudes. Schematically, the contribution of this diagram is

Left Vertex× Propagator× Right vertex. (2.18)

Taking expressions for the vertices from Eq. (2.10), and using 1/q2 for the

propagator, the contribution of the diagram in Figure 2.1 can be written

down immediately as
√

2
〈λq 4〉2
〈λq 1〉

1

q2

√
2
〈2 3〉2
〈2 λq〉 , (2.19)

where λq is the spinor representing the internal line of momentum q. This

expression is simply a product of two MHV vertices and a propagator. Using

4Note the change in notation – the spinor representing the fermion is now denoted 2
(not f) and the spinor representing the anti-fermion is now denoted 1 (not f). Also, for
clarity we will now omit the coupling constants.
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�←− q

1+

4−

3−

2−

− +

Figure 2.1: Diagram contributing to A(f+
1 , f

−
2 , 3

−, 4−). Fermion lines are
dashed, photon lines are solid. All particles are incoming. There is also a
similar diagram with photons 3 and 4 interchanged.

(2.17) we can evaluate the spinor products involving λq:

〈λq 4〉 = 〈4 1〉 φ1 ,

〈λq 1〉 = 〈1 4〉 φ4 ,

〈2 λq〉 = 〈2 3〉 φ3 ,

q2 = (k2 + k3)2 ,

= 〈2 3〉[2 3] . (2.20)

Here φi = [η i] is a function of the (arbitrary) spinor η. Simplifying, we find

− 2
〈4 1〉
[2 3]

φ2
1

φ3φ4

. (2.21)
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To this we must add the contribution from the diagram with photons 3 and

4 interchanged, namely

− 2
〈3 1〉
[2 4]

φ2
1

φ4φ3

. (2.22)

When we add these two terms we find that momentum conservation, which

can be expressed as 〈1 4〉[4 2]+ 〈1 3〉[3 2] = 0, ensures that the sum vanishes,

so that

A(f+
1 , f

−
2 , 3

−, 4−) = 0 (2.23)

as expected. In this simple case there was no need to fix the value of η, and

we carried the dependence on it through to the end, through the φi functions.

In more complicated calculations we will specify η as a spinor describing one

of the external momenta, and thereby simplify our task.

The next demonstration of the MHV rules applied to QED processes that

we will consider is the evaluation of the amplitude A(f+
1 , f

−
2 , 3

−, 4−, 5+). We

describe this as an MHV amplitude, as it has exactly the opposite helicity

structure to an MHV amplitude, i.e. two positive helicities and the remainder

negative. There are four diagrams (see Figure 2.2), though once again our

task is simplified because there are only two independent expressions to work

out, the rest being obtained by appropriate permutations. We find that

M = 2
〈λq 4〉2
〈λq 5〉〈1 5〉

1

q2

√
2
〈2 3〉2
〈2 λq〉

= 2
3
2

[〈4 1〉φ1 + 〈4 5〉φ5]2

[〈5 1〉φ1 + 〈5 4〉φ4]〈1 5〉[2 3]φ3

(2.24)
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�←− q

1+

5+

3−

2−

− +
4−

(a) M

�←− r

1+

4−

− +

5+

3−

2−

(b) N

Figure 2.2: Diagrams contributing to A(f+
1 , f

−
2 , 3

−, 4−, 5+). The 3 ↔ 4
permutation of each also contributes.

and

N =
√

2
〈λr 4〉2
〈λr 1〉

1

r2
2
〈2 3〉2

〈λr 5〉〈2 5〉
= −23/2 〈2 3〉2φ2

1

[〈5 2〉φ2 + 〈5 3〉φ3]〈2 5〉[1 4]φ4

. (2.25)

If we choose η = λ̃1 then φ1 = 0 and so N and its 3 ↔ 4 permutation

vanish. We are left with two terms which, after again invoking momentum

conservation, simplify to

A(f+
1 , f

−
2 , 3

−, 4−, 5+) = −2
3
2

[1 2][1 5]3[2 5]∏5
k=3[1 k][2 k]

. (2.26)

Inspection of the corresponding MHV amplitude (2.10) shows that this re-

sult has the correct magnitude. Having made a particular choice of phase

for the MHV amplitudes in (2.10), a definite phase emerges for their MHV

counterparts. The former were chosen to be holomorphic functions of the



CHAPTER 2. QED AMPLITUDES FROM TWISTOR SPACE 41

λ’s of the external legs – they contain only 〈..〉 products. The latter emerge

as anti-holomorphic, consisting only of [..] products. Colour-ordered partial

amplitudes also have this property. Here however, we are dealing with a

physical amplitude, and so the phase is not a measurable quantity. It is in-

teresting to note that choosing the MHV amplitudes to have different phases,

for instance an expression containing a mixture of λ and λ̃, does not in gen-

eral lead to correct results for non-MHV amplitudes. This is to be expected,

as it is only those amplitudes which, apart from the momentum-conserving

delta function, are comprised entirely of 〈..〉 products that transform simply

onto a line in twistor space [16].

2.3.2 The NMHV amplitude A(f+
1 , f

−
2 , 3

+, 4+, 5−, 6−)

Let us introduce the concept of a next-to-MHV amplitude and denote it

NMHV. By this we mean one which has three negative helicity partons, with

the remainder positive. The first non-zero NMHV amplitudes appear for

n = 4 photons, when two photons have helicity + and two have helicity −.

There are eight diagrams for this process but only three distinct structures,

so that we need only work out three diagrams and obtain the others by

permuting photons. In fact, by a judicious choice of the arbitrary spinor η we

can reduce the expression to just two independent terms plus permutations.
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�←− q

1+

6−

− +

4+

3+

5−

2−

(a) Diagram A

�←− r

1+

6−

4+

− +

3+

5−

2−

(b) Diagram B

�←− s

5−

2−

+−

1+

6−

3+

4+

(c) Diagram C

Figure 2.3: Diagrams contributing to A(f+
1 , f

−
2 , 3

+, 4+, 5−, 6−). Various per-
mutations of each also contribute.

Referring to Figure 2.3,

A = −4
φ2

1[〈2 1〉φ1 + 〈2 6〉φ6]〈2 5〉2
[1 6]φ6〈2 3〉〈2 4〉[〈3 1〉φ1 + 〈3 6〉φ6][〈4 1〉φ1 + 〈4 6〉φ6]

,

B = −4
[〈6 1〉φ1 + 〈6 4〉φ4]2〈2 5〉2

[〈4 1〉φ1 + 〈4 6〉φ6][〈3 2〉φ2 + 〈3 5〉φ5]〈1 4〉r2〈2 3〉 ,

C = −4
[〈1 2〉φ2 + 〈1 5〉φ5][〈6 2〉φ2 + 〈6 5〉φ5]2

[〈3 2〉φ2 + 〈3 5〉φ5][〈4 2〉φ2 + 〈4 5〉φ5]〈1 3〉〈1 4〉[2 5]φ5

.(2.27)

If we choose η = λ̃1 then φ1 = 0 and the contribution from diagram A above

vanishes. The other two terms simplify, and we end up with the following
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expression,

A(f+
1 , f

−
2 , 3

+, 4+, 5−, 6−) = 4
〈4 6〉[1 4]2〈2 5〉2

〈1 4〉[1 6](p2 + p3 + p5)2〈2 3〉〈3|2 + 5|1]

+ (3↔ 4) + (5↔ 6) +

 3↔ 4

5↔ 6


+ 4

(s12 + s15)〈6|2 + 5|1]2

〈1 3〉〈1 4〉[5 2][1 5]〈3|2 + 5|1]〈4|2 + 5|1]

+ (5↔ 6) (2.28)

Here we have introduced the shorthand notation

〈i | j + k | l ] = 〈i j〉[j l] + 〈i k〉[k l], (2.29)

and sij = 2 pi · pj. The result above is obviously more complicated than

the one-term MHV amplitudes, but it is still much simpler than what would

be obtained via a Feynman diagram calculation. Although the two alge-

braic forms are very different, we have checked that this expression agrees

numerically with the KS results [14], up to a phase. It is interesting to

note that we do not have the freedom to introduce relative phases among

the set of MHV amplitudes. For example, introducing a factor of −1 into

the 1-photon MHV amplitude while leaving the others fixed will obviously

lead to a change in the relative phases among the terms in (2.28). Our de-

rived expression for A(f+
1 , f

−
2 , 3

+, 4+, 5−, 6−) will then no longer have the
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correct magnitude. In this way an apparently unphysical phase affects phys-

ical cross sections. So the phases of the MHV amplitudes in (2.10) must

be chosen appropriately. We have also calculated the NMHV 5-photon am-

plitude5 A(f
+

1 , f
−
2 , 3

+, 4+, 5−, 6−, 7+) using the MHV rules, and once again

found numerical agreement with [14]. We expect that further tests will be

successful. Amplitudes with n photons, two of which have negative helicity,

require the evaluation of only n − 1 structures. The full set of diagrams is

then easily obtained through permutations. Increasing the number of nega-

tive helicity photons leads to MHV diagrams with more than two vertices.

For QED processes with two fermions, the absence of a pure-photon vertex

means that such diagrams consist only of a linear string of vertices – there is

no branching. Each vertex has one negative helicity photon attached to it,

and the remaining photons are added in all possible ways.

2.3.3 Soft Limits

We have checked algebraically that (2.28) has the correct limits when one

of the photon’s momenta is taken to zero, namely that the expression tends

to the amplitude in the absence of that photon, multiplied by a ‘soft’ factor

5Note that all non-zero n = 5 helicity amplitudes are either MHV or NMHV, as for
n = 4. The first NNMHV amplitudes appear at n = 6.
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called the eikonal factor:

A(f+
1 , f

−
2 , 3

+, 4+, 5−, 6−)
3→0−→ A(f+

1 , f
−
2 , 4

+, 5−, 6−)×
√

2〈1 2〉
〈1 3〉〈2 3〉

A(f+
1 , f

−
2 , 3

+, 4+, 5−, 6−)
5→0−→ A(f+

1 , f
−
2 , 3

+, 4+, 6−)×
√

2[1 2]

[1 5][2 5]
(2.30)

and similarly for the other photons. Notice that when a positive helicity

photon becomes soft, the eikonal factor is comprised entirely of 〈..〉 spinor

products, whereas when a negative helicity photon becomes soft the eikonal

factor is comprised entirely of [..] products. We have also verified that the

amplitudes presented here have the correct collinear factorization properties

when one of the photons is emitted in the direction of the incoming fermion

or anti-fermion.6

2.4 The BCF Recursion Relations

A new set of recursion relations [28] has been proposed to calculate tree am-

plitudes in gauge theories. We will here give a brief review of this technique,

before showing how the relations can be used, along with (2.10), to calculate

QED amplitudes. Consider an n particle (purely gluonic, for definiteness)

scattering amplitude, with arbitrary helicities. Choose two of the external

lines to be ‘hatted’ – this will be defined shortly. Suppose the n-th (posi-

tive helicity) and (n− 1)-th (negative helicity) gluons are hatted. These are

6The collinear behaviour of QCD MHV amplitudes has been studied in [26,27].
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reference lines. The BCF recursion relation then reads

An(1, 2, . . . , (n− 1)−, n+) = (2.31)
n−3∑
i=1

∑
h=+,−

Ai+2(n̂, 1, 2, . . . , i,−P̂ h
n,i)

1

P 2
n,i

An−i(+P̂−hn,i , i+ 1, . . . , n− 2, n̂− 1)

where

Pn,i = pn + p1 + · · ·+ pi ,

P̂n,i = Pn,i +
P 2
n,i

〈n− 1|Pn,i|n]
λn−1λ̃n ,

p̂n−1 = pn−1 −
P 2
n,i

〈n− 1|Pn,i|n]
λn−1λ̃n ,

p̂n = pn +
P 2
n,i

〈n− 1|Pn,i|n]
λn−1λ̃n . (2.32)

Identities such as

〈• P̂ 〉 = −〈• | P | n]× 1

ω
,

[P̂ •] = −〈n− 1 | P |•]× 1

ω̄
, (2.33)

are used to remove the hats, whereupon the result can be simplified using

standard spinor identities. Here ω = [P̂ n] and ω = 〈n − 1 P̂ 〉. The factors

ω and ω only ever appear in the combination ωω = 〈n − 1 |P |n]. The

procedure can be conveniently represented diagrammatically, see Figure 2.4
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for a specific case.

