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1 Introduction

In this course, we will explore some of the tools necessary for attacking the fundamental questions of

elementary particle physics. These questions include:

• What fundamental particles is everything made out of?

• How do the particles interact with each other?

• What principles underlie the answers to these questions?

• How can we use this information to predict and interpret the results of experiments?

The Standard Model of particle physics proposes some answers to these questions. Although it is highly

doubtful that the Standard Model will survive intact beyond this decade, it is the benchmark against

which future theories will be compared. Furthermore, it is highly likely that the new physics to be

uncovered at the CERN Large Hadron Collider (LHC) can be described using the same set of tools.

This Introduction contains a brief outline of the known fundamental particle content of the Standard

Model, for purposes of orientation. These and many other experimental results about elementary

particles can be found in the Review of Particle Properties, hereafter known as the RPP, authored

by the Particle Data Group, and in its pocket-sized abridged form, the Particle Physics Booklet. The

current edition of the RPP was published as K. Nakamura et al. (Particle Data Group), J. Phys. G

37, 075021 (2010), and is about the size of a telephone book directory for a city of 50,000 people. It

is updated and republished every even-numbered year. An always-up-to-date version is available on-

line, at http://pdg.lbl.gov, and it is usually considered the definitive source for elementary particle

physics data and analysis. Each result is referenced according to the experiments that provided it.

Background theoretical material needed for interpreting the results is also included. Copies can be

ordered for free from their website.

1.1 Fundamental forces

The known interaction forces in the Standard Model (besides the universal attraction of gravity) are the

electromagnetic force, the weak nuclear force, and the strong nuclear force. These forces are mediated

by the spin-1 (vector) bosons listed in Table 1:

Boson Charge Mass (GeV/c2) Width (GeV/c2) Lifetime (sec) Force

photon γ 0 0 0 ∞ EM

W± ±1 80.399 ± 0.023 2.085 ± 0.042 3.14× 10−25 weak

Z0 0 91.1876 ± 0.0021 2.4952 ± 0.0023 2.64× 10−25 weak

gluon g 0 “0” strong

Table 1: The fundamental vector bosons of the Standard Model.
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The photon is the mediator of the electromagnetic force, while the W± and Z0 bosons mediate the

weak nuclear force, which is seen primarily in decays and in neutrino interactions. The W+ and W−

bosons are antiparticles of each other, so they have exactly the some mass and lifetime. The gluon has

an exact 8-fold degeneracy due to a degree of freedom known as “color”. Color is the charge associated

with the strong nuclear force. Particles that carry net color charges are always confined by the strong

nuclear force, meaning that they can only exist in bound states, Therefore, no value is listed for the

gluon lifetime, and the entry “0” for its mass is meant to indicate only that the classical wave equation

for it has the same character as that of the photon. Although the fundamental spin-1 bosons are often

called force carriers, that is not their only role, since they are particles in their own right.

1.2 Resonances, widths, and lifetimes

Table 1 also includes information about the width Γ of the W and Z particle resonances, measured in

units of mass, GeV/c2. In general, resonances can be described by a relativistic Breit-Wigner lineshape,

which gives the probability for the kinematic mass reconstructed from the production and decay of the

particle to have a particular value M , in the idealized limit of perfect detector resolution and an isolated

state. For a particle of mass m, the probability is:

P (M) =
f(M)

(M2 −m2)2 + m2Γ(M)2
, (1.1)

where f(M) and Γ(M) are functions that usually vary slowly over the resonance region M ≈ m, and

thus can be treated as constants. The resonance width Γ ≡ Γ(m) is equivalent to the mean lifetime,

which appears in the next column of Table 1; they are related by

τ (in seconds) = (6.58212 × 10−25)/[Γ (in GeV/c2)]. (1.2)

The RPP lists the mean lifetime τ for some particles, and the width Γ for others. Actually, the

Standard Model of particle physics predicts the width of the W boson far more accurately than the

experimentally measured width indicated in Table 1. The predicted width, with uncertainties from

input parameters, is ΓW = 2.091 ± 0.002 GeV/c2.

1.3 Leptons and quarks

The remaining known indivisible constituents of matter are spin-1/2 fermions, known as leptons (those

without strong nuclear interactions) and quarks (those with strong nuclear interactions). All experi-

mental tests are consistent with the proposition that these particles have no substructure. The leptons

are listed in Table 2. They consist of negatively charged electrons, muons, and taus, and weakly inter-

acting neutrinos. There is now good evidence (from experiments that measure oscillations of neutrinos

produced by the sun and in cosmic rays) that the neutrinos have non-zero masses, but their absolute

values are not known except for upper bounds as shown. The quarks come in 6 types, known as

“flavors”, listed in Table 3.
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Lepton Charge Mass (GeV/c2) Mean Lifetime (sec)

electron e− −1 5.10998910(13) × 10−4 ∞
νe 0 < 2× 10−9

muon µ− −1 0.105658367(4) 2.197 × 10−6

νµ 0 < 1.9× 10−4

tau τ− −1 1.77682(16) 2.91 × 10−13

ντ 0 < 0.018

Table 2: The leptons of the Standard Model.

Quark Charge Mass (GeV/c2)

down d −1/3 4.1× 10−3 to 5.8× 10−3

up u 2/3 1.7× 10−3 to 3.3× 10−3

strange s −1/3 0.08 to 0.13

charm c 2/3 1.47 to 1.83

bottom b −1/3 4.7 to 5.0

top t 2/3 173.1 ± 1.3

Table 3: The quarks of the Standard Model.

The fermions listed in Tables 2 and 3 are often considered as divided into families, or generations.

The first family is e−, νe, d, u, the second is µ−, νµ, s, c, and the third is τ−, ντ , b, t. The masses of

the fermions of a given charge increases with the family. The weak interactions mediated by W±

bosons can change quarks of one family into those of another, but it is an experimental fact that

these family-changing reactions are highly suppressed. All of the fermions listed above also have

corresponding antiparticles, with the opposite charge and color, and the same mass and spin. The

antileptons are positively charged e+, µ+, τ+ and antineutrinos νe, νµ, ντ . For each quark, there is

an antiquark (d, u, s, c, b, t) with the same mass but the opposite charge. Antiquarks carry anticolor

(anti-red, anti-blue, or anti-green).

The masses of the five lightest quarks (d, u, s, c, b) are somewhat uncertain, and even the definition

of the mass of a quark is subject to technical difficulties and ambiguities. This is related to the fact

that quarks exist only in colorless bound states, called hadrons, due to the confining nature of the

strong force. A colorless bound state can be formed either from three quarks (a baryon), or from three

antiquarks (an anti-baryon), or from a quark with a given color and an antiquark with the corresponding

anti-color (a meson). All baryons are fermions with half-integer spin, and all mesons are bosons with

integer spin. The quark mass values shown in Table 3 correspond to particular technical definitions

of quark mass used by the RPP (I’ve chosen to quote the MS masses for u, d, s, and pole masses for

c, b, t), but other definitions give quite different values. The lifetimes of the d, u, s, c, b quarks are also

fuzzy, and are best described in terms of the hadrons in which they live. In contrast, the top quark
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mass is relatively well-known, with an uncertainty at this writing of order only about 0.75%. This is

because the top-quark mean lifetime (about 4.6 × 10−25 seconds) is so short that it decays before it

can form hadronic bound states (which take roughly 3× 10−24 seconds to form). Therefore it behaves

like a free particle during its short life, and so its mass and width can be defined in a way that is not

subject to large ambiguities. Each of these quarks has an exact 3-fold degeneracy, associated with the

color that is the source charge for the strong force. The colors are often represented by the labels red,

green, and blue, but these are just arbitrary labels; there is no experiment that could tell a red quark

from a green quark, even in principle.

There may also be a fundamental Higgs boson, with spin 0 and charge 0. In the simplest version

of the Standard Model, the Higgs boson is is required to exist as part of the model specification, and

experimental constraints from the LEP2 experiment require its mass to be larger than 114.4 GeV/c2

in the context of that model, at 95% confidence. However, some extensions of the Standard Model (for

example technicolor) do not have any fundamental Higgs boson, nor even a well-defined resonance that

plays the role of a Higgs boson. Other extensions of the Standard Model (notably supersymmetry)

imply the existence of more than one fundamental Higgs boson. Also, in extensions of the minimal

Standard Model, it is possible to evade the 114.4 GeV/c2 lower mass bound from LEP2.

1.4 Hadrons

As remarked above, quarks and antiquarks are always found as part of colorless bound states. The

most common are the nucleons (the proton and the neutron), the baryons that make up most of the

directly visible mass in the universe. They and other similar baryons with total angular momentum

(including both constituent spins and orbital angular momentum) J = 1/2 are listed in Table 4.

J = 1/2 baryon Charge Mass (GeV/c2) Lifetime (sec)

p (uud) +1 0.938272 > 6.6 × 1036

n (udd) 0 0.939565 885.7

Λ (uds) 0 1.11568 2.63 × 10−10

Σ+ (uus) +1 1.18937 8.02 × 10−11

Σ0 (uds) 0 1.19264 7.4× 10−20

Σ− (dds) −1 1.19745 1.48 × 10−10

Ξ0 (uss) 0 1.31486 2.9× 10−10

Ξ− (dss) −1 1.3217 1.64 × 10−10

Table 4: Baryons with J = 1/2 made from light (u, d, s) quarks.

The quarks listed in parentheses are the valence quarks of the bound state, but there are also virtual

(or “sea”) quark-antiquark pairs and virtual gluons in each of these and other hadrons. The proton

may be absolutely stable; experiments to try to observe its decays have not found any, resulting in only
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a very high lower bound on the mean lifetime. The neutron lifetime is also relatively long, but it decays

into a proton, electron, and antineutrino (n → pe−ν̄e). The other J = 1/2 baryons decay in times of

order 10−10 seconds by weak interactions, except for the Σ0 baryon, which decays extremely quickly

by an electromagnetic interaction into the Λ, which has the same valence quark content: Σ0 → Λγ. In

that sense, one can think of the Σ0 as being an excited state of the Λ. There are other excited states

of these baryons, not listed here. The mass of the baryons in Table 4 increases with the number of

valence strange quarks contained.

Note that the masses of the proton and the neutron (and all other hadrons) are much larger than

the sums of the masses of the valence quarks that make them up. These nucleon masses come about

from the strong interactions by a mechanism known as chiral symmetry breaking. Nucleons dominate

the visible mass of particles in the universe. Therefore, it is quite wrong (although fashionable) to say

that the search for the Higgs boson is needed to understand the “origin of mass”. Most of the masses

of the W± and Z bosons and the top, bottom, charm, and strange quarks and the leptons are indeed

believed to come from the Higgs mechanism, to be discussed below. However, the Higgs mechanism is

by no means necessary to understand the origin of all mass, and in particular it is definitely not the

explanation for most of the mass that is directly observed in the universe.

There are also J = 3/2 baryons, with some of the more common ones listed in Table 5.

J = 3/2 baryon Charge Mass (GeV/c2) Γ (GeV/c2) Lifetime (seconds)

∆++ (uuu) +2 1.232 0.118 5.6× 10−24

∆+ (uud) +1 "" "" ""

∆0 (udd) 0 "" "" ""

∆− (ddd) −1 "" "" ""

Σ∗+ (suu) +1 1.383 0.036 1.8× 10−23

Σ∗0 (sud) 0 1.384 0.036 1.8× 10−23

Σ∗− (sdd) −1 1.387 0.039 1.7× 10−23

Ξ∗0 (ssu) 0 1.532 0.0091 7.2× 10−23

Ξ∗− (ssd) −1 1.535 0.0099 6.6× 10−23

Ω− (sss) −1 1.672 8.0× 10−15 8.21 × 10−11

Table 5: J = 3/2 baryons.

The RPP uses a slightly different notation for the Σ∗ and Ξ∗ J = 3/2 baryons. Instead of the ∗

notation to differentiate these states from the corresponding J = 1/2 baryons with the same quantum

numbers, the RPP chooses to denote them by their approximate mass in MeV (as determined by older

experiments, so a little off from the present best values) in parentheses, so Σ(1385) and Ξ(1530). Very

narrow resonances correspond to very long-lived states; the Ω− is by far the narrowest and most stable

of the ten J = 3/2 baryon ground states listed.
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There are also baryons containing heavy (c or b) quarks. The only ones that have been definitively

observed so far have J = 1/2 and contain exactly one heavy quark. The lowest lying states with a

charm quark include the Λ+
c , Σ++

c , Σ+
c , Σ0

c , Ξ+
c , Ξ0

c , and Ω0
c resonances with masses ranging from 2.29

GeV/c2 to 2.7 GeV/c2, and those with a bottom quark include the Λ0
b , Ξ0

b , Ξ−
b , Ω−

b , Σ+
b , and Σ−

b , with

masses ranging from 5.62 GeV/c2 to 5.82 GeV/c2. More information about them can be found in the

RPP. Again, there are other baryons, generally with heavier masses, that can be thought of as excited

states of the more common ones listed above.

Bound states of a valence quark and antiquark are called mesons. They always carry integer total

angular momentum J . The most common J = 0 mesons are listed in Table 6.

J = 0 meson Charge Mass (GeV/c2)

π0 (uū, dd̄) 0 0.134977

π± (ud̄); (dū) ±1 0.139570

K± (us̄); (sū) ±1 0.493677

K0, K0 (ds̄); (sd̄) 0 0.497614

η (uū, dd̄, ss̄) 0 0.54785

η′ (uū, dd̄, ss̄) 0 0.95778

Table 6: J = 0 mesons containing light (u, d, s) quarks and antiquarks.

Here the bar over a quark name denotes the corresponding antiquark. The charged pions π± are

antiparticles of each other, as are the charged kaons K±, so they are exactly degenerate mass pairs

with the same lifetime. However, the K0 and K0 mesons are mixed and not quite exactly degenerate

in mass. One of the interaction eigenstates (K0
L) is actually much longer-lived than the other (K0

S); the

mean lifetimes are respectively 5.12 × 10−8 and 8.95 × 10−11 seconds. The lifetimes (and the widths)

of the other J = 0 mesons are not listed here; you can find them yourself in the RPP.

Besides the J = 0 mesons listed above, there are counterparts containing a single heavy (charm or

bottom) quark or antiquark, with the other antiquark or quark light (up, down or strange). The most

common ones are listed in Table 7.

J = 0 meson Charge Mass (GeV/c2)

D0, D0 (cū); (uc̄) 0 1.8648

D± (cd̄); (dc̄) ±1 1.8696

D±
s (cs̄); (sc̄) ±1 1.9685

B± (ub̄); (bū) ±1 5.279

B0, B0 (db̄); (bd̄) 0 5.280

B0
s , B0

s (sb̄); (bs̄) 0 5.366

Table 7: J = 0 mesons containing one heavy and one light quark and antiquark.
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There are also J = 0 mesons containing only charm and bottom quarks and antiquarks. The ones with

the lowest-lying masses are listed in Table 8:

J = 0 meson Charge Mass (GeV/c2)

ηc “charmonium” (cc̄) 0 2.980

B±
c (cb̄); (bc̄) ±1 6.277

ηb “bottomonium” (bb̄) 0 9.391

Table 8: J = 0 mesons containing a heavy quark and a heavy antiquark.

Vector (J = 1) mesons are also very important. Table 9 lists the most common ones that contain

only light (u, d, s) valence quarks and antiquarks:

J = 1 meson Charge Mass (GeV/c2)

ρ± (ud̄); (dū) ±1 0.7755

ρ0 (uū, dd̄) 0 ""

ω0 (uū, dd̄) 0 0.7827

K∗± (us̄); (sū) ±1 0.8917

K∗0, K∗0 (ds̄); (sd̄) 0 0.8959

φ (uū, dd̄, ss̄) 0 1.01946

Table 9: J = 1 mesons containing light quarks and antiquarks.

The most common J = 1 mesons containing one heavy (c or b) quark or antiquark are likewise shown

in Table 10.

J = 1 meson Charge Mass (GeV/c2)

D∗0, D∗0 (cū); (uc̄) 0 2.007

D∗± (cd̄); (dc̄) ±1 2.010

D∗±
s (cs̄); (sc̄) ±1 2.112

B∗0, B∗0 (db̄); (bd̄) 0 5.302

B∗± (ub̄); (bū) ±1 5.348

B∗0
s , B∗0

s (sb̄); (bs̄) 0 5.415

Table 10: J = 1 mesons containing one heavy and one light quark and antiquark.

Note that these have the same charges and slightly larger masses than the corresponding J = 0 mesons

in Table 7. J = 1 mesons with both quark and antiquark heavy are shown in Table 11:
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J = 1 meson Charge Mass (GeV/c2)

J/ψ “charmonium” (cc̄) 0 3.096916

Υ “bottomonium” (bb̄) 0 9.4603

Table 11: J = 1 mesons containing a heavy quark and a heavy antiquark.

In principle, there could also be J = 1 B∗±
c mesons, but (unlike their J = 0 counterparts in Table 8)

their existence has not been established experimentally. The heavy quarkonium (cc and bb) systems

have other states besides the ηc, J/ψ and ηb, Υ from Tables 8 and 11. For the cc system, there are J = 0

mesons χc0,1,2 that have the quark and antiquark in P -wave orbital angular momentum states. There

are also states ηc(2S), ψ(2S), ψ(3770), ψ(3872) that are similar to the ηc and J/ψ, but with excited

radial bound-state wavefunctions. Similarly, in the bb system, there are excited bottomonium states

Υ(2S), Υ(3S), Υ(4S), Υ(10860), and Υ(11020) with J = 1, and P -wave orbital angular momentum

states with total J = 0, χb0,1,2(1P ) and χb0,1,2(2P ). The spectroscopy of these states provides a striking

confirmation of the quark model for hadrons and of the strong force.

Much more detailed information on all of these hadronic bound states (and many others not listed

above), including the decay widths and the decay products, can be found in the RPP. Theoretically,

one also expects exotic mesons that are mostly “gluonium” or glueballs, that is, bound states of gluons.

However, these states are expected to mix with excited quark-antiquark bound states, and they will

be extremely difficult to identify experimentally.

1.5 Decays and branching ratios

In some cases, hadrons can decay through the strong interactions, with widths of order tens or hundreds

of MeV. Some examples include:

∆++ → pπ+ (1.3)

ρ− → π0π− (1.4)

ω → π+π−π0 (1.5)

φ → K+K−. (1.6)

There are also decays that are mediated by electromagnetic interactions, for example:

π0 → γγ (1.7)

∆+ → pγ (1.8)

Σ0 → Λγ (1.9)

ρ0 → π+π−γ. (1.10)

The smallest decay widths for hadrons are those mediated by the weak interactions, for example:

n → pe−ν̄e (1.11)

π− → µ−ν̄µ (1.12)

K+ → π+π0 (1.13)

B+ → D0µ+ντ (1.14)

Ω− → K−Λ. (1.15)
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The weak interactions are also entirely responsible for the decays of the charged leptons:

µ− → νµe−ν̄e (1.16)

τ− → ντe
−ν̄e (1.17)

τ− → ντµ
−ν̄µ (1.18)

τ− → ντ + hadrons. (1.19)

Experimentally, the hadronic τ decays are classified by the number of charged hadrons present in the

final state, as either “1-prong” (if exactly one charged hadron), “3-prong” (if exactly three charged

hadrons), etc.

In most cases, a variety of different decay modes contribute to each total decay width. The fraction

that each final state contributes to the total decay width is known as the branching ratio (or branching

fraction), usually abbreviated as BR or B. As a randomly chosen example, in the case of the ω meson

the strong interaction accounts for most, but not all, of the decays:

BR(ω → π+π−π0) = (89.1 ± 0.7)% (strong) (1.20)

BR(ω → π0γ) = (8.9 ± 0.3)% (EM) (1.21)

BR(ω → π+π−) = (1.7 ± 0.3)% (EM) (1.22)

with other final states totaling less than 1%.

It is also common to present this information in terms of the partial widths into various final states.

If the total decay width for a parent particle X is Γ(X), then the partial decay width of X into a

particular final state Y is

Γ(X → Y ) = BR(X → Y )Γ(X). (1.23)

The sum of all of the branching ratios is equal to 1, and the sum of the partial widths is equal to the

total decay width.

There are two roads to enlightenment regarding the Standard Model and its future replacement.

The experimental road, which is highly successful as indicated by the impressive volume and detail

in the RPP, finds the answers to masses, decay rates, branching ratios, production rates, and even

more detailed information like kinematic and angular distributions directly from data in high-energy

collisions. The theoretical road aims to match these results onto predictions of quantum field theories

specified in terms of a small number of parameters. In the case of electromagnetic interactions, quantum

field theory is extremely successful, providing amazingly accurate predictions for observable quantities

such as magnetic moments and interaction rates. In other applications, quantum field theory is only

partly successful. For some calculations, perturbation theory and other known methods are too difficult

to carry out, or do not converge even in principle. In such cases, only rough or even qualitative results

are possible. However, quantum field theory is systematic and elegant, and provides understanding

that is often elusive in the raw data. In the following notes, we will try to understand some of the basic

calculation methods of quantum field theory as a general framework, and eventually the description of

the Standard Model in terms of it.
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2 Special Relativity and Lorentz Transformations

A successful description of elementary particles must be consistent with the two pillars of modern

physics: special relativity and quantum mechanics. Let us begin by reviewing some important features

of special relativity.

Spacetime has four dimensions. For any given event (for example, a firecracker explodes, or a

particle decays to two other particles) one can assign a four-vector position:

(ct, x, y, z) = (x0, x1, x2, x3) = xµ (2.1)

The Greek indices µ, ν, ρ, . . . run over the values 0, 1, 2, 3, and c is the speed of light in vacuum. As a

matter of terminology, xµ is an example of a contravariant four-vector.

It is often useful to change our coordinate system (or “inertial reference frame”) according to

xµ → x′µ = Lµ
νx

ν . (2.2)

Such a change of coordinates is called a Lorentz transformation. Here Lµ
ν is a 4× 4 real matrix that

parameterizes the Lorentz transformation. It is not arbitrary, however, as we will soon see. The laws

of physics should not depend on what coordinate system we use; this is a guiding principle in making

a sensible theory.

As a simple example of a Lorentz transformation, suppose we rotate our coordinate system about

the z-axis by an angle α. Then in the new coordinate system:

x′µ = (ct′, x′, y′, z′) (2.3)

where

ct′ = ct

x′ = x cosα+ y sinα

y′ = −x sinα+ y cosα

z′ = z. (2.4)

Alternatively, we could go to a frame moving with respect to the original frame with velocity v along

the z direction, with the origins of the two frames coinciding at time t = t′ = 0. Then:

ct′ = γ(ct− βz)

x′ = x

y′ = y

z′ = γ(z − βct). (2.5)

where

β = v/c; γ = 1/
√

1− β2 (2.6)
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Another way of rewriting this is to define the rapidity ρ by β = tanh ρ, so that γ = cosh ρ and

βγ = sinh ρ. Then we can rewrite eq. (2.5),

x′0 = x0 cosh ρ− x3 sinh ρ

x′1 = x1

x′2 = x2

x′3 = −x0 sinh ρ+ x3 cosh ρ. (2.7)

This change of coordinates is called a boost (with rapidity ρ and in the ẑ direction).

Another example of a contravariant four-vector is given by the 4-momentum formed from the energy

E and spatial momentum p⃗ of a particle:

pµ = (E/c, p⃗ ). (2.8)

In the rest frame of a particle of mass m, its 4-momentum is given by pµ = (mc, 0, 0, 0). All contravariant

four-vectors transform the same way under a Lorentz transformation:

a′µ = Lµ
νa

ν , (2.9)

In particular, the 4-momentum of a particle is related to its mass by the Lorentz transformation that

relates the frame of reference in which it is measured and the rest frame. In the example of eq. (2.5),

one has:

Lµ
ν =

⎛

⎜⎜
⎝

γ 0 0 −βγ
0 1 0 0
0 0 1 0
−βγ 0 0 γ

⎞

⎟⎟
⎠ , (2.10)

and the inverse Lorentz transformation is

aµ = (L−1)µνa
′ν , (L−1)µν =

⎛

⎜⎜
⎝

γ 0 0 βγ
0 1 0 0
0 0 1 0
βγ 0 0 γ

⎞

⎟⎟
⎠ . (2.11)

A key property of special relativity is that for any two events one can define a proper interval,

which is independent of the Lorentz frame, and which tells us how far apart the two events are in a

coordinate-independent sense. So, consider two events occurring at xµ and xµ + dµ, where dµ is some

four-vector displacement. The proper interval between the events is

(∆τ)2 = (d0)2 − (d1)2 − (d2)2 − (d3)2 = gµνdµdν (2.12)

where

gµν =

⎛

⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟
⎠ (2.13)

14



is known as the metric tensor. Here, and from now on, we adopt the Einstein summation convention,

in which repeated indices µ, ν, . . . are taken to be summed over. It is an assumption of special relativity

that gµν is the same in every inertial reference frame.

The existence of the metric tensor allows us to define covariant four-vectors by lowering an index:

xµ = gµνxν = (ct,−x,−y,−z), (2.14)

pµ = gµνpν = (E/c,−px,−py,−pz). (2.15)

Furthermore, one can define an inverse metric gµν so that

gµνgνρ = δµ
ρ , (2.16)

where δµ
ν = 1 if µ = ν, and otherwise = 0. It follows that

gµν =

⎛

⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟
⎠ . (2.17)

Then one has, for any vector aµ,

aµ = gµνaν ; aµ = gµνaν . (2.18)

It follows that covariant four-vectors transform as

a′µ = Lµ
νaν (2.19)

where (note the positions of the indices!)

Lµ
ν = gµρg

νσLρ
σ. (2.20)

Because one can always use the metric to go between contravariant and covariant four-vectors, people

often use a harmlessly sloppy terminology and neglect the distinction, simply referring to them as

four-vectors.

If aµ and bµ are any four-vectors, then

aµbνgµν = aµbνg
µν = aµbµ = aµbµ ≡ a · b (2.21)

is a scalar quantity. For example, if pµ and qµ are the four-momenta of any two particles, then p · q is a

Lorentz-invariant; it does not depend on which inertial reference frame it is measured in. In particular,

a particle with mass m satisfies the on-shell condition

p2 = pµpµ = E2/c2 − p⃗ 2 = m2c2. (2.22)

The Lorentz invariance of dot products of pairs of 4-momenta, plus the conservation of total four-

momentum, plus the on-shell condition (2.22), is enough to solve most problems in relativistic kine-

matics.
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Let us pause to illustrate this with an example. Consider the situation of two particles, each of

mass m, colliding. Suppose the result of the collision is two final-state particles each of mass M . Let us

find the threshold energy and momentum 4-vectors for this process in the COM (center-of-momentum)

frame and in the frame in which one of the initial-state particles is at rest. Throughout most of the

following, we will take c = 1, by a choice of units.

Relativistic kinematics problems are often more easily analyzed in the COM frame, so let us consider

that case first. Without loss of generality, we can take the colliding initial-state particles to be moving

along the z-axis. Then their 4-momenta are:

pµ
1 = (E, 0, 0,

√
E2 −m2) (2.23)

pµ
2 = (E, 0, 0, −

√
E2 −m2). (2.24)

The spatial momenta are required to be opposite by the definition of the COM frame, which in turn

requires the energies to be the same, using eq. (2.22) and the fact that the masses are assumed equal.

The total 4-momentum of the initial state is pµ = (2E, 0, 0, 0), and so this must be equal to the total

4-momentum of the final state in the COM frame as well. Furthermore,

p2 = 4E2 (2.25)

is a Lorentz invariant, the same in any inertial frame.

Similarly, in the COM frame, the final state 4-momenta can be written as:

kµ
1 = (Ef , 0, sin θ

√
E2

f −M2, cos θ
√

E2
f −M2) (2.26)

kµ
2 = (Ef , 0, − sin θ

√
E2

f −M2, − cos θ
√

E2
f −M2). (2.27)

The angle θ parametrizes the arbitrary direction of the scattering. Without loss of generality, we have

taken the scattering to occur within the yz plane, as shown:

p⃗1 p⃗2

k⃗1

k⃗2

θ

The fact that we are in the COM frame again requires the spatial momenta to be opposite, and thus the

energies to be equal to a common value Ef because of the assumed equal masses M . Now, requiring

conservation of total 4-momentum gives kµ
1 + kµ

2 = pµ
1 + pµ

2 , so Ef = E. In order for the spatial

momentum components to be real, we therefore find the energy threshold condition in the COM frame

E > Ethresh = M. (2.28)
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Now let us reconsider the problem in a frame where one of the initial-state particles is at rest,

corresponding to a fixed-target experiment. In the Lab frame,

p′µ1 = (E′, 0, 0,
√

E′2 −m2), (2.29)

p′µ2 = (m, 0, 0, 0) (2.30)

are the 4-momenta of the two initial-state particles, and E′ is the Lab frame energy of the moving

particle. The total initial state 4-momentum is therefore p′µ = (E′ + m, 0, 0,
√

E′2 −m2), leading to

a Lorentz invariant

p′2 = (E′ + m)2 − (E′2 −m2) = 2m(E′ + m). (2.31)

This must be the same as eq. (2.25), so the Lab frame energy is related to the COM energy of each

particle by

m(E′ + m) = 2E2. (2.32)

Because we already found E > M , the Lab frame threshold energy condition for the scattering event

to be possible is m(E′ + m) > 2M2, or

E′ > E′
thresh =

2M2 −m2

m
. (2.33)

Let us also relate the Lab frame 4-momenta to those in the COM frame. To find the Lorentz trans-

formation needed to go from the COM frame to the Lab frame, consider the 0, 3 components of the

equation p′µ2 = Λµ
νpν

2 :
(

m
0

)
=
(
γ βγ
βγ γ

)(
E

−
√

E2 −m2

)
. (2.34)

It follows that

β =
√

1−m2/E2 =

√
E′ −m

E′ + m
, (2.35)

γ =
1

√
1− β2

= E/m =

√
E′ + m

2m
, (2.36)

βγ =
√

E2/m2 − 1 =

√
E′ −m

2m
. (2.37)

Now we can apply this Lorentz boost to the final-state momenta as found in the COM frame to obtain

the Lab frame momenta. For the first final-state particle:

k′µ
1 =

⎛

⎜⎜
⎝

γ 0 0 βγ
0 1 0 0
0 0 1 0
βγ 0 0 γ

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

E
0

sin θ
√

E2 −M2

cos θ
√

E2 −M2

⎞

⎟⎟
⎠ (2.38)

= (E2/m)

⎛

⎜⎜
⎝

1 + cos θ
√

1−m2/E2
√

1−M2/E2

0
sin θ (m/E)

√
1−M2/E2

√
1−m2/E2 + cos θ

√
1−M2/E2

⎞

⎟⎟
⎠ . (2.39)
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Note that for M > m, the z-component of the momentum is always positive (in the same direction

as the incoming particle in the Lab frame), regardless of the sign of cos θ. (The other final-state

momentum is obtained by just flipping the signs of cos θ and sin θ.) The Lab-frame scattering angle

with respect to the original collision axis (the z-axis in both frames) is determined by

tan θ′ =
(m/E) sin θ

√
1−m2/E2/

√
1−M2/E2 + cos θ

. (2.40)

For fixed θ in the COM frame, |θ′| in the Lab frame decreases with increasing E/m, as the produced

particles go more in the forward direction.

Notice from eqs. (2.28) and (2.33) that while the production of a pair of heavy particles of mass M

requires beam energies in symmetric collisions that scale like M , in fixed-target collisions the energy

required scales like 2M2/m ≫ M , where m is the beam particle mass. This is why fixed-target

collisions are no longer an option for frontier physics discoveries of very heavy particles or high-energy

phenomena.

In collider applications, it is common to see the direction of a final-state particle with respect to

the colliding beams described either by the pseudo-rapidity η or the longitudinal rapidity y. Suppose

that the two colliding beams are oriented so that Beam 1 is going in the ẑ direction and Beam 2 is

going in the −ẑ direction. A final state particle (or group of particles) emerging at an angle θ with

respect to Beam 1 in general has a four-vector momentum given by:

pµ = (E, pT cosφ, pT sinφ, pz), (2.41)

where pT = |p⃗| sin θ is the transverse momentum, pz = |p⃗| cos θ is the longitudinal momentum, and

E =
√
|p⃗|2 + m2 is the energy, with m the mass and p⃗ the three-vector momentum. (In hadron

colliders, this four-vector is generally defined in the lab frame, not in the center-of-momentum frame

of the scattering event, which is often unknown.) Then the pseudo-rapidity is defined by

η =
1

2
ln
( |p⃗| + pz

|p⃗|− pz

)
= − ln [tan(θ/2)] . (2.42)

Thus η = 0 corresponds to a particle coming out perpendicular to the beam line (θ = 90◦), while

η = ±∞ correspond to the directions along the beams (θ = 0, 180◦). Particles at small |η| (less than

1 or 2 or so, depending on the situation) are said to be central, while those at large |η| are said to be

forward. Note that the pseudo-rapidity depends only on the direction of the particle, not on its energy.

The longitudinal rapidity is defined somewhat similarly by

y =
1

2
ln
(

E + pz

E − pz

)
. (2.43)

In fact, η = y in the special case of a massless particle, and they are very nearly equal for a particle

whose energy is large compared to its mass. However, in general y does depend on the energy. For the

same particle, the ordinary rapidity is given by:

ρ =
1

2
ln
(

E + |p⃗|
E − |p⃗|

)
. (2.44)
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The quantity y is the rapidity of the boost needed to move to a frame where the particle has no

longitudinal momentum along the beam direction, while ρ is the rapidity of the boost needed to move

to the particle’s rest frame. Confusingly, it has become a standard abuse of language among collider

physicists to call y simply the rapidity, and among non-collider physicists it is common to see the letter

η used to refer to the ordinary rapidity, called ρ here. Some care is needed to ensure that one is using

and interpreting these quantities consistently.

Now let us return to the study of the properties of Lorentz transformations. The Lorentz-invariance

of equation (2.21) implies that, if aµ and bµ are constant four-vectors, then

gµνa′µb′ν = gµνaµbν , (2.45)

so that

gµνLµ
ρL

ν
σaρbσ = gρσaρbσ. (2.46)

Since aµ and bν are arbitrary, it must be that:

gµνLµ
ρL

ν
σ = gρσ. (2.47)

This is the fundamental constraint that a Lorentz transformation matrix must satisfy. In matrix form,

it could be written as LT gL = g. If we contract eq. (2.47) with gρκ, we obtain

Lν
κLν

σ = δκ
σ (2.48)

Applying this to eqs. (2.2) and (2.19), we find that the inverse Lorentz transformation of any four-vector

is

aν = a′µLµ
ν (2.49)

aν = a′µLµ
ν (2.50)

Let us now consider some more particular Lorentz transformations. To begin, we note that as a

matrix, det(L) = ±1. (See homework problem.) An example of a “large” Lorentz transformation with

det(L) = −1 is:

Lµ
ν =

⎛

⎜⎜
⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠ . (2.51)

This just flips the sign of the time coordinate, and is therefore known as time reversal:

x′0 = −x0 x′1 = x1 x′2 = x2 x′3 = x3. (2.52)

Another “large” Lorentz transformation is parity, or space inversion:

Lµ
ν =

⎛

⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟
⎠ , (2.53)
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so that:

x′0 = x0 x′1 = −x1 x′2 = −x2 x′3 = −x3. (2.54)

It was once thought that the laws of physics have to be invariant under these operations. However, it

was shown experimentally in the 1950’s that parity is violated in the weak interactions, specifically in

the weak decays of the 60Co nucleus and the K± mesons. Likewise, experiments in the 1960’s on the

decays of K0 mesons showed that time-reversal invariance is violated (at least if very general properties

of quantum mechanics and special relativity are assumed).

However, all experiments up to now are consistent with invariance of the laws of physics under the

subset of Lorentz transformations that are continuously connected to the identity; these are known as

“proper” Lorentz transformations and have det(L) = +1. They can be built up out of infinitesimal

Lorentz transformations:

Lµ
ν = δµ

ν + ωµ
ν + O(ω2), (2.55)

where we agree to drop everything with more than one ωµ
ν . Then, according to eq. (2.47),

gµν(δµ
ρ + ωµ

ρ + . . .)(δν
σ + ων

σ + . . .) = gρσ , (2.56)

or

gρσ + ωσρ + ωρσ + . . . = gρσ . (2.57)

Therefore

ωσρ = −ωρσ (2.58)

is an antisymmetric 4 × 4 matrix, with 4 · 3/2 · 1 = 6 independent entries. These correspond to 3

rotations (ρ,σ = 1, 2 or 1,3 or 2,3) and 3 boosts (ρ,σ = 0, 1 or 0,2 or 0,3). It is a mathematical fact

that any Lorentz transformation can be built up out of repeated infinitesimal boosts and rotations,

combined with the operations of time-reversal and space inversion.

Lorentz transformations obey the mathematical properties of a group, known as the Lorentz group.

The subset of Lorentz transformations that can be built out of repeated infinitesimal boosts and

rotations form a smaller group, called the proper Lorentz group. In the Standard Model of particle

physics and generalizations of it, all interesting objects, including operators, states, particles, and fields,

live in representations of the Lorentz group. We’ll study these group representations in more detail

later.

So far we have considered constant four-vectors. However, one can also consider four-vectors that

depend on position in spacetime. For example, suppose that F (x) is a scalar function of xµ. [It is

usual to leave the index µ off of xµ when it is used as the argument of a function, so F (x) really means

F (x0, x1, x2, x3).] Under a Lorentz transformation from coordinates xµ → x′µ, at a given fixed point
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in spacetime the value of the function F ′ reported by an observer using the primed coordinate system

is taken to be equal to the value of the original function F in the original coordinates:

F ′(x′) = F (x). (2.59)

Then

∂µF ≡ ∂F

∂xµ
= (

1

c

∂F

∂t
, ∇⃗F ) (2.60)

is a covariant four-vector. This is because:

(∂µF )′(x′) ≡ ∂

∂x′µ F ′(x′) =
∂xν

∂x′µ
∂

∂xν
F (x) = Lµ

ν(∂νF )(x), (2.61)

showing that it transforms according to eq. (2.19). [The second equality uses the chain rule and

eq. (2.59); the last equality uses eq. (2.49) with aµ = xµ.] By raising the index, one obtains a con-

travariant four-vector function

∂µF = gµν∂νF = (
1

c

∂F

∂t
,−∇⃗F ). (2.62)

One can obtain another scalar function by acting twice with the 4-dimensional derivative operator

on F , contracting the indices on the derivatives:

∂µ∂µF =
1

c2

∂2F

∂t2
−∇2F. (2.63)

The object −∂µ∂µF is a 4-dimensional generalization of the Laplacian.

A tensor is an object that can carry an arbitrary number of spacetime vector indices, and transforms

appropriately when one goes to a new reference frame. The objects gµν and gµν and δµ
ν are constant

tensors. Four-vectors and scalar functions and 4-derivatives of them are also tensors. In general, the

defining characteristic of a tensor function T µ1µ2...
ν1ν2... (x) is that under a change of reference frame, it

transforms so that in the primed coordinate system, the corresponding tensor T ′ is:

T ′µ1µ2...
ν1ν2... (x′) = Lµ1

ρ1L
µ2

ρ2 · · ·Lν1
σ1Lν2

σ2 · · ·T ρ1ρ2...
σ1σ2...(x). (2.64)

A special and useful constant tensor is the totally antisymmetric Levi-Civita tensor:

ϵµνρσ =

⎧
⎪⎨

⎪⎩

+1 if µνρσ is an even permutation of 0123
−1 if µνρσ is an odd permutation of 0123
0 otherwise

(2.65)

One use for the Levi-Civita tensor is in understanding the Lorentz invariance of four-dimensional

integration. Define 4 four-vectors which in a particular frame are given by the infinitesimal differentials

Aµ = (cdt, 0, 0, 0); (2.66)

Bµ = (0, dx, 0, 0); (2.67)

Cµ = (0, 0, dy, 0); (2.68)

Dµ = (0, 0, 0, dz). (2.69)
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Then the 4-dimensional volume element

d4x ≡ dx0dx1dx2dx3 = AµBνCρDσϵµνρσ (2.70)

is Lorentz-invariant, since in the last expression it has no uncontracted four-vector indices. It follows

that if F (x) is a Lorentz scalar function of xµ, then the integral

I[F ] =
∫

d4xF (x) (2.71)

is invariant under Lorentz transformations. This is good because eventually we will learn to define

theories in terms of such an integral, known as the action.
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3 Relativistic quantum mechanics of single particles

3.1 Klein-Gordon and Dirac equations

Any realistic theory must be consistent with quantum mechanics. In this section, we consider how to

formulate a theory of quantum mechanics that is consistent with special relativity.

Suppose that Φ(x) is the wavefunction of a free particle in 4-dimensional spacetime. A fundamental

principle of quantum mechanics is that the time dependence of Φ is determined by a Hamiltonian

operator, according to:

HΦ = ih̄
∂

∂t
Φ (3.1.1)

Now, the three-momentum operator is given by

P⃗ = −ih̄∇⃗. (3.1.2)

Since H and P⃗ commute, one can always take Φ to be one of the basis of wavefunctions for eigenstates

with energy and momentum eigenvalues E and p⃗ respectively:

HΦ = EΦ; P⃗Φ = p⃗Φ. (3.1.3)

One can now turn this into a relativistic Schrodinger wave equation for free particle states, by using

the fact that special relativity implies:

E =
√

m2c4 + p⃗ 2c2, (3.1.4)

where m is the mass of the particle. To make sense of this as an operator equation, we could try

expanding it in an infinite series, treating p⃗2 as small compared to m2c2:

ih̄
∂

∂t
Φ = mc2(1 +

p⃗ 2

2m2c2
− p⃗ 4

8m4c4
+ . . .)Φ (3.1.5)

= [mc2 − h̄2

2m
∇2 − h̄4

8m3c2
(∇2)2 + . . .]Φ (3.1.6)

If we keep only the first two terms, then we recover the standard non-relativistic quantum mechanics of

a free particle; the first term mc2 is an unobservable constant contribution to the Hamiltonian, propor-

tional to the rest energy, and the second term is the usual non-relativistic kinetic energy. However, the

presence of an infinite number of derivatives leads to horrible problems, including apparently non-local

effects.

Instead, one can consider the operator H2 acting on Φ, avoiding the square root. It follows that

H2Φ = E2Φ = (c2p⃗ 2 + m2c4)Φ = (c2P⃗
2
+ m2c4)Φ, (3.1.7)

so that:

−∂
2Φ

∂t2
= −∇2Φ + m2Φ. (3.1.8)
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Here and from now on we have set c = 1 and h̄ = 1 by a choice of units. This convention means

that mass, energy, and momentum all have the same units (GeV), while time and distance have units

of GeV−1, and velocity is dimensionless. These conventions greatly simplify the equations of particle

physics. One can always recover the usual metric system units using the following conversion table for

energy, mass, distance, and time, respectively:

1 GeV = 1.6022 × 10−3 erg = 1.6022 × 10−10 Joules, (3.1.9)

(1 GeV)/c2 = 1.7827 × 10−24 g = 1.7827 × 10−27 kg, (3.1.10)

(1 GeV)−1(h̄c) = 1.9733 × 10−14 cm = 1.9733 × 10−16 m, (3.1.11)

(1 GeV)−1h̄ = 6.58212 × 10−25 sec. (3.1.12)

Using eq. (2.63), the wave-equation eq. (3.1.8) can be rewritten in a manifestly Lorentz-invariant

way as

(∂µ∂µ + m2)Φ = 0 (3.1.13)

This relativistic generalization of the Schrodinger equation is known as the Klein-Gordon equation.

It is easy to guess the solutions of the Klein-Gordon equation. If we try:

Φ(x) = Φ0e
−ik·x, (3.1.14)

where Φ0 is a constant and kµ is a four-vector, then ∂µΦ = −ikµΦ and so

∂µ∂µΦ = −kµkµΦ = −k2Φ (3.1.15)

Therefore, we only need to impose k2 = m2 to have a solution. It is then easy to check that this is an

eigenstate of H and P⃗ with energy E = k0 and three-momentum p⃗ = k⃗, satisfying E2 = p⃗ 2 + m2.

However, there is a big problem with this. If kµ = (E, p⃗ ) gives a solution, then so does kµ = (−E, p⃗ ).

By increasing |p⃗ |, one can have |E| arbitrarily large. This is a disaster, because the energy is not

bounded from below. If the particle can interact, it will make transitions from higher energy states

to lower energy states. This would seem to lead to the release of an infinite amount of energy as the

particle acquires a larger and larger three-momentum, without bound!

In 1927, Dirac suggested an alternative, based on the observation that the problem with the Klein-

Gordon equation seems to be that it is quadratic in H or equivalently ∂/∂t; this leads to the sign

ambiguity for E. Dirac could also have been† motivated by the fact that particles like the electron have

spin; since they have more than one intrinsic degree of freedom, trying to explain them with a single

wavefunction Φ(x) is doomed to failure. Instead, Dirac proposed to write a relativistic Schrodinger

equation, for a multi-component wavefunction Ψa(x), where the spinor index a = 1, 2, . . . , n runs over

the components. The wave equation should be linear in ∂/∂t; since relativity places t on the same

†Apparently, he realized this only in hindsight.
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footing as x, y, z, it should also be linear in derivatives of the spatial coordinates. Therefore, the

equation ought to take the form

i
∂

∂t
Ψ = HΨ = (α⃗ · P⃗ + βm)Ψ (3.1.16)

where αx, αy, αz, and β are n× n matrices acting in “spinor space”.

To determine what α⃗ and β have to be, consider H2Ψ. There are two ways to evaluate the result.

First, by exactly the same reasoning as for the Klein-Gordon equation, one finds

− ∂2

∂t2
Ψ = (−∇2 + m2)Ψ. (3.1.17)

On the other hand, expressing H in terms of the right-hand side of eq. (3.1.16), we find:

− ∂2

∂t2
Ψ =

⎡

⎣−
3∑

j,k=1

αjαk
∂

∂xj

∂

∂xk
− im

∑

j

(αjβ + βαj)
∂

∂xj
+ β2m2

⎤

⎦Ψ (3.1.18)

Since partial derivatives commute, one can write:

3∑

j,k=1

αjαk
∂

∂xj

∂

∂xk
=

1

2

3∑

j,k=1

(αjαk + αkαj)
∂

∂xj

∂

∂xk
(3.1.19)

Then comparing eqs. (3.1.17) and (3.1.18), one finds that the two agree if, for j, k = 1, 2, 3:

β2 = 1; (3.1.20)

αjβ + βαj = 0; (3.1.21)

αjαk + αkαj = 2δjk. (3.1.22)

The simplest solution turns out to require n = 4 spinor indices. This may be somewhat surprising,

since naively one only needs n = 2 to describe a spin-1/2 particle like the electron. As we will see, the

Dirac equation automatically describes positrons as well as electrons, accounting for the doubling. It

is easiest to write the solution in terms of 2× 2 Pauli matrices:

σ1 =
(

0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
; and σ0 =

(
1 0
0 1

)
.

Then one can check that the 4× 4 matrices

β =
(

0 σ0

σ0 0

)
; αj =

(
−σj 0
0 σj

)
; (j = 1, 2, 3) (3.1.23)

obey the required conditions. The matrices β, αj are written in 2 × 2 block form, so “0” actually

denotes a 2 × 2 block of 0’s. Equation (3.1.16) is known as the Dirac equation, and the 4-component

object is known as a Dirac spinor. Note that the fact that Dirac spinor space is 4-dimensional, just

like ordinary spacetime, is really just a coincidence.‡ One must be careful not to confuse the two types

of 4-dimensional spaces!

