QCD at LHC

Stefan Tapprogge

HIP Helsinki

I PPP Workshop on 'Multiparticle Production in QCD jets'

Durham, December 12-15, 2001

- Episode I : 'The baseline'
 - ➡ The LHC, ATLAS and CMS
 - QCD at the LHC: why, what and how?
 - Physics topics
 - ${\bf O}$ Jets: partons and α_s determination
 - Drell-Yan and W/Z: partons
 - Direct Photons: partons and α_s determination
 - BFKL signatures
- Episode II: 'Beyond the baseline'
 - Forward Physics
 - The TOTEM experiment
 - Physics topics
 - Exclusive (and non-exclusive) central production
 - Two photon physics
 - Forward production of hard probes
 - Scenarios for LHC upgrades
 - Outlook

The LHC and its parameters

ATLAS main /electronics cavern (UX15/USA15)

Paint 1 - UX15 - General view of excavation works - November 01, 2001 - CERN SEC

Stefan Tapprogge, HIP Helsinki

Point I - USAIS finishing works - August 88, 2001 - CEBN ST-CE

String 2 / Pre-series LHC dipole

• As of January 2001 (watch this space for updates ... !)

- Apr.-Sep. 2004 sector test with pilot beam
- Feb. 2006 first beam
- Apr. 2006 first collisions

luminosity of $5-10 * 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

- May-July 2006 shutdown
- Aug. 06 Feb. 07 physics run

Iuminosity of $2 * 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ leading to $L_{\text{integrated}} = 10 \text{ fb}^{-1}$

• Mar. 07 - Apr. 07 heavy ion run

From inside out:

- Tracking
 Silicon pixel
 - Silicon strip
- calorimeters
 - PbWO₄
 crystals for
 e.m. part
 - Scintillator
 based for
 hadr. part
 - 4T solenoid
 - return yoke instrumented with muon chambers

- From inside out:
 - Inner Detector
 - Silicon pixel and strip
 - Transition radiation tracker (TRT)
 - 2T solenoid
 - e.m. and hadronic calorimeters
 - LAr and scintillator tile based
- air core toroids and muon detectors

- not shown
 - trigger and data acquisition
 - software (offline reconstruction)

ATLAS: towards reality ...

Coil winding machine for solenoid

CMS HCAL half barrel (absorbers)

- Detectors have been optimized for high p_T signatures
 - Needed for Higgs discovery and measurement
 - Search for new physics beyond the Standard Model
- precision measurement of e, g, m, t, b-jets:
 - **t**racking: |η| < 2.5
 - fine granularity calorimeters: $|\eta| < 2.5$
 - The muon system: $|\eta| < 2.7$
- measurement of jets, missing transverse energy
 - ⇒ calorimeter coverage extended up to $|\eta| < 5$
- ingredients for precision measurements
 - knowledge of the energy scale
 - for leptons (electrons and muons): aim is 0.1%
 - for jets (b-quark jets and light quark jets) aim is 1%
 - knowledge of the absolute luminosity
 - normalize to parton-parton luminosity ? (e.g. W production)

	ATLAS	CMS
MAGNET (S)	Air-core toroids + solenoid in inner cavity Calorimeters outside field 4 magnets	Solenoid Calorimeters inside field 1 magnet
TRACKER	Si pixel + strips TRD \rightarrow particle identification B=2T $\sigma/p_T \sim 5x10^{-4} p_T \oplus 0.01$	Si pixel + strips No particle identification B=4T $\sigma/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$
EM CALO	Pb - liquid argon σ/E ~ 10%/√E uniform longitudinal segmentation	PbW0 ₄ crystals σ/E ~ 2-5%/√E no longitudinal segm.
HAD CALO	Fe-scintillator + Cu-liquid argon (10 λ) $\sigma/E \sim 50\%/\sqrt{E \oplus 0.03}$	Cu-scint. (> 5.8 λ + catcher) $\sigma/E \sim 65\%/\sqrt{E \oplus 0.05}$
MUON	Air $\rightarrow \sigma/p_T \sim 7 \%$ at 1 TeV standalone	Fe $\rightarrow \sigma/p_T \sim 5\%$ at 1 TeV combining with tracker

- QCD is one of the least well tested parts of the Standard Model
 - interest 'per se' (new phenomena at energy frontier?)
 - precision measurements of QCD observables
 - \odot strong coupling constant $\alpha_{s'}$ parton distribution functions
 - and all the other 'tests of QCD' ...
- Knowledge of background (and signal) processes essential for searches and precision measurements
 - QCD controls production of (almost) everything
 - higher order corrections difficult to calculate
 - improve modelling of Monte Carlo generators
 - Quantify (and improve) uncertainties due to knowledge of parton distribution functions

the strong coupling constant (up to O(TeV) ?)