In [17, 29] the relations were shown to work for amplitudes involving

fermions, and in [30] it was shown that the reference gluons need not be

either adjacent or of the same helicity. Applications to massive particles

were described in [31, 32, 33]. The relations were proven in [30] by shifting

the hatted momenta by a complex amount – see Section 2.5. Here we will

be interested in applying the above recursion relation to QED processes. In

contrast to the MHV rules, the recursion relations involve the use of MHV

amplitudes. We can obtain these from (2.10) by switching 〈..〉 and [..], and

using charge conjugation invariance to swap the fermion and anti-fermion.

2.4.1 Example of BCF recursion relations applied to a

QED process

Consider the MHV amplitude A(f
+

1 , f
−
2 , 3

+, 4+, 5−). As before, f and f

denote a fermion and anti-fermion respectively, and i+ represents a positive

helicity photon of momentum ki. Let us choose the hatted lines to be 1 and

5, as shown in Figure 2.4. Then there is only one distinct diagram7 for this

process, which evaluates to

√
2[1̂ 3]2

[1̂ P̂ ]

1

(k1 + k3)2

2〈2 5̂〉2
〈2 4〉〈P̂ 4〉 . (2.34)

7Note that as detailed in [28], diagrams with an upper vertex of (+ + −) or a lower
vertex of (−−+) vanish. We have not drawn such diagrams.



CHAPTER 2. QED AMPLITUDES FROM TWISTOR SPACE 48

�

2−
4+

5̂−

3+

1̂+

+

−

Figure 2.4: BCF Diagram contributing to A(f
+

1 , f
−
2 , 3

+, 4+, 5−). As usual,
dashed lines are fermions, solid lines are photons.

Here we have used (2.10), together with its helicity flipped version, to substi-

tute for the (on-shell) tree amplitudes in (2.31). P = k1 + k3 is the momenta

of the internal line. Simplifying, we get

2
√

2
〈2 5〉2

〈2 4〉〈3 4〉〈1 3〉 , (2.35)

and to this we must add a similar expression with photons 3 and 4 inter-

changed,

2
√

2
〈2 5〉2

〈2 3〉〈4 3〉〈1 4〉 . (2.36)

After simplifying using Schouten’s identity8 we recover the expected result,

A(f
+

1 , f
−
2 , 3

+, 4+, 5−) = 2
√

2
〈2 5〉2

〈2 4〉〈3 4〉〈1 3〉 + 2
√

2
〈2 5〉2

〈2 3〉〈4 3〉〈1 4〉
= 2

√
2
〈2 1〉〈2 5〉3〈1 5〉∏5

k=3〈1 k〉〈2 k〉
. (2.37)

8For any 4 spinors 〈a b〉〈c d〉+ 〈a c〉〈d b〉+ 〈a d〉〈b c〉 = 0.
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Figure 2.5: BCF diagrams contributing to A(f+
1 , f

−
2 , 3

+, 4+, 5−, 6−). Various
permutations of each also contribute.

2.4.2 The NMHV amplitude A(f+
1 , f

−
2 , 3

+, 4+, 5−, 6−)

There are three BCF diagrams for this process, up to permutations, which

is the same one that we calculated in Section 2.3 using the MHV rules.

We can build up the four photon process using amplitudes we have already

calculated. The diagrams (Figure 2.5) evaluate to

P = 4
〈5|1 + 3|2]〈5|1 + 3|4]2

〈3|1 + 5|2]〈5|1 + 3|6](p1 + p3 + p5)2[2 6]〈1 3〉 ,

Q = 4
〈2 5〉2[3 1]2〈5|3 + 6|1]

〈2 4〉〈4|3 + 6|1]〈5|1 + 3|6](p1 + p3 + p6)2[6 1]
,

R = 4
〈6|2 + 5|1]2(p1 + p2 + p5)2[2 1]2

〈3|2 + 5|1]〈4|2 + 5|1]〈3|1 + 5|2]〈4|1 + 5|2][5 1][2 5]
, (2.38)
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where we have chosen external lines 1 and 5 to be hatted. The full result is

then

A(f+
1 , f

−
2 , 3

+, 4+, 5−, 6−) = (P +Q) + (3↔ 4) +R . (2.39)

We have checked numerically that this expression is equal to (2.28) which

was calculated using the MHV rules. Both are equal to the corresponding

result obtained from the KS formula, up to a phase.

2.5 Proof Of the BCF Recursion Relations

An elegant proof of the recursion relations originally proposed in [28] was pre-

sented in [30]. Here we will briefly sketch its main elements, before discussing

its applicability to QED.

Take a tree level amplitude A(1, 2, . . . , n) with arbitrary helicities and

• choose two particles for special treatment, which we can take to be

the k-th and l-th particles with helicities hk and hl respectively, and

introduce a complex variable z to rewrite their momenta as

pk(z) = λk(λ̃k − zλ̃l) = pk(0)− zλkλ̃l ,

pl(z) = (λl + zλk)λ̃l = pl(0) + zλkλ̃l . (2.40)

We have effectively shifted the spinors λl → λl+zλk and λ̃k → λ̃k−zλ̃l.
Note that there is no symmetry between k and l – they are treated dif-
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ferently. Having done this we can now construct the auxiliary function

A(z) = A(p1, p2, . . . , pk(z), . . . , pl(z), . . . , pn) . (2.41)

The aim now is to use the analytic structure of this auxiliary function,

considered as a function of z, to gain information on the physically

relevant object A(0).

• A(z) has only simple poles. This can be seen by noting that poles can

only arise from propagators such as 1/K2, where K is the momenta

of an internal line. If both pl and pk, or neither of them, are present

in the sum of external momenta contributing to K then the latter is

independent of z and there is no z-pole in the propagator. However, if

only one and not the other is present then the momenta of the internal

line is linearly dependent on z. Thus A(z) has only simple poles.

• Cauchy’s theorem tells us that

A(0) = −
∑
α

Residue

(
A(z)

z

)
z=zα

− Residue

(
A(z)

z

)
z=∞

(2.42)

so that the physical amplitude A(0) is fully determined by the finite

pole positions zα and residues of the auxiliary function, provided A(z)

vanishes at infinity. The finite residues are just products of lower-n

tree amplitudes, with Feynman propagators in between. The recursion

relation then follows immediately.
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To demonstrate the vanishing of A(z) as z →∞, one may use the MHV

rules outlined in [22]. It suffices to show that the MHV amplitudes themselves

vanish in this limit since, as shown in [30], the off-shell continuation does not

affect the large z behaviour of a general MHV diagram. It turns out that

some choices of reference lines are allowed (i.e. lead to an auxiliary function

that vanishes at infinity), whilst others are not. We can formulate some

rules to determine the allowed choices. This is useful because, as the authors

of Ref. [17] found, the number of BCF diagrams contributing to a given

amplitude depends strongly on the reference lines chosen. A careful choice

can save much labour, and yield more compact expressions.

First, let us repeat (2.10) for convenience,

A(f
+
, f−, 1+, 2+..., I−, ..., n+) =

2
n
2 〈ff〉n−2〈fI〉3〈fI〉∏n

i=1〈fi〉〈fi〉
, (2.43)

and also its MHV counterpart

A(f
+
, f−, 1−, 2−, ..., I+, ..., n−)

.
=

2
n
2 [ff ]n−2[fI]3[fI]∏n

i=1[fi][fi]
. (2.44)

The MHV rules can be employed using either solely MHV or solely MHV

amplitudes. If we choose l to be a positive helicity photon, and consider

(2.43) then it is clear that the amplitude vanishes at infinity since there

are more factors of z in the denominator than in the numerator. This is

true regardless9 of the identity of k. Similarly if we choose k to be a negative

9In fact if k is either the fermion or antifermion, then A(z) vanishes as 1/z whereas if
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helicity photon, and consider (2.44) then once again A(z) vanishes at infinity,

regardless of our choice of l. So in both these cases, which cover a large subset

of the possible choices, the recursion relations will work. The positive helicity

anti-fermion may be used at the lower vertex provided the fermion is not used

at the upper vertex, as in this case the MHV amplitude does not vanish as

z →∞.

It is also possible [30] to see the analytic structure of an amplitude by

considering the set of Feynman diagrams that contribute to it. For e+e− →
nγ there are n! diagrams, differing only in the order in which the photons are

attached to the fermion line. The z-dependence of the diagram can only come

from propagators (which either contribute a factor 1/z or are independent of

z) and photon polarization vectors10 which, in the spinor helicity formalism,

take the general form

ε−aȧ =
λaµ̃ȧ

[λ̃ µ̃]
, ε+aȧ =

µaλ̃ȧ
〈µ λ〉 (2.45)

for negative and positive helicity photons respectively. Here µ and µ̃ are

reference spinors. Recall that we shift the spinors representing the momenta

k is another photon then A(z) vanishes as 1/z2.
10In contrast to QCD, the vertices are momentum independent and so cannot depend

on z.
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of the l-th and k-th legs as

λl → λl + zλk

λ̃k → λ̃k − zλ̃l (2.46)

so that the polarization vector of the k-th photon behaves as 1/z if it has

negative helicity and linearly in z if it has positive helicity. The opposite

holds for the l-th photon. By inspecting the set of Feynman graphs we can

deduce that choosing hk = − or hl = + is always allowed (leads to an A(z)

which vanishes at z →∞). This agrees with what we concluded above based

on a consideration of the MHV diagrams.