‡For example, if we lived in 10 dimensional spacetime, it turns out that Dirac spinors would have 32 components.
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It is convenient and traditional to rewrite the Dirac equation in a nicer way by multiplying it on

the left by the matrix β, and defining

γ0 = β; γj = βαj; (j = 1, 2, 3). (3.1.24)

The result is
[
i(γ0 ∂

∂x0
+ γ1 ∂

∂x1
+ γ2 ∂

∂x2
+ γ3 ∂

∂x3
)−m

]
Ψ = 0, (3.1.25)

or, even more nicely:

(iγµ∂µ −m)Ψ = 0. (3.1.26)

The γµ matrices are explicitly given, in 2× 2 blocks, by:

γ0 =
(

0 σ0

σ0 0

)
; γj =

(
0 σj

−σj 0

)
; (j = 1, 2, 3). (3.1.27)

[The solution found above for the γµ is not unique. To see this, suppose U is any unitary 4 × 4

matrix satisfying U †U = 1. Then the Dirac equation implies:

U(iγµ∂µ −m)U †UΨ = 0, (3.1.28)

from which it follows that, writing γ′µ = UγµU †, and Ψ′ = UΨ,

(iγ′µ∂µ −m)Ψ′ = 0. (3.1.29)

So, the new γ′µ matrices together with the new spinor Ψ′ are just as good as the old pair γµ,Ψ; there are

an infinite number of different, equally valid choices. The set we’ve given above is called the chiral or

Weyl representation. Another popular choice used by some textbooks (but not here) is the Pauli-Dirac

representation.]

Many problems involving fermions in high-energy physics involve many gamma matrices dotted

into partial derivatives or momentum four-vectors. To keep the notation from getting too bloated, it

is often useful to use the Feynman slash notation:

γµaµ = /a (3.1.30)

for any four-vector aµ. Then the Dirac equation takes the even more compact form:

(i/∂ −m)Ψ = 0. (3.1.31)

Some important properties of the γµ matricesare:

γ0† = γ0; γj† = −γj (j = 1, 2, 3) (3.1.32)

γ0γµ†γ0 = γµ (3.1.33)

Tr(γµγν) = 4gµν (3.1.34)

γµγµ = 4 (3.1.35)

γµγν + γνγµ = {γµ, γν} = 2gµν (3.1.36)
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Note that on the right-hand sides of each of eqs. (3.1.35) and (3.1.36), there is an implicit 4 × 4 unit

matrix. It turns out that one almost never needs to know the explicit form of the γµ. Instead, the

equations above can be used to derive identities needed in practical work. (You will get some practice

with this from the homework.)

How does a Dirac spinor Ψa(x) transform under a Lorentz transformation? It carries no vector

index, so it is not a tensor. On the other hand, the fact that the Hamiltonian “mixes up” the components

of Ψa(x) is a clue that it doesn’t transform like an ordinary scalar function either. Instead, we might

expect that the spinor reported by an observer in the primed frame is given by

Ψ′(x′) = ΛΨ(x), (3.1.37)

where Λ is a 4 × 4 matrix that depends on the Lorentz transformation matrix Lµ
ν . In fact, you will

show for homework that for an infinitesimal Lorentz transformation Lµ
ν = δµ

ν + ωµ
ν , one has:

Ψ′(x′) = (1− i

2
ωµνS

µν)Ψ(x), (3.1.38)

where

Sµν =
i

4
[γµ, γν ]. (3.1.39)

To obtain the result for a finite Lorentz transformation, we can apply the same infinitesimal trans-

formation a large number of times N , with N →∞. Letting Ωµν = Nωµν , we obtain, after N iterations

of the Lorentz transformation parameterized by ωµ
ν :

Lµ
ν = (δµ

ν + Ωµ
ν/N)N → [exp(Ω)]µν (3.1.40)

as N →∞. Here we are using the identity:

lim
N→∞

(1 + x/N)N = exp(x), (3.1.41)

with the exponential of a matrix to be interpreted in the power series sense:

exp(M) = 1 + M + M2/2 + M3/6 + . . . . (3.1.42)

For the Dirac spinor, one has in the same way:

Ψ′(x′) =
(

1− i

2
ΩµνS

µν/N
)N

Ψ(x) → exp
(
− i

2
ΩµνS

µν
)

Ψ(x). (3.1.43)

So, we have found the Λ that appears in eq. (3.1.37) corresponding to the Lµ
ν that appears in

eq. (3.1.40):

Λ = exp
(
− i

2
ΩµνS

µν
)

. (3.1.44)
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As an example, consider a boost in the z direction:

Ωµ
ν =

⎛

⎜⎜
⎝

0 0 0 −ρ
0 0 0 0
0 0 0 0
−ρ 0 0 0

⎞

⎟⎟
⎠ . (3.1.45)

Then

Ω2 =

⎛

⎜⎜
⎝

ρ2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ρ2

⎞

⎟⎟
⎠ , Ω3 =

⎛

⎜⎜
⎝

0 0 0 −ρ3

0 0 0 0
0 0 0 0
−ρ3 0 0 0

⎞

⎟⎟
⎠ , etc. (3.1.46)

so that from eqs. (3.1.40) and (3.1.42),

Lµ
ν = (1 + ρ2/2 + . . .)

⎛

⎜⎜
⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞

⎟⎟
⎠− (ρ+ ρ3/6 + . . .)

⎛

⎜⎜
⎝

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞

⎟⎟
⎠

=

⎛

⎜⎜
⎝

cosh ρ 0 0 − sinh ρ
0 0 0 0
0 0 0 0

− sinh ρ 0 0 cosh ρ

⎞

⎟⎟
⎠ , (3.1.47)

in agreement with eq. (2.7). Meanwhile, Ω03 = −Ω30 = −ρ, so

− i

2
ΩµνSµν = −ρ

4
[γ0, γ3] =

ρ

2

(
σ3 0
0 −σ3

)
(3.1.48)

in 2 × 2 blocks. Since this matrix is diagonal, it is particularly easy to exponentiate, and eq. (3.1.44)

gives:

Λ = exp

⎛

⎜⎜
⎝

ρ/2 0 0 0
0 −ρ/2 0 0
0 0 −ρ/2 0
0 0 0 ρ/2

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

eρ/2 0 0 0
0 e−ρ/2 0 0
0 0 e−ρ/2 0
0 0 0 eρ/2

⎞

⎟⎟
⎠ . (3.1.49)

Therefore, this is the matrix that boosts a Dirac spinor in the z direction with rapidity ρ, in eq. (3.1.37).

Since Ψ is not a scalar, it is natural to ask whether one can use it to construct a scalar quantity. A

tempting guess is to get rid of all the pesky spinor indices by

Ψ†Ψ(x) ≡
4∑

a=1

Ψ†
aΨa. (3.1.50)

However, under a Lorentz transformation, Ψ′(x′) = ΛΨ(x) and Ψ′†(x′) = Ψ†(x)Λ†, so:

Ψ′†Ψ′(x′) = Ψ†Λ†ΛΨ(x). (3.1.51)

This will therefore be a scalar function if Λ†Λ = 1, in other words if Λ is a unitary matrix. However,

this is not true, as the example of eq. (3.1.49) clearly shows!
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Instead, with amazing foresight, let us consider the object

Ψ†γ0Ψ. (3.1.52)

Under a Lorentz transformation:

Ψ′†γ0Ψ′(x′) = Ψ†Λ†γ0ΛΨ(x). (3.1.53)

Therefore, Ψ†γ0Ψ will transform as a scalar if:

Λ†γ0Λ = γ0. (3.1.54)

One can check that this is indeed true for the special case of eq. (3.1.49). More importantly, it can be

proved for any

Λ = 1− i

2
ωµνS

µν (3.1.55)

that is infinitesimally close to the identity, using eqs. (3.1.32) and (3.1.33). Therefore, it is true for any

proper Lorentz transformation built out of infinitesimal ones.

Motivated by this, one defines, for any Dirac spinor Ψ,

Ψ ≡ Ψ†γ0. (3.1.56)

One should think of Ψ as a column vector in spinor space, and Ψ as a row vector. Then their inner

product,

ΨΨ (3.1.57)

with all spinor indices contracted, transforms as a scalar function under proper Lorentz transformations.

Similarly, one can show that

ΨγµΨ (3.1.58)

transforms as a four-vector. One should think of eq. (3.1.58) as a (row vector)×(matrix)×(column

vector) in spinor-index space, with a spacetime vector index µ hanging around.

3.2 Solutions of the Dirac equation

Our next task is to construct solutions to the Dirac equation. Let us separate out the xµ-dependent

part as a plane wave, by trying

Ψ(x) = u(p, s)e−ip·x. (3.2.1)

Here pµ is a four-vector momentum, with p0 = E > 0. A solution to the Dirac equation must also

satisfy the Klein-Gordon equation, so p2 = E2 − p⃗ 2 = m2. The object u(p, s) is a spinor, labeled by

the 4-momentum p and s. For now s just distinguishes between distinct solutions, but it will turn out
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to be related to the spin. Plugging this into the Dirac equation (3.1.31), we obtain a 4× 4 eigenvalue

equation to be solved for u(p, s):

(/p−m)u(p, s) = 0. (3.2.2)

To simplify things, first consider this equation in the rest frame of the particle, where pµ =

(m, 0, 0, 0). In that frame,

m(γ0 − 1)u(p, s) = 0. (3.2.3)

Using the explicit form of γ0, we can therefore write in 2× 2 blocks:
(
−1 1

1 −1

)
u(p, s) = 0, (3.2.4)

where each “1” means a 2× 2 unit matrix. The solutions are clearly

u(p, s) =
√

m
(
χs

χs

)
, (3.2.5)

where χs can be any 2-vector, and the
√

m normalization is a convention. In practice, it is best to

choose the χs orthonormal, satisfying χ†
sχr = δrs for r, s = 1, 2. A particularly nice choice is:

χ1 =
(

1
0

)
; χ2 =

(
0
1

)
. (3.2.6)

As we will see, these just correspond to spin eigenstates Sz = 1/2 and −1/2.

Now to construct the corresponding solution in any other frame, one can just boost the spinor using

eqs. (3.1.44). For example, consider the solution

Ψ′(x′) = u(p, 1)e−ip·x′
=
√

m

⎛

⎜⎜
⎝

1
0
1
0

⎞

⎟⎟
⎠ e−imt′ . (3.2.7)

in a frame where the particle is at rest; we have called it the primed frame for convenience. We suppose

the primed frame is moving with respect to the unprimed frame with rapidity ρ in the z direction.

Thus, the particle has, in the unprimed frame:

E = p0 = m cosh ρ; pz = p3 = m sinh ρ. (3.2.8)

Now, Ψ(x) = Λ−1Ψ′(x′) from eq. (3.1.37), so using the inverse of eq. (3.1.49):

Ψ(x) =
√

m

⎛

⎜⎜
⎝

e−ρ/2

0
eρ/2

0

⎞

⎟⎟
⎠ e−ip·x. (3.2.9)

We can rewrite this, noting that from eq. (3.2.8),

√
meρ/2 =

√
E + pz;

√
me−ρ/2 =

√
E − pz. (3.2.10)
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Therefore, one solution of the Dirac equation for a particle moving in the z direction, with energy E

and three-momentum pz =
√

E2 −m2, is:

Ψ(x) =

⎛

⎜⎜
⎝

√
E − pz

0√
E + pz

0

⎞

⎟⎟
⎠ e−ip·x, (3.2.11)

so that

u(p, 1) =

⎛

⎜⎜
⎝

√
E − pz

0√
E + pz

0

⎞

⎟⎟
⎠ (3.2.12)

in this frame.

Similarly, if we use instead χ2 =
(

0
1

)
in eq. (3.2.5) in the rest frame, and apply the same procedure,

we find a solution:

Ψ(x) =
√

m

⎛

⎜⎜
⎝

0
eρ/2

0
e−ρ/2

⎞

⎟⎟
⎠ e−ip·x =

⎛

⎜⎜
⎝

0√
E + pz

0√
E − pz

⎞

⎟⎟
⎠ e−ip·x, (3.2.13)

so that

u(p, 2) =

⎛

⎜⎜
⎝

0√
E + pz

0√
E − pz

⎞

⎟⎟
⎠ (3.2.14)

in this frame. Note that pz in eqs. (3.2.11) and (3.2.13) can have either sign, corresponding to the

wavefunction for a particle moving in either the +z or −z directions.

In order to make a direct connection between spin and the various components of a Dirac spinor,

let us now consider how to construct the spin operator S⃗. To do this, recall that by definition, spin

is the difference between the total angular momentum operator J⃗ and the orbital angular momentum

operator L⃗:

J⃗ = L⃗ + S⃗. (3.2.15)

Now,

L⃗ = x⃗× P⃗ , (3.2.16)

where x⃗ and P⃗ are the three-dimensional position and momentum operators. The total angular mo-

mentum must be conserved, or in other words it must commute with the Hamiltonian:

[H, J⃗ ] = 0. (3.2.17)

Using the Dirac Hamiltonian given in eq. (3.1.16), we have

[H, L⃗] = [α⃗ · P⃗ + βm, x⃗× P⃗ ] = −iα⃗× P⃗ , (3.2.18)
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where we have used the canonical commutation relation (with h̄ = 1) [Pj , xk] = −iδjk. So, comparing

eqs. (3.2.15), (3.2.17) and (3.2.18), it must be true that:

[H, S⃗ ] = iα⃗× P⃗ = i
(−σ⃗ × P⃗ 0

0 σ⃗ × P⃗

)
. (3.2.19)

One can now observe that the matrix:

S⃗ =
1

2

(
σ⃗ 0
0 σ⃗

)
(3.2.20)

obeys eq. (3.2.19). So, it must be the spin operator acting on Dirac spinors.

In particular, the z-component of the spin operator for Dirac spinors is given by the diagonal matrix:

Sz =
1

2

⎛

⎜⎜
⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟⎟
⎠ . (3.2.21)

Therefore, the solutions in eqs. (3.2.11) and (3.2.13) can be identified to have spin eigenvalues Sz = +1/2

and Sz = −1/2, respectively. In general, a Dirac spinor eigenstate with Sz = +1/2 will have only the

first and third components non-zero, and one with Sz = −1/2 will have only the second and fourth

components non-zero, regardless of the direction of the momentum. Note that, as promised, Sz = 1/2

(−1/2) exactly corresponds to the use of χ1 (χ2) in eq. (3.2.5).

The helicity operator gives the relative orientation of the spin of the particle and its momentum.

It is defined to be:

h =
p⃗ · S⃗
|p⃗ | . (3.2.22)

Like Sz, helicity has possible eigenvalues ±1/2 for a spin-1/2 particle. For example, if pz > 0, then

eqs. (3.2.11) and (3.2.13) represent states with helicity +1/2 and −1/2 respectively. The helicity is not

invariant under Lorentz transformations for massive particles. This is because one can always boost

to a different frame in which the 3-momentum is flipped but the spin remains the same. (Also, note

that unlike Sz, helicity is not even well-defined for a particle exactly at rest, due to the |p⃗ | = 0 in

the denominator.) However, a massless particle moves at the speed of light in any inertial frame, so

one can never boost to a frame in which its 3-momentum direction is flipped. This means that for

massless (or very energetic, so that E ≫ m) particles, the helicity is fixed and invariant under Lorentz

transformations. In any frame, a particle with p⃗ and S⃗ parallel has helicity h = 1/2, and a particle

with p⃗ and S⃗ antiparallel has helicity h = −1/2.

Helicity is particularly useful in the high-energy limit. For example, we can consider four solutions

obtained from the E, pz ≫ m limits of eqs. (3.2.11) and (3.2.13), so that |pz| = E:

Ψpz>0,Sz=+1/2 =

⎛

⎜⎜
⎝

0
0√
2E
0

⎞

⎟⎟
⎠ e−iE(t−z) [p⃗ ↑, S⃗ ↑, h = +1/2] (3.2.23)
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Ψpz>0,Sz=−1/2 =

⎛

⎜⎜
⎝

0√
2E
0
0

⎞

⎟⎟
⎠ e−iE(t−z) [p⃗ ↑, S⃗ ↓, h = −1/2] (3.2.24)

Ψpz<0,Sz=+1/2 =

⎛

⎜⎜
⎝

√
2E
0
0
0

⎞

⎟⎟
⎠ e−iE(t+z) [p⃗ ↓, S⃗ ↑, h = −1/2] (3.2.25)

Ψpz<0,Sz=−1/2 =

⎛

⎜⎜
⎝

0
0
0√
2E

⎞

⎟⎟
⎠ e−iE(t+z) [p⃗ ↓, S⃗ ↓, h = +1/2] (3.2.26)

In this high-energy limit, a Dirac spinor with h = +1/2 is called right-handed (R) and one with

h = −1/2 is called left-handed (L). Notice that a high-energy L state is one that has the last two

entries zero, while a high-energy R state always has the first two entries zero.

It is useful to define matrices that project onto L and R states in the high-energy or massless limit.

In 2× 2 blocks:

PL =
(

1 0
0 0

)
; PR =

(
0 0
0 1

)
, (3.2.27)

where 1 and 0 mean the 2×2 unit and zero matrices, respectively. Then PL acting on any Dirac spinor

gives back a left-handed spinor, by just killing the last two components. The projectors obey the rules:

P 2
L = PL; P 2

R = PR; PRPL = PLPR = 0. (3.2.28)

It is traditional to write PL and PR in terms of a “fifth” gamma matrix, which in our conventions is

given in 2× 2 blocks by:

γ5 =
(−1 0

0 1

)
. (3.2.29)

Then

PL =
1− γ5

2
; PR =

1 + γ5

2
. (3.2.30)

The matrix γ5 satisfies the equations:

γ2
5 = 1; γ†5 = γ5; {γ5, γµ} = 0. (3.2.31)

So far, we have been considering Dirac spinor wavefunction solutions of the form

Ψ(x) = u(p, s)e−ip·x (3.2.32)

with p0 = E > 0. We have successfully interpreted these solutions in terms of a spin-1/2 particle,

say, the electron. However, there is nothing mathematically wrong with these solutions for pµ with

p0 < 0 and p2 = m2. So, like the Klein-Gordon equation, the Dirac equation has the embarrassment

of negative energy solutions.
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Dirac proposed to get around the problem of negative energy states by using the fact that spin-1/2

particle are fermions. The Pauli exclusion principle dictates that two fermions cannot occupy the same

quantum state. Therefore, Dirac proposed that all of the negative energy states are occupied. This

prevents electrons with positive energy from making disastrous transitions to the E < 0 states. The

infinite number of filled E < 0 states is called the Dirac sea.

If one of the states in the Dirac sea becomes unoccupied, it leaves behind a “hole”. Since a hole

is the absence of an E < 0 state, it effectively has energy −E > 0. An electron has charge† −e, so

the hole corresponding to its absence effectively has the opposite charge, +e. Since both electrons

and holes obey p2 = m2, they have the same mass. Dirac’s proposal therefore predicts the existence

of “anti-electrons” or positrons, with positive energy and positive charge. The positron was indeed

discovered in 1932 in cosmic ray experiments.

Feynman and Stückelberg noted that one can reinterpret the positron as a negative energy electron

moving backwards in time, so that pµ → −pµ and S⃗ → −S⃗. According to this interpretation, the

wavefunction for a positron with 4-momentum pµ with p0 = E > 0 is

Ψ(x) = v(p, s)eip·x. (3.2.33)

Now, using the Dirac equation (3.1.31), v(p, s) must satisfy the eigenvalue equation:

(/p + m)v(p, s) = 0. (3.2.34)

We can now construct solutions to this equation just as before. First, in the rest (primed) frame of the

particle, we have in 2× 2 blocks:
(

m m
m m

)
v(p, s) = 0. (3.2.35)

So, the solutions are

Ψ′(x′) =
√

m
(
ξs
−ξs

)
eimt′ (3.2.36)

for any two-vector ξs.

One must be careful in interpreting the quantum numbers of the positron solutions to the Dirac

equation. This is because the Hamiltonian, 3-momentum, and spin operators of a positron described

by the wavefunction eq. (3.2.33) are all given by the negative of the expressions one would use for an

electron wavefunction. Thus, acting on a positron wavefunction, one has

HΨ = −i
∂

∂t
Ψ, (3.2.37)

P⃗Ψ = i∇⃗Ψ, (3.2.38)

S⃗Ψ = −1

2

(
σ⃗ 0
0 σ⃗

)
Ψ, (3.2.39)

†Here, e is always defined to be positive, so that the electron has charge −e. (Some references define e to be negative.)
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where H, P⃗ , and S⃗ are the operators whose eigenvalues are to be interpreted as the energy, 3-

momentum, and spin of the positive-energy positron antiparticle. Therefore, to describe a positron

with spin Sz = +1/2 or −1/2, one should use, respectively,

ξ1 =
(

0
1

)
; or ξ2 =

(
1
0

)
, (3.2.40)

in eq. (3.2.36).

Now we can boost to the unprimed frame just as before, yielding the solutions:

v(p, 1) =

⎛

⎜⎜
⎝

0√
E + pz

0
−
√

E − pz

⎞

⎟⎟
⎠ , (3.2.41)

v(p, 2) =

⎛

⎜⎜
⎝

√
E − pz

0
−
√

E + pz

0

⎞

⎟⎟
⎠ . (3.2.42)

Here v(p, 1) corresponds to a positron moving in the +z direction with 3-momentum pz and energy

E =
√

p2
z + m2 and Sz = +1/2, hence helicity h = +1/2 if pz > 0. Similarly, v(p, 2) corresponds to a

positron with the same energy and 3-momentum, but with Sz = −1/2, and therefore helicity h = −1/2

if pz > 0.

Note that for positron wavefunctions, PL projects onto states that describe right-handed positrons

in the high-energy limit, and PR projects onto states that describe left-handed positrons in the high-

energy limit. If we insist that PL projects on to left-handed spinors, and PR projects on to right-handed

spinors, then we must simply remember that a right-handed positron is described by a left-handed

spinor (annihilated by PR), and vice versa!

Later we will also need to used the Dirac row spinors:

u(p, s) = u(p, s)†γ0, v(p, s) = v(p, s)†γ0. (3.2.43)

The quantities u(p, s)u(k, r) and u(p, s)v(k, r) and v(p, s)u(k, r) and v(p, s)v(k, r) are all Lorentz

scalars. For example, in the rest frame of a particle with mass m and spin Sz = +1/2, one has

u(p, 1) = u(p, 1)†γ0 =
√

m ( 1 0 1 0 )
(

0 σ0

σ0 0

)
= (
√

m 0
√

m 0 ) , (3.2.44)

so that

u(p, 1)u(p, 1) = (
√

m 0
√

m 0 )

⎛

⎜⎜
⎝

√
m
0√
m
0

⎞

⎟⎟
⎠ = 2m. (3.2.45)

Since this quantity is a scalar, it must be true that u(p, 1)u(p, 1) = 2m in any Lorentz frame, in other

words, for any pµ. More generally, if s, r = 1, 2 represent orthonormal spin state labels, then the u and
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v spinors obey:

u(p, s)u(p, r) = 2mδsr, (3.2.46)

v(p, s)v(p, r) = −2mδsr, (3.2.47)

v(p, s)u(p, r) = u(p, s)v(p, r) = 0. (3.2.48)

Similarly, one can show that u(p, s)γµu(p, r) = 2(m, 0⃗ )δsr in the rest frame. Since it is a four-vector,

it must be that in any frame:

u(p, s)γµu(p, r) = 2pµδsr. (3.2.49)

But by far the most useful identities that we will use later on are the spin-sum equations:

2∑

s=1

u(p, s)u(p, s) = /p + m; (3.2.50)

2∑

s=1

v(p, s)v(p, s) = /p−m. (3.2.51)

Here the spin state label s is summed over. These equations are to be interpreted in the sense of a row

vector times a column vector giving a 4× 4 matrix, like:
⎛

⎜⎜
⎝

a1

a2

a3

a4

⎞

⎟⎟
⎠ ( b1 b2 b3 b4 ) =

⎛

⎜⎜
⎝

a1b1 a1b2 a1b3 a1b4

a2b1 a2b2 a2b3 a2b4

a3b1 a3b2 a3b3 a3b4

a4b1 a4b2 a4b3 a4b4

⎞

⎟⎟
⎠ . (3.2.52)

We will use eqs. (3.2.50) and (3.2.51) often when calculating cross-sections and decay rates involving

fermions.

As a check, note that if we act on the left of eq. (3.2.50) with /p −m, the left hand side vanishes

because of eq. (3.2.2), and the right hand side vanishes because of

(/p−m)(/p + m) = /p/p−m2 = 0. (3.2.53)

This relies on the identity

/p/p = p2, (3.2.54)

which follows from

/p/p = pµpνγµγν = pµpν(−γνγµ + 2gµν) = −/p/p + 2p2, (3.2.55)

where eq. (3.1.36) was used. A similar consistency check works if we act on the left of eq. (3.2.51) with

/p + m.

The Dirac spinors given above only describe electrons and positrons with both momentum and

spin aligned along the ±z direction. More generally, we could construct u(p, s) and v(p, s) for states

describing electrons or positrons with any p⃗ and spin. However, in general that is quite a mess, and it

turns out to be not particularly useful in most practical applications, as we will see.
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3.3 The Weyl equation

It turns out that the Dirac equation can be replaced by something simpler and more fundamental in

the special case m = 0. If we go back to Dirac’s guess for the Hamiltonian, we now have just

H = α⃗ · P⃗ , (3.3.1)

and there is no need for the matrix β. Therefore, eqs. (3.1.20) and (3.1.21) are not applicable, and we

have only the one requirement:

αiαj + αkαj = 2δjk. (3.3.2)

Now there are two distinct solutions involving 2 × 2 matrices, namely α⃗ = σ⃗ or α⃗ = −σ⃗. So we have

two possible quantum mechanical wave equations:

i
∂

∂t
ψ = ±iσ⃗ · ∇⃗ψ. (3.3.3)

If we now define

σµ = (σ0,σ1,σ2,σ3), (3.3.4)

σµ = (σ0,−σ1,−σ2,−σ3), (3.3.5)

then we can write the two possible equations in the form:

iσµ∂µψL = 0, (3.3.6)

iσµ∂µψR = 0. (3.3.7)

Here I have attached labels L and R because the solutions to these equations turn out to have left

and right helicity, respectively, as we will see in a moment. Each of these equations is called a Weyl

equation. They are similar to the Dirac equation, but only apply to massless spin-1/2 particles, and

are 2× 2 matrix equations rather than 4× 4. The two-component objects ψL and ψR are called Weyl

spinors.

We can understand the relationship of the Dirac equation to the Weyl equations if we notice that

the γµ matrices can be written as

γµ =
(

0 σµ

σµ 0

)
. (3.3.8)

[Compare eq. (3.1.27).] If we now write a Dirac spinor in its L and R helicity components,

Ψ =
(

ΨL

ΨR

)
, (3.3.9)

then the Dirac equation (3.1.26) becomes:

i
(

0 σµ

σµ 0

)
∂µ

(
ΨL

ΨR

)
= m

(
ΨL

ΨR

)
, (3.3.10)
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or

iσµ∂µΨR = mΨL, (3.3.11)

iσµ∂µΨL = mΨR. (3.3.12)

Comparing with eqs. (3.3.6) and (3.3.7) when m = 0, we can indeed identify ΨR as a right-handed

helicity Weyl fermion, and ΨL as a left-handed helicity Weyl fermion.

Note that if m = 0, one can consistently set ΨR = 0 as an identity in the Dirac spinor without

violating eqs. (3.3.11) and (3.3.12). Then only the left-handed helicity fermion exists. This is how

neutrinos originally appeared in the Standard Model; a massless neutrino corresponds to a left-handed

Weyl fermion. Recent evidence shows that neutrinos do have small masses, so that this discussion has

to be modified slightly. However, for experiments in which neutrino masses can be neglected, it is still

proper to treat a neutrino as a Weyl fermion, or equivalently as the left-handed part of a Dirac neutrino

with no right-handed part.

The two versions of the Weyl equation, eqs. (3.3.6) and (3.3.7), are actually not distinct. To see

this, suppose we take the Hermitian conjugate of eq. (3.3.7). Since (∇⃗)† = −∇⃗ and (σµ)† = σµ, we

obtain:

i(σ0 ∂

∂t
− σ⃗ · ∇⃗)ψ†

R = 0 (3.3.13)

or:

iσµ∂µψ
†
R = 0. (3.3.14)

In other words, a right-handed Weyl spinor is the Hermitian conjugate of a left-handed Weyl spinor, and

vice versa. The modern point of view is that the Weyl equation is fundamental, and all 4-component

Dirac fermions can be thought of as consisting of two 2-component Weyl fermions coupled together by

a mass. This is because in the Standard Model, all fermions are massless until they are provided with

a mass term by the spontaneous breaking of the electroweak symmetry, as described in section 13.2.

Since a right-handed Weyl fermion is the Hermitian conjugate of a left-handed Weyl fermion, all one

really needs is the single Weyl equation (3.3.6). A Dirac fermion is then written as

Ψ =
(
χ
ξ†

)
, (3.3.15)

where χ and ξ are independent left-handed two-component Weyl fermions. All fermion degrees of

freedom can thus be thought of in terms of left-handed Weyl fermions.

3.4 Majorana fermions

A Majorana fermion can be obtained from a massive Dirac fermion by reducing the number of degrees of

freedom by identifying the right-handed part with the conjugate of the left-handed part as a constraint.

This is done by the identification

ψ ≡ ΨL = Ψ†
R. (3.4.1)
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In four-component notation, a Majorana spinor has the form

ΨM =
(
ψ
ψ†

)
, (3.4.2)

and obeys the same wave equation as a Dirac fermion, (iγµ∂µ − m)ΨM = 0. However, it has only

half as many degrees of freedom; the Majorana condition (3.4.1) ensures that a Majorana fermion is

its own antiparticle. From eqs. (3.3.11), (3.3.12), one sees that in the two-component form a classical

Majorana fermion obeys the wave equation:

iσµ∂µψ −mψ† = 0, (3.4.3)

or, in complex-conjugated form,

iσµ∂µψ
† −mψ = 0. (3.4.4)

As we will see in section 13.4, the experimental fact that neutrinos have small masses suggests that

they are likely to be Majorana fermions (and thus their own antiparticles), although this expectation

is based partly on theoretical prejudice and it is also possible that they may be Dirac. In the minimal

supersymmetric extension of the Standard Model, there are new fermions called neutralinos and the

gluino, which are predicted to be Majorana fermions.
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4 Maxwell’s equations and electromagnetism

In the previous section, we worked out the relativistic wave equations governing the quantum me-

chanics of scalars and fermions. A more familiar set of relativistic wave equations are those governing

electromagnetic fields. Recall that Maxwell’s equations can be written in the form:

∇⃗ · E⃗ = eρ, (4.1)

∇⃗ × B⃗ − ∂E⃗

∂t
= eJ⃗, (4.2)

∇⃗ · B⃗ = 0, (4.3)

∇⃗ × E⃗ +
∂B⃗

∂t
= 0, (4.4)

where ρ is the local charge density and J⃗ is the current density, with the magnitude of the electron’s

charge, e, factored out. These equations can be rewritten in a manifestly relativistic form, using

the following observations. First, suppose we add together the equations obtained by taking ∂/∂t of

eq. (4.1) and ∇⃗· of eq. (4.2). Since the divergence of a curl vanishes identically, this yields the Law of

Local Conservation of Charge:

∂ρ

∂t
+ ∇⃗ · J⃗ = 0. (4.5)

To put this into a Lorentz-invariant form, we can form a four-vector charge and current density:

Jµ = (ρ, J⃗ ), (4.6)

so that eq. (4.5) becomes

∂µJµ = 0. (4.7)

Furthermore, eqs. (4.3) and (4.4) imply that we can write the electric and magnetic fields as derivatives

of the electric and magnetic potentials V and A⃗:

E⃗ = −∇⃗V − ∂A⃗

∂t
, (4.8)

B⃗ = ∇⃗ × A⃗. (4.9)

Now if we assemble the potentials into a four-vector:

Aµ = (V, A⃗ ), (4.10)

then eqs. (4.8) and (4.9) mean that we can write the electric and magnetic fieldsas components of an

antisymmetric tensor:

Fµν = ∂µAν − ∂νAµ (4.11)

=

⎛

⎜⎜
⎝

0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

⎞

⎟⎟
⎠ . (4.12)
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Now the Maxwell equations (4.1) and (4.2) correspond to the relativistic wave equation

∂µFµν = eJν , (4.13)

or equivalently,

∂µ∂
µAν − ∂ν∂µAµ = eJν . (4.14)

The remaining Maxwell equations (4.3) and (4.4) are equivalent to the identity:

∂ρFµν + ∂µFνρ + ∂νFρµ = 0, (4.15)

for µ, ν, ρ = any of 0, 1, 2, 3. Note that this equation is automatically true because of eq. (4.11). Also,

because Fµν is antisymmetric and partial derivatives commute, ∂µ∂νFµν = 0, so that the Law of Local

Conservation of Charge eq. (4.7) follows from eq. (4.13).

The potential Aµ(x) may be thought of as fundamental, and the fields E⃗ and B⃗ as derived from

it. The theory of electromagnetism as described by Aµ(x) is subject to a redundancy known as gauge

invariance. To see this, we note that eq. (4.14) is unchanged if we do the transformation

Aµ(x)→ Aµ(x) + ∂µλ(x), (4.16)

where λ(x) is any function of position in spacetime. In components, this amounts to:

V → V +
∂λ

∂t
, (4.17)

A⃗ → A⃗− ∇⃗λ . (4.18)

This transformation leaves Fµν (or equivalently E⃗ and B⃗) unchanged. Therefore, the new Aµ is just

as good as the old Aµ for the purposes of describing a particular physical situation.
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5 Field Theory and Lagrangians

5.1 The field concept and Lagrangian dynamics

It is now time to make a conceptual break with our earlier treatment of relativistic quantum-mechanical

wave equations for scalar and Dirac particles. There are two reasons for doing this. First, the existence

of negative energy solutions lead us to the concept of antiparticles. Now, a hole in the Dirac sea,

representing a positron, can be removed if the state is occupied by a positive energy electron, releasing

an energy of at least 2m. This forces us to admit that the total number of particles is not conserved. The

Klein-Gordon wavefunction φ(x) and the Dirac wavefunction Ψ(x) were designed to describe single-

particle probability amplitudes, but the correct theory of nature evidently must describe a variable

number of particles. Secondly, we note that in the electromagnetic theory, Aµ(x) are not just quantum

mechanical wavefunctions; rather, they exist classically too. If we follow this example with scalar

and spinor particles, we are lead to abandon φ(x) and Ψ(x) as quantum wavefunctions representing

single-particle states, and reinterpret them as fields that have meaning even classically.

Specifically, a scalar particle is described by a field φ(x). Classically, this just means that for every

point xµ, the object φ(x) returns a number. Quantum mechanically, φ(x) becomes an operator (rather

than a state or wavefunction). There is a distinct operator for each xµ. Therefore, we no longer have

a position operator xµ; rather, it is just an ordinary number label that tells us which operator φ we

are talking about.

If φ(x) is now an operator, what states will it act on? The answer is that we can start with a

vacuum state

|0⟩ (5.1.1)

that describes an empty universe with no particles in it. If we now act with our field operator, we

obtain a state:

φ(x)|0⟩, (5.1.2)

which, at the time t = x0, contains one particle at x⃗. (What this state describes at other times is a

much more complicated question!) If we act again with our field operator at a different point yµ, we

get a state

φ(y)φ(x)|0⟩, (5.1.3)

which in general can be a linear combination of states containing any number of particles. [The operator

φ(y) can either add another particle, or remove the particle added to the vacuum state by φ(x). But,

in addition, the particles can interact to change their number.] In general, the field operator φ(x) acts

on any state by adding or subtracting particles. So this is the right framework to describe the quantum

mechanics of a system with a variable number of particles.
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Similarly, to describe spin-1/2 particles and their antiparticles, like the electron and the positron,

or quarks and antiquarks, we will want to use a Dirac field Ψ(x). Classically, Ψ(x) is a set of four

functions (one for each of the Dirac spinor components). Quantum mechanically, Ψ(x) is a set of four

operators. We can build up any state we want, containing any number of electrons and positrons, by

acting on the vacuum state |0⟩ enough times with the fields Ψ(x) and Ψ(x) = Ψ†γ0.

The vector field Aµ(x) associated with electromagnetism is already very familiar in the classical

theory, as the electrical and vector potentials. In the quantum theory of electromagnetism, Aµ(x)

becomes an operator which can add or subtract photons from the vacuum.

This way of dealing with theories of multi-particle physics is called field theory. In order to describe

how particles in a field theory evolve and interact, we need to specify a single object called the action.

Let us first review how the action principle works in a simple, non-field-theory setting. Let the

variables qn(t) describe the configuration of a physical system. (For example, a single q(t) could

describe the displacement of a harmonic oscillator from equilibrium, as a function of time.) Here n

is just a label distinguishing the different configuration variables. Classically, we could specify the

equations of motion for the qn, which we could get from knowing what forces were acting on it. A

clever way of summarizing this information is to specify the action

S =
∫ tf

ti
L(qn, q̇n) dt. (5.1.4)

Here ti and tf are fixed initial and final times, and L is the Lagrangian. It is given in simple systems

by

L = T − V, (5.1.5)

where T is the total kinetic energy and V is the total potential energy. Thus the action S is a

functional of qn; if you specify a particular trajectory qn(t), then the action returns a single number.

The Lagrangian is a function of qn(t) and its first derivative.

The usefulness of the action is given by Hamilton’s principle, which states that if qn(ti) and qn(tf )

are held fixed as boundary conditions, then S is minimized when qn(t) satisfy the equations of motion.

Since S is at an extremum, this means that any small variation in qn(t) will lead to no change in S, so

that qn(t) → qn(t) + δqn(t) implies δS = 0, provided that qn(t) obeys the equations of motion. Here

δqn(t) is any small function of t that vanishes at both ti and tf , as shown in the figure below:
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t1 t2

t

q(t1)

q(t2)

q(t)
q(t)

q(t)+δq(t)

Let us therefore compute δS. First, note that by the chain rule, we have:

δL =
∑

n

(
δqn

∂L

∂qn
+ δq̇n

∂L

∂q̇n

)
. (5.1.6)

Now, since

δq̇n =
d

dt
(δqn), (5.1.7)

we obtain

δS =
∑

n

∫ tf

ti

[
δqn

∂L

∂qn
+

d

dt
(δqn)

∂L

∂q̇n

]
dt. (5.1.8)

Now integrating by parts yields:

δS =
∑

n

∫ tf

ti
δqn

[
∂L

∂qn
− d

dt

(
∂L

∂q̇n

)]
dt +

∑

n

δqn
∂L

∂q̇n

∣∣∣
t=tf

t=ti
. (5.1.9)

The last term vanishes because of the boundary conditions δqn(ti) = δqn(tf ) = 0. Since the variation

δS is supposed to vanish for any δqn(t), it must be that

∂L

∂qn
− d

dt

(
∂L

∂q̇n

)
= 0 (5.1.10)

is the equation of motion for qn(t), for each n.

As a simple example, suppose there is only one qn(t) = x(t), the position of some particle moving

in one dimension in a potential V (x). Then

L = T − V =
1

2
mẋ2 − V (x), (5.1.11)

from which there follows:

∂L

∂x
= −∂V

∂x
= F, (5.1.12)
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which we recognize as the Newtonian force, and

d

dt

(
∂L

∂ẋ

)
=

d

dt
(mẋ) = mẍ. (5.1.13)

So the equation of motion is Newton’s second law:

F = mẍ. (5.1.14)

Everything we need to know about the dynamics of a physical system is encoded in the action S,

or equivalently the Lagrangian L. In quantum field theory, it will tell us what the particle masses are,

how they interact, how they decay, and what symmetries provide selection rules on their behavior.

As a first example of an action for a relativistic field theory, consider a scalar field φ(x) = φ(t, x⃗).

Then, in the previous discussion, we identify the label n with the spatial position x⃗, and qn(t) = φ(t, x⃗).

The action is obtained by summing contributions from each x:

S =
∫ tf

ti
dt L(φ, φ̇) =

∫ tf

ti
dt
∫

d3x⃗L(φ, φ̇). (5.1.15)

Now, since this expression depends on φ̇, it must also depend on ∇⃗φ in order to be Lorentz invariant.

This just means that the form of the Lagrangian allows it to depend on the differences between the

field evaluated at infinitesimally nearby points. So, a better way to write the action is:

S =
∫

d4xL(φ, ∂µφ). (5.1.16)

The object L is known as the Lagrangian density. Specifying a particular form for L defines the theory.

To find the classical equations of motion for the field, we must find φ(x) so that S is extremized; in

other words, for any small variation φ(x)→ φ(x)+δφ(x), we must have δS = 0. By a similar argument

as above, this implies the equations of motion:

δL
δφ
− ∂µ

(
δL

δ(∂µφ)

)

= 0. (5.1.17)

Here, we use δL
δφ to mean the partial derivative of L with respect to φ; δ is used rather than ∂ to avoid

confusing between derivatives with respect to φ and spacetime partial derivatives with respect to xµ.

Likewise, δL
δ(∂µφ) means a partial derivative of L with respect to the object ∂µφ, upon which it depends.

As an example, consider the choice:

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2. (5.1.18)

It follows that:

δL
δφ

= −m2φ (5.1.19)

and

δL
δ(∂µφ)

=
δ

δ(∂µφ)

[
1

2
gαβ∂αφ∂βφ

]
=

1

2
gµβ∂βφ+

1

2
gαµ∂αφ = ∂µφ. (5.1.20)
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Therefore,

∂µ

(
δL

δ(∂µφ)

)

= ∂µ∂
µφ, (5.1.21)

and so the equation of motion following from eq. (5.1.17) is:

∂µ∂
µφ+ m2φ = 0. (5.1.22)

This we recognize as the Klein-Gordon wave equation for a scalar particle of mass m; compare to

eq. (3.1.13). This equation was originally introduced with the interpretation as the equation governing

the quantum wavefunction of a single scalar particle. Now it has reappeared with a totally different

interpretation, as the classical equation of motion for the scalar field.

The previous discussion for scalar fields can be extended to other types of fields as well. Consider

a general list of fields Φj(x), which could include scalar fields φ(x), Dirac or Majorana fields Ψ(x) with

four components, Weyl fields ψ(x) with two components, or vector fields Aµ(x) with four components,

or several copies of any of these. The Lagrangian density L(Φj, ∂µΦj) determines the classical equations

of motion through the principle that S =
∫

d4x L should be stationary to first order when a deviation

Φj(x) → Φj(x) + δΦj(x) is made, with boundary conditions that δΦj(x) vanishes on the boundary

of the spacetime region on which S is evaluated. (Typically one evaluates S between two times ti

and tf , and over all of space, so this means that δΦ(x) vanishes very far away from some region of

interest.) The Lagrangian density L should be a real quantity that transforms under proper Lorentz

transformations as a scalar.

Similarly to eq. (5.1.6), we have by the chain rule:

δS =
∫

d4x
∑

j

[

δΦj
δL
δΦj

+ δ(∂µΦj)

(
δL

δ(∂µΦj)

)]

. (5.1.23)

Now using δ(∂µΦj) = ∂µ(δΦj), and integrating the second term by parts (this is where the boundary

conditions come in), one obtains

δS =
∫

d4x
∑

j

δΦj

[
δL
δΦj
− ∂µ

(
δL

δ(∂µΦj)

)]

. (5.1.24)

If we require this to vanish for each and every arbitrary variation δΦj , we obtain the Euler-Lagrange

equations of motion:

δL
δΦj
− ∂µ

(
δL

δ(∂µΦj)

)

= 0, (5.1.25)

for each j.

For example, let us consider how to make a Lagrangian density for a Dirac field Ψ(x). Under

Lorentz transformations, Ψ(x) transforms exactly like the wavefunction solution to the Dirac equation.

But now it is interpreted instead as a field; classically it is a function on spacetime, and quantum
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mechanically it is an operator for each point xµ. Now, Ψ(x) is a complex 4-component object, so Ψ†(x)

is also a field. One should actually treat Ψ(x) and Ψ†(x) as independent fields, in the same way that in

complex analysis one often treats z = x + iy and z∗ = x− iy as independent variables. As we found in

section 3.1, if we want to build Lorentz scalar quantities, it is useful to use Ψ(x) = Ψ†γ0 as a building

block.

A good (and correct) guess for the Lagrangian for a Dirac field is:

L = iΨγµ∂µΨ−mΨΨ, (5.1.26)

which can also be written as:

L = iΨ†γ0γµ∂µΨ−mΨ†γ0Ψ. (5.1.27)

This is a Lorentz scalar, so that when integrated
∫

d4x it will give a Lorentz-invariant number. Let us

now compute the equations of motion that follow from it. First, let us find the equations of motion

obtained by varying with respect to Ψ†. For this, we need:

δL
δΨ† = iγ0γµ∂µΨ−mγ0Ψ, (5.1.28)

δL
δ(∂µΨ†)

= 0. (5.1.29)

The second equation just reflects the fact that the Lagrangian only contains the derivative of Ψ, not

the derivative of Ψ†. So, by plugging in to the general result eq. (5.1.25), the equation of motion is

simply:

iγµ∂µΨ−mΨ = 0, (5.1.30)

where we have multiplied δL
δΨ† = 0 on the left by γ0 and used the fact that (γ0)2 = 1. This is, of course,

the Dirac equation.

We can also find the equations of motion obtained from the Lagrangian by varying with respect to

Ψ. For that, we need:

δL
δΨ

= −mΨ, (5.1.31)

δL
δ(∂µΨ)

= iΨγµ. (5.1.32)

Plugging these into eq. (5.1.25), we obtain:

−i∂µΨγµ −mΨ = 0. (5.1.33)

However, this is nothing new; it is just the Hermitian conjugate of eq. (5.1.30), multiplied on the right

by γ0 and using eq. (3.1.33).

The Lagrangian density for an electromagnetic field is:

LEM = −1

4
FµνFµν = −1

4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ). (5.1.34)
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To find the equations of motion that follow from this Lagrangian, we compute:

δLEM

δAν
= 0, (5.1.35)

since Aµ doesn’t appear in the Lagrangian without a derivative acting on it, and

δLEM

δ(∂µAν)
=

δ

δ(∂µAν)

[
−1

4
(∂αAβ − ∂βAα)(∂ρAσ − ∂σAρ)g

αρgβσ
]

= −1

4

[
(∂ρAσ − ∂σAρ)g

µρgνσ − (∂ρAσ − ∂σAρ)g
νρgµσ

+(∂αAβ − ∂βAα)gµαgβσ − (∂αAβ − ∂αAβ)gναgµβ
]

= −∂µAν + ∂νAµ

= −Fµν . (5.1.36)

So, the equations of motion,

δLEM

δAν
− ∂µ

(
δLEM

δ(∂µAν)

)

= 0 (5.1.37)

reduce to

∂µFµν = 0, (5.1.38)

which we recognize as Maxwell’s equations in the case of vanishing Jµ [see eq. (4.13)]. In order to

include the effects of a 4-current Jµ, we can simply add a term

Lcurrent = −eJµAµ (5.1.39)

to the Lagrangian density. Then, since

δLcurrent

δAν
= −eJν ; (5.1.40)

δLcurrent

δ(∂µAν)
= 0, (5.1.41)

the classical equations of motion for the vector field become

∂µFµν − eJν = 0, (5.1.42)

in agreement with eq. (4.13). The current density Jµ may be regarded as an external source for the

electromagnetic field of unspecified origin; or it can be built out of the fields for charged particles, as

we will see.

5.2 Quantization of free scalar field theory

Let us now turn to the question of quantizing a field theory. To begin, let us recall how one quantizes

a simple generic system based on variables qn(t), given the Lagrangian L(qn, q̇n). First, one defines the

canonical momenta conjugate to each qn:

pn ≡
∂L

∂q̇n
. (5.2.1)
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The classical Hamiltonian is then defined by

H(qn, pn) ≡
∑

n

pnq̇n − L(qn, q̇n), (5.2.2)

where the q̇n are to be eliminated using eq. (5.2.1). To go to the corresponding quantum theory, the

qn and pn and H are reinterpreted as Hermitian operators acting on a Hilbert space of states. The

operators obey canonical equal-time commutation relations:

[pn, pm] = 0; (5.2.3)

[qn, qm] = 0; (5.2.4)

[pn, qm] = −ih̄δnm, (5.2.5)

and the time evolution of the system is determined by the Hamiltonian operator H.