• using jet production (jet shape), photon-to-jet ratio, ...

- parton densities of the proton
 - small x_{Bjorken} values (for large Q² !)
- Study QCD dynamics in new kinematic regions

• BFKL signatures

• structure of minimum bias events

• Understand jet production at small E_T values (jet veto!)

- diffractive scattering
 - LHC as a Pomeron-Pomeron collider with $\sqrt{s} = O(TeV)$
- exclusive production of central states

• precise (model independent) mass measurements

- heavy ion collisions (not discussed here)
 - Including p-A, understand nuclear structure

- High p_T signatures
 - jets
 - photons
 - W/Z bosons and Drell-Yan o electrons, muons
 - heavy flavour production
 - b-quark jets, (B-hadron studies)
- other signatures
 - minimum bias events
 - leading protons

 elastic/diffractive scattering
 - rapidity gaps
 tools for new physics searches
 - event multiplicity
- huge range of cross-sections
 - need for efficient online selection (trigger)

(qu)

ь

Ellis, Sterling & Webber "QCD and Collider Physics"

Jets and partons

- Access to smallest scales (highest E_T)
 - \bigcirc due to large cross-section (wrt to γ ,...)
- uncertainties
 - how to best define a jet
 - CONE vs. k_T algorithm(s)
 - e.g. usage for jet shape measurements
 - energy scale for jets
 - e.m. and hadronic showers components
 - \circ extrapolation to highest E_T necessary
 - limited reach in E_T of in-situ calibration
 - ⇒ effects of the underlying event (low E_T)
- parton densities from jet production
 - access to largest kinematic range o due to largest cross-sections
 - very high Q² possible
 - BUT: mixture between quarks and gluons

Stefan Tapprogge, HIP Helsinki

LHC will cover the region down to $x_{Bjorken} \approx 10^{-4}$

c large Q^2 values: $Q^2 > 10^3 GeV^2$

• CDF di-jet results:

- Study the variation in the shape of the inclusive jet cross-section
- ratio MRSAP, E_{CM} = 14 TeV, -1.5 < η_{iet} < 1.5 1.4 • $\sigma_{\text{norm}} (E_T) =$ $\lambda = 564 \text{ MeV}$ 1.3 458 MeV $d^2\sigma/dE_T d\eta/\sigma_{jettot}$ 1.2 1.1 normalized 1 0.9 Shows 0.8 dependence 0.7 500 1000 1500 2000 2500 3000 $\begin{array}{cc} 3500 & 40 \\ E_T(GeV) \end{array}$ 4000 on Λ_{OCD} value
- Parameterise the normalised cross-section as
 - $\Box \sigma_{norm} = a(E_T) + b(E_T) \alpha_s(E_T)$
- Determine the coefficients a and b using NLO calculations
 - will depend on parton distributions
- Unfold $\alpha_s(E_T)$ from a 'measured' cross-section
 - See plots on the right for consistency check

- Extraction of $\alpha_{S}(E_{T})$
 - expected accuracy in total: about 10%
 - Dominant sources: missing higher order corrections
 - Pdf and parametrisation uncertainties: about 3 %
 - Should allow to check on "running" of α_s up to O(TeV)
 - experimental errors not yet taken into account
 - Jet energy scale knowledge etc.
- Reduce dependence on pdf's
 - By making a combined fit of pdf's and α_s?