2.6 Conclusions

We have shown that the modern techniques inspired by the transformation

of Yang-Mills scattering amplitudes to twistor space [16] can be successfully

applied to QED processes, and yield reasonably compact expressions. As

well as some simple MHV amplitudes, we calculated the NMHV amplitude

A(f+
1 , f

−
2 , 3

+, 4+, 5−, 6−) using both the MHV rules and BCF recursion ap-

proaches. The expressions obtained are not obviously equal, but numerical

checks proved them to be so and the results were confirmed by compari-

son with the KS [14] formula, which is directly derived from Feynman dia-

grams. We have also checked that the amplitudes have the correct factorising
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(eikonal) form when one of the photons becomes soft. Note that the QED

NMHV amplitudes we have presented can also in principle be obtained by

symmetrizing QCD colour-ordered amplitudes, but this is a laborious proce-

dure and will not lead directly to compact expressions. We have shown that

it is possible, and much easier, to use physical MHV amplitudes directly in

the MHV rules.

We have given explicit expressions for up to and including 4-photon am-

plitudes. The extension to n ≥ 5 photons is in principle straightforward – in

either the CSW or BCF approaches – although there is an inevitable growth

in complexity as more NnMHV amplitudes start to appear. We have not

been able to discern any large-n simplification of the expressions, in contrast

to the remarkably compact expression for arbitrary n (see Eq. (2.6)) in the

KS approach.



Chapter 3

Amplitudes with Massive

Fermions

3.1 Introduction

In the previous chapter we described two new methods for evaluating multi-

particle scattering amplitudes in gauge field theories. Both of these grew out

of Witten’s observation [16] that the simplicity of the so-called MHV ampli-

tudes is mirrored by an interesting structure when the same amplitudes are

expressed in terms of twistor space variables. These two methods are gen-

erally known as the ‘MHV Rules’ [22] and the BCF recursion relations [28].

In their initial forms, both schemes were restricted to amplitudes involving

only massless partons. However, it is important phenomenologically to be

able to deal with massive fermions. We will see in the final chapter that the

56
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amplitude with a pair of massive quarks and three gluons will be relevant to

studies of Central Exclusive Production at the LHC.

It was shown in Ref. [34] how to generalise Supersymmetric Ward Iden-

tities [35, 36] to include massive particles. In this way, different amplitudes

involving fields belonging to the same supersymmetric multiplet are related

by a rotation. For instance [37], amplitudes involving quarks and gluons are

related by SWIs to amplitudes involving scalars and gluons, and these have

been calculated in Ref. [33]. The off-shell Berends-Giele [21] recursion has

also proved useful [38]. Tree amplitudes with massive fermions are required

as input within the unitarity [39, 40] method to calculate one-loop ampli-

tudes, and to this end Ref. [41] provides four- and five-point amplitudes with

D-dimensional fermions, calculated using BCF recursion.

The BCF recursion relations were extended in Ref. [31] to include mas-

sive fermions, and in [32] four-point amplitudes involving two massive quarks

and two gluons were calculated. Five point amplitudes with massive fermions

have so far not been treated using BCF recursion. The goal of the present

work is to explore the utility of BCF recursion to four and five point ampli-

tudes with massive fermions. We find that a treatment of massive fermion

spinors introduced some twenty years ago in Ref. [14] proves to be very

useful. This treatment of massive spinor products was outlined in the intro-

duction. In this chapter we will demonstrate the use of BCF recursion in

calculating some simple scattering processes with massive quarks in QCD.

We will use 2 → 2 amplitudes as building blocks for the evaluation of the
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phenomenologically relevant gg → bbg colour-ordered partial amplitudes. As

will be explained in Chapter 5, these are relevant for the calculation of colour-

singlet cross sections, which are backgrounds to central exclusive production

of Higgs bosons.

3.2 Four Point Amplitudes: q̄q → gg

To demonstrate the use of the massive spinor products described in the pre-

vious section we calculate the helicity amplitudes Mλ1λ2λ3λ4 for the simple

QCD process q̄λ1(p1) qλ2(p2)→ gλ3(p3) gλ4(p4). The λ1, λ2 = ± labels on the

quarks refer to their spin polarisations in the sense already indicated. If we

choose k0 appropriately then they can be thought of as helicity labels. We

will evaluate the partial (colour) amplitudes for the above scattering process,

i.e. we consider contributions only from those diagrams with a particular or-

dering of the external gluons. The full colour-summed amplitudes can then

be recovered by inserting appropriate colour factors, as described in Chapter

1.

We first consider the M+−+− partial amplitude, for which there are two

Feynman diagrams, shown in Figure 3.1. We will express them in terms of

massive spinor products. For the slashed gluon polarisation vectors we use

/ε+(p, k) =
√

2
u+(k)ū+(p) + u−(p)ū−(k)

〈kp〉 , (3.1)

/ε−(p, k) =
√

2
u+(p)ū+(k) + u−(k)ū−(p)

[pk]
, (3.2)
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2−

1+ 4−

3+

(a) Diagram A

2−

1+ 4−

3+

(b) Diagram B

Figure 3.1: Diagrams contributing to the colour-ordered partial amplitude
for the process q̄+(p1)q−(p2)→ g+(p3)g−(p4).

where k is a (null) reference vector which may be chosen separately for each

gluon. Different choices of reference vector amount to working in different

gauges. The choice k3 = p4 and k4 = p3 is particularly convenient in this

context, as Diagram B vanishes in this gauge. We have for the other diagram

ū+(p1)
/ε−(p4)√

2

/p2 − /p3 +m

(p2 − p3)2 −m2

/ε+(p3)√
2

u−(p2), (3.3)

which simplifies easily to

ū+(p3) /p2u
+(p4)

ū+(p1)
[
u−(p3)ū−(p4) + u+(p4)ū+(p3)

]
u−(p2)

4 p3 · p4 p4 · p1

, (3.4)

so that

M+−+− = [3|2|4〉 [13](42) + (14)[32]

4 p3 · p4 p4 · p1

. (3.5)

As promised, we are left with an expression for the amplitude in terms of

vector products and massive spinor products. We next consider the other

Mλ1λ2+− amplitudes. It is interesting to note that these are directly obtained

from the M+−+− amplitude simply by changing the type of certain brackets.
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Thus

M+++− = [3|2|4〉 [13]〈42〉+ (14)(32)

4 p3 · p4 p4 · p1

, (3.6)

M−−+− = [3|2|4〉(13)(42) + 〈14〉[32]

4 p3 · p4 p4 · p1

, (3.7)

M−++− = [3|2|4〉(13)〈42〉+ 〈14〉(32)

4 p3 · p4 p4 · p1

. (3.8)

Those amplitudes where the gluons have helicities (− +) can be obtained

directly from the ones above by complex conjugation. Let us now examine

the case where the gluons have the same helicity. By direct calculation we

find

M−−++ = m[43]
〈13〉(42)− 〈14〉(32)

〈34〉2 2 p4 · p1

. (3.9)

from which we deduce

M++++ = m[43]
(13)〈42〉 − (14)〈32〉
〈34〉2 2 p4 · p1

, (3.10)

M+−++ = 0, (3.11)

M−+++ = m[43]
〈13〉〈42〉 − 〈14〉〈32〉
〈34〉2 2 p4 · p1

, (3.12)

=
m[34]〈12〉
〈34〉 2 p4 · p1

, (3.13)

where in the last line we have used the Schouten identity. The amplitudes

with two negative helicity gluons are obtained via complex conjugation.

There are several interesting things to note about these results. First, the
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amplitude M+−++ vanishes (for any choice of k0) because of the identity1

(13)(42)− (14)(32) = 0. Second, when k0 is parallel to the line of approach

of the fermions (i.e. when we work in the helicity basis) then the product

〈12〉, and hence M−+++, vanishes.

We have verified that when squared and summed over spins and colours,

the set of 2 → 2 scattering amplitudes given above matches the well-known

result (see for example Ref. [42]) calculated using Feynman diagrams and

‘trace technology’, namely

∑
colours

∑
spins

|M |2 = 256

(
1

6τ1τ2

− 3

8

)(
τ 2

1 + τ 2
2 + ρ− ρ2

4τ1τ2

)
, (3.14)

where

τ1 =
2p1 · p3

s
, τ2 =

2p1 · p4

s
, ρ =

4m2

s
, s = (p1 + p2)2. (3.15)

Finally, the m → 0 behaviour of the spin amplitudes can easily be read off

from the expressions given above. For example, if E denotes the typical scale

1See Chapter 1 for a list of identities and notation.
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of the 2→ 2 scattering2, then in the m/E → 0 limit we have

M++±∓, M−−±∓ ∼ O(1),

M+−±∓, M−+∓± ∼ O(m/E),

M++±±, M−−∓∓ ∼ O(m2/E2),

M+−−−, M−+++ ∼ O(m/E),

M+−++, M−+−− = 0. (3.16)

Note that in deriving these results we have assumed that k0 is not directed

along any of the particle momenta, so that all (ij) spinor products are O(m)

in the m → 0 limit, and 〈ij〉, [ij] products are O(E). If on the other hand

we choose the (fermion) helicity basis by taking k0 in the direction of (say)

p1, then (3.16) becomes

M+−±∓, M−+∓± ∼ O(1),

M+−±±, M−+∓∓ = 0,

M++±∓, M−−∓± ∼ O(m/E),

M++++, M−−−− ∼ O(m/E),

M−−++, M++−− ∼ O(m3/E3). (3.17)

2We explicitly exclude zero angle scattering.



CHAPTER 3. AMPLITUDES WITH MASSIVE FERMIONS 63

3.3 BCFW Recursion

In this section we will use the BCF recursion relations [28] to evaluate five

parton QCD amplitudes with a pair of massive fermions. The recursion

involves on-shell amplitudes with momenta shifted by a complex amount.

We will use the 2 → 2 results of the previous section as building blocks for

this calculation. A description of the recursion, and an outline of its proof,

was given in Chapter 2. We will here present the recursion in a form more

appropriate for discussing the inclusion of massive partons.

We begin by choosing two massless3 particles i and j whose slashed mo-

menta we shift as follows,

/pi → /̂pi = /pi + z/η,

/pj → /̂pj = /pj − z/η, (3.18)

where

/η = u+(pj)ū
+(pi) + u−(pi)ū

−(pj) (3.19)

is such that both pi and pj remain on-shell. Using the familiar spin-sum

condition, which is valid for massless p,

∑
λ

uλ(p) ūλ(p) = /p (3.20)

3It should be noted that by only hatting massless external legs we are restricting our-
selves to amplitudes with at least two massless particles.
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we can re-express the shift (3.18) as a shift of spinors:

u+(pi) → u+(p̂i) = u+(pi) + z u+(pj), (3.21)

ū−(pi) → ū−(p̂i) = ū−(pi) + z ū−(pj), (3.22)

ū+(pj) → ū+(p̂j) = ū+(pj)− z u+(pi), (3.23)

u−(pj) → u−(p̂j) = u−(pj)− z u−(pi). (3.24)

In the Weyl spinor notation we are shifting λi and λ̃j. For massless particles,

Dirac 4-spinors are effectively two copies of a Weyl 2-spinor, hence the four

shifts of (3.21)–(3.24). Notice that there is no symmetry between i and j —

they are treated differently.