Let us now apply this to the theory of a scalar field φ(x) with the Lagrangian density given by

eq. (5.1.18). Then φ(x) = φ(t, x⃗) plays the role of qn(t), with x⃗ playing the role of the label n; there is

a different field at each point in space. The momentum conjugate to φ is:

π(x⃗) ≡ δL
δφ̇

=
δ

δφ̇

[1
2
φ̇2 + . . .

]
= φ̇. (5.2.6)

It should be emphasized that π(x⃗), the momentum conjugate to the field φ(x⃗), is not in any way the

mechanical momentum of the particle. Notice that π(x⃗) is a scalar function, not a three-vector or a

four-vector!

The Hamiltonian is obtained by summing over the fields at each point x⃗:

H =
∫

d3x⃗ π(x⃗)φ̇(x)− L (5.2.7)

=
∫

d3x⃗ π(x⃗)φ̇(x)−
∫

d3x⃗
1

2
[φ̇2 − (∇⃗φ)2 −m2φ2] (5.2.8)

=
1

2

∫
d3x⃗ [π2 + (∇⃗φ)2 + m2φ2]. (5.2.9)

Notice that a nice feature has emerged: this Hamiltonian is a sum of squares, and is therefore always

≥ 0. There are no dangerous solutions with arbitrarily large negative energy, unlike the case of the

single-particle Klein-Gordon wave equation.

At any given fixed time t, the field operators φ(x⃗) and their conjugate momenta π(x⃗) are Hermitian

operators satisfying commutation relations exactly analogous to eqs. (5.2.3)-(5.2.5):

[φ(x⃗),φ(y⃗)] = 0; (5.2.10)

[π(x⃗),π(y⃗)] = 0; (5.2.11)

[π(x⃗),φ(y⃗)] = −ih̄δ(3)(x⃗− y⃗). (5.2.12)

As we will see, it turns out to be profitable to analyze the system in a way similar to the way one

treats the harmonic oscillator in one-dimensional nonrelativistic quantum mechanics. In that system,
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one defines “creation” and “annihilation” (or “raising” and “lowering”) operators a† and a as complex

linear combinations of the position and momentum operators x and p. Similarly, here we will define:

ap⃗ =
∫

d3x⃗ e−ip⃗·x⃗ [Ep⃗φ(x⃗) + iπ(x⃗)
]
, (5.2.13)

where

Ep⃗ =
√

p⃗2 + m2, (5.2.14)

with the positive square root always taken. The overall coefficient in front of eq. (5.2.13) reflects an

arbitrary choice (and in fact it is chosen differently by various books). Equation (5.2.13) defines a

distinct annihilation operator for each three-momentum p⃗. Taking the Hermitian conjugate yields:

a†p⃗ =
∫

d3x⃗ eip⃗·x⃗ [Ep⃗ φ(x⃗)− iπ(x⃗)
]
. (5.2.15)

To see the usefulness of these definitions, compute the commutator:

[ap⃗, a
†
k⃗
] =

∫
d3x⃗

∫
d3y⃗ e−ip⃗·x⃗eik⃗·y⃗ [Ep⃗ φ(x⃗) + iπ(x⃗) , Ek⃗ φ(y⃗)− iπ(y⃗)] (5.2.16)

=
∫

d3x⃗
∫

d3y⃗ e−ip⃗·x⃗eik⃗·y⃗ (Ek⃗ + Ep⃗) δ
(3)(x⃗− y⃗), (5.2.17)

where eqs. (5.2.10)-(5.2.12) have been used. Now performing the y⃗ integral using the definition of the

delta function, one obtains:

[ap⃗, a†
k⃗
] = (Ek⃗ + Ep⃗)

∫
d3x⃗ ei(k⃗−p⃗)·x . (5.2.18)

This can be further reduced by using the important identity:
∫

d3x⃗ eiq⃗·x⃗ = (2π)3δ(3)(q⃗ ), (5.2.19)

valid for any 3-vector q⃗, to obtain the final result:

[ap⃗, a
†
k⃗
] = (2π)32Ep⃗ δ

(3) (⃗k − p⃗). (5.2.20)

Here we have put Ek⃗ = Ep⃗, using the fact that the delta function vanishes except when k⃗ = p⃗. In a

similar way, one can check the commutators:

[ap⃗, ak⃗] = [a†p⃗, a
†
k⃗
] = 0. (5.2.21)

Up to a constant factor on the right-hand side of eq. (5.2.20), these results have the same form as the

harmonic oscillator algebra [a, a†] = 1; [a, a] = [a†, a†] = 0 that are familiar from non-relativistic quan-

tum mechanics. Therefore, the quantum mechanics of a scalar field behaves like an infinite collection

of harmonic oscillators, one associated with each three-momentum p⃗.

Now we can understand the Hilbert space of states for the quantum field theory. We start with the

vacuum state |0⟩, which is taken to be annihilated by all of the lowering operators:

ak⃗|0⟩ = 0. (5.2.22)
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Acting on the vacuum state with any raising operator produces

a†
k⃗
|0⟩ = |⃗k⟩, (5.2.23)

which describes a state with a single particle with three-momentum k⃗ (and no definite position). Acting

multiple times with raising operators produces a state with multiple particles. So

a†
k⃗1

a†
k⃗2

. . . a†
k⃗n
|0⟩ = |⃗k1, k⃗2, . . . , k⃗n⟩ (5.2.24)

describes a state of the universe with n φ-particles with momenta k⃗1, k⃗2, . . . , k⃗n. Note that these states

are automatically symmetric under interchange of any two of the momentum labels k⃗i, because of the

identity [a†
k⃗i

, a†
k⃗j

] = 0. This is another way of saying that the multiparticle states obey Bose-Einstein

statistics for identical particles with integer (in this case, 0) spin.

In order to check our interpretation of the quantum theory, let us now evaluate the Hamiltonian

operator in terms of the raising and lowering operators, and then determine how H acts on the space

of states. First, let us invert the definitions eqs. (5.2.13) and (5.2.15) to find φ(x⃗) and π(y⃗) in terms of

the a†p⃗ and ap⃗. We begin by noting that:

ap⃗ + a†−p⃗ =
∫

d3x⃗ e−ip⃗·x⃗2Ep⃗ φ(x⃗). (5.2.25)

Now we act on both sides by:
∫

dp̃ eip⃗·y⃗, (5.2.26)

where we have introduced the very convenient shorthand notation:

∫
dp̃ ≡

∫
d3p⃗

(2π)32Ep⃗
(5.2.27)

used often from now on. The result is that eq. (5.2.25) becomes

∫
dp̃ eip⃗·y⃗(ap⃗ + a†−p⃗) =

∫
d3x⃗ φ(x⃗)

{∫
d3p⃗

(2π)3
eip⃗·(y⃗−x⃗)

}

. (5.2.28)

Since the p⃗ integral in braces is equal to δ(3)(y⃗ − x⃗) [see eq. (5.2.19)], one obtains after performing the

x⃗ integral:

φ(y⃗) =
∫

dp̃ eip⃗·y⃗(ap⃗ + a†−p⃗), (5.2.29)

or, renaming y⃗ → x⃗, and p⃗→ −p⃗ in the second term on the right:

φ(x⃗) =
∫

dp̃ (eip⃗·x⃗ap⃗ + e−ip⃗·x⃗a†p⃗). (5.2.30)

This expresses the original field in terms of raising and lowering operators. Similarly, for the conjugate

momentum field, one finds:

π(x⃗) = −i
∫

dp̃ Ep⃗ (eip⃗·x⃗ap⃗ − e−ip⃗·x⃗a†p⃗). (5.2.31)
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Now we can plug the results of eqs. (5.2.30) and (5.2.31) into the expression eq. (5.2.9) for the

Hamiltonian. The needed terms are:

1

2

∫
d3x⃗ π(x)2 =

1

2

∫
d3x⃗

∫
dk̃
∫

dp̃ (−i)2Ek⃗Ep⃗

(
eik⃗·x⃗ak⃗ − e−ik⃗·x⃗a†

k⃗

)(
eip⃗·x⃗ap⃗ − e−ip⃗·x⃗a†p⃗

)
, (5.2.32)

1

2

∫
d3x⃗ (∇⃗φ)2 =

1

2

∫
d3x⃗

∫
dk̃
∫

dp̃
(
i⃗keik⃗·x⃗ak⃗ − i⃗ke−ik⃗·x⃗a†

k⃗

)
·
(
ip⃗eip⃗·x⃗ap⃗ − ip⃗e−ip⃗·x⃗a†p⃗

)
, (5.2.33)

m2

2

∫
d3x⃗ φ(x)2 =

m2

2

∫
d3x⃗

∫
dk̃
∫

dp̃
(
eik⃗·x⃗ak⃗ + e−ik⃗·x⃗a†

k⃗

) (
eip⃗·x⃗ap⃗ + e−ip⃗·x⃗a†p⃗

)
. (5.2.34)

Adding up the pieces, one finds:

H =
1

2

∫
dk̃
∫

dp̃
∫

d3x⃗

{

(m2 − k⃗ · p⃗−Ek⃗Ep⃗)
[
ak⃗ap⃗ ei(k⃗+p⃗)·x⃗ + a†

k⃗
a†p⃗ e−i(k⃗+p⃗)·x⃗

]

+(m2 + k⃗ · p⃗ + Ek⃗Ep⃗)
[
a†

k⃗
ap⃗ ei(p⃗−k⃗)·x⃗ + ak⃗a

†
p⃗ ei(k⃗−p⃗)·x⃗

]}

. (5.2.35)

Now one can do the x⃗ integration using:

∫
d3x⃗ e±i(k⃗+p⃗)·x⃗ = (2π)3δ(3) (⃗k + p⃗ ), (5.2.36)

∫
d3x⃗ e±i(k⃗−p⃗)·x⃗ = (2π)3δ(3) (⃗k − p⃗ ). (5.2.37)

As a result, the coefficient (m2 − k⃗ · p⃗ − Ek⃗ Ep⃗) of the aa and a†a† terms vanishes after plugging in

k⃗ = −p⃗ as enforced by the delta function. Meanwhile, for the aa† and a†a terms one has k⃗ = p⃗ from

the delta function, so that

(m2 + k⃗ · p⃗ + Ek⃗Ep⃗)δ
(3) (⃗k − p⃗) = 2E2

p⃗ δ
(3) (⃗k − p⃗). (5.2.38)

Now performing the k⃗ integral in eq. (5.2.35), one finds:

H =
1

2

∫
dp̃ Ep⃗

(
a†p⃗ ap⃗ + ap⃗ a†p⃗

)
. (5.2.39)

Finally, we can rearrange the second term, using

ap⃗ a†p⃗ = a†p⃗ ap⃗ + (2π)32Ep⃗ δ
(3)(p⃗− p⃗) (5.2.40)

from eq. (5.2.20). The last term is infinite, so

H =
∫

dp̃ Ep⃗ a†p⃗ ap⃗ + ∞, (5.2.41)

where “∞” means an infinite, but constant, contribution to the energy. Since a uniform constant

contribution to the energy of all states is unobservable and commutes will all other operators, we are

free to drop it, by a redefinition of the Hamiltonian. This is a simple example of the process known as

renormalization. (In a more careful treatment, one could “regulate” the theory by quantizing the theory

confined to a box of finite volume, and neglecting all contributions coming from momenta greater than
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some cutoff |p⃗|max. Then the infinite constant would be rendered finite. Since we are going to ignore

the constant anyway, we won’t bother doing this.) So, from now on,

H =
∫

dp̃ Ep⃗ a†p⃗ ap⃗ (5.2.42)

is the Hamiltonian operator.

Acting on the vacuum state,

H|0⟩ = 0, (5.2.43)

since all ap⃗ annihilate the vacuum. This shows that the infinite constant we dropped from H is actually

the infinite energy density associated with an infinite universe of empty space, filled with the zero-point

energies of an infinite number of oscillators, one for each possible momentum 3-vector p⃗. But we’ve

already agreed to ignore it, so let it go. Now, you will show for homework that:

[H, a†
k⃗
] = Ek⃗ a†

k⃗
. (5.2.44)

Acting with H on a one-particle state, we therefore obtain

H |⃗k⟩ = Ha†
k⃗
|0⟩ = [H, a†

k⃗
]|0⟩ = Ek⃗ a†

k⃗
|0⟩ = Ek⃗ |⃗k⟩. (5.2.45)

This proves that the one-particle state with 3-momentum k⃗ has energy eigenvalue Ek⃗ =
√

k⃗2 + m2, as

expected. More generally, a multi-particle state

|⃗k1, k⃗2, . . . , k⃗n⟩ = a†
k⃗1

a†
k⃗2

. . . a†
k⃗n
|0⟩ (5.2.46)

is easily shown to be an eigenstate of H with eigenvalue Ek⃗1
+ Ek⃗2

+ . . . + Ek⃗n
. Note that it is not

possible to construct a state with a negative energy eigenvalue!

5.3 Quantization of free Dirac fermion field theory

Let us now apply the wisdom obtained by the quantization of a scalar field in the previous subsection

to the problem of quantizing a Dirac fermion field that describes electrons and positrons. A sensible

strategy is to expand the fields Ψ and Ψ† in terms of operators that act on states by creating and

destroying particles with a given 3-momentum. Now, since Ψ is a spinor with four components, one

must expand it in a basis for the four-dimensional spinor space. A convenient such basis is the solutions

we found to the Dirac equation, u(p, s) and v(p, s). So we expand the Dirac field, at a given fixed time

t, as:

Ψ(x⃗) =
2∑

s=1

∫
dp̃
[
u(p, s)eip⃗·x⃗bp⃗,s + v(p, s)e−ip⃗·x⃗d†p⃗,s

]
. (5.3.1)

Here s labels the two possible spin states in some appropriate basis (for example, Sz = ±1/2). The op-

erator bp⃗,s will be interpreted as an annihilation operator, which removes an electron with 3-momentum
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p⃗ and spin state s from whatever state it acts on. The operator d†p⃗,s is a creation operator, which adds

a positron to whatever state it acts on. We are using b, b† and d, d† rather than a, a† in order to distin-

guish the fermion and antifermion creation and annihilation operators from the scalar field versions.

Taking the Hermitian conjugate of eq. (5.3.1), and multiplying by γ0 on the right, we get:

Ψ(x⃗) =
2∑

s=1

∫
dp̃
[
u(p, s)e−ip⃗·x⃗b†p⃗,s + v(p, s)eip⃗·x⃗dp⃗,s

]
. (5.3.2)

The operator b†p⃗,s creates an electron, and dp⃗,s destroys a positron, with the corresponding 3-momentum

and spin.

More generally, if the Dirac field describes some fermions other than the electron-positron system,

then you can substitute “particle” for electron and “antiparticle” for positron. So b†, b act on states to

create and destroy particles, while d†, d create and destroy antiparticles.

Just as in the case of a scalar field, we assume the existence of a vacuum state |0⟩, which describes

a universe of empty space with no electrons or positrons present. The annihilation operators yield 0

when acting on the vacuum state:

bp⃗,s|0⟩ = dp⃗,s|0⟩ = 0 (5.3.3)

for all p⃗ and s. To make a state describing a single electron with 3-momentum p⃗ and spin state s, just

act on the vacuum with the corresponding creation operator:

b†p⃗,s|0⟩ = |e−p⃗,s⟩. (5.3.4)

Similarly,

b†
k⃗,r

b†p⃗,s|0⟩ = |e−
k⃗,r

; e−p⃗,s⟩ (5.3.5)

is a state containing two electrons, etc.

Now, electrons are fermions; they must obey Fermi-Dirac statistics for identical particles. This

means that if we interchange the momentum and spin labels for the two electrons in the state of

eq. (5.3.5), we must get a minus sign:

|e−
k⃗,r

; e−p⃗,s⟩ = −|e−p⃗,s; e
−
k⃗,r
⟩. (5.3.6)

A corollary of this is the Pauli exclusion principle, which states that two electrons cannot be in exactly

the same state. In the present case, that means that we cannot add to the vacuum two electrons with

exactly the same 3-momentum and spin. Taking k⃗ = p⃗ and r = s in eq. (5.3.6):

|e−p⃗,s; e
−
p⃗,s⟩ = −|e−p⃗,s; e

−
p⃗,s⟩, (5.3.7)

which can only be true if |e−p⃗,s; e
−
p⃗,s⟩ = 0, in other words there is no such state.

Writing eq. (5.3.6) in terms of creation operators, we have:

b†
k⃗,r

b†p⃗,s|0⟩ = −b†p⃗,sb
†
k⃗,r

|0⟩. (5.3.8)
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So, instead of the commutation relation

[b†
k⃗,r

, b†p⃗,s] = 0 (Wrong!) (5.3.9)

that one might expect from comparison with the scalar field, we must have an anticommutation relation:

b†
k⃗,r

b†p⃗,s + b†p⃗,sb
†
k⃗,r

= {b†
k⃗,r

, b†p⃗,s} = 0. (5.3.10)

Taking the Hermitian conjugate, we must also have:

{bk⃗,r, bp⃗,s} = 0. (5.3.11)

Similarly, applying the same thought process to identical positron fermions, one must have:

{d†
k⃗,r

, d†p⃗,s} = {dk⃗,r, dp⃗,s} = 0. (5.3.12)

Note that in the classical limit, h̄ → 0, these equations are unaffected, since h̄ doesn’t appear

anywhere. So it must be true that b, b†, d, and d† anticommute even classically. So, as classical fields,

one must have

{Ψ(x),Ψ(y)} = 0, (5.3.13)

{Ψ†(x),Ψ†(y)} = 0, (5.3.14)

{Ψ(x),Ψ†(y)} = 0. (5.3.15)

Evidently, the classical Dirac field is not a normal number, but rather an anticommuting or Grassmann

number. Interchanging the order of any two Grassmann numbers results in an overall minus sign.

In order to discover how the classical equations (5.3.13) and (5.3.15) are modified when one goes

to the quantum theory, let us construct the momentum conjugate to Ψ(x⃗). It is:

P(x⃗) =
δL
δ∂0Ψ

= iΨγ0 = iΨ†γ0γ0 = iΨ†. (5.3.16)

So the momentum conjugate to the Dirac spinor field is just i times its Hermitian conjugate. Now,

naively following the path of canonical quantization, one might expect the equal-time commutation

relation:

[P(x⃗),Ψ(y⃗ )] = −ih̄δ(3)(x⃗− y⃗ ). (Wrong!) (5.3.17)

However, this clearly cannot be correct, since these are anticommuting fields; in the classical limit

h̄ → 0, eq. (5.3.17) disagrees with eq. (5.3.15). So, instead we postulate a canonical anticommutation

relation for the Dirac field operator and its conjugate momentum operator:

{P(x⃗), Ψ(y⃗ )} = −ih̄δ(3)(x⃗− y⃗ ). (5.3.18)

Now just rewriting P = iΨ†, this becomes:

{Ψ†(x⃗),Ψ(y⃗ )} = −h̄δ(3)(x⃗− y⃗ ). (5.3.19)

55



From this, using a strategy similar to that used for scalar fields, one can obtain:

{bp⃗,s, b
†
k⃗,r

} = {dp⃗,s, d
†
k⃗,r

} = (2π)32Ep⃗ δ
(3)(p⃗− k⃗) δsr, (5.3.20)

and all other anticommutators of b, b†, d, d† operators vanish.

One also can check that the Hamiltonian is

H =
2∑

s=1

∫
dp̃ Ep⃗ (b†p⃗,sbp⃗,s + d†p⃗,sdp⃗,s) (5.3.21)

in a way very similar to the way we found the Hamiltonian for a scalar field in terms of a, a† operators.

In doing so, one must again drop an infinite constant contribution (negative, this time) which is

unobservable because it is the same for all states. Note that H again has energy eigenvalues that are

≥ 0. For homework, you will show that:

[H, b†
k⃗,s

] = Ek⃗ b†
k⃗,s

, (5.3.22)

[H, d†
k⃗,s

] = Ek⃗ d†
k⃗,s

. (5.3.23)

(Note that these equations are commutators rather than anticommutators!) It follows that the eigen-

states of energy and 3-momentum are given in general by:

b†p⃗1,s1
. . . b†p⃗n,sn

d†
k⃗1,r1

. . . d†
k⃗m,rm

|0⟩, (5.3.24)

which describes a state with n electrons (particles) and m positrons (antiparticles) with the obvious

3-momenta and spins, and total energy Ep⃗1 + . . . + Ep⃗n
+ Ek⃗1

+ . . . + Ek⃗m
.
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6 Interacting scalar field theories

6.1 Scalar field with φ4 coupling

So far, we have been dealing with free field theories. These are theories in which the Lagrangian density

is quadratic in the fields, so that the Euler-Lagrange equations obtained by varying L are linear wave

equations in the fields, with exact solutions that are not too hard to find. At the quantum level, this

nice feature shows up in the simple time evolution of the states. In field theory, as in any quantum

system, the time evolution of a state |X⟩ is given in the Schrodinger picture by

ih̄
d

dt
|X⟩ = H|X⟩. (6.1.1)

So, in the case of a multiparticle state with an energy eigenvalue E as described above, the solution is

just

|X(t)⟩ = e−i(t−t0)H |X(t0)⟩ = e−i(t−t0)E |X(t0)⟩. (6.1.2)

In other words, the state at some time t is just the same as the state at some previous time t0, up to

a phase. So nothing ever happens to the particles in a free theory; their number does not change, and

their momenta and spins remain the same.

We are interested in describing a more interesting situation where particles can scatter off each

other, perhaps inelastically to create new particles, and in which some particles can decay into other

sets of particles. To describe this, we need a Lagrangian density that contains terms with more than

two fields. At the classical level, this will lead to non-linear equations of motion that have to be

solved approximately. At the quantum level, finding exact energy eigenstates of the Hamiltonian is

not possible, so one usually treats the non-quadratic part of the Hamiltonian as a perturbation on the

quadratic part. This gives only approximate answers, which is unfortunate, but makes life interesting.

As an example, consider the free Lagrangian for a scalar field φ, as given in eq. (5.1.18), and add

to it an interaction term:

L = L0 + Lint; (6.1.3)

Lint = − λ

24
φ4. (6.1.4)

Here λ is a dimensionless number, a parameter of the theory known as a coupling. It governs the

strength of interactions; if we set λ = 0, we would be back to the free theory in which nothing

interesting ever happens. The factor of 1/4! = 1/24 is a convention, and the reason for it will be

apparent later. Now canonical quantization can proceed as before, except that now the Hamiltonian is

H = H0 + Hint, (6.1.5)

where

Hint = −
∫

d3x⃗ Lint =
λ

24

∫
d3x⃗ φ(x⃗)4. (6.1.6)
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Let us write this in terms of creation and annihilation operators, using eq. (5.2.30):

Hint =
λ

24

∫
d3x⃗

∫
dq̃1

∫
dq̃2

∫
dq̃3

∫
dq̃4

(
aq⃗1e

iq⃗1·x⃗ + a†q⃗1
e−iq⃗1·x⃗

) (
aq⃗2e

iq⃗2·x⃗ + a†q⃗2
e−iq⃗2·x⃗

)

(
aq⃗3e

iq⃗3·x⃗ + a†q⃗3
e−iq⃗3·x⃗

) (
aq⃗4e

iq⃗4·x⃗ + a†q⃗4
e−iq⃗4·x⃗

)
. (6.1.7)

Now we can perform the d3x⃗ integration, using eq. (5.2.19). The result is:

Hint =
λ

24
(2π)3

∫
dq̃1

∫
dq̃2

∫
dq̃3

∫
dq̃4

[

a†q⃗1
a†q⃗2

a†q⃗3
a†q⃗4

δ(3)(q⃗1 + q⃗2 + q⃗3 + q⃗4)

+4a†q⃗1
a†q⃗3

a†q⃗3
aq⃗4 δ

(3)(q⃗1 + q⃗2 + q⃗3 − q⃗4)

+6a†q⃗1
a†q⃗2

aq⃗3aq⃗4 δ
(3)(q⃗1 + q⃗2 − q⃗3 − q⃗4)

+4a†q⃗1
aq⃗2aq⃗3aq⃗4 δ

(3)(q⃗1 − q⃗3 − q⃗3 − q⃗4)

+aq⃗1aq⃗2aq⃗3aq⃗4 δ
(3)(q⃗1 + q⃗2 + q⃗3 + q⃗4)

]

. (6.1.8)

Here we have combined several like terms, by relabeling the momenta, giving rise to the factors of 4, 6,

and 4. This involves reordering the a’s and a†’s. In doing so, we have ignored the fact that a’s do not

commute with a†’s when the 3-momenta are exactly equal. This should not cause any worry, because

it just corresponds to the situation where a particle is “scattered” without changing its momentum at

all, which is the same as no scattering, and therefore not of interest.

To see how to use the interaction Hamiltonian, it is useful to tackle a specific process. For example,

consider a scattering problem in which we have two scalar particles with 4-momenta pa, pb that interact,

producing two scalar particles with 4-momenta k1, k2:

papb → k1k2. (6.1.9)

We will work in the Schrodinger picture of quantum mechanics, in which operators are time-independent

and states evolve in time according to eq. (6.1.1). Nevertheless, in the far past, we assume that the

incoming particles were far apart, so the system is accurately described by the free Hamiltonian and

its energy eigenstates. The same applies to the outgoing particles in the far future. So, we can pretend

that Hint is “turned off” in both the far past and the far future. The states that are simple two-particle

states are

|pa, pb⟩IN = a†p⃗a
a†p⃗b

|0⟩, (6.1.10)

in the far past, and

|k1, k2⟩OUT = a†
k⃗1

a†
k⃗2
|0⟩, (6.1.11)

in the far future. These are built out of creation and annihilation operators just as before, so they

are eigenstates of the free Hamiltonian H0, but not of the full Hamiltonian. Now, we are interested in
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computing the probability amplitude that the state |pa, pb⟩IN evolves to the state |k1, k2⟩OUT. According

to the rules of quantum mechanics this is given by their overlap at a common time, say in the far future:

OUT⟨k1, k2|pa, pb⟩OUT. (6.1.12)

The state |pa, pb⟩OUT is the time evolution of |pa, pb⟩IN from the far past to the far future:

|pa, pb⟩OUT = e−iTH |pa, pb⟩IN, (6.1.13)

where T is the long time between the far past time when the initial state was created and the far future

time at which the overlap is computed. So we have:

OUT⟨k1, k2|pa, pb⟩OUT = OUT⟨k1, k2|e−iTH |pa, pb⟩IN. (6.1.14)

The states appearing on the right-hand side are simple; see eqs. (6.1.10) and (6.1.11). The complications

are hidden in the operator e−iTH .

In general, e−iTH cannot be written exactly in a useful way in terms of creation and annihilation

operators. However, we can do it perturbatively, order by order in the coupling λ. For example, let us

consider the contribution linear in λ. We use the definition of the exponential to write:

e−iTH = [1− iHT/N ]N = [1− i(H0 + Hint)T/N ]N , (6.1.15)

for N →∞. Now, the part of this that is linear in Hint can be expanded as:

e−iTH =
N−1∑

n=0

[1− iH0T/N ]N−n−1 (−iHintT/N) [1− iH0T/N ]n . (6.1.16)

(Here we have dropped the 0th order part, e−iTH0 , as uninteresting; it just corresponds to the particles

evolving as free particles.) We can now turn this discrete sum into an integral, by letting t = nT/N

and dt = T/N in the limit of large N :

e−iTH = −i
∫ T

0
dt e−i(T−t)H0Hinte

−itH0 . (6.1.17)

Next we can use the fact that we know what H0 is when acting on the simple states of eqs. (6.1.10)

and (6.1.11):

e−itH0 |pa, pb⟩IN = e−itEi |pa, pb⟩IN, (6.1.18)

OUT⟨k1, k2|e−i(T−t)H0 = OUT⟨k1, k2|e−i(T−t)Ef , (6.1.19)

where

Ei = Ep⃗a + Ep⃗b
, Ef = Ek⃗1

+ Ek⃗2
(6.1.20)

are the energies of the initial and final states, respectively. So we have:

OUT⟨k1, k2|e−iTH |pa, pb⟩IN = −i
∫ T

0
dt e−i(T−t)Ef e−itEi

OUT⟨k1, k2|Hint|pa, pb⟩IN. (6.1.21)
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First let us do the t integral:

∫ T

0
dt e−i(T−t)Ef e−itEi = e−i(Ef +Ei)T/2

∫ T/2

−T/2
dt′ eit′(Ef−Ei) (6.1.22)

where we have redefined the integration variable by t = t′ + T/2. As we take T →∞, we can use the

integral identity
∫ ∞

−∞
dx eixA = 2πδ(A) (6.1.23)

to obtain:
∫ T

0
dt e−i(T−t)Ef e−itEi = 2π δ(Ef − Ei) e−i(Ef +Ei)T/2. (6.1.24)

This tells us that energy conservation will be enforced, and (dropping the phase factor e−i(Ef +Ei)T/2,

which will just give 1 when we take the complex square of the probability amplitude):

OUT⟨k1, k2|pa, pb⟩OUT = −i 2π δ(Ef − Ei) OUT⟨k1, k2|Hint|pa, pb⟩IN. (6.1.25)

Now we are ready to use our expression for Hint in eq. (6.1.8). The action of Hint on eigenstates of

the free Hamiltonian can be read off from the different types of terms. The aaaa-type term will remove

four particles from the state. Clearly we don’t have to worry about that, because there were only two

particles in the state to begin with! The same goes for the a†aaa-type term. The terms of type a†a†a†a†

and a†a†a†a create more than the two particles we know to be in the final state, so we can ignore them

too. Therefore, the only term that will play a role in this example is the a†a†aa contribution:

Hint =
λ

4
(2π)3

∫
dq̃1

∫
dq̃2

∫
dq̃3

∫
dq̃4 δ

(3)(q⃗1 + q⃗2 − q⃗3 − q⃗4) a†q⃗1
a†q⃗2

aq⃗3aq⃗4 , (6.1.26)

Therefore, we have:

OUT⟨k1, k2|pa, pb⟩OUT = −i(2π)4
λ

4

∫
dq̃1

∫
dq̃2

∫
dq̃3

∫
dq̃4 δ

(4)(q1 + q2 − q3 − q4)

OUT⟨k1, k2|a†q⃗1
a†q⃗2

aq⃗3aq⃗4|pa, pb⟩IN. (6.1.27)

Here we have combined the three-momenta delta function from eq. (6.1.26) with the energy delta

function from eq. (6.1.25) to give a 4-momentum delta function.

It remains to evaluate:

OUT⟨k1, k2|a†q⃗1
a†q⃗2

aq⃗3aq⃗4|pa, pb⟩IN, (6.1.28)

which, according to eqs. (6.1.10) and (6.1.11), is equal to

⟨0|ak⃗1
ak⃗2

a†q⃗1
a†q⃗2

aq⃗3aq⃗4a
†
p⃗a

a†p⃗b
|0⟩. (6.1.29)

This can be done using the commutation relations of eqs. (5.2.20) and (5.2.21). The strategy is to

commute aq⃗3 and aq⃗4 to the right, so they can give 0 when acting on |0⟩, and commute a†q⃗1
and a†q⃗2

to
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the left so they can give 0 when acting on ⟨0|. Along the way, one picks up delta functions whenever

the 3-momenta of an a and a† match. One contribution occurs when q⃗3 = p⃗a and q⃗4 = p⃗b and q⃗1 = k⃗1

and q⃗2 = k⃗2. It yields:

(2π)32Eq⃗3δ
(3)(q⃗3 − p⃗a) (2π)32Eq⃗4δ

(3)(q⃗4 − p⃗b) (2π)32Eq⃗1δ
(3)(q⃗1 − k⃗1) (2π)32Eq⃗2δ

(3)(q⃗2 − k⃗2). (6.1.30)

There are 3 more similar terms. You can check that each of them gives a contribution equal to

eq. (6.1.30) when put into eq. (6.1.27), after relabeling momenta; this cancels the factor of 1/4 in

eq. (6.1.27). Now, the factors of (2π)32Eq⃗3 etc. all neatly cancel against the corresponding factors

in the denominator of dq̃3, etc. [See eq. (5.2.27).] The three-momentum delta functions then make

the remaining d3q⃗1, d3q⃗2, d3q⃗3, and d3q⃗4 integrations trivial; they just set the four-vectors q3 = pa,

q4 = pb, q1 = k1, and q2 = k2 in the remaining 4-momentum delta function that was already present in

eq. (6.1.27).

Putting it all together, we are left with the remarkably simple result:

OUT⟨k1, k2|pa, pb⟩OUT = −iλ(2π)4δ(4)(k1 + k2 − pa − pb). (6.1.31)

Rather than go through this whole messy procedure every time we invent a new interaction term for

the Lagrangian density, or every time we think of a new scattering process, one can instead summarize

the procedure with a simple set of diagrammatic rules. These rules, called Feynman rules, are useful

both as a precise summary of a matrix element calculation, and as a heuristic guide to what physical

process the calculation represents. In the present case, the Feynman diagram for the process is:

initial state final state

Here the two lines coming from the left represent the incoming state scalar particles, which get “de-

stroyed” by the annihilation operators in Hint. The vertex where the four lines meet represents the

interaction itself, and is associated with the factor −iλ. The two lines outgoing to the right represent

the two final state scalar particles, which are resurrected by the two creation operators in Hint.

This is just the simplest of many Feynman diagrams one could write down for the process of two

particle scattering in this theory. But all other diagrams represent contributions that are higher order

in λ, so if λ is small we can ignore them.

6.2 Scattering processes and cross-sections

In subsection 6.1, we found that the matrix element corresponding to 2 particle to 2 particle scattering

in a scalar field theory with interaction Lagrangian − λ
24φ

4 is:

OUT⟨k1k2|papb⟩OUT = −iλ(2π)4δ(4)(k1 + k2 − pa − pb). (6.2.1)
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Now we would like to learn how to translate this information into something physically meaningful

that could in principle be measured in an experiment. The matrix element itself is infinite whenever

4-momentum is conserved, and zero otherwise. So clearly we must do some work to relate it to an

appropriate physically measurable quantity, namely the cross-section.

The cross-section is the observable that gives the expected number of scattering events NS that will

occur if two large sets of particles are allowed to collide. Suppose that we have Na particles of type

a and Nb of type b, formed into large packets of uniform density that move completely through each

other as shown.

v⃗a −→ ←− v⃗b

The two packets are assumed to have the same area A (shaded gray) perpendicular to their motion.

The total number of scattering events occurring while the packets move through each other should be

proportional to each of the numbers Na and Nb, and inversely proportional to the area A. The equation

NS =
NaNb

A
σ (6.2.2)

defines the cross-section σ. The rate at which the effective NaNb/A is increasing with time in an

experiment is called the luminosity L (or instantaneous luminosity), and the same quantity integrated

over time, is called the integrated luminosity. Therefore,

NS = σ
∫

Ldt. (6.2.3)

The dimensions for cross-section are the same as area, and the official unit is 1 barn = 10−24 cm2

= 2568 GeV−2. However, a barn is a very large cross-section,† so more commonly-used units are

obtained by using the prefixes nano-, pico-, and femto-:

1 nb = 10−33 cm2 = 2.568 × 10−6 GeV−2, (6.2.4)

1 pb = 10−36 cm2 = 2.568 × 10−9 GeV−2, (6.2.5)

1 fb = 10−39 cm2 = 2.568 × 10−12 GeV−2. (6.2.6)

As an example, the Tevatron collides protons (p) and antiprotons (p) with a center-of-momentum

(CM) energy of ECM = 1960 GeV. At the time of this writing (January 2011), the total amount of

data collected in Run II corresponds to an integrated luminosity of about:
∫

Ldt = 10 fb−1 = 10, 000 pb−1. (6.2.7)

†The joke is that achieving an event with such a cross-section is “as easy as hitting the broad side of a barn”.
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The peak luminosity obtained so far in Run II of the Tevatron is about L = 4.04 × 1032 cm−2 sec−1,

or 4.04 × 10−4 pb−1 sec−1, in April 2010. The record for a single week is
∫

Ldt = 73 pb−1.

To figure out how many scattering events one expects at a collider, one needs to know the corre-

sponding cross-section for that type of event, which depends on the final state. The total cross-section

for any type of scattering at the Tevatron is quite large, by one estimate approximately

σ(pp→ anything) = 0.075 barns. (6.2.8)

However, this estimate is quite fuzzy, because it depends on the minimum momentum transfer that one

requires in order to say that a scattering event has occurred. For arbitrarily small momentum transfer

in elastic scattering of charged particles, the cross-section actually becomes arbitrarily large due to the

long-range nature of the Coulomb force, as we will see in section 7.5. Also, the vast majority of the

scattering events reflected in eq. (6.2.8) are extremely uninteresting, featuring final states of well-known

and well-understood hadrons. A more interesting final state would be anything involving a top quark

(t)and anti-top quark (t) pair, for which the Tevatron cross-section is about:

σ(pp→ tt + anything) = 7.5 pb. (6.2.9)

This means that about 75,000 top pairs should have been produced so far in Run II. However, only a

fraction of these are identified as such. A more speculative possibility is that the Tevatron will find a

Higgs boson h. If the mass of the Higgs boson is mh = 130 GeV, then the Tevatron cross-section to

produce it in association with a Z0 boson is roughly:

σ(pp→ hZ0 + anything) = 75 fb. (6.2.10)

This implies 750 or so hZ0 events in Run II, so far, if mh = 130 GeV. (Unfortunately, there is also a

large background from similar-looking events with a more mundane origin.)

In the 7 TeV pp collision run at the LHC in 2010, a total integrated luminosity of 48 pb−1 was

delivered to each detector. Much of this occurred during the last few days of running, with a record

integrated luminosity for one day of
∫

Ldt = 6.0 pb−1, and a maximum peak instantaneous luminosity

of L = 2.1 × 1032 cm−2s−1. At this writing, the plan is to aim for 1 to 3 fb−1 by the end of the run

starting in 2011. At 7 TeV collision energies, the cross-section for producing top-antitop pairs is about

σ(pp→ tt + anything) = 160pb, (6.2.11)

so about 7700 tt pairs have already been produced, and several hundred thousand will be within a

year, hopefully. The design luminosity to be eventually reached by the LHC is 1.0 × 1034 cm−2s−1.

In general, our task is to figure out how to relate the matrix element for a given collision process to

the corresponding cross-section. Let us consider a general situation in which two particles a and b with

masses ma and mb and 4-momenta pa and pb collide, producing n final-state particles with masses mi

and 4-momenta ki, where i = 1, 2, . . . , n:
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.........

pa,ma

pb,mb

k1,m1

kn,mn

As an abbreviation, we can call the initial state |i⟩ = |pa,ma; pb,mb⟩IN and the final state |f⟩ =

|k1,m1; . . . ; kn,mn⟩OUT. In general, all of the particles could be different, so that a different species

of creation and annihilation operators might be used for each. They can be either fermions or bosons,

provided that the process conserves angular momentum. If the particles are not scalars, then |i⟩ and

|f⟩ should also carry labels that specify the spin of each particle. Now, because of four-momentum

conservation, we can always write:

⟨f |i⟩ = Mi→f (2π)4δ(4)(pa + pb −
n∑

i=1

ki). (6.2.12)

Here Mi→f is called the reduced matrix element for the process. In the example in subsection 6.1, the

reduced matrix element we found to first order in the coupling λ was simply a constant: Mφφ→φφ = −iλ.

However, in general, M can be a non-trivial Lorentz-scalar function of the various 4-momenta and spin

eigenvalues of the particles in the problem. It is computed order-by-order in perturbation theory, so it

is only known approximately.

According to the postulates of quantum mechanics, the probability of a transition from the state

|i⟩ to the state |f⟩ is:

Pi→f =
|⟨f |i⟩|2

⟨f |f⟩⟨i|i⟩ . (6.2.13)

The matrix element has been divided by the norms of the states, which are not unity; they will be

computed below. Now, the total number of scattering events expected to occur is:

NS = NaNb

∑

f

Pi→f . (6.2.14)

Here NaNb represents the total number of initial states, one for each possible pair of incoming particles.

The sum
∑

f is over all possible final states f . To evaluate this, recall that if one puts particles in a

large box of volume V , then the density of one-particle states with 3-momentum k⃗ is

density of states = V
d3k⃗

(2π)3
. (6.2.15)

So, including a sum over the n final-state particles implies

∑

f

→
n∏

i=1

[

V
∫

d3k⃗i

(2π)3

]

. (6.2.16)
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Putting this into eq. (6.2.14) and comparing with the definition eq. (6.2.2), we have for the differential

contribution to the total cross-section:

dσ = Pi→fA
n∏

i=1

[

V
d3k⃗i

(2π)3

]

. (6.2.17)

Let us now suppose that each packet of particles consists of a cylinder with a large volume V . Then

the total time T over which the particles can collide is given by the time it takes for the two packets

to move through each other:

T =
V

A|⃗va − v⃗b|
. (6.2.18)

(Assume that the volume V and area A of each bunch are very large compared to the cube and square

of the particles’ Compton wavelengths.) It follows that the differential contribution to the cross-section

is:

dσ = Pi→f
V

T |⃗va − v⃗b|

n∏

i=1

[

V
d3k⃗i

(2π)3

]

. (6.2.19)

The total cross-section is obtained by integrating over 3-momenta of the final state particles. Note that

the differential cross-section dσ depends only on the collision process being studied. So in the following

we expect that the arbitrary volume V and packet collision time T should cancel out.

To see how that happens in the example of φφ → φφ scattering with a φ4 interaction, let us first

compute the normalizations of the states appearing in Pi→f . For the initial state |i⟩ of eq. (6.1.10),

one has:

⟨i|i⟩ = ⟨0|ap⃗b
ap⃗a

a†p⃗a
a†p⃗b

|0⟩. (6.2.20)

To compute this, one can commute the a† operators to the left:

⟨i|i⟩ = ⟨0|ap⃗b
[ap⃗a

a†p⃗a
]a†p⃗b

|0⟩+ ⟨0|ap⃗b
a†p⃗a

ap⃗a
a†p⃗b

|0⟩. (6.2.21)

Now the incoming particle momenta p⃗a and p⃗b are always different, so in the last term the a†p⃗a
just

commutes with ap⃗b
according to eq. (5.2.20), yielding 0 when acting on ⟨0|. The first term can be

simplified using the commutator eq. (5.2.20):

⟨i|i⟩ = ⟨0|ap⃗b
a†p⃗b

|0⟩ (2π)3 2Eaδ
(3)(p⃗a − p⃗a). (6.2.22)

Commuting a†p⃗b
to the left in the same way yields the norm of the state |i⟩:

⟨i|i⟩ = (2π)6 4EaEb δ
(3)(p⃗a − p⃗a)δ

(3)(p⃗b − p⃗b). (6.2.23)

This result is doubly infinite, since the arguments of each delta function vanish! In order to successfully

interpret it, recall the origin of the 3-momentum delta functions. One can write

(2π)3δ(3)(p⃗ − p⃗ ) =
∫

d3x⃗ ei⃗0·x⃗ = V, (6.2.24)
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showing that a 3-momentum delta-function with vanishing argument corresponds to V/(2π)3, where V

is the volume that the particles occupy. So we obtain

⟨i|i⟩ = 4EaEbV
2 (6.2.25)

for the norm of the incoming state.

Similarly, the norm of the state |f⟩ is:

⟨f |f⟩ =
n∏

i=1

(2π)32Eiδ
(3) (⃗ki − k⃗i) =

n∏

i=1

(2EiV ). (6.2.26)

In doing this, there is one subtlety; unlike the colliding particles, it could be that two identical outgoing

particles have exactly the same momentum. This seemingly could produce “extra” contributions when

we commute a† operators to the left. However, one can usually ignore this, since the probability that

two outgoing particles will have exactly the same momentum is vanishingly small in the limit V →∞.

Next we turn to the square of the matrix element:

|⟨f |i⟩|2 = |Mi→f |2
[
(2π)4δ(4)(pa + pb −

∑
ki)
]2

. (6.2.27)

This also is apparently the square of an infinite quantity. To interpret it, we again recall the origin of

the delta functions:

2πδ(Ef − Ei) =
∫ T/2

−T/2
dt eit(Ef−Ei) = T (for Ef = Ei), (6.2.28)

(2π)3δ(
∑

k⃗ −
∑

p⃗ ) =
∫

d3x⃗ eix⃗·(
∑

k⃗−
∑

p⃗ ) = V (for
∑

k⃗ =
∑

p⃗ ). (6.2.29)

So we can write:

(2π)4δ(4)(pa + pb −
n∑

i=1

ki) = TV. (6.2.30)

Now if we use this to replace one of the two 4-momentum delta functions in eq. (6.2.27), we have:

|⟨f |i⟩|2 = |Mi→f |2 (2π)4 T V δ(4)(pa + pb −
n∑

i=1

ki). (6.2.31)

Plugging the results of eqs. (6.2.25), (6.2.26) and (6.2.31) into eq. (6.2.13), we obtain an expression

for the transition probability:

Pi→f = |Mi→f |2 (2π)4δ(4)(pa + pb −
n∑

i=1

ki)
T

4EaEbV

n∏

i=1

(
1

2EiV

)
. (6.2.32)

Putting this in turn into eq. (6.2.19), we finally obtain:

dσ =
|Mi→f |2

4EaEb |⃗va − v⃗b|
dΦn, (6.2.33)

where dΦn is a standard object known as the n-body differential Lorentz-invariant phase space:

dΦn = (2π)4δ(4)(pa + pb −
n∑

i=1

ki)
n∏

i=1

(
d3k⃗i

(2π)32Ei

)

. (6.2.34)
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As expected, all factors of T and V have canceled out of the formula eq. (6.2.33) for the differential

cross-section.

In the formula eq. (6.2.33), one can write for the velocities:

v⃗a =
p⃗a

Ea
, v⃗b =

p⃗b

Eb
. (6.2.35)

Now, assuming that the collision is head-on so that v⃗b is opposite to v⃗a (or 0), the denominator in

eq. (6.2.33) is:

4EaEb |⃗va − v⃗b| = 4(Ea|p⃗b| + Eb|p⃗a|). (6.2.36)

The most common case one encounters is two-particle scattering to a final state with two particles.

In the center-of-momentum frame, p⃗b = −p⃗a, so that the 2-body Lorentz-invariant phase space becomes:

dΦ2 = (2π)4δ(3) (⃗k1 + k⃗2)δ(Ea + Eb − E1 − E2)
d3k⃗1

(2π)32E1

d3k⃗2

(2π)32E2
(6.2.37)

=
δ(3) (⃗k1 + k⃗2) δ(

√
k⃗2
1 + m2

1 +
√

k⃗2
2 + m2

2 −ECM)

16π2
√

k⃗2
1 + m2

1

√
k⃗2
2 + m2

2

d3k⃗1 d3k⃗2, (6.2.38)

where

ECM ≡ Ea + Eb (6.2.39)

is the center-of-momentum energy of the process. Now one can do the k⃗2 integral; the 3-momentum

delta function just sets k⃗2 = −k⃗1 (as it must be in the CM frame). If we define

K ≡ |⃗k1| (6.2.40)

for convenience, then

d3k⃗1 = K2dK dΩ = K2dK dφ d(cos θ), (6.2.41)

where Ω = (θ,φ) are the spherical coordinate angles for k⃗1. So

∫
. . . dΦ2 =

∫
. . .

δ(
√

K2 + m2
1 +

√
K2 + m2

2 − ECM)
√

K2 + m2
1

√
K2 + m2

2

K2dK dφ d(cos θ), (6.2.42)

where . . . represents any quantity. To do the remaining dK integral, it is convenient to change variables

to the argument of the delta function. So, defining

W =
√

K2 + m2
1 +

√
K2 + m2

2 −ECM, (6.2.43)

we find

dW =

√
K2 + m2

1 +
√

K2 + m2
2√

K2 + m2
1

√
K2 + m2

2

KdK. (6.2.44)
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Noticing that the delta function predestines
√

K2 + m2
1 +

√
K2 + m2

2 to be replaced by ECM, we can

write:

K2dK
√

K2 + m2
1

√
K2 + m2

2

=
KdW

ECM
. (6.2.45)

Using this in eq. (6.2.42), and integrating dW using the delta function δ(W ), we obtain:

dΦ2 =
K

16π2ECM
dφ d(cos θ) (6.2.46)

for the Lorentz-invariant phase space of a two-particle final state.