H. Stenzel, ATL-PHYS-2001-003

- Final states with electrons or muons
 - clean signature (and large cross section)
 - but for electrons
 - background from jets (esp. in case of W production)
- features of W production
 - different rapidity distribution for W⁺/W⁻ bosons (1)
 - still visible in pseudo-rapidity of the charged lepton from W decay (2)
 - use to determine parton densities (quarks)
 - use W's for parton-parton luminosity?
 - Measure W p_T distrib. (needed for m_w)
 - Rapidity distribution of W^{+/-} bosons
 - Pseudo-rapidity distribution of leptons from W^{+/-}

• electron energy resolution vs. η (E_T = 20 and 50 GeV)

• π efficiency vs. $|\eta|$ for two electron efficiencies (TRT)

• jet rejection vs. electron efficiency ($E_T = 20 \text{ GeV}$)

• Aim: electro-magnetic scale to be known to 0.1%, using e.g.

- Shigh energy: Z → e⁺e⁻ and E/p ratio of electrons
- Solution low energy: J/Ψ → e⁺e⁻ and Y → e⁺e⁻

• A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne in Eur. Phys. J. C18, 117 (2000)

- Clear need for NLO
- NNLO corrections smaller than NLO
 - NLO due to soft gluon emission

A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne in Eur. Phys. J. C14, 133 (2000)

W and Z Cross Sections: LHC

- $\sigma_{W/Z}$ known to 4% for LHC

$\bigotimes sin^2 \mathbf{q}_{eff}^{lep}$ from A_{FB} in $Z \rightarrow e^+e^-$

- Forward-backward asymmetry in Z decays
 - ⇒ LEP: $\sin^2\theta_{eff}$ to 2.3*10⁻⁴ accuracy
 - **Contermine** $\sin^2\theta_{eff}$ between the sin²
 - Large number of Z being produced
- Size of the asymmetry increases with increasing rapidity of the Z
 - ⇒ Gain in sensitivity if forward $(|\eta|>2.5)$ electron tagging possible (modest rejection against jets: ≈ 50 - 100)
 - In combination with Z mass constraint and a well defined (central) electron
 - Statistical accuracy of 1.4*10⁻⁴ possible
 - Needs precise knowledge of quark/antiquark densities

• $|\eta| < 2.5$: 5*10⁻⁴ < x < 0.07 • $|\eta| < 4.9$: 4*10⁻⁵ < x < 0.8

- LO: direct access to g distribution
 - two partonic processes contribute
 o cf. π⁰ production (via fragmentation)
- Caveat: γs are produced as well via fragmentation
 - all partonic processes contribute
- Apply isolation criteria
 - Needed experimentally to improve S:B ratio
 - Suppress the fragmentation contribution
 - Being essentially a collinear process
- Fixed target data and Tevatron data
 - **as a function of** $\mathbf{x}_{T} = 2 \mathbf{p}_{T} / \mathbf{\ddot{0}s}$
 - Disagreement between data and theory (NLO)
 - Needs to be understood!

- Rejection against $\pi^{0'}$ s (for $E_T(\gamma) = 50$ GeV and 90% eff.)
 - ♥ Without (●) and with (□) electronic and pile-up noise (design luminosity)
- Photon reconstruction efficiency vs. η (low luminosity)
 - ⇒ for unconverted and converted photons (from $H \rightarrow \gamma \gamma$)
- ${\ensuremath{ \bullet}}$ Jet rejection vs. photon E_{T}
 - for the photon efficiency shown in ②
 - Ratio of inclusive photon cross-section to inclusive jet cross-section is about 10^{-3} (for $p_T > 40$ GeV)

• I solated photon (photon + jet) cross-section vs. $p_{T\gamma}(x_{\gamma i})$

⇒ R = $(\sigma_0 - \sigma)/(\sigma_0 + \sigma)$ and $x_{\gamma j} = (p_{T\gamma} \exp(\eta_{\gamma}) + p_{Tj} \exp(\eta_j))/\sqrt{s}$

- Statistics for 100 fb⁻¹ offer potential to distinguish various pdf sets available today (better constraints when using γ + jet production)
 - $\mathbf{D} \mathbf{p}_{T\gamma}$ gives no information on the shape of the gluon distribution
 - x_{yi} should allow direct unfolding from the data

Direct Photon Production at LHC

- Cross-section for single photon production
 - ⇒ Huge statistics expected, e.g. $2*10^4$ events with $p_T(\gamma) > 500$ GeV o for 1 year at low luminosity
 - Kinematics
 - $\circ x_{min} = 2E_T^{min}/\sqrt{s} e^{-\eta(max)}$

$$O X_{max} = 2E_T^{max}/\sqrt{s} e^{\eta(max)}$$

⇒ With $|\eta| < 2.5$ ⇒ $E_T > 40 \text{ GeV}: x > 5*10^{-4}$ ⇒ $E_T < 500 \text{ GeV}: x < 0.2$