The amplitude is now a complex function of the parameter z. What the

authors of [30] showed was that we can use the analytic properties of the

amplitude as a function of z to glean information about the physical case

z = 0. In particular, we get a recursion relation, which can be stated as

An =
∑

partitions

∑
s

AL(p̂i, P̂
−s)

1

P 2 −m2
P

AR(−P̂ s, p̂j). (3.25)

where the hatted quantities are the shifted momenta. In fact, this is only

valid if the helicities of the marked particles are chosen appropriately. The

marked particles are the i and j external lines, as described above. The

recursion relations were also described in the previous chapter, and Eq. (3.25)

is equivalent to Eq. (2.31). The crucial property which must be retained
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if (3.25) is to hold is that the shifted amplitude must vanish in the limit

z →∞. There are rules [30,17,31,32] detailing which marking prescriptions

are permitted in different cases. For our purposes, we will be on safe ground

if the shifted gluons have helicites (hi, hj) = (+,−) or (±,±).

This method of calculation is particularly efficient because much of the

computational complexity encountered in a Feynman diagram calculation

is avoided since the lower point amplitudes AL and AR can be maximally

simplified before being inserted in (3.25).

The sum is over all partitions of the particles into a ‘left’ group and

a ‘right’ group, subject to the requirement that particles i and j are on

opposite sides of the divide. The sum over s is a sum over the spins of the

internal particle. Each diagram is associated with a particular value for the

complex parameter z, which can be found via the condition that the internal

momentum P̂ is on-shell. Note that P̂ is always a function of z because of

the restriction that the marked particles i and j appear on opposite sides of

the divide.

One useful point to note in practice is that three-point gluon vertices

vanish for certain marking choices. In particular, for the j side of the diagram

a gluon vertex with helicites (+ + −) vanishes, as does the combination

(−−+) on the i side. This was pointed out in Ref. [28].

We will be concerned in this work with the process gg → bbg, and so will

encounter recursive diagrams connected by an internal fermion, the propa-

gator of which is, in this formalism, the same as that of a scalar. Following
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Ref. [32], we ‘strip’ fermions from the lower point amplitudes which feed the

recursion and write

An =
∑

partitions

∑
s

AL(p̂i, P̂
∗)
us(P̂ )ūs(P̂ )

P 2 −m2
P

AR(−P̂ ∗, p̂j), (3.26)

=
∑

partitions

AL(p̂i, P̂
∗)

/̂P +mP

P 2 −m2
P

AR(−P̂ ∗, p̂j). (3.27)

where P ∗ shows that the amplitude has been stripped of this external spinor

wave-function. By way of example, let us reconsider the process q̄+
1 q
−
2 →

g+
3 g
−
4 . We mark the gluons such that i = 3 and j = 4. Then there is one

recursive diagram,

ū+(p1)
/ε−(p̂4)√

2

/p2 − /̂p3 +m

(p2 − p3)2 −m2

/ε+(p̂3)√
2
u−(p2). (3.28)

With the shifts we have chosen, the hats on the polarisation vectors can be

removed. The shifted part of the internal propagator is killed by either of

the polarisation vectors. So in fact all the hats can be removed in (3.28),

which is then identical to the Feynman diagram expression (3.3).

3.4 q̄q → 3g from BCFW Recursion

The four-point amplitudes we derived in Section 3.2 are in such a form that

it is trivial to strip a fermion off in the manner described above. This means

that they are particularly convenient for use in BCFW recursion. Consider
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2−

5+

3̂+
4̂−

1+

(a) Diagram A

1+

2−

4̂−

5+

3̂+

± ∓

(b) Diagram B

Figure 3.2: Recursive diagrams contributing to q̄+(p1)q−(p2) →
g+(p3)g−(p4)g+(p5).

the process q̄+
1 q
−
2 → g+

3 g
−
4 g

+
5 , for which there are three recursive diagrams,

shown in Fig. 3.2. We choose the marking prescription i = 3, j = 4.

The two diagrams with internal gluons both vanish, due to the vanishing

of M+−++ and the vanishing of the (+ +−) gluon vertex with the shifts we

have chosen. For the remaining diagram we use

M+−−+ = −[4|1|3〉(13)[42] + [14](32)

4 p3 · p4 p4 · p1

, (3.29)

and strip the fermion u−(p2), leaving

M+•−+ = −[4|1|3〉 ū+(p1)
u+(p3)ū+(p4) + u−(p4)ū−(p3)

4 p3 · p4 p4 · p1

. (3.30)

After the appropriate relabelling this can be used in Diagram A, which can
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then be written

A = −[5|1|4̂〉 ū+(p1)
u+(p̂4)ū+(p5) + u−(p5)ū−(p̂4)

4 p5 · p̂4 p5 · p1

(/p2
− /̂p3 +m)

(p2 − p3)2 −m2

× /ε+(p̂3)√
2
u−(p2). (3.31)

Due to our choice of marking, all the hats in the numerator can be removed.

The shifted part of the propagator is killed by the gluon polarisation vector.

We are left with

M+−+−+ = [5|1|4〉
[
m(14)(42)[53] + [15](42)[3|2|4〉 − (14)[32][5|1|4〉

8 p5 · p1 p2 · p3 p̂4 · p5 〈43〉
]
.

(3.32)

We can work out z from the requirement that P̂ 2 = (p2 − p̂3)2 = m2, and

find

z =
−2 p2 · p3

[3|2|4〉 . (3.33)

The product p̂4 · p5 is then

p̂4 · p5 = (p4 − z η) · p5 (3.34)

= p4 · p5 +
p2 · p3

[3|2|4〉 [3|5|4〉. (3.35)

The result (3.32) is much more compact than the expression obtained from

a Feynman diagram calculation, with which it agrees. See Section 5 for the

Feynman results for this process in terms of massive spinor products. We

have checked that the expression (3.32) behaves as expected in the soft gluon
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limit. That is, as a particular gluon becomes soft, the amplitude factorizes

into a 2→ 2 amplitude multiplied by a universal ‘eikonal factor’.

3.4.1 Results for Helicity Conserving Amplitudes

Here we give all the helicity conserving QCD amplitudes for q̄q → ggg. By

helicity conserving we mean those amplitudes where the spin polarisations

of the fermions are +−, in the sense described in the introduction. Whether

these labels actually correspond physically to helicity depends on the choice

of k0. We choose to mark adjacent gluons, so that each amplitude has con-

tributing recursive diagrams of the form of Fig. 3.2, that is, we have a diagram

with an internal fermion and a diagram with an internal gluon. The van-

ishing of the 2 → 2 amplitude M+−++ simplifies those cases where there is

a majority of positive helicity gluons. In particular, the diagrams with an

internal gluon vanish. In the remaining cases, we evaluate such diagrams in

the same way as in Ref. [28], using identities such as

[AP̂ ] =
[A|P |i〉
〈P̂ i〉 , (3.36)

〈P̂B〉 =
[j|P |B〉

[jP̂ ]
, (3.37)

with i and j as in (3.18). These identities hold only when A, B and the

marked particles i and j are massless.

The results presented here are valid for arbitrary spin polarisations. Choos-

ing a polarisation basis amounts to choosing the vector k0, and when this is
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done the expressions below will simplify. In the helicity basis for example,

in which we choose k0 to be parallel to the line of approach of the fermions,

the building block M+−−− vanishes. This causes the first term in each of the

mostly-minus amplitudes below to vanish.

M+−+−+ = [5|1|4〉
[
m(14)(42)[53] + [15](42)[3|2|4〉 − (14)[32][5|1|4〉

8 p5 · p1 p2 · p3 p̂4 · p5 〈43〉
]

(3.38)

where i = 3, j = 4 and

p̂4 · p5 = p4 · p5 +
p2 · p3

[3|2|4〉 [3|5|4〉.

M+−++− = [4̂|1|5〉×[
m[14̂][32]〈54〉+ [14̂](42)[3|2|5〉+ 2p5 · p1(15)[32] +m(15)(42)[43]

8 p2 · p3 p̂4 · p5 p5 · p1〈43〉

]
(3.39)

where i = 3, j = 4 and

p̂4 · p5 = p4 · p5 +
p2 · p3

[3|2|4〉 [3|5|4〉, |4̂] = |4]− (−2 p2 · p3)

[3|2|4〉 |3].
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M+−−++ = [4̂|2|3〉×[
m[4̂2][15]〈43〉 − [4̂2](14)[5|1|3〉 − 2p2 · p3[15](32) +m(14)(32)[54]

8 p2 · p3 p3 · p̂4 p5 · p1〈54〉

]
(3.40)

where i = 5, j = 4 and

p3 · p̂4 = p3 · p4 +
p1 · p5

[5|1|4〉 [5|3|4〉, |4̂] = |4]− (−2 p1 · p5)

[5|1|4〉 |5].

M+−+−− =
m[21]〈45〉3

〈34〉[〈35〉2p5 · p1 + 〈34〉[4|2|5〉](p1 + p2)2
+

[3|2|4̂〉
[
m(4̂2)(15)[43]− (4̂2)[14][3|1|5〉 − 2p2 · p3(15)[32] +m[14][32]〈54〉

8 p2 · p3 p3 · p̂4 p5 · p1[54]

]
(3.41)

where i = 4, j = 5, and

p3 · p̂4 = p3 · p4 +
p1 · p5

[4|1|5〉 [4|3|5〉, (4̂2) = (42) +
(2p1 · p5)

[4|1|5〉 (52).
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M+−−+− =
m[21]〈53〉4√

2 〈43〉〈45〉[〈53〉2 p2 · p3 + 〈54〉[4|2|3〉](p1 + p2)2
(3.42)

+ [4|1|5〉
[
m[14][42]〈53〉+ (15)[42][4|2|3〉 − [14](32)[4|1|5〉

8 p5 · p1 p2 · p3 p̂4 · p5[34]

]

where i = 4, j = 3, and

p̂4 · p5 = p4 · p5 +
p2 · p3

[4|2|3〉 [4|5|3〉.

M+−−−+ =
m[21]〈43〉3√

2 〈45〉[〈53〉2 p2 · p3 + 〈54〉[4|2|3〉](p1 + p2)2
+ (3.43)

[5|1|4̂〉 ×
[
m(14̂)(32)[54] + (14̂)[42][5|2|3〉+ 2p5 · p1[15](32) +m[15][42]〈43〉

8 p2 · p3 p̂4 · p5 p5 · p1[34]

]

where i = 4, j = 3, and

p̂4 · p5 = p4 · p5 +
p2 · p3

[4|2|3〉 [4|5|3〉, (14̂) = (14) +
(2 p2 · p3)

[4|2|3〉 (13),

|4̂〉 = |4〉+
2 p2 · p3

[4|2|3〉 |3〉
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M+−−−− =
m〈54̂〉[4|2|3〉[12][45]

4 [45]2 p5 · p1 p2 · p3 [34]
(3.44)

where

〈54̂〉 = 〈54〉+
2p2 · p3

[4|2|3〉 〈53〉.

M+−+++ = 0 (3.45)

The amplitudes with fermion helicities −+ can be obtained from those above

by complex conjugation. We have checked that in the soft gluon limit these

results factorize as expected.