Meanwhile, in the CM frame, eq. (6.2.36) simplifies according to:

4EaEb |⃗va − v⃗b| = 4(Ea|p⃗b| + Eb|p⃗a|) = 4|p⃗a|(Ea + Eb) = 4|p⃗a|ECM. (6.2.47)

Therefore, using the results of eqs. (6.2.46) and (6.2.47) in eq. (6.2.33), we have:

dσ = |Mi→f |2
|⃗k1|

64π2E2
CM|p⃗a|

dΩ (6.2.48)

for the differential cross-section for two-particle scattering to two particles.

The matrix element is quite often symmetric under rotations about the collision axis determined by

the incoming particle momenta. If so, then everything is independent of φ, and one can do
∫

dφ = 2π,

leaving:

dσ = |Mi→f |2
|⃗k1|

32πE2
CM|p⃗a|

d(cos θ). (6.2.49)

If the particle masses satisfy ma = m1 and mb = m2 (or they are very small), then one has the further

simplification |⃗k1| = |p⃗a|, so that

dσ = |Mi→f |2
1

32πE2
CM

d(cos θ). (6.2.50)

The formulas eqs. (6.2.48)-(6.2.49) will be used often in the rest of these notes.

We can finally interpret the meaning of the result eq. (6.1.31) that we obtained for scalar φ4 theory.

Since we found Mφφ→φφ = −iλ, the differential cross-section in the CM frame is:

dσφφ→φφ =
λ2

32πE2
CM

d(cos θ). (6.2.51)

Now we can integrate over θ using
∫ 1
−1 d(cos θ) = 2. However, there is a double-counting problem that

we must take into account. The angles (θ,φ) that we have integrated over represent the direction of

the 3-momentum of one of the final state particles. The other particle must then have 3-momentum

in the opposite direction (π − θ,−φ). The two possible final states with k⃗1 along those two opposite

directions are therefore actually the same state, because the two particles are identical. So we have
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actually counted each state twice when integrating over all dΩ. To take this into account, we have to

divide by 2, arriving at the result for the total cross-section:

σφφ→φφ =
λ2

32πE2
CM

. (6.2.52)

In the system of units with c = h̄ = 1, energy has the same units as 1/distance. Since λ is dimensionless,

it checks that σ indeed has units of area. This is a very useful thing to check whenever one has found

a cross-section!

6.3 Scalar field with φ3 coupling

For our next example, let us consider a theory with a single scalar field as before, but with an interaction

Lagrangian that is cubic in the field:

Lint = −µ

6
φ3, (6.3.1)

instead of eq. (6.1.4). Here µ is a coupling that has the same dimensions as mass. As before, let us

compute the matrix element for 2 particle to particle scattering, φφ→ φφ.

The definition and quantization of the free Hamiltonian proceeds exactly as before, with equal

time commutators given by eqs. (5.2.20) and (5.2.21), and the free Hamiltonian by eq. (5.2.42). The

interaction part of the Hamiltonian can be obtained in exactly the same way as the discussion leading

up to eq. (6.1.8), yielding:

Hint =
µ

6
(2π)3

∫
dq̃1

∫
dq̃2

∫
dq̃3

[

a†q⃗1
a†q⃗2

a†q⃗3
δ(3)(q⃗1 + q⃗2 + q⃗3)

+3a†q⃗1
a†q⃗2

aq⃗3 δ
(3)(q⃗1 + q⃗2 − q⃗3)

+3a†q⃗1
aq⃗2aq⃗3 δ

(3)(q⃗1 − q⃗2 − q⃗3)

+aq⃗1aq⃗2aq⃗3 δ
(3)(q⃗1 + q⃗2 + q⃗3)

]

. (6.3.2)

As before, we want to calculate:

OUT⟨⃗k1, k⃗2|p⃗ap⃗b⟩OUT = OUT⟨⃗k1, k⃗2|e−iTH |p⃗a, p⃗b⟩IN (6.3.3)

where H = H0 + Hint is the total Hamiltonian. However, this time if we expand e−iTH only to first

order in Hint, the contribution is clearly zero, because the net number of particles created or destroyed

by Hint is always odd. Therefore we must work to second order in Hint, or equivalently in the coupling

µ.

Expanding the operator e−iTH to second order in Hint, one has in the large-N limit [compare to

eq. (6.1.15) and the surrounding discussion]:

e−iTH =
[
1− i(H0 + Hint)

T

N

]N
(6.3.4)

=
N−2∑

n=0

N−n−2∑

m=0

[
1− iH0

T

N

]N−n−m−2

(−iHint
T

N
)
[
1− iH0

T

N

]m
(−iHint

T

N
)
[
1− iH0

T

N

]n
,

(6.3.5)
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where we have kept only terms that are of order H2
int. Now we can convert the discrete sums into

integrals over the variables t = Tn/N and t′ = Tm/N + t with ∆t = ∆t′ = T/N . The result is:

e−iTH =
∫ T

0
dt
∫ T

T−t
dt′ e−iH0(T−t′) (−iHint) e−iH0(t′−t) (−iHint) e−iH0t. (6.3.6)

When we sandwich this between the states ⟨⃗k1, k⃗2| and |p⃗a, p⃗b⟩, we can substitute

e−iH0(T−t′) → e−iEf (T−t′); (6.3.7)

e−iH0t → e−iEit, (6.3.8)

where Ei = Ep⃗a +Ep⃗b
is the initial state energy eigenvalue and Ef = Ek⃗1

+Ek⃗2
is the final state energy

eigenvalue. Now, (−iHint)|p⃗a, p⃗b⟩ will consist of a linear combination of eigenstates |X⟩ of H0 with

different energies EX . So we can also substitute

e−iH0(t′−t) → e−iEX(t′−t) (6.3.9)

provided that in place of EX we will later put in the appropriate energy eigenvalue of the state created

by each particular term in −iHint acting on the initial state. So, we have:

e−iTH = (−iHint) I (−iHint) (6.3.10)

where

I =
∫ T

0
dt
∫ T

T−t
dt′ e−iEf (T−t′)e−iEX(t′−t)e−iEit. (6.3.11)

To evaluate the integral I, we can first redefine t→ t− T/2 and t′ → t′ − T/2, so that

I = e−iT (Ei+Ef )/2
∫ T/2

−T/2
dt eit(EX−Ei)

∫ T/2

t
dt′ eit′(Ef−EX). (6.3.12)

Now e−iT (Ei+Ef )/2) is just a constant phase that will go away when we take the complex square of the

matrix element, so we drop it. Taking the limit of a very long time T →∞:

I =
∫ ∞

−∞
dt eit(EX−Ef )

∫ ∞

t
dt′ eit′(Ef−EX+iϵ). (6.3.13)

The t′ integral does not have the form of a delta function because its lower limit of integration is t.

Therefore we have inserted an infinitesimal factor e−ϵt′ so that the integral converges for t′ → ∞; we

will take ϵ→ 0 at the end. Performing the t′ integration, we get:

I =

(
i

Ef − EX + iϵ

)∫ ∞

−∞
dt eit(Ef−Ei) (6.3.14)

= 2π δ(Ef − Ei)

(
i

Ef − EX + iϵ

)

. (6.3.15)

As usual, energy conservation between the initial and final states is thus automatic.
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Putting together the results above, we have so far:

OUT⟨⃗k1, k⃗2|p⃗a, p⃗b⟩OUT = 2πδ(Ef − Ei)⟨0|ak⃗1
ak⃗2

(−iHint)

(
i

Ef − EX + iϵ

)

(−iHint)a
†
p⃗a

a†p⃗b
|0⟩. (6.3.16)

Let us now evaluate the matrix element eq. (6.3.16). To do this, we can divide the calculation up

into pieces, depending on how many a and a† operators are contained in each factor of Hint. First, let

us consider the contribution when the right Hint contains a†aa terms acting on the initial state, and the

left Hint contains a†a†a terms. Taking these pieces from eq. (6.3.2), the contribution from eq. (6.3.16)

is:

OUT⟨⃗k1, k⃗2|p⃗a, p⃗b⟩OUT

∣∣∣
(a†a†a)(a†aa) part

=

[
−i

µ

2
(2π)3

]2
2πδ(Ef − Ei)

∫
dr̃1

∫
dr̃2

∫
dr̃3

∫
dq̃1

∫
dq̃2

∫
dq̃3

δ(3)(r⃗1 + r⃗2 − r⃗3) δ
(3)(q⃗1 − q⃗2 − q⃗3)

⟨0|ak⃗1
ak⃗2

a†r⃗1
a†r⃗2

ar⃗3

(
i

Ef − EX

)

a†q⃗1
aq⃗2aq⃗3a

†
p⃗a

a†p⃗b
|0⟩. (6.3.17)

The factor involving EX is left inserted within the matrix element to remind us that EX should be

replaced by the eigenvalue of the free Hamiltonian H0 acting on the state to its right.

The last line in eq. (6.3.17) can be calculated using the following general strategy. We commute

a’s to the right and a†’s to the left, using eqs. (5.2.20) and (5.2.21). In doing so, we will get a non-zero

contribution with a delta function whenever the 3-momentum of an a equals that of an a† with which

it is commuted, removing that a, a† pair. In the end, every a must “contract” with some a† in this way

(and vice versa), because an a acting on |0⟩ or an a† acting on ⟨0| vanishes.

This allows us to identify what EX is. The aq⃗2 and aq⃗3 operators must be contracted with a†p⃗a

and a†p⃗b
if a non-zero result is to be obtained. There are two ways to do this: either pair up [aq⃗2 , a

†
p⃗a

]

and [aq⃗3 , a
†
p⃗b

], or pair up [aq⃗2, a
†
p⃗b

] and [aq⃗3, a
†
p⃗a

]. In both cases, the result can be non-zero only if

q⃗2 + q⃗3 = p⃗a + p⃗b. The delta-function δ(3)(q⃗1 − q⃗2 − q⃗3) then insures that there will be a non-zero

contribution only when

q⃗1 = p⃗a + p⃗b ≡ Q⃗. (6.3.18)

So the energy eigenvalue of the state a†q⃗1
aq⃗2aq⃗3a

†
p⃗a

a†p⃗b
|0⟩ must be replaced by

EX = EQ⃗ =
√
|p⃗a + p⃗b|2 + m2 (6.3.19)

whenever there is a non-zero contribution.

Evaluating the quantity

⟨0|ak⃗1
ak⃗2

a†r⃗1
a†r⃗2

ar⃗3a
†
q⃗1

aq⃗2aq⃗3a
†
p⃗a

a†p⃗b
|0⟩ (6.3.20)
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now yields four distinct non-zero terms, corresponding to the following ways of contracting a’s and

a†’s:

[ak⃗1
, a†r⃗1

] [ak⃗2
, a†r⃗2

] [aq⃗2, a
†
p⃗a

] [aq⃗3, a
†
p⃗b

] [ar⃗3, a
†
q⃗1

], or (6.3.21)

[ak⃗1
, a†r⃗2

] [ak⃗2
, a†r⃗1

] [aq⃗2, a
†
p⃗a

] [aq⃗3, a
†
p⃗b

] [ar⃗3, a
†
q⃗1

], or (6.3.22)

[ak⃗1
, a†r⃗1

] [ak⃗2
, a†r⃗2

] [aq⃗2, a
†
p⃗b

] [aq⃗3 , a
†
p⃗a

] [ar⃗3, a
†
q⃗1

], or (6.3.23)

[ak⃗1
, a†r⃗2

] [ak⃗2
, a†r⃗1

] [aq⃗2, a
†
p⃗b

] [aq⃗3 , a
†
p⃗a

] [ar⃗3, a
†
q⃗1

]. (6.3.24)

For the first of these contributions to eq. (6.3.20), we get:

(2π)32Er⃗1δ
(3)(r⃗1 − k⃗1) (2π)32Er⃗2δ

(3)(r⃗2 − k⃗2) (2π)32Eq⃗2δ
(3)(q⃗2 − p⃗a)

(2π)32Eq⃗3δ
(3)(q⃗3 − p⃗b) (2π)32Er⃗3δ

(3)(r⃗3 − q⃗1). (6.3.25)

Now, the various factors of (2π)22E just cancel the factors in the denominators of the definition of dq̃i

and dr̃i. One can do the q⃗1, q⃗2, q⃗3, r⃗1, r⃗2, and r⃗3 integrations trivially, using the 3-momentum delta

functions, resulting in the following contribution to eq. (6.3.17):
(
−i

µ

2

)2
(

i

Ef − EQ⃗

)
1

2EQ⃗

(2π)4δ(Ef −Ei)δ
(3) (⃗k1 + k⃗2 − p⃗a − p⃗b). (6.3.26)

The two delta functions can be combined into δ(4)(k1 + k2 − pa − pb). Now, the other three sets of

contractions listed in eqs. (6.3.22)-(6.3.24) are exactly the same, after a relabeling of momenta. This

gives a factor of 4, so (replacing Ef → Ei in the denominator, as allowed by the delta function) we

have:

OUT⟨⃗k1, k⃗2|p⃗a, p⃗b⟩OUT

∣∣∣
(a†a†a)(a†aa) part

= (−iµ)2
i

(Ei − EQ⃗)(2EQ⃗)
(2π)4δ(4)(k1 + k2 − pa − pb). (6.3.27)

One can draw a simple picture illustrating what has happened in the preceding formulas:

initial state final state
a†a†aa†aa

The initial state contains two particles, denoted by the lines on the left. Acting with the first factor

of Hint (on the right in the formula, and represented by the vertex on the left in the figure) destroys

the two particles and creates a virtual particle in their place. The second factor of Hint destroys the

virtual particle and creates the two final state particles, represented by the lines on the right. The

three-momentum carried by the intermediate virtual particle is Q⃗ = p⃗a + p⃗b = k⃗1 + k⃗2, so momentum

is conserved at the two vertices.

However, there are other contributions that must be included. Another one occurs if the Hint on

the right in eq. (6.3.16) contains a†a†a† operators, and the other Hint contains aaa operators. The

corresponding picture is this:

72



initial state final state

aaa

a†a†a†

Here the Hint carrying a†a†a† (the rightmost one in the formula) is represented by the upper left vertex

in the figure, and the one carrying aaa is represented by the lower right vertex. The explicit formula

corresponding to this picture is:

OUT⟨⃗k1, k⃗2|p⃗a, p⃗b⟩OUT

∣∣∣
(aaa)(a†a†a†) part

=

[
−i

µ

6
(2π)3

]2
2πδ(Ef − Ei)

∫
dr̃1

∫
dr̃2

∫
dr̃3

∫
dq̃1

∫
dq̃2

∫
dq̃3

δ(3)(r⃗1 + r⃗2 + r⃗3) δ
(3)(q⃗1 + q⃗2 + q⃗3)

⟨0|ak⃗1
ak⃗2

ar⃗1ar⃗2ar⃗3

(
i

Ef − EX

)

a†q⃗1
a†q⃗2

a†q⃗3
a†p⃗a

a†p⃗b
|0⟩. (6.3.28)

As before, we can calculate this by commuting a’s to the right and a†’s to the left. In the end, non-zero

contributions arise only when each a is contracted with some a†. In doing so, we should ignore any

terms that arise whenever a final state state ak⃗ is contracted with an initial state a†p⃗. That would

correspond to a situation with no scattering, since the initial state particle and the final state particle

would be exactly the same.

The result contains 36 distinct contributions, corresponding to the 6 ways of contracting ak⃗1
and

ak⃗2
with any two of a†q⃗1

, a†q⃗2
, and a†q⃗3

, times the 6 ways of contracting a†p⃗a
and a†p⃗b

with any two of

ar⃗1 , ar⃗2, ar⃗3. However, all 36 of these contributions are identical under relabeling of momentum, so we

can just calculate one of them and multiply the answer by 36. This will neatly convert the factor of

(−iµ/6)2 to (−iµ)2. We also note that EX must be replaced by the free Hamiltonian energy eigenvalue

of the state a†q⃗1
a†q⃗2

a†q⃗3
a†p⃗a

a†p⃗b
|0⟩, namely:

EX = Eq⃗1 + Eq⃗2 + Eq⃗3 + Ep⃗a
+ Ep⃗b

. (6.3.29)

For example consider the term obtained from the following contractions of a’s and a†’s:

[ak⃗1
, a†q⃗1

] [ak⃗2
, a†q⃗2

] [ar⃗1 , a
†
p⃗a

] [ar⃗2 , a
†
p⃗b

] [ar⃗3 , a
†
q⃗3

]. (6.3.30)

This leads to factors of (2π)32E and momentum delta functions just as before. So we can do the 3-

momentum q⃗1,2 and r⃗1,2,3 integrals using the delta functions, in the process setting q⃗1 = k⃗1 and q⃗2 = k⃗2

and r⃗1 = p⃗a and r⃗2 = p⃗b and r⃗3 = q⃗3. Finally, we can do the q⃗3 integral using one of the delta functions

already present in eq. (6.3.28), resulting in q⃗3 = −p⃗a − p⃗b = −k⃗1 − k⃗2 = −Q⃗, with Q⃗ the same as was

defined in eq. (6.3.18). This allows us to identify in this case:

EX = Ek⃗1
+ Ek⃗2

+ Ep⃗a + Ep⃗b
+ EQ⃗ = 2Ei + EQ⃗. (6.3.31)

73



The end result is:

OUT⟨⃗k1, k⃗2|p⃗a, p⃗b⟩OUT

∣∣∣
(aaa)(a†a†a†) part

= (−iµ)2
−i

(Ei + EQ⃗)(2EQ⃗)
(2π)4δ(4)(k1 + k2 − pa − pb). (6.3.32)

It is now profitable to combine the two contributions we have found. One hint that this is a good

idea is the fact that the two cartoon figures we have drawn for them are topologically the same; the

second one just has a line that moves backwards. So if we just ignore the distinction between internal

lines that move backwards and those that move forwards, we can draw a single Feynman diagram to

represent both results combined:

pa k1

pb k2

pa + pb

The initial state is on the left, and the final state is on the right, and the flow of 4-momentum is

indicated by the arrows, with 4-momentum conserved at each vertex.

The result of combining these two contributions is called the s-channel contribution, to distinguish

it from still more contributions that we will get to soon. Using a common denominator for (Ei − EQ⃗)

and (Ei + EQ⃗), we get:

OUT⟨⃗k1, k⃗2|p⃗a, p⃗b⟩OUT

∣∣∣
s−channel

= (−iµ)2
i

E2
i − E2

Q⃗

(2π)4δ(4)(k1 + k2 − pa − pb). (6.3.33)

If we now consider the four-vector

pµ
a + pµ

b = (
√
|p⃗a|2 + m2 +

√
|p⃗b|2 + m2 , p⃗a + p⃗b) = (Ei, Q⃗), (6.3.34)

then we recognize that

(pa + pb)
2 = E2

i − |Q⃗|2 = E2
i −E2

Q⃗
+ m2. (6.3.35)

[Note that pµ
a + pµ

b is not equal to (EQ⃗, Q⃗).] So we can rewrite the term

i

E2
i − E2

Q⃗

=
i

(pa + pb)2 −m2
, (6.3.36)

The final result is that the s-channel contribution to the matrix element is:

OUT⟨⃗k1, k⃗2|p⃗a, p⃗b⟩OUT

∣∣∣
s−channel

= (−iµ)2
i

(pa + pb)2 −m2
(2π)4δ(4)(k1 + k2 − pa − pb). (6.3.37)

Note that one could just as well have put (k1 + k2)2 in place of (pa + pb)2 in this expression, because

of the delta function.

Now one can go through the same whole process with contributions that come from the rightmost

Hint (acting first on the initial state) consisting of a†a†a terms, and the leftmost Hint containing a†aa

terms. One can draw Feynman diagrams that represent these terms, which look like:
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k2

k1

pb

pa

pa − k1

k2

k1

pb

pa

pa − k2

These are referred to as the t-channel and u-channel contributions respectively. Here we have combined

all topologically-identical diagrams. This is a standard procedure that is always followed; the diagrams

we have drawn with dashed lines for the scalar field are the Feynman diagrams for the process. [The

solid-line diagrams appearing between eqs. (6.3.27) and (6.3.28) above are sometimes known as “old-

fashioned Feynman diagrams”, but it is very rare to see them in the modern literature.]

After much juggling of factors of (2π)3 and doing 3-momentum integrals using delta functions, but

using no new concepts, the contributions of the t-channel and u-channel Feynman diagrams can be

found to be simply:

OUT⟨⃗k1, k⃗2|p⃗a, p⃗b⟩OUT

∣∣∣
t−channel

= (−iµ)2
i

(pa − k1)2 −m2
(2π)4δ(4)(k1 + k2 − pa − pb), (6.3.38)

and

OUT⟨⃗k1, k⃗2|p⃗a, p⃗b⟩OUT

∣∣∣
u−channel

= (−iµ)2
i

(pa − k2)2 −m2
(2π)4δ(4)(k1 + k2 − pa − pb). (6.3.39)

The reduced matrix element can now be obtained by just stripping off the factors of (2π)4δ(4)(k1 +k2−
pa − pb), as demanded by the definition eq. (6.2.12). So the total reduced matrix element, suitable for

plugging into the formula for the cross-section, is:

Mφφ→φφ = Ms + Mt + Mu (6.3.40)

where:

Ms = (−iµ)2
i

(pa + pb)2 −m2
, (6.3.41)

Mt = (−iµ)2
i

(pa − k1)2 −m2
, (6.3.42)

Mu = (−iµ)2
i

(pa − k2)2 −m2
. (6.3.43)

The reason for the terminology s, t, and u is because of the standard kinematic variables for 2→2

scattering known as Mandelstam variables:

s = (pa + pb)
2 = (k1 + k2)

2, (6.3.44)

t = (pa − k1)
2 = (k2 − pb)

2, (6.3.45)

u = (pa − k2)
2 = (k1 − pb)

2. (6.3.46)
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(You will work out some of the properties of these kinematic variables for homework.) The s-, t-, and

u-channel diagrams are simple functions of the corresponding Mandelstam variables:

Ms = (−iµ)2
i

s−m2
, (6.3.47)

Mt = (−iµ)2
i

t−m2
, (6.3.48)

Mu = (−iµ)2
i

u−m2
. (6.3.49)

Typically, if one instead scatters fermions or vector particles or some combination of them, the s- t- and

u- channel diagrams will have a similar form, with m always the mass of the particle on the internal

line, but with more junk in the numerators coming from the appropriate reduced matrix elements.

6.4 Feynman rules

It is now possible to abstract what we have found, to obtain the general Feynman rules for calculating

reduced matrix elements in a scalar field theory. Evidently, the reduced matrix element M is the sum

of contributions from each topologically distinct Feynman diagram, with external lines corresponding

to each initial state or final state particle. For each term in the interaction Lagrangian

Lint = − y

n!
φn, (6.4.1)

with coupling y, one can draw a vertex at which n lines meet. At each vertex, 4-momentum must be

conserved. Then:

• For each vertex appearing in a diagram, we should put a factor of −iy. For the examples we have

done with y = λ and y = µ, the Feynman rules are just:

←→ −iµ

←→ −iλ

Note that the conventional factor of 1/n! in the Lagrangian eq. (6.4.1) makes the corresponding Feyn-

man rule simple in each case.

• For each internal scalar field line carrying 4-momentum pµ, we should put a factor of

i/(p2 −m2 + iϵ):

p
←→ i

p2 −m2 + iϵ

This factor associated with internal scalar field lines is called the Feynman propagator. Here we

have added an imaginary infinitesimal term iϵ, with the understanding that ϵ → 0 at the end of

the calculation; this turns out to be necessary for cases in which p2 become very close to m2. This
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corresponds to the particle on the internal line being nearly “on-shell”, because p2 = m2 is the equation

satisfied by a free particle in empty space. Typically, the iϵ only makes a difference for propagators

involved in closed loops (discussed below).

• For each external line, we just have a factor of 1:

or ←→ 1

This is a rather trivial rule, but it is useful to mention it because in the cases of fermions and vector

fields, external lines will turn out to carry non-trivial factors not equal to 1. (Here the gray blobs

represent the rest of the Feynman diagram.)

Those are all the rules one needs to calculate reduced matrix elements for Feynman diagrams

without closed loops, also known as tree diagrams. The result is said to be a tree-level calculation.

There are also Feynman rules that apply to diagrams with closed loops (loop diagrams) which have not

arisen explicitly in the preceding discussion, but could be inferred from more complicated calculations.

For them, one needs the following additional rules:

• For each closed loop in a Feynman diagram, there is an undetermined 4-momentum ℓµ. These

loop momenta should be integrated over according to:

∫
d4ℓ

(2π)4
. (6.4.2)

Loop diagrams quite often diverge because of the integration over all ℓµ, because of the contribution

from very large |ℓ2|. This can be fixed by introducing a cutoff |ℓ2|max in the integral, or by other slimy

tricks, which can make the integrals finite. The techniques of getting physically meaningful answers

out of this are known as regularization (making the integrals finite) and renormalization (redefining

coupling constants and masses so that the physical observables don’t depend explicitly on the unknown

cutoff).

• If a Feynman diagram with one or more closed loops can be transformed into an exact copy of

itself by interchanging any number of internal lines through a smooth deformation, without moving the

external lines, then there is an additional factor of 1/N , where N is the number of distinct permutations

of that type. (This is known as the “symmetry factor” for the loop diagram.)

Some examples might be useful. In the φ3 theory, there are quite a few Feynman diagrams that

will describe the scattering of 2 particles to 3 particles. One of them is shown below:

pa

k1

k1 + k2

pb

k2

k3

pa + pb
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For this diagram, according to the rules, the contribution to the reduced matrix element is just

M = (−iµ)3
[

i

(pa + pb)2 −m2

] [
i

(k1 + k2)2 −m2

]
. (6.4.3)

Imagine having to calculate this starting from scratch with creation and annihilation operators, and

tremble with fear! Feynman rules are good.

An example of a Feynman diagram with a closed loop in the φ3 theory is:

pa k1

pb k2

pa + pb pa + pb

ℓ

ℓ− pa − pb

There is a symmetry factor of 1/2 for this diagram, because one can smoothly interchange the two

lines carrying 4-momenta ℓµ and ℓµ − pµ
a − pµ

b to get back to the original diagram, without moving the

external lines. So the reduced matrix element for this diagram is:

M =
1

2
(−iµ)4

[
i

(pa + pb)2 −m2

]2 ∫ d4ℓ

(2π)4

[
i

(ℓ− pa − pb)2 −m2 + iϵ

] [
i

ℓ2 −m2 + iϵ

]
. (6.4.4)

Again, deriving this result starting from the creation and annihilation operators is possible, but ex-

traordinarily unpleasant! In the future, we will simply guess the Feynman rules for any theory from

staring at the Lagrangian density. The general procedure for doing this is rather simple (although the

proof is not), and is outlined below.

A Feynman diagram is a precise representation of a contribution to the reduced matrix element M
for a given physical process. The diagrams are built out of three types of building blocks:

vertices ←→ interactions

internal lines ←→ free virtual particle propagation

external lines ←→ initial, final states.

The Feynman rules specify a mathematical expression for each of these objects. They follow from the

Lagrangian density, which defines a particular theory.†

To generalize what we have found for scalar fields, let us consider a set of generic fields Φi, which

can include both commuting bosons and anticommuting fermions. They might include real or complex

scalars, Dirac or Weyl fermions, and vector fields of various types. The index i runs over a list of all

the fields, and over their spinor or vector indices. Now, it is always possible to obtain the Feynman

rules by writing an interaction Hamiltonian and computing matrix elements. Alternatively, one can

use powerful path integral techniques that are beyond the scope of this course to derive the Feynman

†It is tempting to suggest that the Feynman rules themselves should be taken as the definition of the theory. However,
this would only be sufficient to describe phenomena that occur in a perturbative weak-coupling expansion.
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rules. However, in the end the rules can be summarized very simply in a way that could be guessed

from the examples of real scalar field theory that we have already worked out. In these notes, we will

follow the technique of guessing; more rigorous derivations can be found in field theory textbooks.

For interactions, we have now found in two cases that the Feynman rule for n scalar lines to meet

at a vertex is equal to −i times the coupling of n scalar fields in the Lagrangian with a factor of 1/n!.

More generally, consider an interaction Lagrangian term:

Lint = −Xi1i2...iN

P
Φi1Φi2 . . . ΦiN , (6.4.5)

where P is the product of n! for each set of n identical fields in the list Φi1,Φi2 , . . . ,ΦiN , and Xi1i2...iN

is the coupling constant that determines the strength of the interaction. The corresponding Feynman

rule attaches N lines together at a vertex. Then the mathematical expression assigned to this vertex

is −iXi1i2...iN . The lines for distinguishable fields among i1, i2, . . . , iN should be labeled as such, or

otherwise distinguished by drawing them differently from each other.

For example, consider a theory with two real scalar fields φ and ρ. If the interaction Lagrangian

includes terms, say,

Lint = −λ1

4
φ2ρ2 − λ2

6
φ3ρ, (6.4.6)

then there are Feynman rules:

←→ −iλ1

←→ −iλ2

Here the longer-dashed lines correspond to the field φ, and the shorter-dashed lines to the field ρ.

As another example, consider a theory in which a real scalar field φ couples to a Dirac fermion Ψ

according to:

Lint = −yφΨΨ. (6.4.7)

In this case, we must distinguish between lines for all three fields, because Ψ = Ψ†γ0 is independent

of Ψ. For Dirac fermions, one draws solid lines with an arrow coming in to a vertex representing Ψ in

Hint, and an arrow coming out representing Ψ. So the Feynman rule for this interaction is:

←→ −iyδa
b

b

a
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Note that this Feynman rule is proportional to a 4 × 4 identity matrix in Dirac spinor space. This is

because the interaction Lagrangian can be written −yδa
bφΨ

a
Ψb, where a is the Dirac spinor index for

Ψ and b for Ψ. Often, one just suppresses the spinor indices, and writes simply −iy for the Feynman

rule, with the identity matrix implicit.

The interaction Lagrangian eq. (6.4.7) is called a Yukawa coupling. This theory has a real-world

physical application: it is precisely the type of interaction that applies between the Standard Model

Higgs boson φ = h and each Dirac fermion Ψ, with the coupling y proportional to the mass of that

fermion. We will return to this interaction when we discuss the decays of the Higgs boson into fermion-

antifermion pairs.

Let us turn next to the topic of internal lines in Feynman diagrams. These are determined by the

free (quadratic) part of the Lagrangian density. Recall that for a scalar field, we can write the free

Lagrangian after integrating by parts as:

L0 =
1

2
φ(−∂µ∂

µ −m2)φ. (6.4.8)

This corresponded to a Feynman propagator rule for internal scalar lines i/(p2 −m2 + iϵ). So, up to

the iϵ factor, the propagator is just proportional to i divided by the inverse of the coefficient of the

quadratic piece of the Lagrangian density, with the replacement

∂µ −→ −ipµ. (6.4.9)

The free Lagrangian density for generic fields Φi can always be put into either the form

L0 =
1

2

∑

i,j

ΦiPijΦj, (6.4.10)

for real fields, or the form

L0 =
∑

i,j

(Φ†)iPijΦj , (6.4.11)

for complex fields (including, for example, Dirac spinors). To accomplish this, one may need to integrate

the action by parts, throwing away a total derivative in L0 which will not contribute to S =
∫

d4x L.

Here Pij is a matrix that involves spacetime derivatives and masses. Then it turns out that the Feynman

propagator can be found by making the replacement eq. (6.4.9) and taking i times the inverse of the

matrix Pij :

i(P−1)ij . (6.4.12)

This corresponds to an internal line in the Feynman diagram labeled by i at one end and j at the other.

As an example, consider the free Lagrangian for a Dirac spinor Ψ, as given by eq. (5.1.26). According

to the prescription of eqs. (6.4.11) and (6.4.12), the Feynman propagator connecting vertices with spinor

indices a and b should be:

i[(/p−m)−1]a
b
. (6.4.13)
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In order to make sense of the inverse matrix, we can write it as a fraction, then multiply numerator

and denominator by (/p + m), and use the fact that /p/p = p2 from eq. (3.2.54):

i

/p−m
=

i(/p + m)

(/p−m)(/p + m)
=

i(/p + m)

p2 −m2 + iϵ
. (6.4.14)

In the last line we have put in the iϵ factor needed for loop diagrams as a prescription for handling the

possible singularity at p2 = m2. So the Feynman rule for a Dirac fermion internal line is:

←→
i([/p]a

b + mδa
b)

p2 −m2 + iϵ

b ap→

Here the arrow direction on the fermion line distinguishes the direction of particle flow, with particles

(anti-particles) moving with (against) the arrow. For electrons and positrons, this means that the

arrow on the propagator points in the direction of the flow of negative charge. As indicated, the 4-

momentum pµ appearing in the propagator is also assigned to be in the direction of the arrow on the

internal fermion line.

Next we turn to the question of Feynman rules for external particle and anti-particle lines. At a

fixed time t = 0, a generic field Φ is written as an expansion of the form:

Φ(x⃗) =
∑

n

∫
dp̃
[
i(p⃗, n) eip⃗·x⃗ap⃗,n + f(p⃗, n) e−ip⃗·x⃗b†p⃗,n

]
, (6.4.15)

where ap⃗,n and b†p⃗,n are annihilation and creation operators (which may or may not be Hermitian

conjugates of each other); n is an index running over spins and perhaps other labels for different

particle types; and i(p⃗, n) and f(p⃗, n) are expansion coefficients. In general, we build an interaction

Hamiltonian out of the fields Φ. When acting on an initial state a†
k⃗,m

|0⟩ on the right, Hint will therefore

produce a factor of i(⃗k,m) after commuting (or anticommuting, for fermions) the ap⃗,n operator in Φ to

the right, removing the a†
k⃗,m

. Likewise, when acting on a final state ⟨0|bk⃗,m on the left, the interaction

Hamiltonian will produce a factor of f (⃗k,m). Therefore, initial and final state lines just correspond

to the appropriate coefficient of annihilation and creation operators in the Fourier mode expansion for

that field.

For example, comparing eq. (6.4.15) to eq. (5.2.30) in the scalar case, we find that i(p⃗, n) and f(p⃗, n)

are both just equal to 1.

For Dirac fermions, we see from eq. (5.3.1) that the coefficient for an initial state particle (electron)

carrying 4-momentum pµ and spin state s is u(p, s)a, where a is a spinor index. Similarly, the coefficient

for a final state antiparticle (positron) is v(p, s)a. So the Feynman rules for these types of external

particle lines are:

a

p→
initial state electron: ←→ u(p, s)a
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a

p→
final state positron: ←→ v(p, s)a

Here the blobs represent the rest of the Feynman diagram in each case. Similarly, considering the

expansion of the field Ψ in eq. (5.3.2), we see that the coefficient for an initial state antiparticle

(positron) is v(p, s)a and that for a final state particle (electron) is u(p, s)a. So the Feynman rules for

these external states are:

a p→
←→ v(p, s)ainitial state positron:

ap→
←→ u(p, s)afinal state electron:

Note that in these rules, the pµ label ofan external state is always the physical 4-momentum of

that particle or anti-particle; this means that with the standard convention of initial state on the left

and final state on the right, the pµ associated with each of u(p, s), v(p, s), u(p, s) and v(p, s) is always

taken to be pointing to the right. For v(p, s) and v(p, s), this is in the opposite direction to the arrow

on the fermion line itself.
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7 Quantum Electro-Dynamics (QED)

7.1 QED Lagrangian and Feynman rules

Let us now see how all of these general rules apply in the case of Quantum Electrodynamics. This is

the quantum field theory governing photons (quantized electromagnetic waves) and charged fermions

and antifermions. The fermions in the theory are represented by Dirac spinor fields Ψ carrying electric

charge Qe, where e is the magnitude of the charge of the electron. Thus Q = −1 for electrons and

positrons, +2/3 for up, charm and top quarks and their anti-quarks, and −1/3 for down, strange and

bottom quarks and their antiquarks. (Recall that a single Dirac field, assigned a single value of Q, is

used to describe both particles and their anti-particles.) The free Lagrangian for the theory is:

L0 = −1

4
FµνFµν + Ψ(iγµ∂µ −m)Ψ. (7.1.1)

Now, in section 4 we found that the electromagnetic field Aµ couples to the 4-current density Jµ = (ρ, J⃗ )

by a term in the Lagrangian −eJµAµ [see eq. (5.1.39)]. Since Jµ must be a four-vector built out of

the charged fermion fields Ψ and Ψ, we can guess that:

Jµ = QΨγµΨ. (7.1.2)

The interaction Lagrangian density for a fermion with charge Qe and electromagnetic fields is therefore:

Lint = −eQΨγµΨAµ. (7.1.3)

The value of e is determined by experiment. However, it is a running coupling constant, which means

that its value has a logarithmic dependence on the characteristic energy of the process. For very low

energy experiments, the numerical value is e ≈ 0.3028, corresponding to the experimental result for

the fine structure constant:

α ≡ e2

4π
≈ 1/137.036. (7.1.4)

For experiments done at energies near 100 GeV, the appropriate value is a little larger, more like

e ≈ 0.313.

Let us take a small detour to check that eq. (7.1.2) really has the correct form and normalization

to be the electromagnetic current density. Consider the total charge operator:

Q̂ =
∫

d3x⃗ ρ(x⃗) =
∫

d3x⃗ J0(x⃗) = Q
∫

d3x⃗ Ψγ0Ψ = Q
∫

d3x⃗ Ψ†Ψ. (7.1.5)

Plugging in eqs. (5.3.1) and (5.3.2), and doing the x⃗ integration, and one of the momentum integrations

using the resulting delta function, one finds:

Q̂ = Q
2∑

s=1

2∑

r=1

∫
dp̃

1

2Ep⃗
[u†(p, s)b†p⃗,s + v†(p, s)dp⃗,s] [u(p, r)bp⃗,r + v(p, r)d†p⃗,r]. (7.1.6)
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This can be simplified using some spinor identities:

u†(p, s)u(p, r) = v†(p, s)v(p, r) = 2Ep⃗ δsr; (7.1.7)

u†(p, s)v(p, r) = v†(p, s)u(p, r) = 0. (7.1.8)

Taking into account that the operators d, d† satisfy the anticommutation relation eqs. (5.3.20), the

result is:

Q̂ = Q
2∑

s=1

∫
dp̃
[
b†p⃗,sbp⃗,s − d†p⃗,sdp⃗,s

]
. (7.1.9)

Here we have dropped an infinite contribution, much like we had to do in getting to eqs. (5.2.42)

and eqs. (5.3.21). This represents a uniform and constant (and therefore unobservable) infinite charge

density throughout all space. The result is that the total charge eigenvalue of the vacuum vanishes:

Q̂|0⟩ = 0. (7.1.10)

One can now check that

[Q̂, b†
k⃗,r

] = Qb†
k⃗,r

, (7.1.11)

[Q̂, d†
k⃗,r

] = −Qd†
k⃗,r

. (7.1.12)

Therefore,

Q̂ b†
k⃗,r

|0⟩ = Q b†
k⃗,r

|0⟩ (7.1.13)

for single-particle states, and

Q̂ d†
k⃗,r

|0⟩ = −Q d†
k⃗,r

|0⟩ (7.1.14)

for single anti-particle states. More generally, the eigenvalue of Q̂ acting on a state with N particles

and N antiparticles is (N −N)Q. From eq. (7.1.5), this verifies that the charge density ρ is indeed the

time-like component of the four-vector QΨγµΨ, which must therefore be equal to Jµ.

The full QED Lagrangian is invariant under gauge transformations:

Aµ(x) → Aµ(x)− 1

e
∂µθ(x), (7.1.15)

Ψ(x) → eiQθ Ψ(x), (7.1.16)

Ψ(x) → e−iQθ Ψ(x), (7.1.17)

where θ(x) is an arbitrary function of spacetime [equal to −eλ(x) in eq. (4.16)]. A nice way to see this

invariance is to define the covariant derivative:

DµΨ ≡ (∂µ + iQeAµ)Ψ. (7.1.18)
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Here the term “covariant” refers to the gauge transformation symmetry, not the Lorentz transformation

symmetry as it did when we introduced covariant four-vectors. Note that the covariant derivative

actually depends on the charge of the field it acts on. Now one can write the full Lagrangian density

as

L = L0 + Lint = −1

4
FµνFµν + iΨγµDµΨ−mΨΨ. (7.1.19)

The ordinary derivative of the spinor transforms under the gauge transformation with an “extra” term:

∂µΨ → ∂µ(eiQθΨ) = eiQθ∂µΨ + iQΨ∂µθ. (7.1.20)

The point of the covariant derivative is that it transforms under the gauge transformation the same

way Ψ does, by acquiring a phase:

DµΨ → eiQθDµΨ. (7.1.21)

Here the contribution from the transformation of Aµ in Dµ cancels the extra term in eq. (7.1.20). Using

eqs. (7.1.15)-(7.1.17) and (7.1.21), it is easy to see that L is invariant under the gauge transformation,

since the multiplicative phase factors just cancel.

Returning to the interaction term eq. (7.1.3), we can now identify the Feynman rule for QED

interactions, by following the general prescription outlined with eq. (6.4.5):

←→ −iQe(γµ)a
b

b

a

µ

This one interaction vertex governs all physical processes in QED.

To find the Feynman rules for initial and final state photons, consider the Fourier expansion of the

vector field at a fixed time:

Aµ =
3∑

λ=0

∫
dp̃
[
ϵµ(p,λ)eip⃗·x⃗ap⃗,λ + ϵ∗µ(p,λ)e−ip⃗·x⃗a†p⃗,λ

]
. (7.1.22)

Here ϵµ(p,λ) is a basis of four polarization four-vectors labeled by λ = 0, 1, 2, 3. They satisfy the

orthonormality condition:

ϵµ(p,λ)ϵ∗µ(p,λ′) =

⎧
⎪⎨

⎪⎩

−1 for λ = λ′ = 1, 2, or 3
+1 for λ = λ′ = 0
0 for λ ̸= λ′

(7.1.23)

The operators a†p⃗,λ and ap⃗,λ act on the vacuum state by creating and destroying photons with momentum

p⃗ and polarization vector ϵµ(p,λ).

However, not all of the four degrees of freedom labeled by λ can be physical. From classical

electromagnetism, we know that electromagnetic waves are transversely polarized. This means that
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the electric and magnetic fields are perpendicular to the 3-momentum direction of propagation. In

terms of the potentials, it means that one can always choose a gauge in which A0 = 0 and the Lorenz

gauge condition ∂µAµ = 0 is satisfied. Therefore, physical electromagnetic wave quanta corresponding

to the classical solutions to Maxwell’s equations Aµ = ϵµe−ip·x with p2 = 0 can be taken to obey:

ϵµ = (0, ϵ⃗), (7.1.24)

pµϵ
µ = 0 (7.1.25)

(or, equivalent to the last condition, ϵ⃗ · p⃗ = 0). After imposing these two conditions, only two of the

four λ’s will survive as valid initial or final states for any given pµ.

For example, suppose that a state contains a photon with 3-momentum p⃗ = pẑ, so pµ = (p, 0, 0, p).

Then we can choose a basis of transverse linearly-polarized vectors with λ = 1, 2:

ϵµ(p, 1) = (0, 1, 0, 0) x-polarized, (7.1.26)

ϵµ(p, 2) = (0, 0, 1, 0) y-polarized. (7.1.27)

However, in high-energy physics it is usually more useful to instead use a basis of left- and right-handed

circular polarizations that carry definite helicities λ = R,L:

ϵµ(p,R) =
1√
2
(0, 1, i, 0) right-handed, (7.1.28)

ϵµ(p, L) =
1√
2
(0, 1,−i, 0) left-handed. (7.1.29)

In general, incoming photon lines have a Feynman rule ϵµ(p,λ) and outgoing photon lines have a

Feynman rule ϵ∗µ(p,λ), where λ = 1, 2 in some convenient basis of choice. Often, we will sum or average

over the polarization labels λ, so the ϵµ(p,λ) will not need to be listed explicitly for a given momentum.

Let us next construct the Feynman propagator for photon lines. The free Lagrangian density given

in eq. (5.1.34): can be rewritten as:

L0 =
1

2
Aµ (gµν∂ρ∂

ρ − ∂µ∂ν)Aν , (7.1.30)

where we have dropped a total derivative. (The action, obtained by integrating L0, does not depend on

total derivative terms.) Therefore, following the prescription of eq. (6.4.12), it appears that we ought

to find the propagator by finding the inverse of the 4× 4 matrix

Pµν = −p2gµν + pµpν . (7.1.31)

Unfortunately, however, this matrix is not invertible. The reason for this can be traced to the gauge

invariance of the theory; not all of the physical states we are attempting to propagate are really physical.

This problem can be avoided using a trick, due to Fermi, called “gauge fixing”. As long as we

agree to stick to Lorenz gauge, ∂µAµ = 0, we can add a term to the Lagrangian density proportional

to (∂µAµ)2:

L(ξ)
0 = L0 −

1

2ξ
(∂µAµ)2. (7.1.32)
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In Lorenz gauge, not only does the extra term vanish, but also its contribution to the equations of

motion vanishes. Here ξ is an arbitrary new gauge-fixing parameter; it can be picked at will. Physical

results should not depend on the choice of ξ. The new term in the modified free Lagrangian L(ξ)
0 is

called the gauge-fixing term. Now the matrix to be inverted is:

Pµν = −p2gµν +
(

1− 1

ξ

)
pµpν . (7.1.33)

To find the inverse, one notices that as a tensor, (P−1)νρ can only be a linear combination of terms

proportional to gνρ and to pνpρ. So, making a guess:

(P−1)νρ = C1 gνρ + C2 pνpρ (7.1.34)

and requiring that

Pµν(P−1)νρ = δρ
µ, (7.1.35)

one finds the solution

C1 = − 1

p2
; C2 =

1− ξ
(p2)2

. (7.1.36)

It follows that the desired Feynman propagator for a photon with momentum pµ is:

i

p2 + iϵ

[
−gµν + (1− ξ)pµpν

p2

]
(7.1.37)

(Here we have put in the iϵ factor in the denominator as usual.) In a Feynman diagram, this propagator

corresponds to an internal wavy line, labeled by µ and ν at opposite ends, and carrying 4-momentum p.

The gauge-fixing parameter ξ can be chosen at the convenience or whim of the person computing the

Feynman diagram. The most popular choice for simple calculations is ξ = 1, called Feynman gauge.

Then the Feynman propagator for photons is simply:

−igµν

p2 + iϵ
(Feynman gauge). (7.1.38)

Another common choice is ξ = 0, known as Landau gauge, for which the Feynman propagator is:

−i

p2 + iϵ

[
gµν −

pµpν

p2

]
(Landau gauge). (7.1.39)

[Comparing to eq. (7.1.32), we see that this is really obtained as a formal limit ξ → 0.] The Landau

gauge photon propagator has the nice property that it vanishes when contracted with either pµ or pν ,

which can make some calculations simpler (especially certain loop diagram calculations). Sometimes it

is useful to just leave ξ unspecified. Even though this means having to calculate more terms, the payoff

is that in the end one can demand that the final answer for the reduced matrix element is independent

of ξ, providing a consistency check.

We have now encountered most of the Feynman rules for QED. There are some additional rules

having to do with minus signs because of Fermi-Dirac statistics; these can be understood by carefully
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considering the effects of anticommutation relations for fermionic operators. In practice, one usually

does not write out the spinor indices explicitly. All the rules are summarized in the following two pages

in a cookbook form. Of course, the best way to understand how the rules work is to do some examples.