- Determination of the strong coupling constant
 - Exploratory study by S. Frixione (CERN SM Workshop 1999):

$$\Rightarrow \aleph(p_{T}) = (d\sigma_{j}/dp_{Tj}) / (d\sigma_{\gamma}/dp_{T\gamma})$$

- ratio ℵ of the single-inclusive jet cross-section to the single inclusive photon cross-section
- Proportional to α_s (at leading order), dependencies on the parton distributions cancel to first order

$$L_{ij}(M) = \frac{1}{s} \int_{\tau}^{1} \frac{dx}{x} q_i(x, M^2) q_j(\tau/x, M^2)$$

J. Huston et al., Phys.Rev.D58, 114034, 1998

S. Alekhin, Phys.Rev.D63, 094022, 2001

- Uncertainty to produce a system of mass M / $\sqrt{(\tau s)}$
 - Known to better than 10% 0 in most regions
 - E.g. the ones relevant for Higgs production

- DGLAP: summation of log(Q²)ⁿ terms
 - **\bigcirc** Determines Q2 evolution of F_2
- BFKL: summation of log(1/x)ⁿ terms
 - \bigcirc Determines x dependence of F_2
 - BFKL Kernel at leading order \rightarrow xg(x) ~ x^{-0.5}
 - BUT: large NLO corrections \rightarrow xg(x) ~ x^{-0.2}
- CCFM: evolution in two scales
- How to detect the presence of BFKL effects (and more, e.g. saturation)?

• Inclusive measurements (e.g. F₂) not conclusive

- Study more exclusive processes
 - Di-jet production at large rapidity separation
 - "Mueller-Navelet jets"

○ d² σ /d∆y/d∆ ϕ (pp → j+X+j), where ∆y=∆y(j₁,j₂) and ∆ ϕ =∆ ϕ (j₁,j₂)

• Large effect in hard subprocess cross-section is reduced due to folding with parton densities

 $d\sigma/dy_1dy_2$ (μb)

L.H. Orr and W.J. Stirling, Phys. Lett. B436, 372 (1998) 102 $p_T>20 \text{ GeV}$ BFKL MC: $y_1 = -y_2 = \Delta/2$ Tevatron, $p_T > 20$ GeV 0.8 LHC, $p_T > 50$ GeV 101 LHC, $p_T > 20$ GeV <cos \Delta > 0.6 100 p_T>50 Ge 0.4 qqH, LHC: 10^{-1} $p_T > 50 \text{ GeV}$ > 20 GeV -- Naive BFKL 0.2 10-2 QCD LO -BFKL MC 10^{-3} 0.0 2 4 8 10 2 8 10 Δy

Study azimuthal de-correlation

 Δy

between the two jets

- LHC detectors (baseline design) offer a range of -5 < y < 5
 - Experimental issue: how low in E_{τ} can one trigger such events? \bigcirc Forward energy/jet trigger will be available up to $|\eta|{=}5$
 - Other processes: W+jet+jet, bb+bb (trigger restricted to $|\eta| < 2.5$) • Use of Z+jet+jet might allow access to larger y (one loose electron $|\eta| < 5 - cf$. $sin^2 \theta_{eff}$ lep)

- CMS and ATLAS have been optimized for high $p_{\rm T}$ signatures for discovery physics
 - Will allow precise QCD related measurements without additional resources
 - A detailed understanding of QCD will be of utmost importance for discovery and measurements of new physics
 Do not want to rely on Monte Carlo modelling of physics processes!
- LHC will study the strong interaction in an as yet uncovered kinematical region
 - Strong coupling constant up to scales of O(TeV)
 - Partonic structure of the proton at very large Q² and low x
 - And many more related publications (cf. Tevatron results)
- But this is not the end of the story
 - In order to exploit the new energy frontier at its most, an extension of the general purpose 4p detectors is necessary
 - Stay tuned for Episode II of the saga on "QCD at LHC" ...