3.4.2 Results for Helicity Flip Amplitudes

We now consider the helicity flip amplitudes. These have fermion spin polar-

isation labels ±±. Here we find diagrams with internal gluons, which cannot

be treated with the external-spinor stripping procedure. We must therefore

evaluate each side of the diagram directly, which means evaluating spinor

products involving the internal momentum. Unfortunately we are unable to

evaluate such products as (P̂ k) where k is massive. Here P is the momentum

internal to the recursive diagram. In the previous section these products did

not occur. Note that in the massless case round brackets do not arise, and

any products 〈P̂ k〉 and [P̂ k] can be evaluated as described in Ref. [28]. Those

amplitudes in which all gluons have the same helicity do not pose a problem,
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since the internal gluon diagrams vanish anyway:

M++−−− = m〈4̂3〉
[
m(15)(42)[43] + [14](32)[4|1|5〉 − [14](42)[3|1|5〉

−4 p5 · p1 p2 · p3[34]2[54]

]
(3.46)

where i = 4, j = 5 and

|4̂〉 = |4〉+
2 p5 · p1

[4|1|5〉 |5〉.

M+++++ = m[54̂]

[
m(14)(32)〈54〉+ (14)〈42〉[3|2|5〉 − (15)〈42〉[3|2|4〉

−4 p5 · p1 p2 · p3〈45〉2〈43〉
]

(3.47)

where i = 3, j = 4 and

|4̂] = |4] +
2 p2 · p3

[3|2|4〉 |3].

We have checked that in the soft gluon limit these results factorize as ex-

pected. The amplitudes M−−+++ and M−−−−− are obtained from those

above by complex conjugation. For the remaining amplitudes we resort to

Feynman diagrams.
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3.5 Feynman Results

Here we give results for q̄q → ggg derived from Feynman rules. Note that in

a given amplitude all the helicities can be flipped by complex conjugation.

In all cases where there is overlap, the following expressions agree with BCF-

derived results already given.

M+−−+− = −[4|2|3〉
[
m[14][42]〈53〉+ (15)[42][4|2|3〉 − [14](32)[4|1|5〉

8 p5 · p1 p2 · p3 p3 · p4 [54]

]

+ 〈35〉
[
m[14][42]〈53〉+ (15)[42][4|2|3〉 − [14](32)[4|1|5〉

8 p2 · p3 p3 · p4 p4 · p5

]
(3.48)

+
〈35〉2

〈34〉〈45〉(p1 + p2)2

[
[14](32) + (13)[42]

[54]
+

[14](52) + (15)[42]

[34]

]
,
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M+−++− = −[4|1|5〉
[−m(15)(52)[43] + (15)[32][4|1|5〉 − [14](52)[3|2|5〉

8 p5 · p1 p2 · p3 p4 · p5 〈53〉
]

+ [43][4|1|5〉
[

[14](52) + (15)[42]

4 p5 · p1 p3 · p4〈53〉[54]

]
(3.49)

− [43]

[
[14](52)[3|1|5〉+ (15)[32][4|1|5〉 −m(15)(52)[43]

4 p5 · p1 p3 · p4 p4 · p5

]

− [43]2〈35〉
2 p3 · p4[54](p1 + p2)2

[
[14](52) + (15)[42]

〈53〉 +
[13](52) + (15)[32]

〈54〉]
]
,

M+−+−− = [3|2|4〉
[
m[13][32]〈54〉 − [13](42)[3|1|5〉+ (15)[32][3|2|4〉

−8 p5 · p1 p2 · p3 p3 · p4 [53]

]

+ 〈45〉[3|2|4〉
[

[13](42) + (14)[32]

4 p2 · p3 p4 · p5〈43〉[35]

]
(3.50)

+ 〈45〉
[

[13](42)[3|2|5〉+ (15)[32][3|2|4〉+m[13][32]〈54〉]
8 p2 · p3 p3 · p4 p4 · p5

]

+
〈45〉2[53]

2 p4 · p5〈43〉(p1 + p2)2

[
[13](52) + (15)[32]

[43]
+

[13](42) + (14)[32]

[53]

]
.

The corresponding helicity flip amplitudes can be obtained from these

simply by altering the types of brackets. For example, suppose we wish
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to extract M−−−+− from M+−−+− given above. We can achieve this by

changing brackets as follows:

[1k] → (1k), (3.51)

(1k) → 〈1k〉, (3.52)

where k is massless. Sandwich products such as [4|1|5〉 are not changed. This

transformation results in

M−−−+− = −[4|2|3〉
[
m(14)[42]〈53〉+ 〈15〉[42][4|2|3〉 − (14)(32)[4|1|5〉

8 p5 · p1 p2 · p3 p3 · p4 [54]

]

+ 〈35〉
[
m(14)[42]〈53〉+ 〈15〉[42][4|2|3〉 − (14)(32)[4|1|5〉

8 p2 · p3 p3 · p4 p4 · p5

]
(3.53)

+
〈35〉2

〈34〉〈45〉(p1 + p2)2

[
(14)(32) + 〈13〉[42]

[54]
+

(14)(52) + 〈15〉[42]

[34]

]
.

Other amplitudes can be found by analogous bracket alterations.

3.6 Summary

We have calculated all the partial spin amplitudes for the q̄q → ggg scatter-

ing process where q is a massive fermion. For most of the partial amplitudes

we were able to use the BCFW recursion relations to obtain fairly compact

expressions. This was achieved by following the idea of Ref. [32] of strip-
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ping lower point amplitudes of their external fermion wavefunctions before

inserting them into the recursion. We used a particular representation of

massive spinors, along the lines of the Appendix of Ref. [14], to define mas-

sive spinor products. In this method information regarding the polarisation

of the fermion spins is contained in the definition of the spinor products,

rather than explicitly in the amplitude.

We derived new, compact results for the helicity conserving partial ampli-

tudes. Their simplicity can be attributed to the vanishing of certain 2 → 2

scattering amplitudes, which reduces the number of contributing recursive

diagrams. We were unable to treat the helicity flip amplitudes in the same

way (except for the case where all the gluon helicities are the same), since

we were unable to evaluate the corresponding recursive diagrams with inter-

nal gluons, as in such cases it is not possible to follow the external-spinor

stripping procedure. For these amplitudes we instead provided expressions

derived from Feynman diagrams, also in terms of massive spinor products.

We have confirmed that all the results we have presented have the correct

factorization properties in the soft gluon limit. Another useful check is that

when the partial amplitudes are combined into a spin-summed cross-section,

the result is independent of the vector k0 used to define fermion polarisations.

These results represent an interesting test of the BCFW recursion rela-

tions [28, 30], which have not previously been applied to 5-point tree am-

plitudes with massive fermions. The massive spinor products we used are

well suited to such calculations, though there are issues to be resolved (see
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above). Application of these techniques to higher order processes with mas-

sive fermions, such as q̄q → gggg, should be possible though would be ac-

companied by an increase in complexity. This increase is, however, expected

to be signficantly less than the corresponding increase in complexity using

standard Feynman diagram techniques.



Chapter 4

Virtual Corrections

In this chapter we describe in some detail the calculation of the virtual correc-

tions to gluon induced bb quark production. This amplitude is phenomeno-

logically important for central exclusive processes, as we describe in Chapter

5. What is actually required is the amplitude

ggPP → bb (4.1)

where the PP superscript indicates that the gluons are in a Jz = 0, colour

singlet state. We choose to work out the relevant one loop amplitude in full

generality, i.e. as a vector in colour space. Only then will we apply the colour

singlet operator to project onto the particular physical configuration we re-

quire. This approach facilitates comparisons with results in the literature,

and could be useful for future work.

80
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Virtual corrections to a given process basically consist of the contributions

of unobserved internal particles. These necessarily form loops in the Feynman

diagrams. Contrary to the situation with tree level diagrams, the presence

of loops means that the momenta of each line is not determined. We must,

in the spirit of quantum mechanics, integrate over all possible momenta and

helicities of the internal lines.

Unfortunately, the loop integrals generally diverge in four dimensions.

The divergences are of two types: ultraviolet (UV) and infra-red (IR). The

UV divergences occur in the region where the loop momentum is large or,

equivalentally, where the typical distance scale is small. The occurence of

such poles points to a breakdown of the theory in the ultraviolet. This is

hardly unexpected, as we know there must be new physics at small distance

scales. If nothing else, gravitational effects must at some point become rele-

vant. In the absence of a deeper understanding of an underlying UV-complete

theory, it might appear that we can make no progress. But this is not the

case. Quantum Chromodynamics is a renormalisable theory, which means we

can take from experiment the short range physics that we do not understand

theoretically. Renormalisation consists of admitting that the bare parame-

ters in the Lagrangian are unphysical and divergent, and then re-expressing

physical quantities in terms of other physical quantities. When we do this,

there are no UV divergences. We have discussed these issues in more detail

in Chapter 1.

The other class of divergences encountered in loop integrals are those
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p4, A

p5, B

p1, i

p2, j

(a)

p4, A

p5, B

p1, i

p2, j

(b)

p4, A

p5, B

p1, i

p2, j

(c)

Figure 4.1: Feynman diagrams contributing to the lowest order Born ampli-
tude. When we take the projection onto the colour singlet state ggPP , the
third diagram does not contribute.

in the infra-red region. These are long-distance effects, occuring when an

internal particle goes on shell. They are closely related to the IR poles

arising from integration over the phase space of the real contribution to the

total cross section. In fact, as was discussed in the introduction, for well

defined observables the IR poles are required to cancel between the real and

virtual contributions by the KLN theorem [5].

For the processes considered in this thesis the virtual parts are simply 2→
2 scattering amplitudes. The loop amplitudes contribute to the NLO part of

the total cross section. They are added coherently to the Born amplitudes,

and then squared. Consequently it is the interference term 2 <e(M∗
bornMloop)

that we are interested in. The relevant Feynman diagrams are shown at tree

level in Fig. 4.1 and at one loop in Fig. 4.2.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

(k) (l) (m) (n)

(o)

Figure 4.2: One-loop Feynman diagrams contributing to the process gg → bb.
Dashes indicate gluon, quark and ghost loops. There are an additional seven
graphs corresponding to switching the external gluons of graphs (a) through
(g) above.
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4.0.1 Dimensional Regularisation

Let us examine a typical loop integal.

I =

∫
d4k

k2[(k + p)2 −m2]
. (4.2)

Here k is the loop momentum and p is the momentum of one of the external

partons, or a sum of such momenta. This is a scalar loop integral, so called

because the numerator does not contain any free Lorentz indices associated

with the integration momentum. By simply counting powers of k we can see

that the above integral will be logarithmically divergent. If we regulate the

integral by imposing an upper cut off on k, then we find

I →
∫ Γ dk

k
→ ln(Γ). (4.3)

We call this an ultraviolet (UV) divergence because it is the high momen-

tum part of the integration region which leads to the pole. In practical

applications the above regularisation is not particularly useful because it vi-

olates Lorentz invariance. Dimensional regularisation is almost universally

preferred, as it has the virtue of respecting the symmetries present in the the-

ory. It involves redefining the theory to take place in d = 4− 2ε dimensions.

The loop integrals are then finite, but contain poles in ε.