That will be the subject of the next few subsections.
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Feynman rules for QED

To find the contributions to the reduced matrix element M for a physical process involving charged

Dirac fermions and photons:

1. Draw all topologically distinct Feynman diagrams, with wavy lines representing photons, and solid

lines with arrows representing fermions, using the rules below for external lines, internal lines, and

interaction vertices. The arrow direction is preserved when following each fermion line. Enforce four-

momentum conservation at each vertex.

2. For external lines, write (with 4-momentum pµ always to the right, and spin polarization s or λ as

appropriate):

initial-state fermion: ←→ u(p, s)

←→ v(p, s)initial-state antifermion:

←→ u(p, s)final-state fermion:

final-state antifermion: ←→ v(p, s)

µ
←→ ϵµ(p,λ)initial-state photon:

µ
final-state photon: ←→ ϵ∗µ(p,λ)

3. For internal fermion lines, write Feynman propagators:

←→
i(/p + m)

p2 −m2 + iϵ

with 4-momentum pµ along the arrow direction, and m the mass of the fermion. For internal photon

lines, write:

←→ i

p2 + iϵ

[
−gµν + (1− ξ)pµpν

p2

]µ ν

with 4-momentum pµ along either direction in the wavy line. (Use ξ = 1 for Feynman gauge and ξ = 0

for Landau gauge.)

4. For interaction vertices, write:
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←→ −iQeγµ
µ

The vector index µ is to be contracted with the corresponding index on the photon line to which it is

connected. This will be either an external photon line factor of ϵµ or ϵ∗µ, or on an internal photon line

propagator index.

5. For each loop momentum ℓµ that is undetermined by four-momentum conservation with fixed

external-state momenta, perform an integration

∫
d4ℓ

(2π)4
.

Getting a finite answer from these loop integrations often requires that they be regularized by intro-

ducing a cutoff or some other trick.

6. Put a factor of (−1) for each closed fermion loop.

7. To take into account suppressed spinor indices on fermion lines, write terms involving spinors as

follows. For fermion lines that go all the way through the diagram, start at the end of each fermion

line (as defined by the arrow direction) with a factor u or v, and write down factors of γµ or (/p + m)

consecutively, following the line backwards until a u or v spinor is reached. For closed fermion loops,

start at an arbitrary vertex on the loop, and follow the fermion line backwards until the original point

is reached; take a trace over the gamma matrices in the closed loop.

8. If a Feynman diagram with one or more closed loops can be transformed into an exact copy of

itself by interchanging any number of internal lines through a smooth deformation without moving the

external lines, then there is an additional symmetry factor of 1/N , where N is the number of distinct

permutations of that type.

9. After writing down the contributions from each diagram to the reduced matrix element M ac-

cording to the preceding rules, assign an additional relative minus sign between different diagram

contributions whenever the written ordering of external state spinor wavefunctions u, v, u, v differs by

an odd permutation.
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7.2 e−e+ → µ−µ+

In the next few subsections we will study some of the basic scattering processes in QED, using the

Feynman rules found in the previous section and the general discussion of cross-sections given in section

6.2. These calculations will involve several thematic tricks that are common to many Feynman diagram

evaluations.

We begin with electron-positron annihilation into a muon-antimuon pair:

e−e+ → µ−µ+.

We will calculate the differential and total cross-sections for this process in the center-of-momentum

frame, to leading order in the coupling e. Since the mass of the muon (and the anti-muon) is about

mµ = 105.66 MeV, this process requires a center-of-momentum energy of at least
√

s = 211.3 MeV. By

contrast, the mass of the electron is only about me = 0.511 MeV, which we can therefore safely neglect.

The error made in doing so is far less than the error made by not including higher-order corrections.

A good first step is to label the momentum and spin data for the initial state electron and positron

and the final state muon and anti-muon:

Particle Momentum Spin Spinor
e− pa sa u(pa, sa)
e+ pb sb v(pb, sb)
µ− k1 s1 u(k1, s1)
µ+ k2 s2 v(k2, s2)

(7.2.1)

At order e2, there is only one Feynman diagram for this process. Here it is:

pa

µ ν

k1

pb k2

pa + pb

Applying the rules for QED to turn this picture into a formula for the reduced matrix element, we find:

M = [v(pb, sb) (ieγµ) u(pa, sa)]
[ −igµν

(pa + pb)2

]
[u(k1, s1) (ieγν) v(k2, s2)] . (7.2.2)

The v(pb, sb) (ieγµ) u(pa, sa) part is obtained by starting at the end of the electron-positron line

with the positron external state spinor, and following it back to its beginning. The interaction

vertex is −iQeγµ = ieγµ, since the charge of the electron and muon is Q = −1. Likewise, the

u(k1, s1) (ieγν) v(k2, s2) part is obtained by starting at the end of the muon-antimuon line with the

muon external state spinor, and following it backwards. The photon propagator is written in Feyn-

man gauge, for simplicity, and carries indices µ and ν that connect to the two fermion lines at their

respective interaction vertices.

91



We can write this result more compactly by using abbreviations v(pb, sb) = vb and u(pa, sa) ≡ ua,

etc. Writing the denominator of the photon propagator as the Mandelstam variable s = (pa + pb)2 =

(k1 + k2)2, and using the metric in the photon propagator to lower the index on one of the gamma

matrices, we get:

M = i
e2

s
(vbγµua)(u1γ

µv2). (7.2.3)

The differential cross-section involves the complex square of M:

|M|2 =
e4

s2
(vbγµua)(u1γ

µv2)(vbγνua)
∗(u1γ

νv2)
∗. (7.2.4)

Evaluating the complex conjugated terms in parentheses can be done systematically by taking the

Hermitian conjugate of the Dirac spinors and matrices they are made of, taking care to write them in

the reverse order. So, for example,

(vbγνua)
∗ = (v†bγ

0γνua)
∗ = u†

aγ
†
νγ

0vb = u†
aγ

0γνvb = uaγνvb. (7.2.5)

The third equality follows from the identity (B.4), which implies γ†νγ
0 = γ0γν . Similarly,

(u1γ
νv2)

∗ = v2γ
νu1. (7.2.6)

[Following the same strategy, one can show that in general,

(xγµγν . . . γρy)∗ = yγρ . . . γνγµx (7.2.7)

where x and y are any u and v spinors.] Therefore we have:

|M|2 =
e4

s2
(vbγµua)(uaγνvb) (u1γ

µv2)(v2γ
νu1). (7.2.8)

At this point, we could work out explicit forms for the external state spinors and plug eq. (7.2.8)

into eq. (6.2.48) to find the differential cross-section for any particular set of spins. However, this is not

very convenient, and fortunately it is not necessary either. In a real experiment, the final state spins

of the muon and anti-muon are typically not measured. Therefore, to find the total cross-section for

all possible final states, we should sum over s1 and s2. Also, if the initial-state electron spin states are

unknown, we should average over sa and sb. (One must average, not sum, over the initial-state spins,

because sa and sb cannot simultaneously take on both spin-up and spin-down values; there is only one

initial state, even if it is unknown.) These spin sums and averages will allow us to exploit the identities

(3.2.50) and (3.2.51) [also listed in Appendix B as (B.28) and (B.29)], so that the explicit forms for

the spinors are never needed.

After doing the spin sum and average, the differential cross-section must be symmetric under

rotations about the collision axis. This is because the only special directions in the problem are the

momenta of the particles, so that the cross-section can only depend on the angle θ between the collision
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axis determined by the two initial-state particles and the scattering axis determined by the two final-

state particles. So, we can apply eq. (6.2.49) to obtain:

dσ

d(cos θ)
=

1

2

∑

sa

1

2

∑

sb

∑

s1

∑

s2

|M|2 |⃗k1|
32πs|p⃗a|

(7.2.9)

in the center-of-momentum frame, with the effects of initial state spin averaging and final state spin

summing now included.

We can now use eqs. (B.28) and (B.29), which in the present situation imply

∑

sa

uaua = /pa
+ me, (7.2.10)

∑

s2

v2v2 = /k2 −mµ. (7.2.11)

Neglecting me as promised earlier, we obtain:

1

2

∑

sa

1

2

∑

sb

∑

s1

∑

s2

|M|2 =
e4

4s2

∑

sb

∑

s1

(vbγµ/pa
γνvb) (u1γ

µ[/k2 −mµ]γνu1). (7.2.12)

Now we apply another trick. A dot product of two vectors is equal to the trace of the vectors multiplied

in the opposite order to form a matrix:

( a1 a2 a3 a4 )

⎛

⎜⎜
⎝

b1

b2

b3

b4

⎞

⎟⎟
⎠ = Tr

[
⎛

⎜⎜
⎝

b1

b2

b3

b4

⎞

⎟⎟
⎠ ( a1 a2 a3 a4 )

]
≡ Tr

⎛

⎜⎜
⎝

b1a1 b1a2 b1a3 b1a4

b2a1 b2a2 b2a3 b2a4

b3a1 b3a2 b3a3 b3a4

b4a1 b4a2 b4a3 b4a4

⎞

⎟⎟
⎠ . (7.2.13)

Applying this to each expression in parentheses in eq. (7.2.12), we move the barred spinor (thought of

as a row vector) to the end and take the trace over the resulting 4× 4 Dirac spinor matrix. So:

vbγµ/pa
γνvb = Tr[γµ/pa

γνvbvb], (7.2.14)

u1γ
µ[/k2 −mµ]γνu1 = Tr[γµ(/k2 −mµ)γνu1u1], (7.2.15)

so that

1

4

∑

spins

|M|2 =
e4

4s2

∑

sb

∑

s1

Tr[γµ/pa
γνvbvb] Tr[γµ(/k2 −mµ)γνu1u1]. (7.2.16)

The reason this trick of rearranging into a trace is useful is that now we can once again exploit the

spin-sum identities (B.28) and (B.29), this time in the form:

∑

sb

vbvb = /pb
−me, (7.2.17)

∑

s1

u1u1 = /k1 + mµ. (7.2.18)

The result, again neglecting me, is:

1

4

∑

spins

|M|2 =
e4

4s2
Tr[γµ/pa

γν/pb
] Tr[γµ(/k2 −mµ)γν(/k1 + mµ)]. (7.2.19)
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Next we must evaluate the traces. First,

Tr[γµ/pa
γν/pb

] = pα
apβ

b Tr[γµγαγνγβ] (7.2.20)

= pα
apβ

b (4gµαgνβ − 4gµνgαβ + 4gµβgνα) (7.2.21)

= 4paµpbν − 4gµνpa · pb + 4pbµpaν , (7.2.22)

where we have used the general result for the trace of four gamma matrices found in the homework,

and listed in eq. (B.9). Similarly, making use of the fact that the trace of an odd number of gamma

matrices is zero:

Tr[γµ(/k2 −mµ)γν(/k1 + mµ)] = Tr[γµ/k2γ
ν/k1]−m2

µTr[γµγν ] (7.2.23)

= 4kµ
2 kν

1 − 4gµνk1 · k2 + 4kµ
1 kν

2 − 4gµνm2
µ, (7.2.24)

where eqs. (B.7)-(B.9) have been used. Taking the product of the two traces, one finds that the answer

reduces to simply:

1

4

∑

spins

|M|2 =
e4

s2
8
[
(pa · k2)(pb · k1) + (pa · k1)(pb · k2) + (pa · pb)m

2
µ

]
. (7.2.25)

Our next task is to work out the kinematic quantities appearing in eq. (7.2.25). Let us call P and

K the magnitudes of the 3-momenta of the electron and the muon, respectively. We assume that the

electron is initially moving in the +z direction, and the muon makes an angle θ with respect to the

positive z axis, within the yz plane. The on-shell conditions for the particles are:

p2
a = p2

b = m2
e ≈ 0, (7.2.26)

k2
1 = k2

2 = m2
µ. (7.2.27)

Then we have:

pa = (P, 0, 0, P ), (7.2.28)

pb = (P, 0, 0, −P ), (7.2.29)

k1 = (
√

K2 + m2
µ, 0, K sin θ, K cos θ), (7.2.30)

k2 = (
√

K2 + m2
µ, 0, −K sin θ, −K cos θ). (7.2.31)

Since (pa + pb)2 = (k1 + k2)2 = s, it follows that

P =

√
s

4
, (7.2.32)

K =

√
s

4
−m2

µ, (7.2.33)

and

pa · pb = 2P 2 =
s

2
, (7.2.34)
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pa · k1 = pb · k2 = P
√

K2 + m2
µ − PK cos θ =

s

4

⎡

⎣1− cos θ

√

1−
4m2

µ

s

⎤

⎦ , (7.2.35)

pa · k2 = pb · k1 = P
√

K2 + m2
µ + PK cos θ =

s

4

⎡

⎣1 + cos θ

√

1−
4m2

µ

s

⎤

⎦ . (7.2.36)

Putting these results into eq. (7.2.25), we get:

1

4

∑

spins

|M|2 =
8e4

s2

{(
s

4

)2[
1 + cos θ

√

1−
4m2

µ

s

]2
+
(

s

4

)2[
1− cos θ

√

1−
4m2

µ

s

]2
+

sm2
µ

2

}

= e4

[

1 +
4m2

µ

s
+

(

1−
4m2

µ

s

)

cos2 θ

]

. (7.2.37)

Finally we can plug this into eq. (7.2.9):

dσ

d(cos θ)
=

1

4

∑

spins

|M|2 K

32πsP
(7.2.38)

=
e4

32πs

√

1−
4m2

µ

s

[

1 +
4m2

µ

s
+

(

1−
4m2

µ

s

)

cos2 θ

]

, (7.2.39)

or, rewriting in terms of the fine structure constant α = e2/4π,

dσ

d(cos θ)
=

πα2

2s

√

1−
4m2

µ

s

[

1 +
4m2

µ

s
+

(

1−
4m2

µ

s

)

cos2 θ

]

. (7.2.40)

Doing the integral over cos θ using
∫ 1
−1 d(cos θ) = 2 and

∫ 1
−1 cos2 θ d(cos θ) = 2/3, we find the total

cross-section:

σ =
4πα2

3s

√

1−
4m2

µ

s

(

1 +
2m2

µ

s

)

. (7.2.41)

It is a useful check that the cross-section has units of area; recall that when c = h̄ = 1, then s = E2
CM

has units of mass2 or length−2.

Equations (7.2.40) and (7.2.41) have been tested in many experiments, and correctly predict the

rate of production of muon-antimuon pairs at electron-positron colliders. Let us examine some special

limiting cases. Near the energy threshold for µ+µ− production, one may expand in the quantity

∆E =
√

s− 2mµ. (7.2.42)

To leading order in small ∆E, eq. (7.2.41) becomes

σ ≈ πα2

2m2
µ

√
∆E

mµ
. (7.2.43)

The cross-section therefore rises like the square root of the energy excess over the threshold. However,

going to increasing energy, σ quickly levels off because of the 1/s factors in eq. (7.2.41). Maximizing with
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respect to s, one finds that the largest cross-section in eq. (7.2.41) is reached for
√

s =
√

1 +
√

21 mµ ≈
2.36mµ, and is about

σmax = 0.54α2/m2
µ = 1000 nb. (7.2.44)

In the high energy limit
√

s≫ mµ, the cross-section decreases proportional to 1/s:

σ ≈ 4πα2

3s
. (7.2.45)

However, this formula is not good for arbitrarily high values of the center-of-momentum energy, because

there is another diagram in which the photon is replaced by a Z0 boson. This effect becomes important

when
√

s is not small compared to mZ = 91.1876 GeV.

7.3 e−e+ → ff .

In the last subsection, we calculated the cross-section for producing a muon-antimuon pair in e−e+

collisions. We can easily generalize this to the case of production of any charged fermion f and anti-

fermion f . The Feynman diagram for this process is obtained by simply replacing the muon-antimuon

line by an f -f line:

e− f

e+ f

The reduced matrix element for this process has exactly the same form as for e−e+ → ff , except that

the photon-µ−-µ+ vertex is replaced by a photon-f -f vertex, with:

ieγν −→ −iQfeγν , (7.3.1)

where Qf is the charge of the fermion f . In the case of quarks, there are three indistinguishable

colors for each flavor (up, down, strange, charm, bottom, top). The photon-quark-antiquark vertex is

diagonal in color, so the three colors are simply summed over in order to find the total cross-section

for a given flavor. In general, if we call nf the number of colors (or perhaps other non-spin degrees of

freedom) of the fermion f , then we have:

|Me−e+→ff |
2 = nfQ2

f |Me−e+→µ−µ+ |2, (7.3.2)

where it is understood that mµ should be replaced by mf everywhere in |Me−e+→ff |
2. It follows that

the differential and total cross-sections for e−e+ → ff are obtained from eqs. (7.2.40) and (7.2.41) by

just multiplying by nfQ2
f and replacing mµ → mf :

σe−e+→ff = nfQ2
f
4πα2

3s

√

1−
4m2

f

s

(

1 +
2m2

f

s

)

. (7.3.3)
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In the high-energy limit
√

s≫ mf , we have:

σe−e+→ff = nfQ2
f
4πα2

3s
. (7.3.4)

The following graph compares the total cross-section for e+e− → ff (solid line) as given by eq. (7.3.3)

to the asymptotic approximation (dashed line) given by eq. (7.3.4).

0 1 2 3 4 5
ECM/mf

0

0.54 nfQf
2
α

2/mf
2

σ

We see that the true cross-section is always less than the asymptotic approximation, but the two

already agree fairly well when
√

s >∼ 2.5mf . This means that when several fermions contribute, the

total cross-section well above threshold is just equal to the sum of nfQ2
f for the available states times

a factor 4πα2/3s. For example, the up quark has charge Qu = +2/3, and there are three colors, so the

prefactor indicated above is 3(2/3)2 = 4/3. The prefactors for all the fundamental charged fermion

types with masses less than mZ are:

up, charm quarks: Qf = 2/3, nf = 3 −→ nfQ2
f = 4/3

down, strange, bottom quarks: Qf = −1/3, nf = 3 −→ nfQ2
f = 1/3

muon, tau leptons: Qf = −1, nf = 1 −→ nfQ2
f = 1.

(7.3.5)

However, free quarks are not seen in nature because the QCD color force confines them within

color-singlet hadrons. This means that the quark-antiquark production process e−e+ → QQ cross-

section cannot easily be interpreted in terms of specific particles in the final state. Instead, one should

view the quark production as a microscopic process, occurring at a distance scale much smaller than

a typical hadron. Before we “see” them in macroscopic-sized detectors, the produced quarks then

undergo further strong interactions that end up producing hadronic jets of particles with momenta

close to those of the original quarks. This always involves at least the further production of a quark-

antiquark pair in order to make the final state hadrons color singlets. A Feynman-diagram cartoon of

the situation might looks as follows:
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e−

e+

q

q

hadronic jet

hadronic jet

Because the hadronic interactions are most important at the strong-interaction energy scale of a few

hundred MeV, the calculation of the cross-section can only be trusted for energies that are significantly

higher than this. When
√

s≫ 1 GeV, one can make the approximation:

σ(e−e+ → hadrons) ≈
∑

q

σ(e−e+ → qq). (7.3.6)

The final state can be quite complicated, so to test QED production of quarks, one can just measure the

total cross-section for producing hadrons. The traditional measure of the total hadronic cross-section

is the variable Rhadrons, defined as the ratio:

Rhadrons =
σ(e−e+ → hadrons)

σ(e−e+ → µ−µ+)
. (7.3.7)

When the approximation is valid, one can always produce up, down and strange quarks, which all have

masses < 1 GeV. The threshold to produce charm-anticharm quarks occurs roughly when
√

s > 2mc ≈ 3

GeV, and that to produce bottom-antibottom quarks is at roughly
√

s > 2mb ≈ 10 GeV. As each

of these thresholds is passed, one gets a contribution to Rhadrons that is approximately a constant

proportional to nfQ2
f . So, for

√
s < 3 GeV, one has

Rhadrons =
4

3
+

1

3
+

1

3
= 2. (u, d, s quarks) (7.3.8)

For 3 GeV<
√

s < 10 GeV, the charm quark contributes, and the ratio is

Rhadrons =
4

3
+

1

3
+

1

3
+

4

3
=

10

3
. (u, d, s, c quarks) (7.3.9)

Finally, for
√

s > 10 GeV, we get

Rhadrons =
4

3
+

1

3
+

1

3
+

4

3
+

1

3
=

11

3
. (u, d, s, c, b quarks). (7.3.10)
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Besides these “continuum” contributions to Rhadrons, there are resonant contributions that come from

e−e+ → hadronic bound states. These bound states tend to have very large, but narrow, production

cross-sections when
√

s is in just the right energy range to produce them. For example, when the bound

state consists of a charm and anticharm quark, one gets the J/ψ particle resonance at
√

s = 3.096916

GeV, with a width of 0.00093 GeV. These resonances contribute very sharp peaks to the measured

Rhadrons. Experimentally, Rhadrons is quite hard to measure, being plagued by systematic detector

effects. Many of the older experiments at lower energy tended to underestimate the systematic un-

certainties. Here are some plots of the data as of August 2007, from the online Review of Particle

Properties, obtained from the COMPAS (Protvino) and HEPDATA (Durham) Groups, with correc-

tions by P. Janot and M. Schmitt. The approximate agreement with the predictions for Rhadrons in

eqs. (7.3.8)-(7.3.10) provides a crucial test of the quark model of hadrons, including the charges of the

quarks and the number of colors.
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7.4 Helicities in e−e+ → µ−µ+

Up to now, we have computed the cross-section by averaging over the unknown spins of the initial state

electron and positron. However, some e−e+ colliders can control the initial spin states, using polarized

beams. This means that the beams are arranged to have an excess of either L-handed or R-handed

helicity electrons and positrons. Practical realities make it impossible to achieve 100%-pure polarized

beams, of course. At a proposed future Linear Collider, it is a very important part of the experimental

program to be able to run with at least the electron beam polarized. Present estimates are that one

might be able to get 90% or 95% pure polarization for the electron beam (either L or R), with perhaps

60% polarization for the positron beam. This terminology means that when the beam is operating in

R mode, then a polarization of X% implies that

PR − PL = X% (7.4.1)
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where PR and PL are the probabilities of measuring the spin pointing along and against the 3-

momentum direction, respectively. This experimental capability shows that one needs to be able

to calculate cross-sections without assuming that the initial spin state is random and averaged over.

We could redo the calculation of the previous subsections with particular spinors u(p, s) and v(p, s)

for the desired specific spin states s of initial state particles. However, then we would lose our precious

trick of evaluating
∑

s uu and
∑

s vv. A nicer way is to keep the sum over spins, but eliminate the

“wrong” polarization from the sum using a projection matrix from eq. (3.2.30). So, for example, we

can use

PLu(p, s) ←→ L initial-state particle (7.4.2)

PRu(p, s) ←→ R initial-state particle (7.4.3)

in place of the usual Feynman rules for an initial state particle. Summing over the spin s will not

change the fact that the projection matrix allows only L- or R-handed electrons to contribute to the

cross-section. Now our traces over gamma matrices will involve γ5, because of the explicit expressions

for PL and PR [see eq. (3.2.30)].

To get the equivalent rules for an initial state antiparticle, we must remember that the spin operator

acting on v(p, s) spinors is the opposite of the spin operator acting on u(p, s) spinors. Therefore, PL

acting on a v(p, s) spinor projects onto a R-handed antiparticle. So if we form the object v(p, s)PR =

v†(p, s)γ0PR = v†(p, s)PLγ0, the result must describe a R-handed positron; in this case, the bar on the

spinor for an antiparticle “corrects” the handedness. So, for an initial state antiparticle with either L

or R polarization, we can use:

v(p, s)PL ←→ L initial-state anti-particle (7.4.4)

v(p, s)PR ←→ R initial-state anti-particle. (7.4.5)

In some cases, one can also measure the polarizations of outgoing particles, for example by observing

their decays. Tau leptons and anti-taus sometimes decay by the weak interaction processes:

τ− → ℓ−ντνℓ (7.4.6)

τ+ → ℓ+ντνℓ (7.4.7)

where ℓ is e or µ, with the angular distributions of the final state directions depending on the spin of

the τ , which may be one of the final state fermions in a scattering or decay process of interest. If the

polarization of a final-state fermion is fixed by measurement, then we need to use:

u(p, s)PR ←→ L final-state particle, (7.4.8)

u(p, s)PL ←→ R final-state particle, (7.4.9)

PRv(p, s) ←→ L final-state anti-particle, (7.4.10)

PLv(p, s) ←→ R final-state anti-particle, (7.4.11)
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in order to be able to calculate cross-sections to final states with specific L or R spin polarization states.

(As a result of the barred spinor notation, the general rule is that the projection matrix in an initial

state has the same handedness as the incoming particle or antiparticle, while the projection matrix in

a final state has the opposite handedness of the particle being produced.)

As an example, let us consider the process:

e−Re+
R → µ−µ+, (7.4.12)

where the helicities of the initial state particles are now assumed to be known perfectly. The reduced

matrix element for this process, following from the same Feynman diagram as before, is:

M = i
e2

s
(vbPRγ

µPRua) (u2γµv1). (7.4.13)

As you should have discovered in a homework problem, a projection matrix can be moved through a

gamma matrix by changing L↔ R:

PRγ
µ = γµPL, (7.4.14)

PLγ
µ = γµPR. (7.4.15)

This follows from the fact that γ5 anticommutes with γµ:

PRγ
µ =

(
1 + γ5

2

)
γµ = γµ

(
1− γ5

2

)
= γµPL. (7.4.16)

Therefore, eq. (7.4.13) simply vanishes, because

PRγ
µPR = γµPLPR = 0. (7.4.17)

Therefore, the process e−Re+
R → µ−µ+ does not occur in QED. Similarly, e−Le+

L → µ−µ+ does not

occur in QED. By the same type of argument, µ− and µ+ in the final state must have opposite L,R

polarizations from each other in QED.

To study a non-vanishing reduced matrix element, let us therefore consider the process:

e−Le+
R → µ−

Lµ+
R, (7.4.18)

in which we have now assumed that all helicities are perfectly known. To simplify matters, we will

assume the high energy limit
√

s ≫ mµ. The reduced matrix element can be simply obtained from

eq. (7.2.3) by just putting in the appropriate L and R projection matrices acting on each external state

spinor:

M = i
e2

s
(vbPRγ

µPLua)(u1PRγµPLv2). (7.4.19)

This can be simplified slightly by using the properties of the projections matrices:

PRγ
µPL = γµPLPL = γµPL, (7.4.20)
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so that

M = i
e2

s
(vbγ

µPLua)(u1γµPLv2), (7.4.21)

and so

|M|2 =
e4

s2
(vbγ

µPLua)(u1γµPLv2)(vbγ
νPLua)

∗(u1γνPLv2)
∗. (7.4.22)

To evaluate this, we compute:

(vbγ
νPLua)

∗ = (v†bγ
0γνPLua)

∗ = u†
a(PL)†(γν)†γ0vb (7.4.23)

= u†
aPLγ

0γνvb (7.4.24)

= u†
aγ

0PRγ
νvb (7.4.25)

= uaPRγ
νvb. (7.4.26)

Here we have used the facts that (PL)† = PL, and (γν)†γ0 = γ0γν , and PLγ0 = γ0PR, and u†
aγ

0 = ua.

In a similar way,

(u1γνPLv2)
∗ = v2PRγνu1. (7.4.27)

Therefore,

|M|2 =
e4

s2
(vbγ

µPLua)(uaPRγ
νvb)(u1γµPLv2)(v2PRγνu1). (7.4.28)

Because the spin projection matrices will only allow the specified set of spins to contribute anyway, we

are free to sum over the spin labels sa, sb, s1, and s2, without changing anything. Let us do so, since

it will allow us to apply the tricks

∑

sa

uaua = /pa
+ me, (7.4.29)

∑

s2

v2v2 = /k2 −mµ. (7.4.30)

Neglecting the masses because of the high-energy limit, we therefore have

|M|2 =
∑

sa

∑

sb

∑

s1

∑

s2

|M|2 (7.4.31)

=
e4

s2

∑

s1

∑

sb

(vbγ
µPL/pa

PRγ
νvb) (u1γµPL/k2PRγνu1). (7.4.32)

This can be simplified by eliminating excess projection matrices, using:

PL/pa
PR = /pa

PRPR = /pa
PR, (7.4.33)

PL/k2PR = /k2PRPR = /k2PR, (7.4.34)

103



to get

|M|2 =
e4

s2

∑

s1

∑

sb

(vbγ
µ
/pa

PRγ
νvb) (u1γµ/k2PRγνu1). (7.4.35)

Again using the trick of putting the barred spinor at the end and taking the trace [see the discussion

around eq. (7.2.13)] for each quantity in parentheses, this becomes:

|M|2 =
e4

s2

∑

s1

∑

sb

Tr[γµ
/pa

PRγ
νvbvb] Tr[γµ/k2PRγνu1u1]. (7.4.36)

Doing the sums over s1 and sb using the usual trick gives:

|M|2 =
e4

s2
Tr[γµ

/pa
PRγ

ν
/pb

] Tr[γµ/k2PRγν/k1]. (7.4.37)

Now it is time to evaluate the traces. We have

Tr[γµ
/pa

PRγ
ν
/pb

] = Tr[γµ
/pa

(
1 + γ5

2

)
γν

/pb
] (7.4.38)

=
1

2
Tr[γµ

/pa
γν

/pb
] +

1

2
Tr[γµ

/pa
γν

/pb
γ5], (7.4.39)

where we have used the fact that γ5 anticommutes with any gamma matrix to rearrange the order in

the last term. The first of these traces was evaluated in section 7.2. The trace involving γ5 is, from

eq. (B.18):

Tr[γµ
/pa
γν

/pb
γ5] = paαpbβTr[γµγαγνγβγ5] (7.4.40)

= paαpbβ(4iϵµανβ). (7.4.41)

where ϵµανβ is the totally antisymmetric Levi-Civita tensor defined in eq. (2.65). Putting things

together:

Tr[γµ
/pa

PRγ
ν
/pb

] = 2
[
pµ

apν
b − gµν(pa · pb) + pµ

b pν
a + ipaαpbβϵ

µανβ
]
. (7.4.42)

In exactly the same way, we get

Tr[γµ/k2PRγν/k1] = 2 [k2µk1ν − gµν(k2 · k1) + k1µk2ν + ikρ
2kσ

1 ϵµρνσ ] . (7.4.43)

Finally, we have to multiply these two traces together, contracting the indices µ and ν. Note that the

cross-terms containing only one ϵ tensor vanish, because the epsilon tensors are antisymmetric under

µ↔ ν, while the other terms are symmetric. The term involving two epsilon tensors can be evaluated

using the useful identity

ϵµανβϵµρνσ = −2δα
ρ δ

β
σ + 2δα

σ δ
β
ρ , (7.4.44)

which you can verify by brute force substitution of indices. The result is simply:

Tr[γµ
/pa

PRγ
ν
/pb

] Tr[γµ/k2PRγν/k1] = 16(pa · k2)(pb · k1), (7.4.45)
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so that

|M|2 =
16e4

s2
(pa · k2)(pb · k1). (7.4.46)

This result should be plugged in to the formula for the differential cross-section:

dσe−L e+
R→µ−

L µ+
R

d(cos θ)
= |M|2 |⃗k1|

32πs|p⃗a|
. (7.4.47)

Note that one does not average over initial-state spins in this case, because they have already been

fixed. The kinematics is of course not affected by the fact that we have fixed the helicities, and so can

be taken from the discussion in 7.2 with mµ replaced by 0. It follows that:

dσe−
L

e+
R
→µ−

L
µ+

R

d(cos θ)
=

e4

32πs
(1 + cos θ)2 (7.4.48)

=
πα2

2s
(1 + cos θ)2. (7.4.49)

The angular dependence of this result can be understood from considering the conservation of angular

momentum in the event. Drawing a short arrow to represent the direction of the spin:

e−L e+
R

µ+
R

µ−
L

θ

This shows that the total spin angular momentum of the initial state is Sẑ = −1 (taking the electron

to be moving in the +z direction). The total spin angular momentum of the final state is Sn̂ = −1,

where n̂ is the direction of the µ−. This explains why the cross-section vanishes if cos θ = −1; that

corresponds to a final state with the total spin angular momentum in the opposite direction from

the initial state. The quantum mechanical overlap for two states with measured angular momenta in

exactly opposite directions must vanish. If we describe the initial and final states as eigenstates of

angular momentum with J = 1:

Initial state: |Jẑ = −1⟩; (7.4.50)

Final state: |Jn̂ = −1⟩, (7.4.51)

then the reduced matrix element squared is proportional to:

|⟨Jn̂ = −1|Jẑ = −1⟩|2 =
(1 + cos θ)2

4
. (7.4.52)

Similarly, one can compute:

dσe−Re+
L→µ−

Rµ+
L

d(cos θ)
=

πα2

2s
(1 + cos θ)2, (7.4.53)

corresponding to the picture:
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e−R e+
L

µ+
L

µ−
R

θ

with all helicities reversed compared to the previous case. If we compute the cross-sections for the final

state muon to have the opposite helicity from the initial state electron, we get

dσe−
L

e+
R
→µ−

R
µ+

L

d(cos θ)
=

dσe−
R

e+
L
→µ−

L
µ+

R

d(cos θ)
=

πα2

2s
(1− cos θ)2, (7.4.54)

corresponding to the pictures:

e−L e+
R

µ+
L

µ−
R

θ e−R e+
L

µ+
R

µ−
L

θ

These are 4 of the possible 24 = 16 possible helicity configurations for e−e+ → µ−µ+. However, as we

have already seen, the other 12 possible helicity combinations all vanish, because they contain either

e− and e+ with the same helicity, or µ− and µ+ with the same helicity. If we take the average of the

initial state helicities, and the sum of the possible final state helicities, we get:

1

4

[
dσe−L e+

R→µ−
L µ+

R

d(cos θ)
+

dσe−Re+
L→µ−

Rµ+
L

d(cos θ)
+

dσe−L e+
R→µ−

Rµ+
L

d(cos θ)
+

dσe−Re+
L→µ−

L µ+
R

d(cos θ)
+ 12 · 0

]

=
1

4

(
πα2

2s

)[
2(1 + cos θ)2 + 2(1− cos θ)2

]
(7.4.55)

=
πα2

2s
(1 + cos2 θ), (7.4.56)

in agreement with the
√

s≫ mµ limit of eq. (7.2.40).

The vanishing of the cross-sections for e−Le+
L and e−Re+

R in the above process can be generalized

beyond this example and even beyond QED. Consider any field theory in which interactions are given

by a fermion-antifermion-vector vertex with a Feynman rule proportional to a gamma matrix γµ. If an

initial state fermion and antifermion merge into a vector, or a vector splits into a final state fermion

and antifermion:

or
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then by exactly the same argument as before, the fermion and antifermion must have opposite helicities,

because of vPLγµPLu = vPRγµPRu = 0 and uPLγµPLv = uPRγµPRv = 0 and the rules of eqs. (7.4.2)-

(7.4.5) and (7.4.8)-(7.4.11).

Moreover, if an initial state fermion (or anti-fermion) interacts with a vector and emerges as a final

state fermion (or anti-fermion):

or

then the fermions (or anti-fermions) must have the same helicity, because of the identities uPLγµPLu

= uPRγµPRu = 0 and vPLγµPLv = vPRγµPRv = 0. This is true even if the interaction with the vector

changes the fermion from one type to another.

These rules embody the concept of helicity conservation in high energy scattering. They are obvi-

ously useful when the helicities of the particles are controlled or measured by the experimenter. They

are also useful because, as we will see, the weak interactions only affect fermions with L helicity and

antifermions with R helicity. The conservation of angular momentum together with helicity conserva-

tion often allows one to know in which direction a particle is most likely to emerge in a scattering or

decay experiment, and in what cases one may expect the cross-section to vanish or be enhanced.

7.5 Bhabha scattering (e−e+ → e−e+)

In this subsection we consider the process of Bhabha scattering:

e−e+ → e−e+. (7.5.1)

For simplicity we will only consider the case of high-energy scattering, with
√

s = ECM ≫ me, and

we will consider all spins to be unknown (averaged over in the initial state, summed over in the final

state).

Label the momentum and spin data as follows:

Particle Momentum Spin Spinor
e− pa sa u(pa, sa)
e+ pb sb v(pb, sb)
e− k1 s1 u(k1, s1)
e+ k2 s2 v(k2, s2)

(7.5.2)

At order e2, there are two Feynman diagram for this process:
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pa

µ ν

k1

pb k2

pa + pb

and

k2

ν

µ

k1

pb

pa

pa − k1

The first of these is called the s-channel diagram; it is exactly the same as the one we drew for

e−e+ → µ−µ+. The second one is called the t-channel diagram. Using the QED Feynman rules listed

at the end of subsection 7.1, the corresponding contributions to the reduced matrix element for the

process are:

Ms = [vb(ieγ
µ)ua]

[ −igµν

(pa + pb)2

]
[u1(ieγ

ν)v2] , (7.5.3)

and

Mt = (−1) [u1(ieγ
µ)ua]

[ −igµν

(pa − k1)2

]
[vb(ieγ

ν)v2] . (7.5.4)

The additional (−1) factor in Mt is due to Rule 9 in the QED Feynman rules at the end of section 7.1.

It arises because the order of spinors in the written expression for Ms is b, a, 1, 2, but that in Mt is

1, a, b, 2, and these differ from each other by an odd permutation. We could have just as well assigned

the minus sign to Ms instead; only the relative phases of terms in the matrix element are significant.

Therefore the full reduced matrix element for Bhabha scattering, written in terms of the Mandelstam

variables s = (pa + pb)2 and t = (pa − k1)2, is:

M = Ms + Mt = ie2
{

1

s
(vbγµua)(u1γ

µv2)−
1

t
(u1γµua)(vbγ

µv2)
}

. (7.5.5)

Taking the complex conjugate of this gives:

M∗ = M∗
s + M∗

t (7.5.6)

= −ie2
{

1

s
(vbγνua)

∗(u1γ
νv2)

∗ − 1

t
(u1γνua)

∗(vbγ
νv2)

∗
}

(7.5.7)

= −ie2
{

1

s
(uaγνvb)(v2γ

νu1)−
1

t
(uaγνu1)(v2γ

νvb)
}

. (7.5.8)

The complex square of the reduced matrix element, |M|2 = M∗M, contains a pure s-channel piece

proportional to 1/s2, a pure t-channel piece proportional to 1/t2, and an interference piece proportional

to 1/st. For organizational purposes, it is useful to calculate these pieces separately.
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The pure s-channel contribution calculation is exactly the same as what we did before for e−e+ →
µ−µ+, except that now we can substitute mµ → me → 0. Therefore, plagiarizing the result of

eq. (7.2.25), we have:

1

4

∑

spins

|Ms|2 =
8e4

s2
[(pa · k2)(pb · k1) + (pa · k1)(pb · k2)] . (7.5.9)

The pure t-channel contribution can be calculated in a very similar way. We have:

|Mt|2 =
e4

t2
(v2γνvb)(vbγµv2)(u1γ

µua)(uaγ
νu1). (7.5.10)

Taking the average of initial state spins and the sum over final state spins allows us to use the identities
∑

sa
uaua = /pa

and
∑

sa
vbvb = /pb

(neglecting me). The result is:

1

4

∑

spins

|Mt|2 =
e4

4t2
∑

s1,s2

(v2γν/pb
γµv2)(u1γ

µ
/pa
γνu1) (7.5.11)

=
e4

4t2
∑

s1,s2

Tr[γν/pb
γµv2v2]Tr[γµ

/pa
γνu1u1], (7.5.12)

in which we have turned the quantity into a trace by moving the u1 to the end. Now performing the

sums over s1, s2 gives:

1

4

∑

spins

|Mt|2 =
e4

4t2
Tr[γν/pb

γµ/k2]Tr[γµ
/pa
γν/k1] (7.5.13)

=
e4

4t2
Tr[γµ/k2γν/pb

]Tr[γµ
/pa
γν/k1]. (7.5.14)

In the second line, the first trace has been rearranged using the cyclic property of traces. The point

of doing so is that now these traces have exactly the same form that we encountered in eq. (7.2.19),

but with pa ↔ k2 and mµ → 0. Therefore we can obtain 1
4

∑
spins |Mt|2 by simply making the same

replacements pa ↔ k2 and mµ → 0 in eq. (7.2.25):

1

4

∑

spins

|Mt|2 =
8e4

t2
[(pa · k2)(pb · k1) + (k2 · k1)(pb · pa)] . (7.5.15)

Next, consider the interference term:

1

4

∑

spins

M∗
tMs = − e4

4st

∑

spins

(vbγµua)(uaγ
νu1)(u1γ

µv2)(v2γνvb). (7.5.16)

We chose to write the factors parentheses in that order, so that now we can immediately use the tricks
∑

sa
uaua = /pa

, and
∑

s1
u1u1 = /k1, and

∑
s2

v2v2 = /k2, to obtain:

1

4

∑

spins

M∗
tMs = − e4

4st

∑

sb

(vbγµ/pa
γν/k1γ

µ/k2γνvb), (7.5.17)
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which can now be converted into a trace by the usual trick of moving the vb to the end:

1

4

∑

spins

M∗
tMs = − e4

4st

∑

sb

Tr[γµ/pa
γν/k1γ

µ/k2γνvbvb] (7.5.18)

= − e4

4st
Tr[γµ/pa

γν/k1γ
µ/k2γν/pb

]. (7.5.19)

Now we are faced with the task of computing the trace of 8 gamma matrices. In principle, the trace

of any number of gamma matrices can be performed with the algorithm of eq. (B.10). The procedure

is to replace the trace over 2n gamma matrices by a sum over traces of 2n − 2 gamma matrices, and

repeat until all traces are short enough to evaluate using eqs. (B.7)-(B.10) and (B.14)-(B.18). However,

in many cases including the present one it is easier to simplify the contents of the trace first, using

eqs. (B.19)-(B.22). To evaluate the trace in eq. (7.5.19), we first use eq. (B.22) to write:

γµ/pa
γν/k1γ

µ = −2/k1γ
ν
/pa

, (7.5.20)

which implies that

Tr[γµ/pa
γν/k1γ

µ/k2γν/pb
] = −2Tr[/k1γ

ν
/pa

/k2γν/pb
]. (7.5.21)

This can be further simplified by now using eq. (B.21) to write:

γν
/pa

/k2γν = 4pa · k2, (7.5.22)

so that:

Tr[γµ/pa
γν/k1γ

µ/k2γν/pb
] = −8(pa · k2)Tr[/k1/pb

] (7.5.23)

= −32(pa · k2)(k1 · pb), (7.5.24)

in which the trace has finally been performed using eq. (B.8). So, from eq. (7.5.19)

1

4

∑

spins

M∗
tMs =

8e4

st
(pa · k2)(pb · k1). (7.5.25)

Taking the complex conjugate of both sides, we also have:

1

4

∑

spins

M∗
sMt =

8e4

st
(pa · k2)(pb · k1). (7.5.26)

This completes the contributions to the total

1

4

∑

spins

|M|2 =
1

4

∑

spins

[
|Ms|2 + |Mt|2 + M∗

tMs + M∗
sMt

]
. (7.5.27)

It remains to identify the dot products of momenta appearing in the above formulas. This can be

done by carrying over the kinematic analysis for the case e−e+ → µ−µ+ as worked out in eqs. (7.2.26)-

(7.2.36), with mµ,me → 0. Letting θ be the angle between the 3-momenta directions of the initial
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state electron and the final state electron, we have:

pa · pb = k1 · k2 = s/2, (7.5.28)

pa · k1 = pb · k2 = −t/2, (7.5.29)

pa · k2 = pb · k1 = −u/2, (7.5.30)

with

t = −s

2
(1− cos θ), (7.5.31)

u = −s

2
(1 + cos θ). (7.5.32)

It follows from eqs. (7.5.9), (7.5.15), (7.5.25), and (7.5.26) that:

1

4

∑

spins

|Ms|2 =
2e4

s2
(u2 + t2) (7.5.33)

1

4

∑

spins

|Mt|2 =
2e4

t2
(u2 + s2) (7.5.34)

1

4

∑

spins

(M∗
tMs + M∗

sMt) =
4e4

st
u2. (7.5.35)

Putting this into eq. (6.2.50), since |p⃗a| = |⃗k1|, we obtain the spin-averaged differential cross-section

for Bhabha scattering:

dσ

d(cos θ)
=

e4

16πs

(
u2 + t2

s2
+

u2 + s2

t2
+

2u2

st

)

(7.5.36)

=
πα2

2s

(
3 + cos2 θ

1− cos θ

)2

. (7.5.37)

This result actually diverges for cos θ → 1, because of the t’s in the denominator. This is not an

integrable singularity, because the differential cross-section blows up quadratically near cos θ = 1, so

σ =
∫ 1

−1

dσ

d(cos θ)
d(cos θ) −→ ∞. (7.5.38)

The infinite total cross-section corresponds to the infinite range of the Coulomb potential between two

charged particles. It arises entirely from the t-channel diagram, in which the electron and positron

scatter off of each other in the forward direction (θ ≈ 0). It simply reflects that an infinite-range

interaction will always produce some deflection, although it may be extremely small. This result is the

relativistic generalization of the non-relativistic, classical Rutherford scattering problem, in which an

electron or alpha particle (or some other light charged particle) scatters off of the classical electric field

of a heavy nucleus. As worked out in many textbooks on classical physics (for example, H. Goldstein’s

Classical Mechanics, J.D. Jackson’s Classical Electrodynamics), the differential cross-section for a non-

relativistic light particle with charge QA and a heavy particle with charge QB, with center-of-momentum

energy ECM to scatter through their Coulomb interaction is:

dσRutherford

d(cos θ)
=

πQ2
AQ2

Bα
2

2E2(1− cos θ)2
. (7.5.39)

111



(Here one must be careful in comparing results, because the charge e used by Goldstein and Jackson

differs from the one used here by a factor of
√

4π.) Comparing the non-relativistic Rutherford result

to the relativistic Bhabha result, we see that in both cases the small-angle behavior scales like 1/θ4,

and does not depend on the signs of the charges of the particles.

In a real experiment, there is always some minimum scattering angle that can be resolved. In a

colliding-beam experiment, this is usually dictated by the fact that detectors cannot be placed within

or too close to the beamline. In other experiments, one is limited by the angular resolution of detectors.

Therefore, the true observable quantity is typically something more like:

σexperiment =
∫ cos θcut

− cos θcut

dσ

d(cos θ)
d(cos θ). (7.5.40)

Of course, in the Real World, the minimum resolvable angle is just one of many practical factors that

have to be included.

In terms of the Feynman diagram interpretation, the divergence for small θ corresponds to the

photon propagator going on-shell; in other words, the situation where the square of the t-channel

virtual photon’s 4-momentum is nearly equal to 0, the classical value for a real massless photon. For

any scattering angle θ > 0, one has

(pa − k1)
2 = t =

s

2
(1− cos θ) > 0, (7.5.41)

so that the virtual photon is said to be off-shell. In general, any time that a virtual (internal line)

particle can go on-shell, there will be a divergence in the cross-section due to the denominator of the

Feynman propagator blowing up. Sometimes this is a real divergence with a physical interpretation,

as in the case of Bhabha scattering. In other cases, the divergence is removed by higher-order effects,

such as the finite life-time of the virtual particle, which will give an imaginary part to its squared mass,

removing the singularity in the Feynman propagator.

7.6 Crossing symmetry

Consider the two completely different processes:

e−e+ → µ−µ+ (7.6.1)

e−µ+ → e−µ+. (7.6.2)

The relevant Feynman diagrams for these two processes are very similar:
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e− µ−

e+ µ+

and

µ+

e−

µ+

e−

In fact, by stretching and twisting, one can turn the first process into the second by the transformation:

initial e+ → final e− (7.6.3)

final µ− → initial µ+, (7.6.4)

Two processes related to each other by exchanging some initial state particles with their antiparticles

in the final state are said to be related by crossing. Not surprisingly, the reduced matrix elements for

these processes are also quite similar. For example, in the high-energy limit
√

s≫ mµ,

1

4

∑

spins

|Me−e+→µ−µ+ |2 = 2e4

(
u2 + t2

s2

)

, (7.6.5)

1

4

∑

spins

|Me−µ+→e−µ+ |2 = 2e4

(
u2 + s2

t2

)

. (7.6.6)

This similarity is generalized and made more precise by the following theorem.