Episode II: 'Beyond the baseline'

- CMS and ATLAS have been designed and optimized for discovery physics
 - ⇒ high p_T signatures in central region ($|\eta|$ <5)
- Is there anything else that should / can be done at LHC?
 - ➡ YES: Forward Physics
 - Not covered by the baseline design of ATLAS and CMS
 - ${\scriptstyle \bigcirc}$ Diffractive processes contribute to a large part of σ_{tot}
 - Signatures:
 - ${\rm \circ}$ leading protons, extended coverage for rapidity gaps, particle detection beyond $|\eta|$ = 5
 - Integration with central detector mandatory for optimal exploitation
- Dedicated experiment foreseen: TOTEM

- total cross-section
- elastic scattering
 - ⇒ d σ /d|t|, σ_{el} / σ_{total} , ρ parameter
- diffractive scattering (single, central, double)
 - differential cross-sections
 - \circ e.g. d² σ /dtdM_X for single diffraction
- minimum bias event structure
- properties of rapidity gaps
 - survival probability, ...
 - rapidity gaps as tools for new physics
- hard diffractive scattering
 - **\bigcirc** combine e.g. leading proton with high p_T jets
- exclusive production (pp \rightarrow p + X + p)
 - ➡ Of Higgs boson, SUSY particles, ...
 - Measure missing mass precisely ?

- Forward direction ($|\eta|$ >5)
 - few particles produced, however with large energies
 - Small transverse momenta correspond to large energies

- Technical Proposal submitted in
 - approved to work towards Technical Design Report
 - To be installed in IP5 (CMS)
- Physics aims
 - ⇒ Precise measurement of σ_{tot} ($\Delta \sigma$ = 1 mb promised)
 - Elastic scattering pp → pp
 small -t needed for σ_{tot} !
 o dedicated machine optics
 - Inclusive diffraction pp → p X
- Detector components
 - Leading proton detection using Roman Pots
 - ⇒ Inelastic events using telescopes covering 3 < $|\eta|$ < 7
- Most measurements to be performed in (short) dedicated runs with high β* optics
 - How to profit during normal LHC running?

10-3

Coulomb

Real part

Very-high 6

~ 20 km

t-scale

Physics

aims

β-scale

Medium B

β* - 20 m

GeV²

10-1

Diffraction peak

Total cross section

High B

B* = 1000 m

Stefan Tapprogge, HIP Helsinki

- Positions previously inside cryostats in the insertion are now available as warm space (easier to instrument)
 - Between Q5 and Q6 between Q6 and Q7
 - **TOTEM** (TP) positions (for IP5 CMS)

(Hard) Diffractive Scattering

- how are they related?
- wealth of data from HERA and Tevatron
- signatures (for selection)
 - rapidity gap or leading proton
 - + hard scattering (jets, W/Z, ...)
 - smaller transverse momenta than in genuine pp collisions
 - probing partonic structure

central diffraction

 LHC as a Pomeron-Pomeron collider with √s up to O(TeV)
 o gluon jet factory

Stefan Tapprogge, HIP Helsinki

р

Exclusive central production

- The basic idea
 - Mass of system X determined from the two measured protons
 - \bigcirc MM² = $\mathbf{x}_1 \mathbf{x}_2 \mathbf{s}_2$

• E.g.: MM = 140 GeV $\rightarrow \xi = 10^{-2}$

- V.A. Khoze, A.D. Martin, M.G. Ryskin
 hep-ph/0111078
- Factorize cross-section into
 - ⇒ Luminosity for $pp \rightarrow p + gg + p$
 - Sub-process cross-section gg → X
- Examples for cross-sections
 - ⇒ Higgs (M_H=120 GeV) σ (pp → p+H+p) = 3 fb
 - S:B ratio > 15 (ΔM/250 MeV)
 - tt production

• Near threshold: $\sigma(pp \rightarrow p+tt+p) = 0.1 \text{ fb}$

- ⇒ sparticle production ($M_{sparticle} = 250 \text{ GeV}$)
 - Near threshold: $\sigma(pp \rightarrow p+gg+p) = 0.15 \text{ fb}$ $\sigma(pp \rightarrow p+qq+p) = 0.04 \text{ fb}$