Scalar loop integrals can be classified according to the number of factors

in the denominator. The integral in (4.2) is called a two point integral, and
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we will also encounter three- and four-point integrals. These objects can be

straightforwardly evaluated, and expressions for them are available in the

literature. We define,

A0(m) =

∫
ddk

(2π)d
1

k2 −m2
, (4.4)

B0(p,m1,m2) =

∫
ddk

(2π)d
1

[k2 −m2
1][(k + p1)2 −m2

2]
,

C0(p1, p2,m1,m2,m3) =

∫
ddk

(2π)d
1

[k2 −m2
1][(k + p1)2 −m2

2][(k + p12)2 −m2
3]
,

D0(p1, p2, p3,m1,m2,m3,m4) =

∫
ddk

(2π)d
1

[k2 −m2
1][(k + p1)2 −m2

2][(k + p12)2 −m2
3][(k + p123 −m2

4]
.

Here we have used the shorthand notation pi...k = pi + · · · + pk. Analytic

expressions for these integrals can be found in, for example [43].

4.0.2 Reduction of Tensor Integrals

In the analytical expression of a given Feynman diagram there are also ten-

sor integrals. These have a tensor structure in the numerator involving the

loop momentum k. Of course, since an amplitude is a scalar object, these

tensors will ultimately be contracted with one of the external momenta pi or

polarisation vectors εi.

The tensor integrals can be expressed in terms of scalar integrals. There

are many procedures for achieving this. We will use the original method,

first outlined by Passarino and Veltman in [44]. Let us take as an example
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the three-point tensor integral

Iµν =

∫
ddk

kµkν

[k2 −m2
1] [(k + p1)2 −m2

2] [(k + p1 + p2)2 −m2
3]
. (4.5)

The idea is to use Lorentz invariance to express Iµν as a sum of terms, each

proportional to one of the possible tensor structures. Thus we write,

Iµν = C21 p
µ
1 p

ν
1 + C22 p

µ
2 p

ν
2 + C23 {pµ1 pν2}+ C24 gµν , (4.6)

where {pµ1 pν2} = pµ1 p
ν
2 + pµ2 p

ν
1. We now solve for the unknown coefficients

by contracting Iµν with the various external momenta and the metric tensor.

On the RHS we then have terms such as k · p1, which are re-written in terms

of one or more of the factors appearing in the denominator. For example,

2k · p1 = [(k + p1)2 −m2
2]− [k2 −m2

1] + [m2
2 −m2

1 − p2
1]. (4.7)

The first two terms above allow a cancellation between numerator and de-

nominator, thus reducing these terms to lower point integrals. The last term

no longer contains the loop momentum, so that the rank of the tensor in the

numerator is reduced by one. The next step is to solve the resulting set of

simultaneous equations for the unknown coefficients. This is done for all the

cases we need in Appendix A.
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4.0.3 The Calculation

The virtual corrections to the Born level partonic process ggPP → bb consist

of bubble, triangle and box loop integrals. A full list of diagrams is given in

Fig. (4.2). Each diagram contains a tensor loop integral. Since these integrals

are in general divergent, both in the UV and IR regions, we regulate them

by working in d = 4 − 2ε dimensions. These integrals are written as sums

of scalar integrals multiplied by tensors independent of the loop momentum

and the metric tensor, as per the usual Passarino-Veltman reduction scheme.

The momenta are labelled as

gA(p4) gB(p5) −→ bi(p1) bj(p2) (4.8)

We then express the amplitude as a linear combination of twenty Dirac struc-

tures, each with a coefficient Kij,

M virt =
3∑
i=1

20∑
j=1

Ci Kij Tj. (4.9)

The Ci are the fundamental colour structures. There are only three of these,

given by

C1 = (tA tB)ij, C2 = (tB tA)ij, C3 = δABδij. (4.10)
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The Dirac structures we have used are:

T1 = u(p1)v(p2) ε(p4) · p1 ε(p5) · p1

T2 = u(p1)v(p2) ε(p4) · p1 ε(p5) · p2

T3 = u(p1)v(p2) ε(p4) · p2 ε(p5) · p1

T4 = u(p1)v(p2) ε(p4) · p2 ε(p5) · p2

T5 = u(p1) /p4v(p2) ε(p4) · p1 ε(p5) · p1

T6 = u(p1) /p4v(p2) ε(p4) · p1 ε(p5) · p2

T7 = u(p1) /p4v(p2) ε(p4) · p2 ε(p5) · p1

T8 = u(p1) /p4v(p2) ε(p4) · p2 ε(p5) · p2

T9 = u(p1) /ε4v(p2) ε(p5) · p1

T10 = u(p1) /ε4v(p2) ε(p5) · p2

T11 = u(p1) /ε5v(p2) ε(p4) · p1

T12 = u(p1) /ε5v(p2) ε(p4) · p2

T13 = u(p1) /ε4 /p4v(p2) ε(p5) · p1

T14 = u(p1) /ε4 /p4v(p2) ε(p5) · p2

T15 = u(p1) /ε5 /p5v(p2) ε(p4) · p1

T16 = u(p1) /ε5 /p5v(p2) ε(p4) · p2

T17 = u(p1) /ε5 /ε4v(p2)

T18 = u(p1) /ε4 /ε5v(p2)

T19 = u(p1) /ε4 /p4 /ε5 v(p2)

T20 = u(p1) /ε5 /p4 /ε4 v(p2)
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Since there are three colour structures and twenty Dirac structures, this

means there are sixty components Kij. Each of these will depend on kine-

matical invariants sij = 2 pi · pj and the mass m. All the information as-

sociated with the external wavefunctions, i.e. the spinors and polarisation

vectors, is contained in the Ti. This means that the Kij coefficients do not

depend on the helicity configuration. We can evaluate them once and for

all, and then construct the polarised Jz = 0 state we require numerically,

simply by summing over those configurations in which the gluons have the

same helicity.

Gauge invariance places conditions on the coefficients in Eq.(4.9). Gauge

invariance can be expressed in terms of the Ward identity, which says that

if we replace a polarisation vector with its associated momentum, then the

amplitude vanishes. When we impose this for each of the intitial state gluons,

we can derive a system of ten simultaneous equations relating the coefficients

of the twenty Dirac structures. Solving this system enables us to halve the

number of coefficients needed to expand the amplitude as in (4.9). We choose

instead to keep the full set of coefficients, and use gauge invariance as a check

of the calculation. That is to say, once we have evaluated theKij we can check

that they collectively satisfy the requirements imposed by gauge invariance.

This is a very strong check on the calculation.

Beginning with general expressions for each of the Feynman diagrams in

Fig. 4.2 we used the algebraic manipulation tool FORM [45] to transform the

amplitude into the form of Eq.(4.9) and implement the Passarino-Veltman



CHAPTER 4. VIRTUAL CORRECTIONS 90

reduction of tensor integrals into scalar integrals. The scalar integrals are all

known and are given in, for example [43]. The output of the FORM program

is a series of expressions for the coefficients Kij. These serve as input to a

FORTRAN numerical program. The expressions for the coefficients are too

large to be presented here, but can be obtained on request from the author.

By way of example, we give here the corresponding coefficients for the tree

amplitude,

K1,11 = − 2

s14

− 2

s45

, (4.11)

K2,11 =
2

s45

, (4.12)

K1,12 = − 2

s45

, (4.13)

K2,12 =
2

s15

+
2

s45

, (4.14)

K1,19 = − 1

s14

− 1

s45

, (4.15)

K2,19 =
1

s45

, (4.16)

K1,20 = − 1

s45

, (4.17)

K2,20 =
1

s15

+
1

s45

, (4.18)

with all the other coefficients zero. We see that at tree level the third colour

structure δAB does not contribute.



CHAPTER 4. VIRTUAL CORRECTIONS 91

4.1 Checks

Obviously for such a large and intricate calculation as this it is important

to have available a range of consistency checks on the final answer. There

are a few ways in which we can verify that everything has worked correctly.

Firstly, there is the pole structure. Recall that the loop amplitude is diver-

gent in 4 dimensions, which is why we regulated it by working in d = 4− 2ε

dimensions. The divergences then manifest themselves as poles in epsilon.

The UV divergences appear as single poles (1/ε), while the IR divergences

appear as both single and double (1/ε2) poles. The structure of these singu-

larities is predictable. That is to say, one may check the precise coefficients

of the poles obtained and determine if they are in accordance with what is

expected. Catani et al. [46] have presented the expected structure in full

generality. Their results were obtained by direct integration of real ampli-

tudes squared, which are related through the KLN theorem to the poles of

certain loop amplitudes. We present the particular result for gg → bb here

for convenience1. The pole structure is obtained by operating on the colour

vector representing the tree level amplitude with a 3× 3 matrix,

M1-loop|ε,ε2 =
(4π)ε

Γ(1− ε)
(
X

ε2
+
Y

ε

)
M tree. (4.19)

1In [46] the general expression for the pole structure was presented in a different nota-
tion.
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Here each side of the equation is understood to be a vector in colour space,

i.e. a column vector where the elements are the coefficients of the three colour

structures given in Eq. (4.10). The matrices X and Y can be derived from

the results of [46].

The double pole part, described by X, turns out to be diagonal in the

colour space,

X = −2N


1 0 0

0 1 0

0 0 1

 . (4.20)

Another way of saying this is that the (1/ε2) part of the loop amplitude is

proportional the tree level amplitude, with the constant of proportionality

−2N . The single pole parts are more complicated. We find,

Y =


Y11 0 Y13

0 Y22 Y23

Y13 Y23 Y33

 (4.21)
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where

Y11 =
(s45 − 2m2)

Nsβ
lnx−N ln

(
µ2

s45

)
−N ln

(
µ2

s14

)
−N ln

(
m2

s14

)
− 2

(
CF +

11CA
6

)
Y22 = Y11

∣∣∣∣
s14↔s15

Y33 =
2CF (s45 − 2m2)

sβ
lnx− 4CF ln

(
m2

s15

)
− 2

N
ln

(
µ2

s45

)
− 2

(
CF +

11CA
6

)
Y13 =

(s45 − 2m2)

sβ
lnx+N ln

(
µ2

s15

)
−N ln

(
µ2

s45

)
+N ln

(
µ2

s15

)
Y23 = Y13

∣∣∣∣
s14↔s15

,

where β =
√

1− 4m2/s45. We have checked that the pole structure we obtain

is precisely that predicted in [46].

As mentioned in the preview subsection, another strong check is based

on gauge invariance. We can express gauge invariance as a set of equations

which must be obeyed by the coefficients Kij. These equations are derived

by imposing the Ward identity on the general expression Eq.(4.9). We obtain
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the following set of equations:

0 = Ki1 s14 +Ki3 s15 − 4Ki17,

0 = Ki2 s14 +Ki4 s15 − 4Ki18,

0 = Ki5 s14 +Ki7 s15 + 2Ki9,

0 = Ki6 s14 +Ki8 s15 + 2Ki10,

0 = Ki11 s14 +Ki12 s15 + 4mKi17 − 4mKi18,

0 = Ki15 s14 +Ki16 s15 − 2Ki17 + 2Ki18,

0 = Ki1 s15 +Ki2 s14 − 4Ki18,

0 = Ki3 s15 +Ki4 s14 − 4Ki17,

0 = Ki5 s15 +Ki6 s14 − 2Ki11 + 4Ki19,

0 = Ki7 s15 +Ki8 s14 − 2Ki12 + 4Ki20,

0 = Ki9 s15 +Ki10 s14 − 4mKi17 + 4mKi18 − 2s14 Ki19 − 2s15 Ki20,

0 = Ki13 s15 +Ki14 s14 − 2Ki18 + 2Ki17.