Crossing Symmetry Theorem: Suppose two Feynman diagrams with reduced matrix

elements M and M′ are related by the exchange (“crossing”) of some initial state particles

and antiparticles for the corresponding final state antiparticles and particles. If the crossed

particles have 4-momenta Pµ
1 , . . . Pµ

n in M, then
∑

spins |M|2 can be obtained by substituting

P ′µ
i = −Pµ

i into the mathematical expression for
∑

spins |M′|2, as follows:

∑

spins

|M(Pµ
1 , . . . , Pµ

n , . . .)|2 = (−1)F
∑

spins

|M′(P ′µ
1 , . . . , P ′µ

n , . . .)|2
∣∣∣∣∣
P ′µ

i →−P µ
i

, (7.6.7)

with the other (uncrossed) particle 4-momenta unaffected. Here F is the number of fermion

lines that were crossed.

If pµ = (E, p⃗ ) is a valid physical 4-momentum, then p′µ = (−E,−p⃗ ) is never a physical 4-momentum,

since it has negative energy. So the relation between the two diagrams is a formal one rather than

a relation between physical reduced matrix elements that would actually be measured; when one of

the matrix elements involves the 4-momenta appropriate for a physical process, the other one does

not. However, it is still perfectly valid as a mathematical relation, and therefore extremely useful. In
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general, if one has calculated the cross-section or reduced matrix element for one process, one can obtain

the results for several “crossed” processes by merely substituting momenta, with no additional labor.

Equation (7.6.7) might look dubious at first, since it may look like the right-hand side is negative for

odd F . However, the point is that when the expression for |M′|2 is analytically continued to unphysical

momenta, it always flips sign for odd F . We will see this in some examples later.

7.7 e−µ+ → e−µ+ and e−µ− → e−µ−

Let us apply crossing symmetry to the example of eqs. (7.6.1) and (7.6.2) by assigning primed momenta

to the Feynman diagram for e−e+ → µ−µ+:

initial state

{
e− ↔ p′a
e+ ↔ p′b

final state

{
µ− ↔ k′

1

µ+ ↔ k′
2.

Label the momenta in the crossed Feynman diagram (for e−µ+ → e−µ+) without primes:

initial state

{
e− ↔ pa

µ+ ↔ pb

final state

{
e− ↔ k1

µ+ ↔ k2.

Then the Crossing Symmetry Theorem tells us that we can get the reduced matrix element for the

process e−µ+ → e−µ+ as a function of physical momenta pa, pb, k1, k2 by substituting unphysical

momenta

p′a = pa; p′b = −k1; k′
1 = −pb; k′

2 = k2, (7.7.1)

into the formula for the reduced matrix element for the process e−e+ → µ−µ+. This means that we

can identify:

s′ = (p′a + p′b)
2 = (pa − k1)

2 = t, (7.7.2)

t′ = (p′a − k′
1)

2 = (pa + pb)
2 = s, (7.7.3)

u′ = (p′a − k′
2)

2 = (pa − k2)
2 = u. (7.7.4)

In other words, crossing symmetry tells us that the formulas for the reduced matrix elements for these

two processes are just related by the exchange of s and t, as illustrated in the high-energy limit in

eqs. (7.6.5) and (7.6.6). Since we had already derived the result for the first process in section 7.2, the

second result has been obtained for free. Note that we could have obtained the particular result (7.6.6)

even more easily just by noting that the calculation for the reduced matrix element of e−µ+ → e−µ+ is

exactly the same as for Bhabha scattering, except that only the t-channel diagram exists in the former

case. So one only keeps the term with t (not s or u) in the denominator, since that corresponds to the

t-channel diagram.
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We can carry this further by considering another process also related by crossing to the two just

studied:

e−µ− → e−µ−, (7.7.5)

with physical momenta:

initial state

{
e− ↔ pa

µ− ↔ pb

final state

{
e− ↔ k1

µ− ↔ k2
.

This time, the Crossing Symmetry Theorem tells us that we can identify the matrix element by again

starting with the reduced matrix element for e−e+ → µ−µ+ and replacing:

p′a = pa; p′b = −k1; k′
1 = k2; k′

2 = −pb, (7.7.6)

so that

s′ = (p′a + p′b)
2 = (pa − k1)

2 = t, (7.7.7)

t′ = (p′a − k′
1)

2 = (pa − k2)
2 = u, (7.7.8)

u′ = (p′a − k′
2)

2 = (pa + pb)
2 = s. (7.7.9)

Here the primed Mandelstam variable are the unphysical ones for the e−e+ → µ−µ+ process, and the

unprimed ones are for the desired process e−µ− → e−µ−. We can therefore infer, from eq. (7.6.5), that

1

4

∑

spins

|Me−µ−→e−µ− |2 = 2e4

(
s2 + u2

t2

)

, (7.7.10)

by doing the substitutions indicated by eqs. (7.7.7)-(7.7.9).

By comparing eq. (7.6.6) to eq. (7.7.10), one sees that the spin averaged and summed squared

matrix elements for the two processes are actually the same; the charge of the muon does not matter

at leading order. Because we are neglecting the muon mass, the kinematics relating t and u to the

scattering angle θ between the initial-state electron and the final state electron in these two cases is

just the same as in Bhabha scattering:

t = −s

2
(1− cos θ); u = −s

2
(1 + cos θ). (7.7.11)

Therefore, putting eq. (7.7.10) into eq. (6.2.50) with |p⃗a| = |⃗k1| and using e2 = 4πα, we obtain the

differential cross-section for e−µ± → e−µ±:

dσ

d(cos θ)
=

πα2

s

(
u2 + s2

t2

)

(7.7.12)

=
πα2

2s

5 + 2 cos θ + cos2 θ

(1− cos θ)2
. (7.7.13)

Note that this again diverges for forward scattering cos θ → 1.
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7.8 Møller scattering (e−e− → e−e−)

As another example, let us consider the case of Møller scattering:

e−e− → e−e−. (7.8.1)

There are two Feynman diagrams for this process:

e−

e−

e−

e−

and

e−

e−

e−

e−

Now, nobody can stop us from getting the result for this process by applying the Feynman rules

to get the reduced matrix element, taking the complex square, summing and averaging over spins, and

computing the Dirac traces. However, an easier way is to note that this is a crossed version of Bhabha

scattering, which we studied earlier. Making a table of the momenta:

Bhabha Møller

e− ↔ p′a e− ↔ pa

e+ ↔ p′b e− ↔ pb

e− ↔ k′
1 e− ↔ k1

e+ ↔ k′
2 e− ↔ k2,

we see that crossing symmetry allows us to compute the Møller scattering by identifying the (initial

state positron, final state positron) in Bhabha scattering with the (final state electron, initial state

electron) in Møller scattering, so that:

p′a = pa p′b = −k2 k′
1 = k1 k′

2 = −pb. (7.8.2)

So, the Møller scattering reduced matrix element is obtained by putting

s′ = (p′a + p′b)
2 = (pa − k2)

2 = u (7.8.3)

t′ = (p′a − k′
1)

2 = (pa − k1)
2 = t (7.8.4)

u′ = (p′a − k′
2)

2 = (pa + pb)
2 = s (7.8.5)
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into the corresponding result for Bhabha scattering. Using the results of eq. (7.5.33)-(7.5.35), we

therefore get:

1

4

∑

spins

|Me−e−→e−e− |2 = 2e2

(
s2 + t2

u2
+

s2 + u2

t2
+

2s2

ut

)

. (7.8.6)

Again, if we keep only the t-channel part (that is, the part with t2 in the denominator), we recover the

result for e−µ± → e−µ± in the previous section.

Applying eq. (6.2.50), we find the differential cross-section:

dσe−e−→e−e−

d(cos θ)
=

1

32πs

⎛

⎝1

4

∑

spins

|Me−e−→e−e− |2
⎞

⎠ (7.8.7)

=
πα2

s

(
s2 + t2

u2
+

s2 + u2

t2
+

2s2

ut

)

(7.8.8)

=
2πα2

s

(
3 + cos2 θ

1− cos2 θ

)2

. (7.8.9)

Just as in the cases in the previous sections, t = −s(1 − cos θ)/2 and u = −2(1 + cos θ)/2 where θ is

the angle between the initial-state and final-state electrons. However, in this case there is a special

feature, because the two electrons in the final state are indistinguishable particles. This means that

the final state with an electron coming out at angles (θ,φ) is actually the same quantum state as the

one with an electron coming out at angles (π − θ, −φ). (As a check, note that eq. (7.8.9) is invariant

under cos θ → − cos θ. We have already integrated over the angle φ.) Therefore, to avoid overcounting

we must only integrate over half the range of θ, or equivalently divide the total cross-section by 2. So,

we have a tricky and crucial factor of 1/2 in the total cross-section:

σe−e−→e−e− =
1

2

∫ cos θcut

− cos θcut

dσe−e−→e−e−

d(cos θ)
d(cos θ). (7.8.10)

To obtain a finite value for the total cross-section, we had to also impose a cut on the minimum

scattering angle θcut that we require in order to say that a scattering event should be counted.

7.9 Gauge invariance in Feynman diagrams

Let us now turn to the issue of gauge invariance as it is manifested in QED Feynman diagrams. Recall

that when we found the Feynman propagator for a photon, it contained a term that depended on

an arbitrary parameter ξ. We have been working with ξ = 1 (Feynman gauge). Consider what the

matrix element for the process e−e+ → µ−µ+ would be if instead we let ξ remain unfixed. Instead of

eq. (7.2.2), we would have

M = (vbγ
µua)(u1γ

νv2)
ie2

(pa + pb)2

[
−gµν + (1− ξ)(pa + pb)µ(pa + pb)ν

(pa + pb)2

]
. (7.9.1)

If the answer is to be independent of ξ, then it must be true that the new term proportional to (1− ξ)
gives no contribution. This can be easily proved by observing that it contains the factor

(vbγ
µua)(pa + pb)µ = vb/pa

ua + vb/pb
ua = mvbua −mvbua = 0. (7.9.2)
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Here we have applied the Dirac equation, as embodied in eqs. (B.23) and (B.24), to write /pa
ua = mua

and vb/pb
= −m/pb

. For any photon propagator connected (at either end) to an external fermion line, the

proof is similar. And, in general, one can show that the 1−ξ term will always cancel when one includes

all Feynman diagrams contributing to a particular process. So we can choose the most convenient value

of ξ, which is usually ξ = 1.

Another aspect of gauge invariance involves a feature that we have not explored in an example so

far: external state photons. Recall that the Feynman rules associate factors of ϵµ(p,λ) and ϵ∗µ(p,λ)

to initial or final state photons, respectively. Now, making a gauge transformation on the photon field

results in:

Aµ → Aµ + ∂µΛ (7.9.3)

where Λ is any function. In momentum space, the derivative ∂µ is proportional to pµ. So, in terms of

the polarization vector for the electromagnetic field, a gauge transformation is

ϵµ(p,λ)→ ϵµ(p,λ) + apµ (7.9.4)

where a is any quantity. The polarization vector and momentum for a physical photon satisfy ϵ2 = −1

and ϵ · p = 0 and p2 = 0. As a consistency check, note that if these relations are satisfied, then they

will also be obeyed after the gauge transformation (7.9.4).

Gauge invariance implies that the reduced matrix element should also be unchanged after the

substitution in eq. (7.9.4). The reduced matrix element for a process with an external state photon

with momentum pµ and polarization label λ can always be written in the form:

M = Mµϵ
µ(p,λ), (7.9.5)

which defines Mµ. Since M must be invariant under a gauge transformation, it follows from eq. (7.9.4)

that

Mµpµ = 0. (7.9.6)

This relation is known as the Ward identity for QED. It says that if we replace the polarization vector

for any photon by the momentum of that photon, then the reduced matrix element should become 0.

This is a nice consistency check on calculations.

Another nice consequence of the Ward identity is that it provides for a simplified way to sum or

average over unmeasured photon polarization states. Consider a photon with momentum taken to

be along the positive z axis, with pµ = (P, 0, 0, P ). Summing over the two polarization vectors in

eqs. (7.1.26)-(7.1.27), we have:

2∑

λ=1

|M|2 =
2∑

λ=1

MµM∗
νϵ

µ(p,λ)ϵ∗ν(p,λ) = |M1|2 + |M2|2, (7.9.7)
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where Mµ = (M0,M1,M2,M3). The Ward identity implies that pµMµ = PM0 + PM3 = 0, so

|M0|2 = |M3|2. Therefore, we can write
∑2

λ=1 |M|2 = −|M0|2 + |M1|2 + |M2|2 + |M3|2, or

2∑

λ=1

|M|2 = −gµνMµM∗
ν . (7.9.8)

The last equation is written in a Lorentz invariant form, so it is true for any photon momentum

direction, not just momenta oriented along the z direction. Gauge invariance, as expressed by the

Ward identity, therefore implies that we can always sum over a photon’s polarization states by the

rule:
2∑

λ=1

ϵµ(p,λ) ϵ∗ν(p,λ) = −gµν + (irrelevant)µν , (7.9.9)

as long as we are taking the sum of the complex square of a reduced matrix element. Although the

(irrelevant)µν part is non-zero, it must vanish when contracted with MµM∗
ν , according to eq. (7.9.8).

7.10 Compton scattering (γe− → γe−)

As our first example of a process with external-state photons, consider Compton scattering:

γe− → γe−. (7.10.1)

First let us assign the following labels to the external states:

initial γ ϵµ(pa,λa)
initial e− u(pb, sb)
final γ ϵν∗(k1,λ1)
final e− u(k2, s2).

There are two Feynman diagrams for this process:

and

which are s-channel and u-channel, respectively. Applying the QED Feynman rules, we obtain:

Ms = u2(ieγ
ν)

[
i(/pa

+ /pb
+ m)

(pa + pb)2 −m2

]

(ieγµ)ub ϵ
∗
1νϵaµ (7.10.2)

= −i
e2

s−m2

[
u2γ

ν(/pa
+ /pb

+ m)γµub

]
ϵ∗1νϵaµ (7.10.3)

and

Mu = u2(ieγ
µ)

[
i(/pb
− /k1 + m)

(pb − k1)2 −m2

]

(ieγν)ub ϵ
∗
1νϵaµ (7.10.4)

= −i
e2

u−m2

[
u2γ

µ(/pb
− /k1 + m)γνub

]
ϵ∗1νϵaµ. (7.10.5)
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Before squaring the total reduced matrix element, it is useful to simplify. So we note that:

(/pb
+ m)γµub = {/pb

, γµ}ub − γµ(/pb
−m)ub (7.10.6)

= pbσ{γσ , γµ}ub + 0 (7.10.7)

= 2pbσgσµub, (7.10.8)

= 2pµ
b ub, (7.10.9)

where we have used eq. (B.23). So the reduced matrix element is:

M = −ie2ϵ∗1νϵaµ u2

[
1

s−m2

(
γν

/pa
γµ + 2pµ

b γ
ν
)

+
1

u−m2
(−γµ/k1γ

ν + 2pν
bγ

µ)
]
ub. (7.10.10)

Taking the complex conjugate of eq. (7.10.10) gives:

M∗ = ie2ϵ1σϵ
∗
aρ ub

[
1

s−m2
(γρ

/pa
γσ + 2pρ

bγ
σ) +

1

u−m2
(−γσ/k1γ

ρ + 2pσ
b γ

ρ)
]
u2. (7.10.11)

Now we multiply together eqs. (7.10.10) and (7.10.11), and average over the initial photon polarization

λa and sum over the final photon polarization λ1, using

1

2

2∑

λa=1

ϵaµϵ
∗
aρ = −1

2
gµρ + irrelevant, (7.10.12)

2∑

λ1=1

ϵ∗1νϵ1σ = −gνσ + irrelevant, (7.10.13)

to obtain:

1

2

∑

λa,λ1

|M|2 =
e4

2

{
u2

[
1

s−m2
(γν

/pa
γµ + 2pµ

b γ
ν) +

1

u−m2
(−γµ/k1γ

ν + 2pν
bγ

µ)
]
ub

}

{
ub

[
1

s−m2
(γµ/pa

γν + 2pbµγν) +
1

u−m2
(−γν/k1γµ + 2pbνγµ)

]
u2

}
. (7.10.14)

Next we can average over sb, and sum over s2, using the usual tricks:

1

2

∑

sb

ubub =
1

2
(/pb

+ m), (7.10.15)

∑

s2

u2 . . . u2 = Tr[. . . (/k2 + m)]. (7.10.16)

The result is a single spinor trace:

1

4

∑

spins

|M|2 =
e4

4
Tr
[{

1

s−m2
(γν

/pa
γµ + 2pµ

b γ
ν) +

1

u−m2
(−γµ/k1γ

ν + 2pν
bγ

µ)
}

(/pb
+ m)

{
1

s−m2
(γµ/pa

γν + 2pbµγν) +
1

u−m2
(−γν/k1γµ + 2pbνγµ)

}
(/k2 + m)

]
. (7.10.17)

Doing this trace requires a little patience and organization. The end result can be written compactly

in terms of

pa · pb =
s−m2

2
, (7.10.18)

pb · k1 =
m2 − u

2
. (7.10.19)
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After some calculation, one finds:

1

4

∑

spins

|M|2 = 2e4

[
pa · pb

pb · k1
+

pb · k1

pa · pb
+ 2m2

(
1

pa · pb
− 1

pb · k1

)
+ m4

(
1

pa · pb
− 1

pb · k1

)2
]

. (7.10.20)

Equation (7.10.20) is a Lorentz scalar. We can now find the differential cross-section after choosing

a reference frame. We will do this first in the center-of-momentum frame, and then redo it in the “lab”

frame in which the initial electron is at rest.

In the center-of-momentum frame, the kinematics is just like in the case eµ → eµ studied in a

homework problem. Call the magnitude of the 3-momentum of the photon in the initial state P .

Then using four-momentum conservation and the on-shell conditions p2
a = k2

1 = 0 and p2
b = k2

2 = m2,

and taking the initial state photon momentum to be in the +z direction and the final state photon

momentum to make an angle θ with the z-axis, we have:

pµ
a = (P, 0, 0, P ) (7.10.21)

pµ
b = (

√
P 2 + m2, 0, 0, −P ) (7.10.22)

kµ
1 = (P, 0, P sin θ, P cos θ) (7.10.23)

kµ
2 = (

√
P 2 + m2, 0, −P sin θ, −P cos θ). (7.10.24)

a b

2

1

θ

The initial and final state photons have the same energy, as do the initial and final state electrons, so

define:

Eγ = P, (7.10.25)

Ee =
√

P 2 + m2. (7.10.26)

Then we have:

s = (Ee + Eγ)2, (7.10.27)

pa · pb = Eγ(Ee + Eγ), (7.10.28)

pb · k1 = Eγ(Ee + Eγ cos θ), (7.10.29)

|⃗k1|
|p⃗a|

= 1. (7.10.30)

So, applying eq. (6.2.49) to eq. (7.10.20), we obtain:

dσ

d(cos θ)
=
πα2

s

[
Ee + Eγ

Ee + Eγ cos θ
+

Ee + Eγ cos θ

Ee + Eγ
+ 2m2

(
cos θ − 1

(Ee + Eγ)(Ee + Eγ cos θ)

)
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+m4

(
cos θ − 1

(Ee + Eγ)(Ee + Eγ cos θ)

)2
⎤

⎦ . (7.10.31)

In a typical Compton scattering situation, the energies in the center-of-momentum frame are much

larger than the electron’s mass. So, consider the high-energy limit Eγ ≫ m. Naively, we can set

Ee = Eγ and m = 0 in that limit. However, this requires some care for cos θ ≈ −1, since then

the denominator factor Ee + Eγ cos θ can become large. This is most important for the first term in

eq. (7.10.31). In fact, this term gives the dominant contribution to the total cross-section, coming from

the cos θ ≈ −1 (back-scattering) region. Integrating with respect to cos θ, we find:

∫ 1

−1

Ee + Eγ

Ee + Eγ cos θ
d(cos θ) =

Ee + Eγ

Eγ
ln

(
Ee + Eγ

Ee −Eγ

)

. (7.10.32)

Now, expanding in the small mass of the electron,

Ee − Eγ = Eγ

√
1 + m2/E2

γ − Eγ = Eγ

(

1 +
m2

2E2
γ

+ . . .− 1

)

=
m2

2Eγ
+ O(m4), (7.10.33)

Ee + Eγ = 2Eγ + O(m2). (7.10.34)

Therefore,

∫ 1

−1

Ee + Eγ

Ee + Eγ cos θ
d(cos θ) = 2 ln(4E2

γ/m2) + O(m2) = 2 ln(s/m2) + O(m2), (7.10.35)

with the dominant contribution coming from cos θ near −1, where the denominator of the integrand

becomes small. Integrating the second term in eq. (7.10.31), one finds:

∫ 1

−1

Ee + Eγ cos θ

Ee + Eγ
d(cos θ) =

2Ee

Ee + Eγ
= 1 + O(m2). (7.10.36)

The remaining two terms vanish as m2/s→ 0. So, for s≫ m2 we have:

σ =
∫ 1

−1

dσ

d(cos θ)
d(cos θ) =

πα2

s

[
2 ln(s/m2) + 1

]
(7.10.37)

plus terms that vanish like (m2/s2)ln(s/m2) as m2/s → 0. The cross-section falls at high energy

like 1/s, but with a logarithmic enhancement coming from back-scattered photons with angles θ ≈ π.

The origin of this enhancement can be traced to the u-channel propagator, which becomes large when

u−m2 = 2pb · k1 = 2Eγ(Ee + Eγ cos θ) becomes small. This corresponds to the virtual electron in the

u-channel Feynman diagram going nearly on-shell. (Notice that s−m2 can never become small when

s≫ m2.)

Just for fun, let us redo the analysis of Compton scattering, starting from eq. (7.10.20), but now

working in the lab frame in which the initial state electron is at rest. Let us call the energy of the

initial state photon ω and that of the final state photon ω′. (Recall that h̄ = 1 in our units, so the

energy of a photon is equal to its angular frequency.)
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a
b

2

1

θ

Then, in terms of the lab photon scattering angle θ, the 4-momenta are:

pa = (ω, 0, 0, ω) (7.10.38)

pb = (m, 0, 0, 0) (7.10.39)

k1 = (ω′, 0, ω′ sin θ, ω′ cos θ) (7.10.40)

k2 = (ω + m− ω′, 0, −ω′ sin θ, ω − ω′ cos θ). (7.10.41)

Here we have used four-momentum conservation and the on-shell conditions p2
a = k2

1 = 0 and p2
b = m2.

Applying the last on-shell condition k2
2 = m2 now leads to:

2m(ω − ω′) + 2ωω′(cos θ − 1) = 0. (7.10.42)

This can be used to solve for ω′ in terms of cos θ, or vice versa:

ω′ =
ω

1 + ω
m(1− cos θ)

; (7.10.43)

cos θ = 1− m(ω − ω′)

ωω′ . (7.10.44)

In terms of lab-frame variables, one has:

pa · pb = ωm; (7.10.45)

pb · k1 = ω′m, (7.10.46)

so that, from eq. (7.10.20)

1

4

∑

spins

|M|2 = 2e4

[
ω

ω′ +
ω′

ω
+ 2m

(
1

ω
− 1

ω′

)
+ m2

(
1

ω
− 1

ω′

)2
]

. (7.10.47)

This can be simplified slightly by using

m
(

1

ω
− 1

ω′

)
= cos θ − 1, (7.10.48)

which follows from eq. (7.10.42), so that

1

4

∑

spins

|M|2 = 2e4
[
ω

ω′ +
ω′

ω
− sin2 θ

]
. (7.10.49)
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Now to find the differential cross-section, we must apply eq. (6.2.33):

dσ =
1

4EaEb |⃗va − v⃗b|

(
1

4
|M|2

)
dΦ2 (7.10.50)

where dΦ2 is the two-body Lorentz-invariant phase space, as defined in eq. (6.2.34), for the final state

particles in the lab frame. Evaluating the prefactors for the case at hand:

Ea = ω, (7.10.51)

Eb = m, (7.10.52)

|⃗va − v⃗b| = 1− 0 = 1. (7.10.53)

(Recall that the speed of the photon is c = 1.) The two-body phase space in the lab frame is:

dΦ2 = (2π)4 δ(4)(k1 + k2 − pa − pb)
d3k⃗1

(2π)32E1

d3k⃗2

(2π)32E2
(7.10.54)

= δ(3) (⃗k1 + k⃗2 − ωẑ) δ(ω′ + E2 − ω −m)
d3k⃗1

16π2ω′E2
d3k⃗2, (7.10.55)

where ω′ is now defined to be equal to E1 = |⃗k1| and E2 is defined to be
√
|⃗k2|2 + m2. Performing the

k⃗2 integral using the 3-momentum delta function just sets k⃗2 = ωẑ − k⃗1, resulting in:

dΦ2 = δ(ω′ + E2 − ω −m)
d3k⃗1

16π2ω′E2
, (7.10.56)

where now

E2 =
√
ω′2 − 2ωω′ cos θ + ω2 + m2. (7.10.57)

The phase space for the final state photon can be simplified by writing it in terms of angular coordinates

and doing the integral
∫

dφ = 2π:

d3k⃗1 = dφ d(cos θ) ω′2 dω′ = 2π d(cos θ) ω′2 dω′. (7.10.58)

Therefore,

dΦ2 = δ(ω′ + E2 − ω −m)
d(cos θ)ω′dω′

8πE2
. (7.10.59)

In order to do the ω′ integral, it is simplest, as usual, to make a change of integration variables to the

argument of the delta function. So, defining

K = ω′ + E2 − ω −m, (7.10.60)

we have

dK

dω′ = 1 +
ω′ − ω cos θ

E2
. (7.10.61)
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Therefore,

ω′dω′

E2
=

ω′dK

E2 + ω′ − ω cos θ
. (7.10.62)

Performing the dK integration sets K = 0, so E2 = ω + m − ω′. Using eq. (7.10.62) in eq.(7.10.59)

gives

dΦ2 =
ω′

m + ω(1− cos θ)

d(cos θ)

8π
=

ω′2

8πmω
d(cos θ), (7.10.63)

where eq. (7.10.43) has been used to simplify the denominator. Finally using this in eq. (7.10.50) yields:

dσ =

⎛

⎝1

4

∑

spins

|M|2
⎞

⎠ ω′2

32πmω2
d(cos θ), (7.10.64)

so that, putting in eq. (7.10.49),

dσ

d(cos θ)
=
πα2

m2

(
ω′

ω

)2 [ω′

ω
+
ω

ω′ − sin2 θ
]
. (7.10.65)

This result is the Klein-Nishina formula.

As in the center-of-momentum frame, the largest differential cross-section is found for back-scattered

photons with cos θ = −1, which corresponds to the smallest possible final-state photon energy ω′.

Notice that, according to eq. (7.10.43), when ω ≫ m, one gets very low energies ω′ when the photon

is back-scattered. One can now integrate the lab-frame differential cross-section
∫ 1
−1 d(cos θ) to get the

total cross-section, using the dependence of ω′ on cos θ as given in eq. (7.10.43). The result is:

σ = πα2
[(

1

ωm
− 2

ω2
− 2m

ω3

)
ln
(

1 +
2ω

m

)
+

4

ω2
+

2(m + ω)

m(m + 2ω)2

]
. (7.10.66)

In the high-energy (small m) limit, this becomes:

σ = πα2
[

1

ωm
ln
(

2ω

m

)
+

1

2ωm
+ . . .

]
. (7.10.67)

We can re-express this in terms of the Mandelstam variable s = (ω + m)2 − ω2 = 2ωm + m2 ≈ 2ωm,

σ =
πα2

s

[
2ln(s/m2) + 1 + . . .

]
. (7.10.68)

Equation (7.10.68) is the same result that we found in the center-of-momentum frame, eq. (7.10.37).

This is an example of a general fact: the total cross-section does not depend on the choice of reference

frame as long as one boosts along a direction parallel to the collision axis. To see why, one need only

look at the definition of the total cross-section given in eq. (6.2.2). The numbers of particles NS , Na,

and Nb can be simply counted, and so certainly do not depend on any choice of inertial reference frame,

while the area A is invariant under Lorentz boosts along the collision axis.

The low-energy Thomson scattering limit is also interesting. In the lab frame, ω ≪ m implies

ω′/ω = 1, so that

dσ

d(cos θ)
=
πα2

m2
(1 + cos2 θ), (7.10.69)
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which is independent of energy. The total cross-section in this limit is then

σ =
8πα2

3m2
. (7.10.70)

Unlike the case of high-energy Compton scattering, Thomson scattering is symmetric under θ → π− θ,
with a factor of 2 enhancement in the forward (θ = 0) and backward (θ = π) directions compared to

right-angle (θ = π/2) scattering.

7.11 e+e− → γγ

As our final example of a QED process let us consider e+e− → γγ in the high-energy limit. We

could always compute the reduced matrix element starting from the Feynman rules. However, since

we have already done Compton scattering, it is easier to use crossing. Labeling the physical momenta

for Compton scattering now with primes, we can make the following comparison table:

Compton e+e− → γγ

γ ↔ p′a e+ ↔ pa

e− ↔ p′b e− ↔ pb

γ ↔ k′
1 γ ↔ k1

e− ↔ k′
2 γ ↔ k2.

For convenience, we have chosen e+ to be labeled by “a”, so that the initial-state e− can have the

same label “b” in both processes. Then according to the Crossing Symmetry Theorem, we can obtain
∑

spins |Me+e−→γγ |2 by making the replacements

p′a = −k2; p′b = pb; k′
1 = k1; k′

2 = −pa (7.11.1)

in the Compton scattering result (for small m):

∑

spins

|Mγe−→γe− |2 = 8e4

(
p′a · p′b
p′b · k′

1
+

p′b · k′
1

p′a · p′b

)

(7.11.2)

obtained from eq. (7.10.20). Because the crossing involves one fermion (a final state electron changes

into an initial state positron), there is also a factor of (−1)1 = −1, according to eq. (7.6.7). So, the

result is:

∑

spins

|Me+e−→γγ |2 = (−1)8e4
(−k2 · pb

pb · k1
+

pb · k1

−k2 · pb

)
(7.11.3)

= 8e4
(

k2 · pb

pb · k1
+

pb · k1

k2 · pb

)
. (7.11.4)

The situation here is 2→ 2 massless particle scattering, so we can steal the kinematics information

directly from eqs. (7.5.28)-(7.5.32). The relevant facts for the present case are:

pb · k1 = −u

2
=

s

4
(1 + cos θ), (7.11.5)

pb · k2 = − t

2
=

s

4
(1− cos θ). (7.11.6)
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Therefore,

1

4

∑

spins

|Me+e−→γγ |2 = 2e4
(

t

u
+

u

t

)
= 4e4

(
1 + cos2 θ

sin2 θ

)

. (7.11.7)

It is a useful check, and a vindication of the (−1)F factor in the Crossing Symmetry Theorem, that

this is positive! Now plugging this into the formula eq. (6.2.50) for the differential cross-section, we

get:

dσ

d cos(θ)
=

2πα2

s

(
1 + cos2 θ

sin2 θ

)

. (7.11.8)

This cross-section is symmetric as θ → π−θ. That was inevitable, since the two final state photons are

identical; the final state in which a photon is observed coming out at a (θ,φ) is actually the same as a

state in which a photon is observed at an angle (π − θ,−φ). When we find the total cross-section, we

should therefore divide by 2 (or just integrate over half of the range for cos θ) to avoid overcounting.

This is the same overcounting issue for identical final state particles that arose for Møller scattering at

the end of section 7.8.

The integrand in eq. (7.11.8) diverges for sin θ = 0. This is because we have set m = 0 in the

kinematics, which is not valid for scattering very close to the collision axis. If you put back non-zero

m, you will find that instead of diverging, the total cross-section features a logarithmic enhancement

ln(s/m2) coming from small sin θ. In a real e−e+ → γγ experiment, however, photons very close to

the electron and positron beams will not be seen by any detector. The observable cross-section in one

of these colliding beam experiments is something more like

σcut =
1

2

∫ cos θcut

− cos θcut

dσ

d(cos θ)
d(cos θ) (7.11.9)

=
2πα2

s

[
ln
(

1 + cos θcut

1− cos θcut

)
− cos θcut

]
. (7.11.10)

(You can easily check that this is a positive and increasing function of cos θcut.) On the other hand,

if you are interested in the total cross-section for electron-positron annihilation with no cuts applied

on the angle, then you must take into account the non-zero electron mass. Redoing everything with

m≪
√

s but non-zero, you can show:

σ =
2πα2

s

[
ln
(

s

2m2

)
− 1

]
. (7.11.11)

The logarithmic enhancement at large s in this formula comes entirely from the sin θ ≈ 0 region. Note

that this formula is just what you would have gotten by plugging in

cos θcut = 1− 4m2/s (7.11.12)

into eq. (7.11.10), for small m. In this sense, the finite mass of the electron “cuts off” the would-be

logarithmic divergence of the cross-section for small sin θ.
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8 Decay processes

8.1 Decay rates and partial widths

So far, we have studied only 2 → 2 scattering processes. This is because in QED as a stand-alone

theory, the fundamental particles are stable. Photons cannot decay into anything else (in any theory),

because they are massless. The electron is the lightest particle that carries charge, so it cannot decay

because of charge conservation. The photon interaction vertex with a fermion line does not change the

type of fermion. So if there is only a muon in the initial state, you can easily convince yourself that

there must be at least one muon in the final state. Going to the rest frame of the initial muon, the

total energy of the process is simply mµ, but the energy of the final state would have to be larger than

this, so if only QED interactions are allowed, the muon must also be stable. The weak interactions get

around this by allowing interaction vertices that change the fermion type. Moreover, bound states can

decay even in QED.

For any type of unstable particle, the probability that a decay will occur in a very short interval

of time ∆t should be proportional to ∆t. So we can define the decay rate Γ [also known as the decay

width; it is equal to the resonance width in eq. (1.1)] as the constant of proportionality:

(Probability of decay in time ∆t) = Γ∆t. (8.1.1)

Suppose we observe the decays of a large sample of particles of this type, all at rest. If the number of

particle at time t is denoted N(t), then the number of particles remaining a short time later is therefore:

N(t + ∆t) = (1− Γ∆t)N(t). (8.1.2)

It follows that

dN

dt
= lim

∆t→0

N(t + ∆t)−N(t)

∆t
= −Γ, (8.1.3)

so that

N(t) = e−ΓtN(0). (8.1.4)

When one has computed or measured Γ for some particle, it is traditional and sensible to quote the

result as measured in the rest frame of the particle. If the particle is moving with velocity β, then

because of relativistic time dilation, the survival probability for a particular particle as a function of

the laboratory time t is:

(Probability of particle survival) = e−Γt
√

1−β2
. (8.1.5)

The quantity

τ = 1/Γ (8.1.6)
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is also known as the mean lifetime of the particle at rest. [Putting in the units recovers eq. (1.2); see

eq. (A.6).] There is often more than one final state available for a decaying particle. One can then

compute or measure the decay rates into particular final states. The rate Γ for a particular final state

or class of final states is called a partial width. The sum of all exclusive partial widths should add up

to the total decay rate, of course.

Consider a process in which a particle at rest with 4-momentum

pµ = (M, 0, 0, 0) (8.1.7)

decays to several particles with 4-momenta ki and masses mi. Given the reduced matrix element M for

this process, one can show by arguments similar to those in 6.2 for cross-sections that the differential

decay rate is:

dΓ =
1

2M
|M|2 dΦn, (8.1.8)

where

dΦn = (2π)4δ(4)(p−
∑

i

ki)
n∏

i=1

(
d3k⃗i

(2π)32Ei

)

(8.1.9)

is the n-body Lorentz-invariant phase space. [Compare this to eq. (6.2.34); you will see that the only

difference is that the pa + pb in the 4-momentum delta function for a scattering process has been

replaced by p for a decay process.] To find the contribution to the decay rate for final-state particles

with 3-momenta restricted to be in some ranges, we should integrate dΓ over those ranges. To find

the total decay rate Γ, we should integrate the 3-momenta over all available k⃗i. The energies in this

formula are defined by

Ei =
√

k⃗2
i + m2

i . (8.1.10)

8.2 Two-body decays

Most of the decay processes that one encounters in high-energy physics are two-particle or three-particle

final states. As the number of particles in the final state increases, the decay rate for that final state

tends to decrease, so a particle will typically decay into few-particle states if it can. If a two-particle

final state is available, it is usually a very good bet that three-particle final states will lose.

Let us simplify the formula eq. (8.1.8) for the case of two-particle final states with arbitrary masses.

The evaluation of the two-particle final-state phase space is exactly the same as in eqs. (6.2.37)-(6.2.46),

with the simple replacement ECM →M . Therefore,

dΦ2 =
K

16π2M
dφ1 d(cos θ1), (8.2.1)

and

dΓ =
K

32π2M2
|M|2 dφ1 d(cos θ1). (8.2.2)
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It remains to solve for K. Energy conservation requires that

E1 + E2 =
√

K2 + m2
1 +

√
K2 + m2

2 = M. (8.2.3)

One can solve this by writing it as

E1 −M =
√

E2
1 −m2

1 + m2
2 (8.2.4)

and squaring both sides. The solution is:

E1 =
M2 + m2

1 −m2
2

2M
, (8.2.5)

E2 =
M2 + m2

2 −m2
1

2M
, (8.2.6)

K =

√
λ(M2,m2

1,m
2
2)

2M
, (8.2.7)

where

λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2xz − 2yz. (8.2.8)

is known as the triangle function.† It is useful to tabulate results for some common special cases:

• If the final-state masses are equal, m1 = m2 = m, then the final state particles share the energy

equally in the rest frame:

E1 = E2 = M/2, (8.2.9)

K =
M

2

√
1− 4m2/M2, (8.2.10)

and

dΓ =
|M|2

64π2M

√
1− 4m2/M2 dφ1 d(cos θ1). (8.2.11)

• If one of the final-state particle is massless, m2 = 0, then:

E1 =
M2 + m2

1

2M
, (8.2.12)

E2 = K =
M2 −m2

1

2M
. (8.2.13)

This illustrates the general feature that since the final state particles have equal 3-momentum

magnitudes, the heavier particle gets more energy. In this case,

dΓ =
|M|2

64π2M

(
1−m2

1/M
2
)

dφ1 d(cos θ1). (8.2.14)

†It is so-named because, if each of
√

x,
√

y,
√

z is less than the sum of the other two, then λ(x, y, z) is −16 times the
square of the area of a triangle with sides

√
x,

√
y,
√

z. However, in the present context M, m1, m2 never form a triangle;
if M < m1 + m2, then the decay is forbidden.
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• If the decaying particle has spin 0, or if its spin is not measured, then there can be no special

direction in the decay, so the final state particles must be distributed isotropically in the center-

of-momentum frame. One then obtains the total decay rate from

dφ1 d(cos θ1)→ 4π, (8.2.15)

provided that the two final state particles are distinguishable. There is an extra factor of 1/2

if they are identical, to avoid counting each final state twice [see the discussions at the end of

sections 7.8 and 7.11].

8.3 Scalar decays to fermion-antifermion pairs; Higgs decay

Let us now consider a simple and very important decay process, namely a scalar particle φ decaying to

a fermion-antifermion pair. As a model, let us consider the Lagrangian already mentioned in section

6.4:

Lint = −yφΨΨ. (8.3.1)

This type of interaction is called a Yukawa interaction, and y is a Yukawa coupling. The corresponding

Feynman rule was argued to be equal to −iy times an identity matrix in Dirac spinor space, as shown

in the picture immediately after eq. (6.4.7). Consider an initial state containing a single φ particle of

mass M and 4-momentum p, and a final state containing a fermion and antifermion each with mass m

and with 4-momenta and spins k1, s1 and k2, s2 respectively. Then the matrix element will be of the

form

OUT⟨k1, s1; k2, s2|p⟩OUT = −iM(2π)4δ(4)(k1 + k2 − p). (8.3.2)

The Feynman rules for fermion external states don’t depend on the choice of interaction vertex, so they

are the same as for QED. Therefore we can draw the Feynman diagram:

2

1

and immediately write down the reduced matrix element for the decay:

M = −iy u(k1, s1) v(k2, s2). (8.3.3)

To turn M into a physically observable decay rate, we need to compute the squared reduced matrix

element summed over final state spins. From eq. (8.3.3),

M∗ = iy v2u1, (8.3.4)

131



so

|M|2 = y2(u1v2)(v2u1). (8.3.5)

Summing over s2, we have:

∑

s2

|M|2 = y2u1(/k2 −m)u1 (8.3.6)

= y2Tr[(/k2 −m)u1u1]. (8.3.7)

Now summing over s1 gives:

∑

s1,s2

|M|2 = y2Tr[(/k2 −m)(/k1 + m)] (8.3.8)

= y2
(
Tr[/k2/k1]−m2Tr[1]

)
(8.3.9)

= 4y2(k1 · k2 −m2), (8.3.10)

where we have used the fact that the trace of an odd number of gamma matrices vanishes, and eqs. (B.7)

and (B.8). The fermion and antifermion have the same mass m, so

M2 = (k1 + k2)
2 = k2

1 + k2
2 + 2k1 · k2 = m2 + m2 + 2k1 · k2 (8.3.11)

implies that

k1 · k2 −m2 =
M2

2
− 2m2. (8.3.12)

Therefore,

∑

spins

|M|2 = 2y2M2

(

1− 4m2

M2

)

, (8.3.13)

and, using eq. (8.2.11),

dΓ =
y2M

32π2

(

1− 4m2

M2

)3/2

dφ1 d(cos θ1). (8.3.14)

Doing the (trivial) angular integrals finally gives the total decay rate:

Γ =
y2M

8π

(

1− 4m2

M2

)3/2

. (8.3.15)

In the Standard Model, the Higgs boson h plays the role of φ, and couples to each fermion f with

a Lagrangian that is exactly of the form given above:

Lint = −
∑

f

yf hΨfΨf . (8.3.16)
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The Yukawa coupling for each fermion is approximately proportional to its mass:

yf ≈
mf

174 GeV
. (8.3.17)

However, the mf appearing in this formula is not quite equal to the mass, because of higher-order

corrections. For quarks, these corrections are quite large, and mf tends to come out considerably

smaller than the masses of the quarks quoted in Table 3.

At the Fermilab Tevatron Run II and the LHC, one of the major goals is to look for a Higgs boson

through its decay modes. Suppose for example that the mass of the Higgs is not too much larger than

the current experimental limit of about 114 GeV. Then, since the top quark has a mass of about 173

GeV, the decay h→ tt is clearly forbidden. The next-lightest fermions in the Standard Model are the

bottom quark, charm quark, and tau lepton, so we expect decays h→ bb and h→ τ−τ+ and h→ cc.

For quarks, the sum in eq. (8.3.16) includes a summation over 3 colors, leading to an extra factor of

nf = 3 in the decay rate. Since the kinematic factor (1 − 4m2
f/M2

h)3/2 is close to 1 for all allowed

fermion-antifermion final states, the decay rate to a particular fermion is approximately:

Γ(h→ ff) =
nfy2

fMh

16π
∝ nfm2

f . (8.3.18)

Estimates of the mf from present experimental data are:

mb ≈ 3.0 GeV → yb ≈ 0.017, (8.3.19)

mτ ≈ 1.77 GeV → yτ ≈ 0.0102, (8.3.20)

mc ≈ 0.7 GeV → yc ≈ 0.004, (8.3.21)

for a Higgs with mass of order Mh = 115 GeV. (Notice that even though the charm quark is heavier

than the tau lepton, it turns out that mτ > mc because of the large higher-order corrections for the

charm quark.) Therefore, the prediction is that bb final states win:

Γ(h→ bb) : Γ(h→ τ−τ+) : Γ(h→ cc) :: 3(mb)
2 : (mτ )

2 : 3(mc)
2 (8.3.22)

:: 1 : 0.12 : 0.05, (8.3.23)

and the partial width of the Higgs boson into bb can be estimated numerically as

Γ(h→ bb) = 2 MeV
(

Mh

115 GeV

)
. (8.3.24)

This is an extremely narrow width for such a heavy particle; the reason is the very small Yukawa

coupling yb ≈ 0.017.

One can define the branching ratio to be the partial decay rate into a particular final state, divided

by the total decay rate, so

BR(h→ bb) =
Γ(h→ bb)

Γtotal
. (8.3.25)
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Then, if no other decays contributed significantly, we would estimate

BR(h→ bb) ≈ 0.85, (8.3.26)

BR(h→ τ−τ+) ≈ 0.10, (8.3.27)

BR(h→ cc) ≈ 0.05. (8.3.28)

However, this is not accurate for two reasons. First, higher-order corrections are important, and

increase the partial widths into quarks by roughly 10%. Second, there are other final states that can

appear in h decays, notably gluon-gluon (gg) and γγ, which both occur due to Feynman diagrams with

loops, and W+W− and Z0Z0. Naively, the last two are not kinematically allowed unless Mh > 160.8

and 182.4 GeV respectively, but they can still contribute if one or both of the weak vector bosons

is off-shell (virtual). Normally, such decays would be negligible, but they are competitive since the

squared Yukawa coupling y2
b ≈ 0.0003 is so small. We will return to the subject of the Higgs boson

branching ratios in section 13.5.

Finally, consider the helicities for the process h → ff . If we demanded that the final states have

particular helicities, then we would have obtained for the matrix element, using PR, PL projection

matrices:

R-fermion, R-antifermion: M = −iy u2PLPLv1 = −iy u2PLv1 ̸= 0 (8.3.29)

L-fermion, L-antifermion: M = −iy u2PRPRv1 = −iy u2PRv1 ̸= 0 (8.3.30)

R-fermion, L-antifermion: M = −iy u2PLPRv1 = 0 (8.3.31)

L-fermion, R-antifermion: M = −iy u2PRPLv1 = 0 (8.3.32)

[Recall, from eqs. (7.4.8)-(7.4.11), that to get a L fermion or antifermion in the final state, one puts in

a PR next to the spinor, while to get a R fermion or antifermion in the final state, one puts in a PL.]

So, the rule here is that helicity is always violated by the scalar-fermion-antifermion vertex, since the

scalar must decay to a state with equal helicities.

One may understand this result from angular momentum conservation. The initial state had no

spin and no orbital angular momentum. In the final state, the spins of the outgoing particles must

therefore have opposite directions. Since they have momentum in opposite directions, this means they

must also have the same helicity. Drawing a short arrow to represent the spin, the allowed cases of RR

helicities and LL helicities look like:

R fermion R anti-fermionh

hL fermion L anti-fermion
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The helicities of tau leptons can be (statistically) measured from the angular distributions of their

decay products, so this effect may eventually be measured when a sample of h → τ−τ+ decay events

is obtained.

8.4 Three-body decays

Let us consider a generic three-body decay process in which a particle of mass M decays to three lighter

particles with masses m1, m2, and m3. We will work in the rest frame of the decaying particle, so

its four-vector is pµ = (M, 0, 0, 0), and the four-vectors of the remaining particles are k1, k2, and k3

respectively:

M

m1, k1

m3, k3
m2, k2

In general, the formula for a three-body differential decay rate is

dΓ =
1

2M
|M|2dΦ3, (8.4.1)

where

dΦ3 = (2π)4δ(4)(p − k1 − k2 − k3)
d3k⃗1

(2π)32E1

d3k⃗2

(2π)32E2

d3k⃗3

(2π)32E3
(8.4.2)

is the Lorentz-invariant phase space. Since there are 9 integrals to do, and 4 delta functions, the result

for dΓ is a differential with respect to 5 remaining variables. The best choice of 5 variables depends

on the problem at hand, so there are several ways to present the result. Two of the 5 variables can

be chosen to be the energies E1 and E2 of two of the final-state particles; then the energy of the

third particle E3 = M − E1 − E2 is also known from energy conservation. In the rest frame of the

decaying particle, the three final-state particle 3-momenta must lie in a plane, because of momentum

conservation. Specifying E1 and E2 also uniquely fixes the angles between the three particle momenta

within this decay plane. The remaining 3 variables just correspond to the orientation of the decay

plane with respect to some fixed coordinate axis. If we think of the three 3-momenta within the decay

plane as describing a rigid body, then the relative orientation can be described using three Euler angles.