(a) exclusive

(b) inclusive

(c) inelastic \mathbb{PP}

- Truly exclusive production would allow to reconstruct the mass M from the two scattered protons
 - Need a precise measurement of the scattered p momentum
- Inclusive (inelastic Pom-Pom) does no longer give this kinematic reconstruction
 - production of additional particles (besides central system)
 o either down the beampipe or in the central detector

 X_1

- K. Piotrzkowski, Phys.Rev.D63, 071502, 2001
- Produce system X via two photon fusion with a mass W given by W² = x₁ x₂ s
- Distinguish $\gamma\gamma$ processes from Pom-Pom via the p_T of the produced system

Low mass Drell-Yan (cont'd)

 Experimental challenge

- How to identify and measure muons at |η|>5?
- Necessary to access region of parton saturation

Basic principle: measurement inside beam pipe
 minimise effects of particle interactions in material
 allow for closest approach of fiducial sensor area to beam

need to comply with LHC machine requirements

- vacuum compatibility, additional impedance (RF) contribution, ...
- need to operate in high radiation environment
- Major features of the µstation design
 - compact, lightweight device integrated with beam pipe
 - careful choice of all material to be used (vacuum!)
 - precision movement of sensor planes
 - reliability of operation (access is difficult)
 - Si based sensor (strip or pixel technology)

- LHC machine
 - $rightharpoonup \sqrt{s} = 8$ TeV possible without modifications
 - ⇒ \sqrt{s} = 2 TeV possible in principle
- Physics interest
 - ⇒ $\sigma_{tot}(pp)$, compare to $\sigma_{tot}(p\overline{p})$
 - ➡ Compare W, Z, jet (etc.) production in pp to $p\overline{p}$
 - \overline{q} is valence quark for \overline{p}
 - Study energy dependence of di-jet production at large rapidities (BFKL dynamics?)
 - Study energy dependence of rapidity gap processes
 Diffractive phenomena
- Tevatron has done this already: 630 vs. 1800 GeV

- luminosity upgrade (SLHC scenario)
 - increase proton intensity in bunches
 - \circ new focusing quadrupoles (larger aperture, lower β^*)
 - reduce bunch spacing: 12.5 ns
 - **all together:** $L = 5 \times 10^{34} 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$
 - part of it should be achievable with present machine design
- energy upgrade ?
 - ⇒ present technology: $B_{dipole} \le 11 T \implies \sqrt{s} \le 18 \text{ TeV}$ LHC dipole design (B ≤ 9 T) $\implies \sqrt{s} \le 15 \text{ TeV}$
 - first industrial pre-series dipole reached 9 T without quench
 - synchrotron radiation will become problematic
 - beam screening capabilities limit to field less than 10.5 T?
 - optimisation and R&D need to be done
 - \bigcirc to see impact on physics potential: study $\sqrt{s} = 28 \text{ TeV}$

• SLHC scenario

- mass reach increases by about 20% 30% ("for free")
- however, to fully benefit from increased statistics
 - e.g. for Higgs and SUSY precision measurements
 - o a fully functional detector needed
 - with the planned ATLAS/CMS performance, e.g. for lepton-ID, btagging
 - Needs R&D effort to start soon, major upgrade would be for the tracking detectors
- larger center-of-mass energy
 - preferred option if nature has chosen a 'heavy' mode for new physics
 - feasibility of significant 'jump' in energy unclear
 - ATLAS and CMS would retain their capabilities

- QCD is a challenging and interesting topic at the LHC
 - Not always given the necessary attention
 - So far, but will definitely change once the first data arrives
- Precision measurements at the highest energies
 - measurements of parton densities from a variety of processes (partially very clean signatures):
 - jet production at highest $E_T \implies$ parton densities (quarks and gluons)
 - direct photon production \Rightarrow parton densities (gluons)
 - Drell-Yan, W and Z production \Rightarrow parton densities (quarks)
 - measurement of α_s over a wide range of scales (up to O(TeV))
 o from jet rates (and/or jet shapes, σ(photon)/σ(jet), ... ?)
 - In order to reach really low x values (10⁻⁶ 10⁻⁵), a coherent extension in the forward region (beyond |η|=5) is mandatory
- Need to increase the awareness in the LHC experimental community
 - In order to get a forward extension of at least one experiment!
 - To fully exploit the physics potential of the LHC