Notice that the first index of the coefficient is free - this is the colour in-

dex. The above conditions hold for each of the three colour structures. We

have checked numerically that our results are gauge invariant in the manner

described above.

A third check is provided by the over-determination of the Passarino-

Veltman reduction coefficients. Some of the tensor integral reduction for-

mulae can be solved in more than one way, giving several different, though



CHAPTER 4. VIRTUAL CORRECTIONS 95

equivalent, expressions. One should obtain the same results using either ex-

pression. This is a strong check that the tensor reduction has been performed

correctly.

Finally, we have checked our results against a similar calculation described

in [47]. The authors of that paper used a different set of Dirac structures to

ours, and present diagram by diagram results. We have verified numerically

that the two sets of coefficients are fully equivalent.



Chapter 5

Central Exclusive Production

In this chapter we describe central exclusive production and why it is inter-

esting. We also explain how the results presented thus far in this thesis find

application in the consideration of NLO backgrounds to Higgs production.

Determining the precise mechanism of electroweak symmetry breaking

is perhaps the most pressing concern in particle physics today. The Large

Hadron Collider (LHC), due to come online within a few months, is designed

with this in mind. Its two main detectors, ATLAS and CMS, will search for

signatures of the Higgs boson, thought to be responsible for spontaneously

breaking the electroweak symmetry of the standard model. The LEP col-

lider, while failing to directly observe the Higgs, did enable a lower bound

of 114 GeV to be placed on its mass [48]. Meanwhile, the consideration of

electroweak processes to which virtual Higgs particles would be expected to

contribute, suggests [49] that the Higgs is light - in the range 87+36
−27 GeV.

96
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The focus to date has primarily been on inclusive production, in which the

two incident protons each contribute one parton to the hard scattering, and

then disassociate into unobserved remnants. However, exclusive production

modes offer a range of advantages (and present some difficulties) and should

not be overlooked in the search for new physics. There has been much interest

in Central Exclusive Production (CEP) [50, 51, 52, 53], in which each proton

is required to remain intact, and is observed in the final state. In this way,

a central resonance may be produced. If the protons are observed at small

angular deviations, this resonance must be formed in a Jz = 0 state.1 It is

also easy to see that the resonance is required to be a colour-singlet, with

CP = 1. The consideration of such processes has led to a proposal [54,55] to

complement the ATLAS and CMS detectors at the LHC with forward proton

detectors, which would be installed 420m from the interaction region.

We denote the basic process by pp → p ⊕ X ⊕ p. Here the ⊕ signs

represent an absence of hadronic activity between the two observed outgoing

protons and the centrally produced resonance X. This reflects the especially

clean final state configurations. Since the protons are colourless objects, they

must exchange at least two gluons in this process. The centrally produced

resonance X can be anything in a Jz = 0 state and with the appropriate

quantum numbers, as discussed above. Perhaps the most interesting situation

is the formation of a Higgs boson, as illustrated in Fig. (5.1). The primary

advantages of this arrangement are as follows.

1Here Jz refers to the projection of the angular momentum onto the z axis.
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H

p

p

Figure 5.1: A sketch of the basic mechanism of central exclusive Higgs pro-
duction. The Higgs is produced via a top loop arising from the fusion of the
active gluon pair. The screening gluon on the left ensures colour conservation.

• Firstly, the Jz = 0 selection rule eliminates a large portion of the

QCD background, which is predominantly bb production and mainly

proceeds through the Jz = 2 state. The leading order background is

mass-suppressed. For massless quarks it vanishes, and when the mass

of the b quark is retained we find an O(m2/s) dependence, at least at

large angles. The amplitude has terms such as

m2

E2

1

1− βcosθ
, (5.1)

where β = (1 − m2/E2)1/2. For large angle scattering we see clearly

the O(m2/s) behaviour mentioned above. For m � E we can expand

the square root in the definition of β as 1 − m2/2E2, while for small

angles the cosine can be approximated as 1 − θ2/2. In this limit the

term above tends to

2m2

E2

1

(m/E)2 + θ2
. (5.2)

We can see now that for very small angle scattering the theta term can
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be ignored and the expression is of order unity. However, in reality we

always impose an experimental cut on the angle θ, or equivalently on

the transverse momentum of the final state partons, thus avoiding the

behaviour described above.

• Second, by observing the final state protons and measuring their mo-

menta, we can infer the mass of the resonance using simple momentum

conservation. This is impossible in an inclusive situation, because in

this case the proton remnants go undetected down the beam pipe. This

indirect measurement would typically be much more accurate than one

obtained from direct observation of the decay products of X. If X is,

for example, a light Higgs boson2, then it will decay predominantly to a

pair of b jets. The branching ratio of Higgs decays is shown in Fig. 5.2.

Measuring the energy of jets is in general a rather inexact business,

so the availability of an indirect method to measure the energy of the

central resonance is extremely useful. In this way accuracies of O(1%)

can be achieved.

• Ordinarily the Higgs decays to fermions (such as b quarks) are difficult

to observe experimentally due to the large QCD backgrounds. This

is why focus has turned to the γγ channel to search for a light Higgs,

even though the branching ratio for this decay is quite small. The

background problem is alleviated in central exclusive searches due to

2Unless stated otherwise, by ‘Higgs boson’ we mean a standard model Higgs.
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Figure 5.2: The branching ratios of the decay of a standard model Higgs
boson. In the light region, MH . 150 GeV the Higgs decays mainly into bb.

the Jz = 0 selection rule, so that the Higgs coupling to fermions can

be more easily studied.

• Lastly, from the mere observation of a resonance produced in this way,

one can deduce that the C and the P quantum numbers are +1. We

recall here that in the MSSM the various Higgs particles have different

C and P quantum numbers. In inclusive searches, it is difficult at a

hadron collider to get information on the CP structure. One would

ideally need a lepton collider for this purpose.

The only irreducible background to central exclusive production of a light

Higgs boson, which is expected to decay mainly into two b-jets, is the direct
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production of two b-jets via the same mechanism. We can write this as

pp→ p ⊕ ggPP → b b ⊕ p, (5.3)

where the PP superscript indicates that the gluons are in a Jz = 0, colour-

singlet state. This background was considered in Refs. [56, 57, 58, 52]. In

the approximation that the outgoing protons have vanishing transverse mo-

mentum, the leading order background is suppressed by a Jz = 0 selection

rule. It vanishes for massless quarks and is O(m2) when the b quark mass

is retained, neglecting end effects3. The NLO corrections consist of virtual

diagrams contributing to the ggPP → bb process and the real emission of an

extra gluon in the final state, ggPP → bbg. These processes are not expected

to be mass suppressed, and so we can expect large corrections at NLO.

We therefore see that both the real emission (Chapter 3) and loop (Chap-

ter 4) amplitudes presented in this thesis are necessary inputs to a NLO

calculation of the dijet background, as described above.

3For θ & m/E the amplitude squared is O(m2), but for θ . m/E we find it to be O(1).



Chapter 6

Summary

In Chapters 2 and 3 we built on the twistor space inspired methods intro-

duced in [22] and [28]. These new techniques can be broadly classified as on

shell methods. The familiar Feynman diagram expansion uses off shell ob-

jects as building blocks. In contrast, the MHV rules and BCF recursion rela-

tions use on shell lower point amplitudes. This setup has the advantage that

work performed in calculating and simplifying the lower point amplitudes

does not have to be repeated - they are simply fed in to the new calculation.

Also, the use of scalar, gauge invariant objects means the resulting diagrams

are simple - there are no spinor or Lorentz indices. We applied both the

new techniques to QED amplitudes, and showed that simple expressions for

helicity amplitudes can be easily obtained. We then turned our attention to

amplitudes involving massive fermions. In the original papers [22,28] fermion

masses were not included. We built on the work of [31,32] to calculate the 5

102
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parton amplitudes gg → bbg.

Central Exclusive Production (CEP) is an interesting alternative to tra-

ditional avenues for searching for new physics. There are various advantages

to Higgs boson searches in this channel, one such being the leading order

suppression of the dijet background to H → bb. However at NLO there is

no such suppression, and so it is important to ascertain by calculation the

size of the NLO corrections. In Chapter 3 we evaluated the real emission

amplitudes needed for such a calculation, and then in Chapter 4 we pre-

sented the loop amplitude which is responsible for the virtual corrections at

next to leading order. Chapter 5 consisted of a detailed description of this

production mechanism, and of the relevance or our results.



Appendix A

Passarino Veltman

Decomposition

In this appendix we describe the reduction of tensor loop integrals. The

basic procedure was outlined in Chapter 4. Here we present expressions for

all the coefficients. Formulae for the scalar integrals A0, B0, C0 and D0 can

be found elsewhere, for example [43].

A.1 Bubbles

The bubbles are defined as

B0;Bµ;Bµν(p,m1,m2) =

∫
ddk

(2π)d
1; kµ; kµν

[k2 −m2
1] [(k + p)2 −m2

2]
.

104
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We do not encounter higher ranks than 2 in the case of bubbles. We expand

the tensor integrals as follows,

Bµ(p,m1,m2) = pµB1,

Bµν(p,m1,m2) = pµpνB21 + gµνB22.

We have omitted the arguments of the form factors for clarity. They depend

on all possible scalar invariants of the leg momenta and masses. The curly

bracket {. . . } construction is a convenient shorthand for representing the

sum of all possible permutations of different Lorentz indices. So for example

{p1, p2}µν = pµ1p
ν
2 + pµ1p

ν
2.

We find

B1 =
1

2p2

[
A(m1)− A(m2) + (m2

2 −m2
1 − p2)B0

]
(A.1)

B22 =
R02 −R01

d− 1
(A.2)

B21 =
R01 −B22

p2
. (A.3)

with

R01 = fB1/2 + A(m2)/2, (A.4)

R02 = A(m2) +m2
1B0, (A.5)

f = m2
2 −m2

1 − p2. (A.6)
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A.2 Triangles

We will encounter the following tensor triangle integrals,

C0;Cµ;Cµν ;Cµνρ(p1, p2,m1,m2,m3) =

∫
ddk

(2π)d
1; kµ; kµν ; kµνρ

[k2 −m2
1] [(k + p1)2 −m2

2] [(k + p12)2 −m2
3]
.

By Lorentz symmetry, we can express a given tensor integral as a sum of

form factors multiplied by tensors composed of the leg momenta and metric.