These can be chosen to be the spherical coordinate angles φ1 and θ1 for particle 1, and an angle α2

that measures the rotation of the 3-momentum direction of particle 2 as measured about the axis of

the momentum vector of particle 1. Then one can show:

dΦ3 =
1

256π5
dE1 dE2 dφ1 d(cos θ1) dα2. (8.4.3)
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The choice of which particles to label as 1 and 2 is arbitrary, and should be made to maximize conve-

nience.

If the initial state particle spin is averaged over, or if it is spinless, then there is no special direction

to measure the orientation of the final state decay plane with respect to. In that case, for particular

E1 and E2, the reduced matrix element cannot depend on the angles φ1, θ1 or α2, and one can do the

integrals

∫ 2π

0
dφ1

∫ 1

−1
d(cos θ1)

∫ 2π

0
dα2 = (2π)(2)(2π) = 8π2. (8.4.4)

Then,

dΦ3 =
1

32π3
dE1dE2, (8.4.5)

and so, for spinless or spin-averaged initial states,

dΓ =
1

64π3M
|M|2 dE1 dE2. (8.4.6)

To do the remaining energy integrals, one must find the limits of integration. If one resolves to do the

E2 integral first, then by doing the kinematics one can show for any particular E1 that

Emax,min
2 =

1

2m2
23

[
(M − E1)(m

2
23 + m2

2 −m2
3) ±

√
(E2

1 −m2
1)λ(m2

23,m
2
2,m

2
3)
]
, (8.4.7)

where the triangle function λ(x, y, z) was defined by eq. (8.2.8), and

m2
23 = (k2 + k3)

2 = (p− k1)
2 = M2 − 2E1M + m2

1 (8.4.8)

is the invariant (mass)2 of the combination of particles 2 and 3. Then the limits of integration for the

final E1 integral are:

m1 < E1 <
M2 + m2

1 − (m2 + m3)2

2M
. (8.4.9)

A good strategy is usually to choose the label “1” for the particle whose energy we care the most about.

Then after doing the dE2 integral, we will be left with an expression for dΓ/dE1.

In the special case that all final state particles are massless (or small enough to neglect) m1 = m2 =

m3 = 0, then these limits of integration simplify to:

M

2
− E1 < E2 <

M

2
, (8.4.10)

0 < E1 <
M

2
. (8.4.11)
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9 Fermi theory of weak interactions

9.1 Weak nuclear decays

In nuclear physics, the weak interactions are responsible for decays of long-lived isotopes. A nucleus

with Z protons and A− Z neutrons, so A nucleons in all, is denoted by AZ. If kinematically allowed,

one can observe decays:

AZ → A(Z + 1) + e−νe. (9.1.1)

The existence of the antineutrino νe was inferred by Pauli as a “desperate remedy” to save the principle

of energy conservation. The simplest example of this is the decay of the neutron into a proton, electron,

and antineutrino:

n→ p+e−νe (9.1.2)

with a mean lifetime of†

τ = 885.7 ± 0.8 sec. (9.1.3)

Decays of heavier nuclei can be thought of as involving the subprocess:

“n”→ “p+”e−νe, (9.1.4)

where the quotes indicated that the neutron and proton are really not separate entities, but part of

the nuclear bound states. So for example, tritium decays according to

3H→ 3He + e−νe (τ = 5.6× 108 sec = 17.7 years), (9.1.5)

and carbon-14 decays according to

14C→ 14N + e−νe (τ = 1.8× 1011 sec = 8280 years). (9.1.6)

Nuclear physicists usually quote the half life t1/2 rather than the mean lifetime τ . They are related by

t1/2 = τ ln(2), (9.1.7)

so that t1/2 = 5740 years for Carbon-14, making it ideal for dating dead organisms. In the upper

atmosphere, cosmic rays produce energetic neutrons, which in turn constantly convert 14N nuclei into
14C. Carbon-dioxide-breathing organisms, or those that eat them, maintain an equilibrium with the

carbon content of the atmosphere, at a level of roughly 14C/12C≈ 10−12. However, complicating

matters is the fact that this ratio is not constant; it dropped in the early 20th century as more ordinary
12C entered the atmosphere because of the burning of fossil fuels containing the carbon of organisms

†The lifetime of the neutron is an infamous example of an experimental measurement that has shifted dramatically
over time. As recently as the late 1960’s, it was thought that τn = 1010 ± 30 seconds.
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that have been dead for a very long time. The relative abundance 14C/12C≈ 10−12 then doubled after

1954 because of nuclear weapons testing, reaching a peak in the mid 1960’s from which it has since

declined. In any case, dead organisms lose half of their 14C every 5740±30 years, and certainly do not

regain it by breathing or eating. So, by measuring the rate of e− beta rays consistent with 14C decay

produced by a sample, and determining the historic atmospheric 14C/12C ratio as a function of time

with control samples or by other means, one can date the death of a sample of organic matter.

One can also have decays that release a positron and neutrino:

AZ → A(Z − 1) + e+νe. (9.1.8)

These can be thought of as coming from the subprocess

“p+”→ “n”e+νe. (9.1.9)

In free space, the proton cannot decay, simply because mp < mn, but under the right circumstances it

is kinematically allowed when the proton and neutron are parts of nuclear bound states. An example

is

14O→ 14N + e+νe (τ = 71 sec). (9.1.10)

The long lifetimes of such decays are what originally gave rise to the name “weak” interactions.

Charged pions also decay through the weak interactions, with a mean lifetime of

τπ± = 2.2× 10−8 sec. (9.1.11)

This is till a very long lifetime by particle physics standards, and corresponds to a proper decay length

of cτ = 7.8 meters. The probability that a charged pion with velocity β will travel a distance L in

empty space before decaying is therefore

P = e−(L/7.8 m)
√

1−β2/β. (9.1.12)

This means that a relativistic charged pion will typically travel several meters before decaying, unless

it interacts (which it usually will in a collider detector). The main decay mode is

π− → µ−νµ (9.1.13)

with a branching ratio of 0.99988. (This includes submodes in which an additional photon is radiated

away.) The only other significant decay mode is

π− → e−νe. (9.1.14)

with a branching ratio 1.2 × 10−4. This presents a puzzle: since the electron is lighter, there is more

kinematic phase space available for the second decay, yet the first decay dominates by almost a factor

of 104. We will calculate the reason for this later, in section 9.6.
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9.2 Muon decay

The muon decays according to

µ− → e−νeνµ (τ = 2.2 × 10−6 sec). (9.2.1)

This corresponds to a decay width of

Γ = 3.0 × 10−19 GeV, (9.2.2)

implying a proper decay length of cτ = 659 meters. Muons do not undergo hadronic interactions like

pions do, so that relativistic muons will usually penetrate at least the inner layers of particle detectors

with a very high probability.

The Feynman diagram for muon decay can be drawn as:

µ−

e−

νe

νµ

This involves a 4-fermion interaction vertex.† Because of the correspondence between interactions and

terms in the Lagrangian, we therefore expect that the Lagrangian should contain terms schematically

of the form

Lint = (νµ . . . µ) (e . . . νe) or (νµ . . . νe) (e . . . µ), (9.2.3)

where the symbols µ, νµ, e, νe mean the Dirac spinor fields for the muon, muon neutrino, electron, and

electron neutrino, and the ellipses mean matrices in Dirac spinor space. To be more precise about the

interaction Lagrangian, one needs clues from experiment.

One clue is the fact that there are three quantum numbers, called lepton numbers, that are addi-

tively conserved to a high accuracy in most experiments. (The only confirmed exceptions are neutrino

oscillation experiments.) They are assigned as:

Le =

⎧
⎪⎨

⎪⎩

+1 for e−, νe

−1 for e+, νe

0 for all other particles
(9.2.4)

Lµ =

⎧
⎪⎨

⎪⎩

+1 for µ−, νµ

−1 for µ+, νµ

0 for all other particles
(9.2.5)

Lτ =

⎧
⎪⎨

⎪⎩

+1 for τ−, ντ

−1 for τ+, ντ

0 for all other particles
(9.2.6)

†We will later find out that this is not a true fundamental interaction of the theory, but rather an “effective” interaction
that is derived from the low-energy effects of the W− boson.

139



So, for example, in the nuclear decay examples above, one always has Le = 0 in the initial state, and

Le = 1 − 1 = 0 in the final state, with Lµ = Lτ = 0 trivially in each case. The muon decay mode

in eq. (9.2.1) has (Le, Lµ) = (0, 1) in both the initial and final states. If lepton numbers were not

conserved, then one might expect that decays like

µ− → e−γ (9.2.7)

would be allowed. However, this decay has never been observed, and the most recent limit from the

LAMPF experiment at Los Alamos National Lab is

BR(µ− → e−γ) < 1.2× 10−11. (9.2.8)

This is a remarkably strong constraint, since this decay only has to compete with the already weak

mode in eq. (9.2.1). It implies that

Γ(µ− → e−γ) < 3.6 × 10−30 GeV. (9.2.9)

The BaBar and Belle experiments have put similar (but not as stringent) bounds on tau lepton number

non-conservation:

BR(τ− → e−γ) < 3.3× 10−8 BaBar, (9.2.10)

BR(τ− → µ−γ) < 4.4× 10−8 BaBar, (9.2.11)

BR(τ− → e−π0) < 8.0× 10−8 Belle. (9.2.12)

Since 1998, experimental results from neutrinos produced in the Sun, the atmosphere, by acceler-

ators, and in reactors have given strong evidence for oscillations of neutrinos that are caused by them

having small non-zero masses that violate the individual lepton numbers. (It is still an open question

whether they also violate the total lepton number

L ≡ Le + Lµ + Lτ ; (9.2.13)

for more on this, see section 13.4.) However, these are very small effects for colliding beam experiments,

and can be ignored for almost all conceivable processes at Tevatron and LHC.

The (near) conservation of lepton numbers suggests that the interaction Lagrangian for the weak

interactions can always be written in terms of fermion bilinears involving one barred and one unbarred

Dirac spinor from each lepton family. So, we will write the weak interactions for leptons in terms of

building blocks with net Le = Lµ = Lτ = 0, for example, like the first term in eq. (9.2.3) but not the

second. More generally, we will want to use building blocks:

(ℓ . . . νℓ) or (νℓ . . . ℓ), (9.2.14)

where ℓ is any of e, µ, τ . Now, since each Dirac spinor has 4 components, a basis for fermion bilinears

involving any two fields Ψ1 and Ψ2 will have 4 × 4 = 16 elements. The can be classified by their

140



transformation properties under the proper Lorentz group and the parity transformation x⃗ → −x⃗, as

follows:

Term Number Parity (x⃗→ −x⃗) Type

Ψ1Ψ2 1 +1 Scalar = S

Ψ1γ5Ψ2 1 −1 Pseudo-scalar = P

Ψ1γµΨ2 4 (−1)µ Vector = V

Ψ1γµγ5Ψ2 4 −(−1)µ Axial-vector = A
i
2Ψ1 [γµ, γν ]Ψ2 6 (−1)µ(−1)ν Tensor = T.

The entry under Parity indicates the multiplicative factor under which each of these terms transforms

when x⃗→ −x⃗, with

(−1)µ =

{
+1 for µ = 0
−1 for µ = 1, 2, 3.

(9.2.15)

The weak interaction Lagrangian for leptons could be formed out of any product of such terms with

Ψ1,Ψ2 = ℓ, νℓ. Fermi originally proposed that the weak interaction fermion building blocks were of the

type V , so that muon decays would be described by

LV
int = −G(νµγ

ρµ)(eγρνe) + c.c. (9.2.16)

Here “c.c.” means complex conjugate; this is necessary since the Dirac spinor fields are complex. Some

other possibilities could have been that the building blocks were of type A:

LA
int = −G(νµγ

ργ5µ)(eγργ5νe) + c.c. (9.2.17)

or some combination of V and A, or some combination of S and P , or perhaps even T .

Fermi’s original proposal of V for the weak interactions turned out to be wrong. The most impor-

tant clue for determining the correct answer for the proper Lorentz and parity structure of the weak

interaction building blocks came from an experiment on polarized 60Co decay by Wu in 1957. The
60Co nucleus has spin J = 5, so that when cooled and placed in a magnetic field, the nuclear spins

align with B⃗. Wu then measured the angular dependence of the electron spin from the decay

60Co→ 60Ni + e−νe. (9.2.18)

The nucleus 60Ni has spin J = 4, so the net angular momentum carried away by the electron and

antineutrino is 1. The observation was that the electron is emitted preferentially in the direction

opposite to the original spin of the 60Co nucleus. This can be explained consistently with angular

momentum conservation if the electron produced in the decay is always polarized left-handed and the

antineutrino is always right-handed. Using short arrows to designate spin directions, the most favored

configuration is:
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J = 5

−→
60Co

Before

J = 4

−→
60Ni

After

−→−→

νee−

The importance of this experiment and others was that right-handed electrons and left-handed an-

tineutrinos do not seem to participate in the weak interactions. This means that when writing the

interaction Lagrangian for weak interactions, we can always put a PL to the left of the electron’s Dirac

field, and a PR to the right of a νe field. This helped establish that the correct form for the fermion

bilinear is V −A:

ePRγ
ρνe = eγρPLνe =

1

2
eγρ(1− γ5)νe. (9.2.19)

Since this is a complex quantity, and the Lagrangian density must be real, one must also have terms

involving the complex conjugate of eq. (9.2.19):

νePRγ
ρe = νeγ

ρPLe. (9.2.20)

The feature that was considered most surprising at the time was that right-handed Dirac fermion fields

PRe, PRνe, and left-handed Dirac barred fermion fields ePL, and νePL never appear in any part of the

weak interaction Lagrangian.

For muon decay, the relevant four-fermion interaction Lagrangian is:

Lint = −2
√

2GF (νµγ
ρPLµ)(eγρPLνe) + c.c. (9.2.21)

Here GF is a coupling constant with dimensions of [mass]−2, known as the Fermi constant. Its numerical

value is most precisely determined from muon decay. The factor of 2
√

2 is a historical convention. Using

the correspondence between terms in the Lagrangian and particle interactions, we therefore have two

Feynman rules:

µ, a e, c

νµ, b νe, d

←→ −i2
√

2GF (γρPL)ba (γρPL)cd
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µ, a e, c

νµ, b νe, d

←→ −i2
√

2GF (γρPL)ab (γρPL)dc

These are related by reversing of all arrows, corresponding to the complex conjugate in eq. (9.2.21). The

slightly separated dots in the Feynman rule picture are meant to indicate the Dirac spinor structure.

The Feynman rules for external state fermions and antifermions are exactly the same as in QED, with

neutrinos treated as fermions and antineutrinos as antifermions. This weak interaction Lagrangian for

muon decay violates parity maximally, since it treats left-handed fermions differently from right-handed

fermions. However, helicity is conserved by this interaction Lagrangian, just as in QED, because of the

presence of one gamma matrix in each fermion bilinear.

We can now derive the reduced matrix element for muon decay, and use it to compute the differential

decay rate of the muon. Comparing this to the experimentally measured result will allow us to find

the numerical value of GF , and determine the energy spectrum of the final state electron. At lowest

order, the only Feynman diagram for µ− → e−νeνµ is:

µ−

e−

νµ

νe

using the first of the two Feynman rules above. Let us label the momenta and spins of the particles as

follows:

Particle Momentum Spin Spinor
µ− pa sa u(pa, sa) = ua

e− k1 s1 u(k1, s1) = u1

νe k2 s2 v(k2, s2) = v2

νµ k3 s3 u(k3, s3) = u3

(9.2.22)

The reduced matrix element is obtained by starting at the end of each fermion line with a barred spinor

and following it back (moving opposite the arrow direction) to the beginning. In this case, that means

starting with the muon neutrino and electron barred spinors. The result is:

M = −i2
√

2GF (u3γ
ρPLua)(u1γρPLv2). (9.2.23)

This illustrates a general feature; in the weak interactions, there should be a PL next to each unbarred

spinor in a matrix element, or equivalently a PR next to each barred spinor. (The presence of the
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gamma matrix ensures the equivalence of these two statements, since PL ↔ PR when moved through

a gamma matrix.) Taking the complex conjugate, we have:

M∗ = i2
√

2GF (uaPRγ
σu3)(v2PRγσu1). (9.2.24)

Therefore,

|M|2 = 8G2
F (u3γ

ρPLua)(uaPRγ
σu3) (u1γρPLv2)(v2PRγσu1). (9.2.25)

In the following, we can neglect the mass of the electron me, since me/mµ < 0.005. Now we can average

over the initial-state spin sa and sum over the final-state spins s1, s2, s3 using the usual tricks:

1

2

∑

sa

uaua =
1

2
(/pa

+ mµ), (9.2.26)

∑

s1

u1u1 = /k1, (9.2.27)

∑

s2

v2v2 = /k2, (9.2.28)

∑

s3

u3u3 = /k3, (9.2.29)

to turn the result into a product of traces:

1

2

∑

spins

|M|2 = 4G2
F Tr[γρPL(/pa

+ mµ)PRγ
σ/k3]Tr[γρPL/k2PRγσ/k1] (9.2.30)

= 4G2
F Tr[γρ

/pa
PRγ

σ/k3]Tr[γρ/k2PRγσ/k1] (9.2.31)

Fortunately, we have already seen a product of traces just like this one, in eq. (7.4.45), so that by

substituting in the appropriate 4-momenta, we immediately get:

1

2

∑

spins

|M|2 = 64G2
F (pa · k2)(k1 · k3). (9.2.32)

Our next task is to turn this reduced matrix element into a differential decay rate.

Applying the results of subsection 8.4 to the example of muon decay, with M = mµ and m1 =

m2 = m3 = 0. According to our result of eq. (9.2.32), we need to evaluate the dot products pa · k2 and

k1 · k3. Since these are Lorentz scalars, we can evaluate them in a frame where k⃗2 is along the z-axis.

Then

pa = (mµ, 0, 0, 0), (9.2.33)

k2 = (Eνe , 0, 0, Eνe). (9.2.34)

Therefore,

pa · k2 = mµEνe . (9.2.35)
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Also, k1 · k3 = 1
2 [(k1 + k3)2 − k2

1 − k2
3] = 1

2 [(pa − k2)2 − 0− 0] = 1
2 [p2

a + k2
2 − 2pa · k2], so

k1 · k3 =
1

2
(m2

µ − 2mµEνe). (9.2.36)

Therefore, from eq. (9.2.32),

1

2

∑

spins

|M|2 = 32G2
F (m3

µEνe − 2m2
µE2

νe
). (9.2.37)

Plugging this into eq. (8.4.6) with M = mµ, and choosing E1 = Ee and E2 = Eνe , we get:

dΓ = dEedEνe

G2
F

2π3
(m2

µEνe − 2mµE2
νe

). (9.2.38)

Doing the dEνe integral using the limits of integration of eq. (8.4.10), we obtain:

dΓ = dEe

∫ mµ
2

mµ
2 −Ee

dEνe

G2
F

2π3
(m2

µEνe − 2mµE2
νe

) = dEe
G2

F

π3

(
m2

µE2
e

4
− mµE3

e

3

)

. (9.2.39)

We have obtained the differential decay rate for the energy of the final state electron:

dΓ

dEe
=

G2
F m2

µ

4π3
E2

e

(

1− 4Ee

3mµ

)

. (9.2.40)

The shape of this distribution is shown below as the solid line:

0 0.1 0.2 0.3 0.4 0.5
Ee/mµ

0

dΓ/dEe

e_, ν
µ

νe

We see that the electron energy is peaked near its maximum value of mµ/2. This corresponds to the

situation where the electron is recoiling directly against both the neutrino and antineutrino, which are

collinear; for example, k1 = (mµ/2, 0, 0,−mµ/2), and kµ
2 = kµ

3 = (mµ/4, 0, 0,mµ/4):
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µ−e− −→ −→

←− νµ

νe

The helicity of the initial state is undefined, since the muon is at rest. However, we know that the

final state e−, νµ, and νe have well-defined L, L, and R helicities respectively, as shown above, since

this is dictated by the weak interactions. In the case of maximum Ee, therefore, the spins of νµ and

νe must be in opposite directions. The helicity of the electron is L, so its spin must be opposite to its

3-momentum direction. By momentum conservation, this tells us that the electron must move in the

opposite direction to the initial muon spin in the limit that Ee is near the maximum.

The smallest possible electron energies are near 0, which occurs when the neutrino and antineutrino

move in nearly opposite directions, so that the 3-momentum of the electron recoiling against them is

very small.

We have done the most practically sensible thing by plotting the differential decay rate in terms of

the electron energy, since that is what is directly observable in an experiment. Just for fun, however,

let us pretend that we could directly measure the νµ and νe energies, and compute the distributions

for them. To find dΓ/dEνµ , we can take E2 = Eνe and E1 = Eνµ in eqs. (8.4.6) and (8.4.10)-(8.4.11),

with the reduced matrix element from eq. (9.2.37). Then

dΓ = dEνµdEνe

G2
F

2π3
(m2

µEνe − 2mµE2
νe

), (9.2.41)

and the range of integration for Eνe is now:

mµ

2
− Eνµ < Eνe <

mµ

2
, (9.2.42)

so that

dΓ = dEνµ

∫ mµ
2

mµ
2 −Eνµ

dEνe

G2
F

2π3
(m2

µEνe − 2mµE2
νe

) = dEe
G2

F

π3

(
m2

µE2
νµ

4
−

mµE3
νµ

3

)

. (9.2.43)

Therefore, the Eνµ distribution of final states has the same shape as the Ee distribution:

dΓ

dEνµ

=
G2

F m2
µ

4π3
E2

νµ

(

1−
4Eνµ

3mµ

)

. (9.2.44)

Finally, we can find dΓ/dEνe , by choosing E2 = Ee and E1 = Eνe in eqs. (8.4.6) and (8.4.10)-(8.4.11)

with eq. (9.2.37). Then:

dΓ = dEνe

∫ mµ
2

mµ
2 −Eνe

dEe
G2

F

2π3
(m2

µEνe − 2mµE2
νe

) = dEνe

G2
F

2π3

(
m2

µE2
νe
− 2mµE3

νe

)
, (9.2.45)

so that

dΓ

dEνe

=
G2

F m2
µ

2π3
E2

νe

(

1− 2Eνe

mµ

)

. (9.2.46)
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This distribution is plotted as the dashed line in the previous graph. Unlike the distributions for Ee and

Eν , we see that dΓ/dEνe vanishes when Eνe approaches its maximum value of mµ

2 . We can understand

this by noting that when Eνe is maximum, the νe must be recoiling against both e and νe moving in

the opposite direction, so the L, L, R helicities of e, νµ, and νe tell us that the total spin of the final

state is 3/2:

µ−νe ←− ←−

←− νµ

e

Since the initial-state muon only had spin 1/2, the quantum states have 0 overlap, and the rate must

vanish in that limit of maximal Eνe .

The total decay rate for the muon is found by integrating either eq. (9.2.40) with respect to Ee, or

eq. (9.2.44) with respect to Eνµ , or eq. (9.2.46) with respect to Eνe . In each case, we get:

Γ =
∫ mµ/2

0

(
dΓ

dEe

)
dEe =

∫ mµ/2

0

(
dΓ

dEνµ

)

dEνµ =
∫ mµ/2

0

(
dΓ

dEνe

)
dEνe (9.2.47)

=
G2

F m5
µ

192π3
. (9.2.48)

It is a good check that the final result does not depend on the choice of the final energy integration

variable. It is also good to check units: G2
F has units of [mass]−4 or [time]4, while m5

µ has units of

[mass]5 or [time]−5, so Γ indeed has units of [mass] or [time]−1.

Experiments tell us that

Γ(µ− → e−νµνe) = 2.99591(3) × 10−19 GeV, mµ = 0.1056584 GeV, (9.2.49)

so we obtain the numerical value of Fermi’s constant from eq. (9.2.48):

GF = 1.166364(5) × 10−5 GeV−2. (9.2.50)

(This determination also includes some small and delicate corrections reviewed below in section 9.3.)

The 4-fermion weak interaction Lagrangian of eq. (9.2.21) describes several other processes besides

the decay µ− → e−νeνµ that we studied in subsection 9.2. As the simplest example, we can just replace

each particle in the process by its anti-particle:

µ+ → e+νeνµ, (9.2.51)

for which the Feynman diagram is just obtained by changing all of the arrow directions:

µ+

e+

νµ

νe
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The evaluations of the reduced matrix element and the differential and total decay rates for this decay

are very similar to those for the µ− → e−νeνµ. For future reference, let us label the 4-momenta for

this process as follows:

Particle Momentum Spinor
µ+ p′a va

e+ k′
1 v1

νe k′
2 u2

νµ k′
3 v3.

(9.2.52)

The reduced matrix element, following from the “+c.c.” term in eq. (9.2.21), is then

M = −i2
√

2GF (vaγ
ρPLv3)(u2γρPLv1). (9.2.53)

As one might expect, the result for the spin-summed squared matrix element,

∑

spins

|M|2 = 128G2
F (p′a · k′

2)(k
′
1 · k′

3), (9.2.54)

is exactly the same as obtained in eq. (9.2.32), with the obvious substitution of primed 4-momenta.

The differential and total decay rates that follow from this are, of course, exactly the same as for µ−

decay.

This is actually a special case of a general symmetry relation between particles and anti-particles,

which holds true in any local quantum field theory, and is known as the CPT Theorem. The statement

of the theorem is that the laws of physics, as specified by the Lagrangian, are left unchanged after one

performs the combined operations of:

• charge conjugation (C): replacing each particle by its antiparticle,

• parity (P): replacing x⃗→ −x⃗,

• time reversal (T): replacing t→ −t.

It turns out to be impossible to write down any theory that fails to obey this rule, as long as the

Lagrangian is invariant under proper Lorentz transformations and contains a finite number of spacetime

derivatives and obeys some other technical assumptions. Among other things, the CPT Theorem

implies that the mass and the total decay rate of a particle must each be equal to the same quantities

for the corresponding anti-particle. (It does not say that the differential decay rate to a particular final

state configuration necessarily has to be equal to the anti-particle differential decay rate to the same

configuration of final-state anti-particles; that stronger result holds only if the theory is invariant under

T. The four-fermion Fermi interaction for leptons does respect invariance under T, but it is violated

by a tiny amount in the weak interactions of quarks.) We will study some other processes implied by

the Fermi weak interaction Lagrangians in subsections 9.4, 9.5, and 9.6 below.
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9.3 Corrections to muon decay

In the previous subsection, we derived the µ− decay rate in terms of Fermi’s four-fermion weak interac-

tion coupling constant GF . Since this decay process is actually the one that is used to experimentally

determine GF most accurately, it is worthwhile to note the leading corrections to it.

First, there is the dependence on me, which we neglected, but could have included at the cost of a

more complicated phase space integration. Taking this into account using correct kinematics for me ̸= 0

and the limits of integration in eq. (8.4.7)-(8.4.9), one finds that the decay rate must be multiplied by

a correction factor Fkin(m2
e/m

2
µ), where

Fkin(x) = 1− 8x + 8x3 − x4 − 12x2lnx. (9.3.1)

Numerically, Fkin(m2
e/m

2
µ) = 0.999813.

There are also corrections coming from two types of QED effects. First, there are loop diagrams

involving virtual photons:

µ−

e−

νµ

νe µ−

e−

νµ

νe

µ−

e−

νµ

νe

Evaluating these diagrams is beyond the scope of this course. However, it should be clear that they

give contributions to the reduced matrix element proportional to e2GF , since each contains two photon

interaction vertices. These contributions to the reduced matrix element actually involve divergent loop

integrals, which must be “regularized” by using a high-energy cutoff. There is then a logarithmic

dependence on the cutoff energy, which can then be absorbed into a redefinition of the mass and

coupling parameters of the model, by the systematic process of renormalization. The interference of

the loop diagrams with the original lowest-order diagram then gives a contribution to the decay rate

proportional to αG2
F . There are also QED contributions from diagrams with additional photons in the

final state:
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µ−

γ

e−

νµ

νe µ−

γ

e−

νµ

νe

The QED diagrams involving an additional photon contribute to a 4-body final state, with a reduced

matrix element proportional to eGF . After squaring, summing over final spins, and averaging over the

initial spin, and integrating over the 4-body phase space, the contribution to the decay rate is again

proportional to αG2
F . Much of this contribution actually comes from very soft (low-energy) photons,

which are difficult or impossible to resolve experimentally. Therefore, one usually just combines the

two types of QED contributions into a total inclusive decay rate with one or more extra photons in

the final state. After a heroic calculation, one finds that the QED effect on the total decay rate is to

multiply by a correction factor

FQED(α) = 1 +
α

π

(
25

8
− π2

2
− m2

e

m2
µ

[
9 + 4π2 + 24 ln

(me

mµ

)])

+
(
α

π

)2

C2 + . . . (9.3.2)

where the C2 contribution refers to even higher-order corrections from: the interference between Feyn-

man diagrams with two virtual photons and the original Feynman diagram; the interference between

Feynman diagrams with one virtual photons plus one final state photon and the original Feynman dia-

gram; the square of the reduced matrix element for a Feynman diagram involving one virtual photon;

and two photons in the final state. A complicated calculation shows that C2 ≈ 6.68. Because of the

renormalization procedure, the QED coupling α actually is dependent on the energy scale, and should

be evaluated at the energy scale of interest for this problem, which is naturally mµ. At that scale,

α ≈ 1/135.9, so numerically

FQED(α) ≈ 0.995802. (9.3.3)

Finally, there are corrections involving the fact that the point-like four-fermion interaction is actu-

ally due to the effect of a virtual W− boson. This gives a correction factor

FW = 1 +
3m2

µ

5M2
W

≈ 1.000001, (9.3.4)

using MW = 80.4 GeV. The predicted decay rate defining GF experimentally including all these higher-

order effects is

Γµ− =
G2

F m5
µ

192π3
FkinFQEDFW . (9.3.5)

The dominant remaining uncertainty in GF quoted in eq. (9.2.50) comes from the experimental input

of the muon lifetime.
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9.4 Inverse muon decay (e−νµ → νeµ
−)

Consider the process of muon-neutrino scattering on an electron:

e−νµ → νeµ
−. (9.4.1)

The Feynman diagram for this process is:

e−, pa νe, k1

νµ, pb µ−, k2

in which we see that the following particles have been crossed from the previous diagram for µ+ decay:

initial µ+ → final µ− (9.4.2)

final e+ → initial e− (9.4.3)

final νµ → initial νµ. (9.4.4)

In fact, this scattering process is often known as inverse muon decay. To apply the Crossing Symme-

try Theorem stated in section 7.6, we can assign momentum labels pa, pb, k1, k2 to e−, νµ, νe, µ−

respectively, as shown in the figure, and then make the following comparison table:

µ+ → e+νeνµ e−νµ → νeµ−

µ+, p′a µ−, k2

e+, k′
1 e−, pa

νe, k′
2 νe, k1

νµ, k′
3 νµ, pb

Therefore, we obtain the spin-summed, squared matrix element for e−νµ → νeµ− by making the

replacements

p′a = −k2; k′
1 = −pa; k′

2 = k1; k′
3 = −pb (9.4.5)

in eq. (9.2.54), and then multiplying by (−1)3 for three crossed fermions, resulting in:

∑

spins

|Me−νµ→νeµ− |2 = 128G2
F (k2 · k1)(pa · pb). (9.4.6)

Let us evaluate this result in the limit of high-energy scattering, so that mµ can be neglected, and in

the center-of-momentum frame. In that case, all four particles being treated as massless, we can take

the kinematics results from eqs. (7.5.28)-(7.5.32), so that pa · pb = k1 · k2 = s/2, and

∑

spins

|Me−νµ→νeµ− |2 = 32G2
F s2. (9.4.7)
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Including a factor of 1/2 for the average over the initial-state electron spin,† and using eq. (6.2.50),

dσ

d(cos θ)
=

G2
F s

2π
. (9.4.8)

This differential cross-section is isotropic (independent of θ), so it is trivial to integrate
∫ 1
−1 d(cos θ) = 2

to get the total cross-section:

σe−νµ→νeµ− =
G2

F s

π
. (9.4.9)

Numerically, we can evaluate this using eq. (9.2.50):

σe−νµ→νeµ− = 16.9 fb

( √
s

GeV

)2

. (9.4.10)

In a typical experimental setup, the electrons will be contained in a target of ordinary material at rest

in the lab frame. The muon neutrinos might be produced from a beam of decaying µ−, which are in

turn produced by decaying pions, as discussed later. If we call the νµ energy in the lab frame Eνµ , then

the center-of-momentum energy is given by

√
s = ECM =

√
2Eνµme + m2

e ≈
√

2Eνµme . (9.4.11)

Substituting this into eq. (9.4.10) gives:

σe−νµ→νeµ− = 1.7× 10−2 fb
(

Eνµ

GeV

)
. (9.4.12)

This is a very small cross-section for typical neutrino energies encountered in present experiments, but

it does grow with Eνµ .

The isotropy of e−νµ → νeµ− scattering in the center-of-momentum frame can be understood from

considering what the helicities dictated by the weak interactions tell us about the angular momentum.

Since this is a weak interaction process involving only fermions and not anti-fermions, they are all L

helicity.

e− νµ

νe

µ−

θ

We therefore see that the initial and final states both have total spin 0, so that the process is s-wave,

and therefore necessarily isotropic.

†In the Standard Model with neutrino masses neglected, all neutrinos are left-handed, and all antineutrinos are right-
handed. Since there is only one possible νµ helicity, namely L, it would be incorrect to average over the νµ spin. This
is a general feature; one should never average over initial-state neutrino or antineutrino spins, as long as they are being
treated as massless.
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9.5 e−νe → µ−νµ

As another example, consider the process of antineutrino-electron scattering:

e−νe → µ−νµ. (9.5.1)

This process can again be obtained by crossing µ+ → e+νeνµ according to

initial µ+ → final µ− (9.5.2)

final e+ → initial e− (9.5.3)

final νe → initial νe, (9.5.4)

as can be seen from the Feynman diagram:

e−, pa µ−, k1

νe, pb νµ, k2

Therefore, we obtain the spin-summed squared matrix element for e−νe → µ−νµ by making the

substitutions

p′a = −k1; k′
1 = −pa; k′

2 = −pb; k′
3 = k2 (9.5.5)

in eq. (9.2.54), and multiplying again by (−1)3 because of the three crossed fermions. The result this

time is:

∑

spins

|M|2 = 128G2
F (k1 · pb)(pa · k2) = 32G2

F u2 = 8G2
F s2(1 + cos θ)2, (9.5.6)

where eqs. (7.5.30) and (7.5.32) for 2→2 massless kinematics have been used. Here θ is the angle

between the incoming e− and the outgoing µ− 3-momenta.

Substituting this result into eq. (6.2.50), with a factor of 1/2 to account for averaging over the

initial e− spin, we obtain:

dσe−νe→µ−νµ

d(cos θ)
=

G2
F s

8π
(1 + cos θ)2. (9.5.7)

Performing the d(cos θ) integration gives a total cross-section of:

σe−νe→µ−νµ
=

G2
F s

3π
. (9.5.8)

This calculation shows that in the center-of-momentum frame, the µ− tends to keep going in the same

direction as the original e−. This can be understood from the helicity-spin-momentum diagram:
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e− νe

νµ

µ−

θ

Since the helicities of e−, νe, µ−, νµ are respectively L, R, L, R, the total spin of the initial state must

be pointing in the direction opposite to the e− 3-momentum, and the total spin of the final state must

be pointing opposite to the µ− direction. The overlap between these two states is therefore maximized

when the e− and µ− momenta are parallel, and vanishes when the µ− tries to come out in the opposite

direction to the e−. Of course, this reaction usually occurs in a laboratory frame in which the initial

e− was at rest, so one must correct for this when interpreting the distribution in the lab frame.

The total cross-section for this reaction is 1/3 of that for the reaction e−νe → µ−νµ. This is because

the former reaction is an isotropic s-wave (angular momentum 0), while the latter is a p-wave (angular

momentum 1), which can only use one of the three possible J = 1 final states, namely, the one with J⃗

pointing along the νµ direction.

9.6 Charged currents and π± decay

The interaction Lagrangian term responsible for muon decay and for the cross-sections discussed above

is just one term in the weak-interaction Lagrangian. More generally, we can write the Lagrangian as a

product of a weak-interaction charged current J−
ρ and its complex conjugate J+

ρ :

Lint = −2
√

2GF J+
ρ J−ρ. (9.6.1)

The weak-interaction charged current is obtained by adding together terms for pairs of fermions, with

the constraint that the total charge of the current is −1, and all Dirac fermion fields involved in the

current are left-handed, and all barred fields are right-handed:

J−
ρ = νeγρPLe + νµγρPLµ + ντγρPLτ + uγρPLd′ + cγρPLs′ + tγρPLb′. (9.6.2)

Notice that we have included contributions for the quarks. The quark fields d′, s′, and b′ appearing

here are actually not quite mass eigenstates, because of mixing; this is the reason for the primes. The

complex conjugate of J−
ρ has charge +1, and is given by:

J+
ρ = (J−

ρ )∗ = eγρPLνe + µγρPLνµ + τγρPLντ + d
′
γρPLu + s′γρPLc + b

′
γρPLt. (9.6.3)

Both J−ρ and J+ρ transform under proper Lorentz transformations as four-vectors, and are V − A

fermion bilinears.

Unfortunately, there is an obstacle to a detailed, direct testing of the (V −A)(V −A) form of the

weak interaction Lagrangian for quarks. This is because the quarks are bound into hadrons by strong

interactions, so that cross-sections and decays involving the weak interactions are subject to very large
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and very complicated corrections. However, one can still do a quantitative analysis of some aspects of

weak decays involving hadrons, by a method of parameterizing our ignorance.

To see how this works, consider the process of charged pion decay. A π− consists of a bound state

made from a valence d quark and u antiquark, together with many virtual gluons and quark-antiquark

pairs. A Feynman diagram for π− → µ−νµ decay following from the current-current Lagrangian might

therefore look like:

µ−, k1

νµ, k2

π−

u

d

Unfortunately, the left-part of this Feynman diagram, involving the complications of the π− bound

state, is just a cartoon for the strong interactions, which are not amenable to perturbative calculation.

The u antiquark and d quark do not even have fixed momenta in this diagram, since they exchange

energy and momentum with each other and with the virtual gluons and quark-anti-quark pairs. In

principle, one can find some distribution for the u and d momenta, and try to average over that

distribution, but the strong interactions are very complicated so this is not very easy to do from the

theoretical side. However, by considering what we do know about the current-current Lagrangian, we

can write down the general form of the reduced matrix element. First, we know that the external state

spinors for the fermions are:

Particle Momentum Spinor
µ− k1 u1

νµ k2 v2

(9.6.4)

In terms of these spinors, we can write:

M = −i
√

2GF fπpρ(u1γ
ρPLv2). (9.6.5)

In this formula, the factor (u1γρPLv2) just reflects the fact that leptons are immune from the compli-

cations of the strong interactions. The factor fπpρ takes into account the part of the reduced matrix

element involving the π−; here pρ is the 4-momentum of the pion. The point is that whatever the pion

factor in the reduced matrix element is, we know that it is a four-vector in order to contract with the

lepton part, and it must be proportional to pρ, since there is no other vector quantity in the problem

that it can depend on. (Recall that pions are spinless, so there is no spin dependence.) So we are

simply parameterizing all of our ignorance of the bound-state properties of the pion in terms of a single

constant fπ, called the pion decay constant. It is a quantity with dimensions of mass. In principle we

could compute it if we had perfect ability to calculate with the strong interactions. In practice, fπ is an

experimentally measured quantity, with its value following most accurately from the π− lifetime that
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we will compute below. The factor
√

2GF is another historical convention; it could have been absorbed

into the definition of fπ. But it is useful to have the GF appear explicitly as a sign that this is a weak

interaction; then fπ is entirely a strong-interaction parameter.

Let us now compute the decay rate for π− → µ−νµ. Taking the complex square of the reduced

matrix element eq. (9.6.5), we have:

|M|2 = 2G2
F f2

πpρpσ(u1γ
ρPLv2)(v2PRγ

σu1). (9.6.6)

Now summing over final state spins in the usual way gives:

∑

spins

|M|2 = 2G2
F f2

πpρpσTr[γρPL/k2PRγ
σ(/k1 + mµ)] = 2G2

F f2
πTr[/p/k2PR/p/k1]. (9.6.7)

Note that we do not neglect the mass of the muon, since mµ/mπ± = 0.1056 GeV/0.1396 GeV = 0.756

is not a small number. However, the term in eq. (9.6.7) that explicitly involves mµ does not contribute,

since the trace of 3 gamma matrices (with or without a PR) vanishes. Evaluating the trace, we have:

Tr[/p/k2PR/p/k1] = 4(p · k1)(p · k2)− 2p2(k1 · k2). (9.6.8)

The decay kinematics tells us that:

p2 = m2
π± ; k2

1 = m2
µ; k2

2 = m2
νµ

= 0; (9.6.9)

p · k1 =
1

2
[−(p− k1)

2 + p2 + k2
1 ] =

1

2
(m2

π± + m2
µ); (9.6.10)

p · k2 =
1

2
[−(p− k2)

2 + p2 + k2
2 ] =

1

2
(−m2

µ + m2
π±); (9.6.11)

k1 · k2 =
1

2
[(k1 + k2)

2 − k2
1 − k2

2 ] =
1

2
(m2

π± −m2
µ). (9.6.12)

Therefore, Tr[/p/k2PR/p/k1] = m2
µ(m2

π± −m2
µ), and

∑

spins

|M|2 = 2G2
F f2

πm2
π±m2

µ

(

1−
m2

µ

m2
π±

)

, (9.6.13)

so that using eq. (8.2.14), we get:

dΓ =
G2

F f2
πmπ±m2

µ

32π2

(

1−
m2

µ

m2
π±

)2

dφ d(cos θ), (9.6.14)

where (θ,φ) are the angles for the µ− three-momentum. Of course, since the pion is spinless, the

differential decay rate is isotropic, so the angular integration trivially gives dφd(cos θ)→ 4π, and:

Γ(π− → µ−νµ) =
G2

F f2
πmπ±m2

µ

8π

(

1−
m2

µ

m2
π±

)2

. (9.6.15)

The charged pion can also decay according to π− → e−νe. The calculation of this decay rate is

identical to the one just given, except that me is substituted everywhere for mµ. Therefore, we have:

Γ(π− → e−νe) =
G2

F f2
πmπ±m2

e

8π

(

1− m2
e

m2
π±

)2

, (9.6.16)
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and the ratio of branching ratios is predicted to be:

BR(π− → e−νe)

BR(π− → µ−νµ)
=

Γ(π− → e−νe)

Γ(π− → µ−νµ)
=

(
m2

e

m2
µ

)(
m2

π± −m2
e

m2
π± −m2

µ

)2

= 1.2 × 10−4. (9.6.17)

The dependence on fπ has canceled out of the ratio eq. (9.6.17), which is therefore a robust pre-

diction of the theory. Since there are no other kinematically-possible two-body decay channels open to

π−, it should decay to µ−νµ almost always, with a rare decay to e−νe occurring 0.012% of the time.

This has been confirmed experimentally. We can also use the measurement of the total lifetime of the

π− to find fπ numerically, using eq. (9.6.15). The result is:

fπ = 0.128 GeV. (9.6.18)

It is not surprising that this value is of the same order-of-magnitude as the mass of the pion.

The most striking feature of the π− decay rate is that it is proportional to m2
µ, with M proportional

to mµ. This is what leads to the strong suppression of decays to e−νe (already mentioned at the end

of section 9.1). We found this result just by calculating. To understand it better, we can draw a

momentum-helicity-spin diagram, using the fact that the ℓ− and νℓ produced in the weak interactions

are L and R respectively:

J = 0

π−

−→−→

νee

The π− has spin 0, but the final state predicted by the weak interaction helicities unambiguously

has spin 1. Therefore, if helicity were exactly conserved, the π− could not decay at all! However,

helicity conservation only holds in the high-energy limit in which we can treat all fermions as massless.

This decay is said to be helicity-suppressed, since the only reason it can occur is because mµ and me

are non-zero. In the limit mℓ → 0, we recover exact helicity conservation and the reduced matrix

element and the decay lifetime vanish. This explains why they should be proportional to mℓ and m2
ℓ

respectively. The helicity suppression of this decay is therefore a good prediction of the rule that the

weak interactions affect only L fermions and R antifermions. In the final state, the charged lepton

µ− or e− is said to undergo a helicity flip, meaning that the L-helicity fermion produced by the weak

interactions has an amplitude to appear in the final state as a R-fermion. In general, a helicity flip for

a fermion entails a suppression in the reduced matrix element proportional to the mass of the fermion

divided by its energy.

Having computed the decay rate following from eq. (9.6.5), let us find a Lagrangian that would

give rise to it involving a quantum field for the pion. Although the pion is a composite, bound-state

particle, we can still invent a quantum field for it, in an approximate, “effective” description. The

π− corresponds to a charged spin-0 field. Previously, we studied spin-0 particles described by a real
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scalar field. However, the particle and antiparticle created by a real scalar field turned out to be the

same thing. Here we want something different; since the π− is charged, its antiparticle π+ is clearly a

different particle. This means that the π− particle should be described by a complex scalar field.

Let us therefore define π−(x) to be a complex scalar field, with its complex conjugate given by

π+(x) ≡ (π−(x))∗. (9.6.19)

We can construct a real free Lagrangian density from these complex fields as follows:

L = ∂µπ
+∂µπ− −m2

π±π+π−. (9.6.20)

[Compare to the Lagrangian density for a real scalar field, eq. (5.1.18).] This Lagrangian density

describes free pion fields with mass mπ± . At any fixed time t = 0, the π+ and π− fields can be

expanded in creation and annihilation operators as:

π−(x⃗) =
∫

dp̃ (eip⃗·x⃗ap⃗,− + e−ip⃗·x⃗a†p⃗,+); (9.6.21)

π+(x⃗) =
∫

dp̃ (eip⃗·x⃗ap⃗,+ + e−ip⃗·x⃗a†p⃗,−). (9.6.22)

Note that these fields are indeed complex conjugates of each other, and that they are each complex since

ap⃗,− and ap⃗,+ are taken to be independent. The operators ap⃗,− and a†p⃗,− act on states by destroying

and creating a π− particle with 3-momentum p⃗. Likewise, the operators ap⃗,+ and a†p⃗,+ act on states by

destroying and creating a π+ particle with 3-momentum p⃗. In particular, the single particle states are:

a†p⃗,−|0⟩ = |π−; p⃗ ⟩, (9.6.23)

a†p⃗,+|0⟩ = |π+; p⃗ ⟩. (9.6.24)

One can now carry through canonical quantization as usual. Given an interaction Lagrangian, one can

derive the corresponding Feynman rules for the propagator and interaction vertices. Since a π− moving

forward in time is a π+ moving backwards in time, and vice versa, there is only one propagator for π±

fields. It differs from the propagator for an ordinary scalar in that it carries an arrow indicating the

direction of the flow of charge:

←→ i

p2 −m2
π± + iϵ

The external state pion lines also carry an arrow direction telling us whether it is a π− or a π+ particle.

A pion line entering from the left with an arrow pointing to the right means a π+ particle in the initial

state, while a line entering from the left with an arrow pointing back to the left means a π− particle in

the initial state. Similarly, if a pion line leaves the diagram to the right, it represents a final state pion,

with an arrow to the right meaning a π+ and an arrow to the left meaning a π−. We can summarize

this with the following mnemonic figures:
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initial state π+:

initial state π−:

final state π+:

final state π−:

In each case the Feynman rule factor associated with the initial- or final-state pion is just 1.