Following [44], we define

Cµ = pµ1C1 + pµ2C2,

Cµν = pµ1p
ν
2C21 + pµ2p

ν
1C22 + {p1, p2}µνC23 + gµνC24,

Cµνρ = pµ1p
ν
1p
ρ
1C31 + pµ2p

ν
2p
ρ
2C32

+ {p2, p1, p1}µνρC33 + {p1, p2, p2}µνρC34

+ {p1, g}µνρC35 + {p2, g}µνρC36.

As described in Chapter 4, by contracting the various tensor integrals with

leg momenta and the metric tensor we can obtain a system of simultaneous

equations, which can then be solved for the form factors. The results are as
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follows:

f1 = m2
2 −m2

1 − p2
1

f2 = m2
3 −m2

2 − p2
5 + p2

1

C24 =
1

(d− 2)
[−m2

1C0 + (B0(p2,m2,m3)− f1C11 − f2C12)/2]

R1 =
1

2
[f1C0 +B0(p5,m1,m3)−B0(p2,m2,m3)]

R2 =
1

2
[f2C0 +B0(p1,m1,m2)−B0(p5,m1,m3)]

R3 =
1

2
[f1C11 +B1(p5,m1,m3) +B0(p2,m2,m3)]− C24

R4 =
1

2
[f1C12 +B1(p5,m1,m3)−B1(p2,m2,m3)]

R5 =
1

2
[f2C11 +B1(p1,m1,m2)−B1(p5,m1,m3)]

R6 =
1

2
[f2C12 −B1(p5,m1,m3)]− C24

G2 =

 p2
1 p1 · p2

p2 · p1 p2
2


 C11

C12

 = G−1
2

 R1

R2


 C23

C22

 = G−1
2

 R4

R6


 C21

C23

 = G−1
2

 R3

R5


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Here G2 is a Gram matrix which arises in solving for the form factors.

One of the disadvantages of this method of tensor integral reduction is that

for certain configurations of external momenta the inverse of the Gram ma-

trix diverges. We then find large cancellations between different parts of

the calculation. While this wouldn’t be problem for an entirely analytical

calculation, in practise we always run simulations numerically and the large

cancellations can affect accuracy. For the processes considered in this thesis

this effect is relatively harmless, but it is a problem for calculations with

more external partons . Fortunately there are numerous other techniques for

tensor integral reduction which avoid this issue, and the reader is directed

to [59] for a review of these.

R11 =
1

2
[f1C24 +B22(p5,m1,m3)−B22(p2,m2,m3)]

R15 =
1

2
[f2C24 +B22(p1,m1,m2)−B22(p5,m1,m3)]

R8 =
1

2
[f1C21 +B21(p5,m1,m3)−B0(p2,m2,m3)]− 2C35

R9 =
1

2
[f1C22 +B21(p5,m1,m3)−B21(p2,m2,m3)]

R10 =
1

2
[f1C23 +B21(p1,m1,m3) +B1(p2,m2,m3)]− C36

R12 =
1

2
[f2C21 +B21(p1,m1,m2)−B21(p5,m1,m3)]

R13 =
1

2
[f2C22 −B21(p5,m1,m3)]− 2C36

R14 =
1

2
[f2C23 −B21(p5,m1,m3)]− C35
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 C35

C36

 = G−1
2

 R11

R15

 ,

 C33

C34

 = G−1
2

 R10

R14

 ,

 C31

C33

 = G−1
2

 R8

R12

 ,

 C34

C32

 = G−1
2

 R9

R5

 .

A.3 Boxes

For the boxes matters proceed similarly as for the triangles. We make the

following definition,

D0;Dµ;Dµν ;Dµνρ, Dµνρσ(p1, p2, p3,m1,m2,m3,m4) =

∫
ddk

(2π)d
1; kµ; kµν ; kµνρ; kµνρσ

[k2 −m2
1] [(k + p1)2 −m2

2] [(k + p12)2 −m2
3] [(k + p123)2 −m2

4]
,
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Dµ = pµ1D11 + pµ2D12 + pµ3D13

Dµν = pµ1p
ν
1D21 + pµ2p

ν
2D22 + pµ3p

ν
3D23

+ {p1, p2}µνD24 + {p1, p3}µνD25 + {p2, p3}µνD26 + gµνD27

Dµνρ = pµ1p
ν
1p
ρ
1D31 + pµ2p

ν
2p
ρ
2D32 + pµ3p

ν
3p
ρ
3D33

+ {p2, p1, p1}µνρD34 + {p3, p1, p1}µνρD35 + {p1, p2, p2}µνρD36

+ {p1, p3, p3}µνρD37 + {p3, p2, p2}µνρD38 + {p2, p3, p3}µνρD39

+ {p1, p2, p3}µνρD310 + {p1, g}µνρD311 + {p2, g}µνρD312 + {p3, g}µνρD313

Then we find,

f1 = m2
2 −m2

1 − p2
1

f2 = m2
3 −m2

2 + p2
1 − p2

5

f3 = m2
4 −m2

3 − p2
4 + p2

5

R20 =
1

2
[f1D0 + C0(p5, p3,m1,m3,m4)− C0(p2, p3,m2,m3,m4)]

R21 =
1

2
[f2D0 + C0(p1, p2 + p3,m1,m2,m4)− C0(p5, p3,m1,m3,m4)]

R21 =
1

2
[f2D0 + C0(p1, p2,m1,m2,m3)− C0(p1, p2 + p3,m1,m2,m4)]


D11

D12

D13

 = G−1
3


R20

R21

R22

 .
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This time the Gram matrix is 3× 3,

G3 =


p2

1 p1 · p2 p1 · p3

p2 · p1 p2
2 p2 · p3

p3 · p1 p3 · p2 p2
3

.



D27 =
1

(d− 3)
[−m2

1D0 − (f1D11 + f2D12 + f3D13 − C0(p2, p3,m2,m3,m4))/2]

R30 =
1

2
[f1D11 + C11(p5, p3,m1,m3,m4) + C0(p2, p3,m2,m3,m4)]−D27

R33 =
1

2
[f1D12 + C11(p5, p3,m1,m2,m4)− C11(p2, p3,m2,m3,m4)]]

R36 =
1

2
[f1D13 + C12(p5, p3,m1,m3,m4)− C12(p2, p3,m2,m3,m4)]

R31 =
1

2
[f2D11 + C11(p1, p2 + p3,m1,m2,m4)− C11(p5, p3,m1,m3,m4)]

R34 =
1

2
[f2D12 + C12(p1, p2 + p3,m1,m2,m4)− C11(p5, p3,m1,m3,m4)]−D27

R37 =
1

2
[f2D13 + C12(p1, p2 + p3,m1,m2,m4)− C12(p5, p3,m1,m3,m4)]

R32 =
1

2
[f3D11 + C11(p1, p2,m1,m2,m3)− C11(p1, p2 + p3,m1,m2,m4)]

R35 =
1

2
[f3D12 + C12(p1, p2,m1,m2,m3)]− C12(p1, p2 + p3,m1,m2,m4)]

R38 =
1

2
[f3D13 − C12(p1, p2 + p3,m1,m2,m4)]−D27

R39 = −m2
1D0 + C0(p2, p3,m2,m3,m4)
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
D21

D24

D25

 = G−1
3


R30

R31

R32

 .


D24

D22

D26

 = G−1
3


R33

R34

R35

 .


D25

D26

D23

 = G−1
3


R36

R37

R38

 .

One point to note is that some of the form factors are overdetermined,

in that we find there is more than one possible expression for them in terms

of Gram matrix elements and lower rank form factors. This provides a very

useful check on the consistency of the calculation, for one must of course get

the same answer whichever alternative is used.

D311 =
1

2
m2

1D11 − 1

4
[f1D21 + f2D24 + f3D25 + C0(p2, p3,m2,m3,m4)]

D312 =
1

2
m2

1D12 − 1

4
[f1D24 + f2D22 + f3D26 − C11(p2, p3,m2,m3,m4)]

D313 =
1

2
m2

1D13 − 1

4
[f1D25 + f2D26 + f3D23 − C12(p2, p3,m2,m3,m4)]
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R41 =
1

2
[f1D21 − C0(p2, p3,m2,m3,m4) + C21(p5, p3,m1,m3,m4)]− 2D311

R42 =
1

2
[f2D21 − C21(p5, p3,m1,m3,m4) + C21(p1, p2 + p3,m1,m2,m4)]

R43 =
1

2
[f3D21 − C21(p1, p2 + p3,m1,m2,m4) + C21(p1, p2,m1,m2,m3)]

R44 =
1

2
[f1D24 + C21(p5, p3,m1,m3,m4) + C11(p2, p3,m2,m3,m4)]−D312

R50 =
1

2
[f1D22 − C21(p2, p3,m2,m3,m4) + C21(p5, p3,m1,m3,m4)]

R56 =
1

2
[f1D23 − C22(p2, p3,m2,m3,m4) + C22(p5, p3,m1,m3,m4)]

R45 =
1

2
[f2D24 − C21(p5, p3,m1,m3,m4) + C23(p1, p2 + p3,m1,m2,m4)]−D311

R51 =
1

2
[f2D22 − C21(p5, p3,m1,m3,m4) + C22(p1, p2 + p3,m1,m2,m4)]− 2D312

R57 =
1

2
[f2D23 − C22(p5, p3,m1,m3,m4) + C22(p1, p2 + p3,m1,m2,m4)]

R46 =
1

2
[f3D24 − C23(p1, p2 + p3,m1,m2,m4) + C23(p1, p2,m1,m2,m3)]

R52 =
1

2
[f3D22 − C22(p1, p2 + p3,m1,m2,m4) + C22(p1, p2,m1,m2,m3)]

R58 =
1

2
[f3D23 − C22(p1, p2 + p3,m1,m2,m4)]−D313


D31

D34

D35

 = G−1
3


R41

R42

R43

 .
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
D36

D32

D38

 = G−1
3


R50

R51

R52

 .


D37

D39

D33

 = G−1
3


R56

R57

R58

 .


D34

D36

D310

 = G−1
3


R44

R45

R46

 .

The results so far presented for the form factors were given in the original

paper of Passarino and Veltman, and suffice for numerical evaluation of all

the necessary form factors. We provide in addition further expressions for

some of the form factors, which, as we have explained already, is useful for
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the purposes of running self-consistency checks.

Q1 =
1

2
[f1D25 + C23(p5, p3,m1,m3,m4) + C12(p2, p3,m2,m3,m4)]−D313

Q2 =
1

2
[f2D25 + C23(p1, p2 + p3,m1,m2,m4)− C23(p5, p3,m1,m3,m4)]

Q3 =
1

2
[f3D25 − C23(p1, p2 + p3,m1,m2,m4)]−D311

Q4 =
1

2
[f1D26 + C23(p5, p3,m1,m3,m4)− C23(p2, p3,m2,m3,m4)]

Q5 =
1

2
[f2D26 + C22(p1, p2 + p3,m1,m2,m4)− C23(p5, p3,m1,m3,m4)]−D313

Q6 =
1

2
[f3D26 − C22(p1, p2 + p3,m1,m2,m4)]−D312


D35

D310

D37

 = G−1
3


Q1

Q2

Q3

 .


D10

D8

D9

 = G−1
3


Q4

Q5

Q6

 .
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