Returning to the reduced matrix element of eq. (9.6.5), we can interpret this as coming from a

pion-lepton-antineutrino interaction vertex. When we computed the decay matrix element, the pion

was on-shell, but in general this need not be the case. The pion decay constant fπ must therefore be

generalized to a function f(p2), with

f(p2)|p2=m2
π±

= fπ (9.6.25)

when the pion is on-shell. The momentum-space factor f(p2)pρ can be interpreted by identifying the

4-momentum as a differential operator acting on the pion field, using:

pρ ↔ i∂ρ. (9.6.26)

Then reversing the usual procedure of inferring the Feynman rule from a term in the interaction

Lagrangian, we conclude that the effective interaction describing π− decay is:

Lint,π−µνµ
= −

√
2GF (µγρPLνµ) f(−∂2)∂ρπ

−. (9.6.27)

Here f(−∂2) can in principle be defined in terms of its power-series expansion in the differential operator

−∂2 = ∇⃗2− ∂2
t acting on the pion field. In practice, one usually just works in momentum space where

it is f(p2). Since the Lagrangian must be real, we must also include the complex conjugate of this

term:

Lint,π+µνµ
= −

√
2GF (νµγ

ρPLµ) f(−∂2)∂ρπ
+. (9.6.28)

The Feynman rules for these effective interactions are:

µ, a

νµ, b

π− ←→ −i
√

2GF f(p2)pρ (γρPL)ab
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and

νµ, a

µ, b

π+ ←→ −i
√

2GF f(p2)pρ (γρPL)ab

In each Feynman diagram, the arrow on the pion line describes the direction of flow of charge, and the

4-momentum pρ is taken to be flowing in to the vertex. When the pion is on-shell, one can replace

f(p2) by the pion decay constant fπ.

Other charged mesons made out of a quark and antiquark, like the K±, D±, and D±
s , have their

own decay constants fK , fD, and fDs , and their decays can be treated in a similar way.

9.7 Unitarity, renormalizability, and the W boson

An important feature of weak-interaction 2 → 2 cross-sections following from Fermi’s four-fermion

interaction is that they grow proportional to s for very large s; see eqs. (9.4.9) and (9.5.8). This had to

be true on general grounds just from dimensional analysis. Any reduced matrix element that contains

one four-fermion interaction will be proportional to GF , so the cross-section will have to be proportional

to G2
F . Since this has units of [mass]−4, and cross-sections must have dimensions of [mass]−2, it must

be that the cross-section scales like the square of the characteristic energy of the process, s, in the high-

energy limit in which all other kinematic mass scales are comparatively unimportant. This behavior

of σ ∝ s is not acceptable for arbitrarily large s, since the cross-section is bounded by the fact that

the probability for any two particles to scatter cannot exceed 1. In quantum mechanical language, the

constraint is on the unitarity of the time-evolution operator e−iHt. If the cross-section grows too large,

then our perturbative approximation e−iHt = 1−iHt represented by the lowest-order Feynman diagram

must break down. The reduced matrix element found from just including this Feynman diagram will

have to be compensated somehow by higher-order diagrams, or by changing the physics of the weak

interactions at some higher energy scale.

Let us develop the dimensional analysis of fields and couplings further. We know that the La-

grangian must have the same units as energy. In the standard system in which c = h̄ = 1, this is equal

to units of [mass]. Since d3x⃗ has units of [length]3, or [mass]−3, and

L =
∫

d3x⃗ L, (9.7.1)

it must be that L has units of [mass]4. This fact allows us to evaluate the units of all fields and couplings

in a theory. For example, a spacetime derivative has units of inverse length, or [mass]. Therefore, from

the kinetic terms for scalars, fermions, and vector fields found for example in eqs. (5.1.18), (5.1.26),

and (5.1.34), we find that these types of fields must have dimensions of [mass], [mass]3/2, and [mass]
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respectively. This allows us to evaluate the units of various possible interaction couplings that appear

in the Lagrangian density. For example, a coupling of n scalar fields,

Lint = −λn

n!
φn (9.7.2)

implies that λn has units of [mass]4−n. A vector-fermion-fermion coupling, like e in QED, is dimension-

less. The effective coupling fπ for on-shell pions has dimensions of [mass], because of the presence of a

spacetime derivative together with a scalar field and two fermion fields in the Lagrangian. Summarizing

this information for the known types of fields and couplings that we have encountered so far:

Object Dimension Role

L [mass]4 Lagrangian density

∂µ [mass] derivative

φ [mass] scalar field

Ψ [mass]3/2 fermion field

Aµ [mass] vector field

λ3 [mass] scalar3 coupling

λ4 [mass]0 scalar4 coupling

y [mass]0 scalar-fermion-fermion (Yukawa) coupling

e [mass]0 photon-fermion-fermion coupling

GF [mass]−2 fermion4 coupling

fπ [mass] fermion2-scalar-derivative coupling

u, v, u, v [mass]1/2 external-state spinors

MNi→Nf
[mass]4−Ni−Nf reduced matrix element for Ni → Nf particles

σ [mass]−2 cross-section

Γ [mass] decay rate.

It is a general fact that theories with couplings with negative mass dimension, like GF , or λn for

n ≥ 5, always suffer from a problem known as non-renormalizability.† In a renormalizable theory,

the divergences that occur in loop diagrams due to integrating over arbitrarily large 4-momenta for

virtual particles can be regularized by introducing a cutoff, and then the resulting dependence on

the unknown cutoff can be absorbed into a redefinition of the masses and coupling constants of the

theory. In contrast, in a non-renormalizable theory, one finds that this process requires introducing

an infinite number of different couplings, each of which must be redefined in order to absorb the

momentum-cutoff dependence. This dependence on an infinite number of different coupling constants

makes non-renormalizable theories non-predictive, although only in principle. We can always use

non-renormalizable theories as effective theories at low energies, as we have done in the case of the

†The converse is not true; just because a theory has only couplings with positive or zero mass dimension does not
guarantee that it is renormalizable. It is a necessary, but not sufficient, condition.
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four-fermion theory of the weak interactions. However, when probed at sufficiently high energies, a non-

renormalizable theory will encounter related problems associated with the apparent failure of unitarity

(cross-sections that grow uncontrollably with energy) and non-renormalizability (an uncontrollable

dependence on more and more unknown couplings that become more and more important at higher

energies). For this reason, we are happier to describe physical phenomena using renormalizable theories

if we can.

An example of a useful non-renormalizable theory is gravity. The effective coupling constant for

Feynman diagrams involving gravitons is 1/M2
Planck, where MPlanck = 2.4 × 1018 GeV is the “reduced

Planck mass”. Like GF , this coupling has negative mass dimension, so tree-level cross-sections for

2→ 2 scattering involving gravitons grow with energy like s. This is not a problem as long as we stick

to scattering energies ≪ MPlanck, which corresponds to all known experiments and directly measured

phenomena. However, we do not know how unitarity is restored in gravitational interactions at energies

comparable to MPlanck or higher. Unlike the case of the weak interactions, it is hard to conceive of an

experiment with present technologies that could test competing ideas.

To find a renormalizable “fix” for the weak interactions, we note that the (V −A)(V −A) current-

current structure of the four-fermion coupling could come about from the exchange of a heavy vector

particle. To do this, we imagine “pulling apart” the two currents, and replacing the short line segment

by the propagator for a virtual vector particle. For example, one of the current-current terms is:

µ, a e, c

νµ, b νe, d

←→

µ, a e, c

νµ, b νe, d

W

Since the currents involved have electric charges −1 and +1, the vector boson must carry charge −1

to the right. This is the W− vector boson. By analogy with the charged pion, W± are complex vector

fields, with an arrow on its propagator indicating the direction of flow of charge.

The Feynman rule for the propagator of a charged vector W± boson carrying 4-momentum p turns

out to be:

←→ i

p2 −m2
W + iϵ

[

−gρσ +
pρpσ

m2
W

]
ρ σ

In the limit of low energies and momenta, |pρ|≪ mW , this propagator just becomes a constant:

i

p2 −m2
W + iϵ

[

−gρσ +
pρpσ

m2
W

]

−→ i
gρσ

m2
W

. (9.7.3)
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In order to complete the correspondence between the effective four-fermion interaction and the more

fundamental version involving the vector boson, we need W -fermion-antifermion vertex Feynman rules

of the form:

←→ −i
g√
2
(γρPL)ab

νℓ, b

ℓ, a

W, ρ

←→ −i
g√
2
(γρPL)ab

ℓ, b

νℓ, a

W, ρ

Here g is a fundamental coupling of the weak interactions, and the 1/
√

2 is a standard convention. These

are the Feynman rules involving W± interactions with leptons; there are similar rules for interactions

with the quarks in the charged currents J+
ρ and J−

ρ given earlier in eqs. (9.6.2) and (9.6.3). The

interaction Lagrangian for W bosons with standard model fermions corresponding to these Feynman

rules is:

Lint = − g√
2

(
W+ρJ−

ρ + W−ρJ+
ρ

)
. (9.7.4)

Comparing the four-fermion vertex to the reduced matrix element from W -boson exchange, we find

that we must have:

−i2
√

2GF =
(−ig√

2

)2
(

i

m2
W

)

, (9.7.5)

so that

GF =
g2

4
√

2m2
W

. (9.7.6)

The W± boson has been discovered, with a mass mW = 80.4 GeV, so we conclude that

g ≈ 0.65. (9.7.7)

Since this is a dimensionless coupling, there is at least a chance to make this into a renormalizable

theory that is unitary in perturbation theory. At very high energies, the W± propagator will behave like

1/p2, rather than the 1/m2
W that is encoded in GF in the four-fermion approximation. This “softens”

the weak interactions at high energies, leading to cross-sections that fall, rather than rise, at very high
√

s.
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When a massive vector boson appears in a final state, it has a Feynman rule given by a polarization

vector ϵµ(p,λ), just like the photon did. The difference is that a massive vector particle V has three

physical polarization states λ = 1, 2, 3, satisfying

pρϵρ(p,λ) = 0 (λ = 1, 2, 3). (9.7.8)

One can sum over these polarizations for an initial or final state in a squared reduced matrix element,

with the result:

3∑

λ=1

ϵρ(p,λ)ϵ∗σ(p,λ) = −gρσ +
pρpσ

m2
V

. (9.7.9)

Summarizing the propagator and external state Feynman rules for a generic massive vector boson for

future reference:

←→ i

p2 −m2
V + iϵ

[

−gρσ +
pρpσ

m2
V

]
ρ σ

µ
←→ ϵµ(p,λ)initial state vector:

µ
final state vector: ←→ ϵ∗µ(p,λ)

If the massive vector is charged, like the W± bosons, then an arrow is added to each line to show the

direction of flow of charge.

The weak interactions and the strong interactions are invariant under non-Abelian gauge transfor-

mations, which involve a generalization of the type of gauge invariance we have already encountered in

the case of QED. This means that the gauge transformations not only multiply fields by phases, but

can mix the fields. In the next section we will begin to study the properties of field theories, known as

Yang-Mills theories, which have a non-Abelian gauge invariance. This will enable us to get a complete

theory of the weak interactions.
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10 Gauge theories

10.1 Groups and representations

In this section, we will seek to generalize the idea of gauge invariance. Recall that in QED the

Lagrangian is defined in terms of a covariant derivative

Dµ = ∂µ + iQeAµ (10.1.1)

and a field strength

Fµν = ∂µAν − ∂νAµ (10.1.2)

as

L = −1

4
FµνFµν + iΨ /DΨ−mΨΨ. (10.1.3)

This Lagrangian is invariant under the local gauge transformation

Aµ → A′
µ = Aµ −

1

e
∂µθ, (10.1.4)

Ψ → Ψ′ = eiQθΨ, (10.1.5)

where θ(x) is any function of spacetime, called a gauge parameter. Now, the result of doing one gauge

transformation θ1 followed by another gauge transformation θ2 is always a third gauge transformation

parameterized by the function θ1 + θ2:

Aµ → (Aµ −
1

e
∂µθ1)−

1

e
∂µθ2 = Aµ −

1

e
∂µ(θ1 + θ2), (10.1.6)

Ψ→ eiQθ2(eiQθ1Ψ) = eiQ(θ1+θ2)Ψ. (10.1.7)

Mathematically, these gauge transformations are an example of a group.

A group is a set of elements G = (g1, g2, . . .) and a rule for multiplying them, with the properties:

1) Closure: If gi and gj are elements of the group G, then the product gigj is also an element of G.

2) Associativity: gi(gjgk) = (gigj)gk.

3) Existence of an Identity: There is a unique element I = g1 of the group, such that for all gi in G,

Igi = giI = gi.

4) Inversion: For each gi, there is a unique inverse element (gi)−1 satisfying (gi)−1gi = gi(gi)−1 = I.

It may or may not be also true that the group also satisfies the commutativity property:

gigj = gjgi. (10.1.8)

If this is satisfied, then the group is commutative or Abelian. Otherwise it is non-commutative or

non-Abelian.
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In trying to generalize the QED Lagrangian, we will be interested in continuous Lie groups. A

continuous group has an uncountably infinite number of elements labeled by one or more continuously

varying parameters, which turn out to be nothing other than the generalizations of the gauge parameter

θ in QED. A Lie group is a continuous group that also has the desirable property of being differentiable

with respect to the gauge parameters.

The action of group elements on physics states or fields can be represented by a set of complex

n×n matrices acting on n-dimensional complex vectors. This association of group elements with n×n

matrices and the states or fields that they act on is said to form a representation of the group. The

matrices obey the same rules as the group elements themselves.

For example, the group of QED gauge transformations is the Abelian Lie group U(1). According

to eq. (10.1.5), the group is represented on Dirac fermion fields by complex 1× 1 matrices:

UQ(θ) = eiQθ. (10.1.9)

Here θ labels the group elements, and the charge Q labels the representation of the group. So we can

say that the electron, muon, and tau Dirac fields each live in a representation of the group U(1) with

charge Q = −1; the Dirac fields for up, charm, and top quarks each live in a representation with charge

Q = 2/3; and the Dirac fields for down, strange and bottom quarks each live in a representation with

Q = −1/3. We can read off the charge of any field if we know how it transforms under the gauge group.

A barred Dirac field transforms with the opposite phase from the original Dirac field of charge Q, and

therefore has charge −Q.

Objects that transform into themselves with no change are said to be in the singlet representation.

In general, the Lagrangian should be invariant under gauge transformations, and therefore must be in

the singlet representation. For example, each term of the QED Lagrangian carries no charge, and so is

a singlet of U(1). The photon field Aµ has charge 0, and is therefore usually said (by a slight abuse of

language) to transform as a singlet representation of U(1). [Technically, it does not really transform

under gauge transformations as any representation of the group U(1), because of the derivative term in

eq. (10.1.4), unless θ is a constant function so that one is making the same transformation everywhere

in spacetime.]

Let us now generalize to non-Abelian groups, which always involve representations containing more

than one field or state. Let ϕi be a set of objects that together transform in some representation R

of the group G. The number of components of ϕi is called the dimension of the representation, dR, so

that i = 1, . . . , dR. Under a group transformation,

ϕi → ϕ′
i = Ui

jϕj (10.1.10)

where Ui
j is a representation matrix. We are especially interested in transformations that are repre-

sented by unitary matrices, so that their action can be realized on the quantum Hilbert space by a

unitary operator. Consider the subset of group elements that are infinitesimally close to the identity
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element. We can write these in the form:

U(ϵ)i
j = (1 + iϵaT a)i

j . (10.1.11)

Here the T aj
i are a basis for all the possible infinitesimal group transformations. The number of matrices

T a is called the dimension of the group, dG, and there is an implicit sum over a = 1, . . . , dG. The ϵa

are a set of dG infinitesimal gauge parameters (analogous to θ in QED) that tell us how much of each

is included in the transformation represented by U(ϵ). Since U(ϵ) is unitary,

U(ϵ)† = U(ϵ)−1 = 1− iϵaT a, (10.1.12)

from which it follows that the matrices T a must be Hermitian.

Consider two group transformations gϵ and gδ parameterized by ϵa and δa. By the closure property

we can then form a new group element

gϵgδg
−1
ϵ g−1

δ . (10.1.13)

Working with some particular representation, this corresponds to

U(ϵ)U(δ)U(ϵ)−1U(δ)−1 = (1 + iϵaT a)(1 + iδbT b)(1 − iϵcT c)(1− iδdT d) (10.1.14)

= 1− ϵaδb[T a, T b] + . . . (10.1.15)

The closure property requires that this is a representation of the group element in eq. (10.1.13), which

must also be close to the identity. It follows that

[T a, T b] = ifabcT c (10.1.16)

for some set of numbers fabc, called the structure constants of the group. In practice, one often picks a

particular representation of matrices T a as the defining or fundamental representation. This determines

the structure constants fabc once and for all. The set of matrices T a for all other representations are

then required to reproduce eq. (10.1.16), which fixes their overall normalization. Equation (10.1.16)

defines the Lie algebra corresponding to the Lie group, and the hermitian matrices T a are said to be

generators of the Lie algebra for the corresponding representation. Physicists have a bad habit of using

the words “Lie group” and “Lie algebra” interchangeably, because we often only care about the subset

of gauge transformations that are close to the identity.

For any given representation R, one can always choose the generators so that:

Tr(T a
RT b

R) = I(R)δab. (10.1.17)

The number I(R) is called the index of the representation. A standard choice is that the index of the

fundamental representation is 1/2. (This can always be achieved by rescaling the T a, if necessary.)

From eqs. (10.1.16) and (10.1.17), one obtains for any representation R:

iI(R)fabc = Tr([T a
R, T b

R]T c
R). (10.1.18)
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It follows, from the cyclic property of the trace, that fabc is totally antisymmetric under interchange

of any two of a, b, c. By using the Jacobi identity,

[T a, [T b, T c]] + [T b, [T c, T a]] + [T c, [T a, T b]] = 0, (10.1.19)

which holds for any three matrices, one also finds the useful result:

fadef bce + f cdefabe + f bdef cae = 0. (10.1.20)

Two representations R and R′ are said to be equivalent if there exists some fixed matrix X such

that:

XT a
RX−1 = T a

R′ , (10.1.21)

for all a. Obviously, this requires that R and R′ have the same dimension. From a physical point of

view, equivalent representations are indistinguishable from each other.

A representation R of a Lie algebra is said to be reducible if it is equivalent to a representation in

block-diagonal form; in other words, if there is some matrix X that can be used to put all of the T a
R

simultaneously in a block-diagonal form:

XT a
RX−1 =

⎛

⎜⎜⎜
⎝

T a
r1

0 . . . 0
0 T a

r2
. . . 0

...
...

. . .
...

0 0 . . . T a
rn

⎞

⎟⎟⎟
⎠

for all a. (10.1.22)

Here the T a
ri

are representation matrices for smaller representations ri. One calls this a direct sum, and

writes it as

R = r1 ⊕ r2 ⊕ . . .⊕ rn. (10.1.23)

A representation that is not equivalent to a direct sum of smaller representations in this way is said to

be irreducible. Heuristically, reducible representations are those that can be chopped up into smaller

pieces that can be treated individually.

With the above conventions on the Lie algebra generators, one can show that for each irreducible

representation R:

(T a
RT a

R)i
j = C(R)δj

i (10.1.24)

(with an implicit sum over a = 1, . . . , dG), where C(R) is another characteristic number of the repre-

sentation R, called the quadratic Casimir invariant. If we take the sum over a of eq. (10.1.17), it is

equal to the trace of eq. (10.1.24). It follows that for each irreducible representation R, the dimension,

the index, and the Casimir invariant are related to the dimension of the group by:

dGI(R) = dRC(R). (10.1.25)
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The simplest irreducible representation of any Lie algebra is just:

T aj
i = 0. (10.1.26)

This is called the singlet representation.

Suppose that we have some representation with matrices T aj
i . Then one can show that the matrices

−(T aj
i )∗ also form a representation of the algebra eq. (10.1.16). This is called the complex conjugate

of the representation R, and is often denoted R:

T a
R

= −T a∗
R . (10.1.27)

If T a
R

is equivalent to T a
R, so that there is some fixed matrix X such that

XT a
R
X−1 = T a

R, (10.1.28)

then the representation R is said to be a real representation,† and otherwise R is said to be complex.

One can also form the tensor product of any two representations R, R′ of the Lie algebra to get

another representation:

(T a
R⊗R′)i,x

j,y ≡ (T a
R)i

jδy
x + δj

i (T
a
R′)x

y. (10.1.29)

The representation R⊗R′ has dimension dRdR′ , and is typically reducible:

R⊗R′ = R1 ⊕ . . .⊕Rn (10.1.30)

with

dR⊗R′ = dRdR′ = dR1 + . . . + dRn . (10.1.31)

This is a way to make larger representations (R1 . . . Rn out of smaller ones (R,R′).

One can check from the identity eq. (10.1.20) that the matrices

(T a)b
c = −ifabc (10.1.32)

form a representation, called the adjoint representation, with the same dimension as the group G. As

a matter of terminology, the quadratic Casimir invariant of the adjoint representation is also called the

Casimir invariant of the group, and given the symbol C(G). Note that, from eq. (10.1.25), the index

of the adjoint representation is equal to its quadratic Casimir invariant:

C(G) ≡ C(adjoint) = I(adjoint). (10.1.33)

I now list, without proof, some further group theory facts regarding Lie algebra representations:

†Real representations can be divided into two sub-cases, “positive-real” and “pseudo-real”, depending on whether
the matrix X can or cannot be chosen to be symmetric. In a pseudo-real representation, the T a cannot all be made
antisymmetric and imaginary; in a positive-real representation, they can.

169



• The number of inequivalent irreducible representations of a Lie group is always infinite.

• Unlike group element multiplication, the tensor product multiplication of representations is both

associative and commutative:

(R1 ⊗R2)⊗R3 = R1 ⊗ (R2 ⊗R3), (10.1.34)

R1 ⊗R2 = R2 ⊗R1. (10.1.35)

• The tensor product of any representation with the singlet representation just gives the original

representation back:

1⊗R = R⊗ 1 = R. (10.1.36)

• The tensor product of two real representations R1 and R2 is always a direct sum of representations

that are either real or appear in complex conjugate pairs.

• The adjoint representation is always real.

• The tensor product of two irreducible representations contains the singlet representation if and

only if they are complex conjugates of each other:

R1 ⊗R2 = 1⊕ . . . ←→ R2 = R1. (10.1.37)

It follows that if R is real, then R⊗R contains a singlet.

• The tensor product of a representation and its complex conjugate always contains both the singlet

and adjoint representations:

R⊗R = 1⊕Adjoint⊕ . . . . (10.1.38)

• As a corollary of the preceding rules, the tensor product of the adjoint representation with itself

always contains both the singlet and the adjoint:

Adjoint⊗Adjoint = 1S ⊕AdjointA ⊕ . . . . (10.1.39)

Here the S and A mean that the indices of the two adjoints on the left are combined symmetrically

and antisymmetrically respectively.

• If the tensor product of two representations contains a third, then the tensor product of the first

representation with the conjugate of the third representation contains the conjugate of the second

representation:

R1 ⊗R2 = R3 ⊕ . . . , ←→ R1 ⊗R3 = R2 ⊕ . . . , (10.1.40)

R1 ⊗R2 ⊗R3 = 1⊕ . . . , ←→ R1 ⊗R2 = R3 ⊕ . . . . (10.1.41)
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• If R1 ⊗R2 = r1 ⊕ . . .⊕ rn, then the indices satisfy the following rule:

I(R1)dR2 + I(R2)dR1 =
n∑

i=1

I(ri). (10.1.42)

Let us recall how Lie algebra representations work in the example of SU(2), the group of unitary

2 × 2 matrices (that’s the “U(2)” part of the name) with determinant 1 (that’s the “S”, for special,

part of the name). This group is familiar from the study of angular momentum in quantum mechanics,

and the defining or fundamental representation is the familiar spin-1/2 one with ϕi with i = 1, 2 or

up,down. The Lie algebra generators in the fundamental representation are:

T a =
σa

2
(a = 1, 2, 3), (10.1.43)

where the σa are the three Pauli matrices [see, for example, eq. (3.1.23)]. One finds that the structure

constants are

fabc = ϵabc =

⎧
⎪⎨

⎪⎩

+1 if a, b, c = 1, 2, 3 or 2, 3, 1 or 3, 1, 2
−1 if a, b, c = 1, 3, 2 or 3, 2, 1 or 2, 1, 3
0 otherwise.

(10.1.44)

Irreducible representations exist for any “spin” j = n/2, where n is an integer, and have dimension

2j + 1. The representation matrices Ja in the spin-j representation satisfy the SU(2) Lie algebra:

[Ja, Jb] = iϵabcJc. (10.1.45)

These representation matrices can be chosen to act on states ϕm = |j,m⟩, according to:

J3|j,m⟩ = m|j,m⟩, (10.1.46)

JaJa|j,m⟩ = j(j + 1)|j,m⟩, (10.1.47)

or, in matrix-vector notation:

J3m′

m ϕm′ = mϕm, (10.1.48)

(JaJa)m
m′

ϕm′ = j(j + 1)ϕm. (10.1.49)

We therefore recognize from eq. (10.1.24) that the quadratic Casimir invariant of the spin-j repre-

sentation of SU(2) is C(Rj) = j(j + 1). It follows from eq. (10.1.25) that the index of the spin-j

representation is I(Rj) = j(j + 1)(2j + 1)/3. The j = 1/2 representation is real, because

X(−σ
a∗

2
)X−1 =

σa

2
, (10.1.50)

where

X =
(

0 i
−i 0

)
. (10.1.51)
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More generally, one can show that all representations of SU(2) are real. Making a table of the repre-

sentations of SU(2):

spin dimension I(R) C(R) real?
singlet 0 1 0 0 yes

fundamental 1/2 2 1/2 3/4 yes
adjoint 1 3 2 2 yes

3/2 4 5 15/4 yes
. . . . . . . . . . . . . . .
j 2j + 1 j(j + 1)(2j + 1)/3 j(j + 1) yes

The tensor product of any two representations of SU(2) is reducible to a direct sum, as:

j1 ⊗ j2 = |j1 − j2|⊕ (|j1 − j2| + 1)⊕ . . .⊕ (j1 + j2) (10.1.52)

in which j is used to represent the representation of spin j.

The group SU(2) has many applications in physics. First, it serves as the Lie algebra of angular

momentum operators. The strong force (but not the electromagnetic or weak forces, or mass terms) is

invariant under a different SU(2) isospin symmetry, under which the up and down quarks transform

as a j = 1/2 doublet. Isospin is a global symmetry, meaning that the same symmetry transformation

must be made simultaneously everywhere:
(

u
d

)
→ exp(iθaσa/2)

(
u
d

)
, (10.1.53)

with a constant θa that does not depend on position in spacetime. The weak interactions involve a still

different SU(2), known as weak isospin or SU(2)L. Weak isospin is a gauge symmetry that acts only

on left-handed fermion fields. The irreducible j = 1/2 representations of SU(2)L are composed of the

pairs of fermions that couple to a W± boson, namely:
(
νeL

eL

)
;

(
νµL

µL

)
;

(
ντL

τL

)
; (10.1.54)

(
uL

d′L

)
;

(
cL

s′L

)
;

(
tL
b′L

)
. (10.1.55)

Here eL means PLe, etc., and the primes mean that these are not quark mass eigenstates. When one

makes an SU(2)L gauge transformation, the transformation can be different at each point in spacetime.

However, one must make the same transformation simultaneously on each of these representations. We

will come back to study the SU(2)L symmetry in more detail later, and see more precisely how it ties

into the weak interactions and QED.

One can generalize the SU(2) group to non-Abelian groups SU(N) for any integer N ≥ 2. The

Lie algebra generators of SU(N) in the fundamental representation are Hermitian traceless N × N

matrices. In general, a basis for the complex N × N matrices is 2N2 dimensional, since each matrix

has N2 entries with a real and imaginary part. The condition that the matrices are Hermitian removes

half of these, since each entry in the matrix is required to be the complex conjugate of another entry.

Finally, the single condition of tracelessness removes one from the basis. That leaves dSU(N) = N2 − 1
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as the dimension of the group and of the adjoint representation. For all N ≥ 3, the fundamental

representation is complex.

For example, Quantum Chromo-Dynamics (QCD), the theory of the strong interactions, is a gauge

theory based on the group SU(3), which has dimension dG = 8. In the fundamental representation,

the generators of the Lie algebra are given by:

T a =
1

2
λa (a = 1, . . . , 8), (10.1.56)

where the λa are known as the Gell-Mann matrices:

λ1 =

⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠ ; λ2 =

⎛

⎝
0 −i 0
i 0 0
0 0 0

⎞

⎠ ; λ3 =

⎛

⎝
1 0 0
0 −1 0
0 0 0

⎞

⎠ ;

λ4 =

⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ ; λ5 =

⎛

⎝
0 0 −i
0 0 0
i 0 0

⎞

⎠ ; λ6 =

⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ ;

λ7 =

⎛

⎝
0 0 0
0 0 −i
0 i 0

⎞

⎠ ; λ8 =
1√
3

⎛

⎝
1 0 0
0 1 0
0 0 −2

⎞

⎠ . (10.1.57)

Note that each of these matrices is Hermitian and traceless, as required. They have also been engineered

to satisfy Tr(λaλb) = 2δab, so that

Tr(T aT b) =
1

2
δab, (10.1.58)

and therefore the index of the fundamental representation is

I(F ) = 1/2. (10.1.59)

One can also check that

(T aT a)i
j =

4

3
δj
i , (10.1.60)

so that the quadratic Casimir invariant of the fundamental representation is

C(F ) = 4/3. (10.1.61)

By taking commutators of each pair of generators, one finds that the non-zero structure constants of

SU(3) are:

f123 = 1; (10.1.62)

f147 = −f156 = f246 = f257 = f345 = −f367 = 1/2; (10.1.63)

f458 = f678 =
√

3/2. (10.1.64)
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and those related to the above by permutations of indices, following from the condition that the fabc are

totally antisymmetric. From these one can find the adjoint representation matrices using eq. (10.1.32),

with, for example:

T 1
adjoint = −i

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 1/2 0
0 0 0 0 0 −1/2 0 0
0 0 0 0 1/2 0 0 0
0 0 0 −1/2 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (10.1.65)

etc. However, it is almost never necessary to actually use the explicit form of any matrix representation

larger than the fundamental. Instead, one relies on group-theoretic identities. For example, calculations

of Feynman diagrams often involve the index or Casimir invariant of the fundamental representation,

and the Casimir invariant of the group. One can easily compute the latter by using eq. (10.1.24) and

(10.1.32):

fabcfabd = C(G)δcd, (10.1.66)

with the result C(G) = 3.

Following is a table of the smallest few irreducible representations of SU(3):

dimension I(R) C(R) real?
singlet 1 0 0 yes

fundamental 3 1/2 4/3 no
anti-fundamental 3 1/2 4/3 no

6 5/2 10/3 no
6 5/2 10/3 no

adjoint 8 3 3 yes
10 15/2 6 no
10 15/2 6 no
. . .

It is usual to refer to each representation by its dimension in boldface. In general, the representations

can be classified by two non-negative integers α and β. The dimension of the representation labeled

by α,β is

dα,β = (α+ 1)(β + 1)(α + β + 2)/2. (10.1.67)

Some tensor products involving these representations are:

3⊗ 3 = 1⊕ 8 (10.1.68)

3⊗ 3 = 3A ⊕ 6S (10.1.69)

3⊗ 3 = 3A ⊕ 6S (10.1.70)

3⊗ 3⊗ 3 = 1A ⊕ 8M ⊕ 8M ⊕ 10S (10.1.71)

8⊗ 8 = 1S ⊕ 8A ⊕ 8S ⊕ 10A ⊕ 10A ⊕ 27S . (10.1.72)
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Here, when we take the tensor product of two or more identical representations, the irreducible represen-

tations on the right side are labeled as A, S, or M depending on whether they involve an antisymmetric,

symmetric, or mixed symmetry combination of the indices of the original representations on the left

side.

In SU(N), one can build any representation out of objects that carry only indices transforming

under the fundamental N and anti-fundamental N representations. It is useful to employ lowered

indices for the fundamental, and raised indices for the antifundamental. Then an object carrying n

lowered and m raised indices:

ϕj1...jm

i1...in (10.1.73)

transforms under the tensor product representation

N⊗ . . . ⊗N︸ ︷︷ ︸
n times

⊗N⊗ . . .⊗N︸ ︷︷ ︸
m times

. (10.1.74)

This is always reducible. To reduce it, one can decompose ϕ into parts that have different symmetry

and trace properties. So, for example, we can take an object that transforms under SU(3) as N×N,

and write it as:

ϕj
i = (ϕj

i −
1

N
δj
iϕ

k
k) + (

1

N
δj
iϕ

k
k). (10.1.75)

The first term in parentheses transforms as an adjoint representation, and the second as a singlet,

under SU(N). For SU(3), this corresponds to the rule of eq. (10.1.68).

Similarly, an object that transforms under SU(N) as N×N can be decomposed as

ϕij =
1

2
(ϕij + ϕji) +

1

2
(ϕij − ϕji). (10.1.76)

The two terms on the right-hand side correspond to an N(N + 1)/2-dimensional symmetric tensor,

and an N(N − 1)/2-dimensional antisymmetric tensor, irreducible representations. For N = 3, these

are the 6 and 3 representations, respectively, and this decomposition corresponds to eq. (10.1.69). By

using this process of taking symmetric and anti-symmetric parts and removing traces, one can find all

necessary tensor-product representation rules for any SU(N) group.

10.2 The Yang-Mills Lagrangian and Feynman rules

In this subsection, we will construct the Lagrangian and Feynman rules for a theory of Dirac fermions

and gauge bosons transforming under a non-Abelian gauge group, called a Yang-Mills theory.

Let the Dirac fermion fields be given by Ψi, where i is an index in some representation of the gauge

group with generators T aj
i . Here i = 1, . . . , dR and a = 1, . . . , dG. Under a gauge transformation, we

have:

Ψi → Ui
jΨj (10.2.1)
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where

U = exp(iθaT a). (10.2.2)

Specializing to the case of an infinitesimal gauge transformation θa = ϵa, we have

Ψi → (1 + iϵaT a)i
jΨj . (10.2.3)

Our goal is to build a Lagrangian that is invariant under this transformation.

First let us consider how barred spinors transform. Taking the Hermitian conjugate of eq. (10.2.3),

we find

Ψ†i → Ψ†j(1− iϵaT a)j
i, (10.2.4)

where we have used the fact that T a are Hermitian matrices. (Notice that taking the Hermitian

conjugate changes the heights of the representation indices, and in the case of matrices, reverses their

order. So the Dirac spinor carries a lowered representation index, while the Hermitian conjugate spinor

carries a raised index.) Now we can multiply on the right by γ0. The Dirac gamma matrices are

completely separate from the gauge group representation indices, so we get the transformation rule for

the barred Dirac spinors:

Ψ
i → Ψ

j
(1− iϵaT a)j

i. (10.2.5)

We can rewrite this in a slightly different way by noting that

T ai
j = (T ai

j )† = (T ai
j)

∗, (10.2.6)

so that

Ψ
i → (1 + iϵa[−T a∗])ijΨ

j
. (10.2.7)

Comparing with eq. (10.1.27), this establishes that Ψ
i

transforms in the complex conjugate of the

representation carried by Ψi.

Since Ψ
i
and Ψi transform as complex conjugate representations of each other, their tensor product

must be a direct sum of representations that includes a singlet. The singlet is obtained by summing

over the index i:

Ψ
i
Ψi. (10.2.8)

As a check of this, under an infinitesimal gauge transformation, this term becomes:

Ψ
i
Ψi → Ψ

j
(1− iϵaT a)j

i (1 + iϵbT b)i
k
Ψk (10.2.9)

= Ψ
i
Ψi + O(ϵ2), (10.2.10)
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where the terms linear in ϵa have indeed canceled. Therefore, we can include a fermion mass term in

the Lagrangian:

Lm = −mΨ
i
Ψi. (10.2.11)

This shows that each component of the field Ψi must have the same mass.

Next we would like to include a derivative kinetic term for the fermions. Just as in QED, the term

iΨ
i
γµ∂µΨi (10.2.12)

is not acceptable by itself, because ∂µΨi does not gauge transform in the same way that Ψi does. The

problem is that the derivative can act on the gauge-parameter function ϵa, giving an extra term:

∂µΨi → (1 + iϵaT a)i
j∂µΨj + i(∂µϵ

a)T aj
i Ψj. (10.2.13)

By analogy with QED, we can fix this by writing a covariant derivative involving vectors fields, which

will also transform in such a way as to cancel the last term in eq. (10.2.13):

DµΨi = ∂µΨi + igAa
µT aj

i Ψj . (10.2.14)

The vector boson fields Aa
µ are known as gauge fields. They carry an adjoint representation index a

in addition to their spacetime vector index µ. The number of such fields is equal to the number of

generator matrices T a, which we recall is the dimension of the gauge group dG. The quantity g is a

coupling, known as a gauge coupling. It is dimensionless, and is the direct analog of the coupling e

in QED. The entries of the matrix T aj
i take the role played by the charges q in QED. Notice that the

definition of the covariant derivative depends on the representation matrices for the fermions, so there

is really a different covariant derivative depending on which fermion representation one is acting on.

Now one can check that the Lagrangian

Lfermions = iΨ
i
γµDµΨi −mΨ

i
Ψi (10.2.15)

is invariant under infinitesimal gauge transformations, provided that the gauge field is taken to trans-

form as:

Aa
µ → Aa

µ −
1

g
∂µϵ

a − fabcϵbAc
µ. (10.2.16)

The term with a derivative acting on ϵa is the direct analog of a corresponding term in QED, see

eq. (10.1.4). The last term vanishes for Abelian groups like QED, but it is necessary to ensure that the

covariant derivative of a Dirac field transforms in in the same way as the field itself:

DµΨi → (1 + iϵaT a)i
jDµΨj . (10.2.17)

If we limit ourselves to constant gauge parameters ∂µϵa = 0, then the transformation in eq. (10.2.16)

is of the correct form for a field in the adjoint representation.
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Having introduced a gauge field for each Lie algebra generator, we must now include kinetic terms

for them. By analogy with QED, the gauge field Lagrangian has the form:

Lgauge = −1

4
FµνaF a

µν , (10.2.18)

with an implied sum on a, where F a
µν is an antisymmetric field strength tensor for each Lie algebra

generator. However, we must also require that this Lagrangian is invariant under gauge transformations.

This is accomplished if we choose:

F a
µν = ∂µAa

ν − ∂νAa
µ − gfabcAb

µAc
ν . (10.2.19)

Then one can check, using eq. (10.2.16), that

F a
µν → F a

µν − fabcϵbF c
µν . (10.2.20)

From this it follows that Lgauge transforms as:

−1

4
FµνaF a

µν → −
1

4
FµνaF a

µν −
1

2
FµνafabcϵbF c

µν + O(ϵ2). (10.2.21)

The extra term linear in ϵ vanishes, because the part FµνaF c
µν is symmetric under interchange of a↔ c,

but its gauge indices are contracted with fabc, which is antisymmetric under the same interchange.

Therefore, eq. (10.2.18) is a gauge singlet.

Putting the above results together, we have found a gauge-invariant Lagrangian for Dirac fermions

coupled to a non-Abelian gauge field:

LYang-Mills = Lgauge + Lfermions. (10.2.22)

Now we can find the Feynman rules for this theory in the usual way. First we identify the kinetic

terms that are quadratic in the fields. That part of LYang-Mills is:

Lkinetic = −1

4
(∂µAa

ν − ∂νA
a
µ)(∂µAaν − ∂νAaµ) + iΨ

i/∂Ψi −mΨ
i
Ψi. (10.2.23)

These terms have exactly the same form as in the QED Lagrangian, but with a sum over dG copies of

the vector fields, labeled by a, and over dR copies of the fermion field, labeled by i. Therefore we can

immediately obtain the Feynman rules for vector and fermion propagators. For gauge fields, we have:

←→ δab i

p2 + iϵ

[
−gµν + (1− ξ)pµpν

p2

]µ, a ν, b

where pµ is the 4-momentum along either direction in the wavy line, and one can take ξ = 1 for

Feynman gauge and ξ = 0 for Landau gauge. The δab in the Feynman rule just means that a gauge

field does not change to a different type as it propagates. Likewise, the Dirac fermion propagator is:

←→ δj
i

i(/p + m)

p2 −m2 + iϵ

j i
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with 4-momentum pµ along the arrow direction, and m the mass of the Dirac fermion. Again the factor

of δj
i means the fermion does not change its identity as it propagates.

The interaction Feynman rules follow from the remaining terms in LYang-Mills. First, there is a

fermion-fermion-vector interaction coming from the covariant derivative in LΨ. Identifying the Feyn-

man rule as i times the term in the Lagrangian [recall the discussion surrounding eq. (6.4.5)], from

LAΨΨ = −gAa
µΨγµT aΨ (10.2.24)

we get:

←→ −igT aj
i γµ

j

i

µ, a

This rule says that the coupling of a gauge field to a fermion line is proportional to the corresponding

Lie algebra generator matrix. Since the matrices T a are not diagonal for non-Abelian groups, this

interaction can change one fermion into another. The Lagrangian density Lgauge contains three-

gauge-field and four-gauge-field couplings, proportional to g and g2 respectively. After combining some

terms using the antisymmetry of the fabc symbol, they can be written as

LAAA = gfabc(∂µAa
ν)A

µbAνc, (10.2.25)

LAAAA = −g2

4
fabef cdeAa

µAb
νA

µcAνd. (10.2.26)

The three-gauge-field couplings involve a spacetime derivative, which we can treat according to the rule

of eq. (9.6.26), as i times the momentum of the field it acts on (in the direction going into the vertex).

Then the Feynman rule for the interaction of three gauge bosons with (spacetime vector, gauge) indices

µ, a and ν, b and ρ, c is obtained by taking functional derivatives of the Lagrangian density with respect

to the corresponding fields:

i
δ3

δAa
µδA

b
νδA

c
ρ
LAAA, (10.2.27)

resulting in:

←→ −gfabc[gµν(p − q)ρ + gνρ(q − k)µ + gρµ(k − p)ν ]

ρ, c

ν, b

µ, a
p

q

k
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where pµ, qµ, and kµ are the gauge boson 4-momenta flowing into the vertex. Likewise, the Feynman

rule for the coupling of four gauge bosons with indices µ, a and ν, b and ρ, c and σ, d is:

i
δ4

δAa
µδA

b
νδA

c
ρδA

d
σ
LAAAA, (10.2.28)

leading to:

←→
−ig2

[
fabef cde(gµρgνσ − gµσgνρ)

+ facef bde(gµνgρσ − gµσgνρ)

+ fadef bce(gµνgρσ − gµρgνσ)
]

µ, a ν, b

ρ, cσ, d

There are more terms in these Feynman rules than in the corresponding Lagrangian, since the functional

derivatives have a choice of several fields on which to act. Notice that these fields are invariant under

the simultaneous interchange of all the indices and momenta for any two vector bosons, for example

(µ, a, p) ↔ (ν, b, q). The above Feynman rules are all that is needed to calculated tree-level Feynman

diagrams in a Yang-Mills theory with Dirac fermions. External state fermions and gauge bosons are

assigned exactly the same rules as for fermions and photons in QED. The external state particles carry

a representation or gauge index determined by the interaction vertex to which that line is attached.

[However, this is not quite the end of the story if one needs to compute loop diagrams. In that case,

one must take into account that not all of the gauge fields that can propagate in loops are actually

physical. One way to fix this problem is by introducing “ghost” fields that only appear in loops, and

in particular never appear in initial or final states. The ghost fields do not create and destroy real

particles; they are really just book-keeping devices that exist only to cancel the unphysical contributions

of gauge fields in loops. We will not do any loop calculations in this course, so we will not go into more

detail on that issue.]

The Yang-Mills theory we have constructed makes several interesting predictions. One is that the

gauge fields are necessarily massless. If one tries to get around this by introducing a mass term for the

vector gauge fields, like:

LA-mass = m2
V Aa

µAaµ, (10.2.29)

then one finds that this term is not invariant under the gauge transformation of eq. (10.2.16). Therefore,

if we put in such a term, we necessarily violate the gauge invariance of the Lagrangian, and the gauge

symmetry will not be a symmetry of the theory. This sounds like a serious problem, because there

is only one known freely-propagating, non-composite, massless vector field, the photon. In particular,

the massive W± boson cannot be described by the Yang-Mills theory that we have so far. One way

to proceed would be to simply keep the term in eq. (10.2.29), and accept that the theory is not fully

invariant under the gauge symmetry. The only problem with this is that the theory would be non-

renormalizable in that case; as a related problem, unitarity would be violated in scattering at very
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high energies. Instead, we can explain the non-zero mass of the W± boson by enlarging the theory to

include scalar fields, leading to a spontaneous breakdown in the gauge symmetry.

Another nice feature of the Yang-Mills theory is that several different couplings are predicted to

be related to each other. Once we have picked a gauge group G, a set of irreducible representations

for the fermions, and the gauge coupling g, then the interaction terms are all fixed. In particular, if

we know the coupling of one type of fermion to the gauge fields, then we know g. This in turn allows

us to predict, as a consequence of the gauge invariance, what the couplings of other fermions to the

gauge fields should be (as long as we know their representations), and what the three-gauge-boson and

four-gauge-boson vertices should be.
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11 Quantum Chromo-Dynamics (QCD)

11.1 QCD Lagrangian and Feynman rules

The strong interactions are based on a Yang-Mills theory with gauge group SU(3)c, with quarks

transforming in the fundamental 3 representation. The subscript c is to distinguish this as the group

of invariances under transformations of the color degrees of freedom. As far as we can tell, this is

an exact symmetry of nature. (There is also an approximate SU(3)flavor symmetry under which the

quark flavors u, d, s transform into each other; isospin is an SU(2) subgroup of this symmetry.) Each

of the quark Dirac fields u, d, s, c, b, t transforms separately as a 3 of SU(3)c, and each barred Dirac

field u, d, s, c, b, t therefore transforms as a 3, as we saw on general grounds in subsection 10.2.

For example, an up quark is created in an initial state by any one of the three color component

fields:

u =

⎛

⎝
ured

ublue

ugreen

⎞

⎠ =

⎛

⎝
u1

u2

u3

⎞

⎠ , (11.1.1)

while an anti-up quark is created in an initial state by any of the fields:

u = ( ured ublue ugreen ) = ( u1 u2 u3 ) . (11.1.2)

Since SU(3)c is an exact symmetry, no experiment can tell the difference between a red quark and a

blue quark, so the labels are intrinsically arbitrary. In fact, we can do a different SU(3)c transformation

at each point in spacetime, but simultaneously on each quark flavor, so that:

u→ eiθa(x)T a
u, d→ eiθa(x)T a

d, s→ eiθa(x)T a
s, etc., (11.1.3)

where T a = λa

2 with a = 1, . . . , 8, and the θa(x) are any gauge parameter functions of our choosing.

This symmetry is in addition to the U(1)EM gauge transformations:

u→ eiθ(x)Quu, d→ eiθ(x)Qdd, s→ eiθ(x)Qss, etc., (11.1.4)

where Qu = Qc = Qt = 2/3 and Qd = Qs = Qb = −1/3. For each of the 8 generator matrices T a of

SU(3)c, there is a corresponding gauge vector boson called a gluon, represented by a field Ga
µ carrying

both a spacetime vector index and an SU(3)c adjoint representation index.

One says that the unbroken gauge group of the Standard Model is SU(3)c × U(1)EM, with the

fermions and gauge bosons transforming as:

SU(3)c × U(1)EM spin

u, c, t (3,+2
3 ) 1

2

d, s, b (3,−1
3 ) 1

2

e, µ, τ (1,−1) 1
2

νe, νµ, ντ (1, 0) 1
2

γ (1, 0) 1

gluon (8, 0) 1
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The gluon appears together with the photon field Aµ in the full covariant derivative for quark fields.

Using an index i = 1, 2, 3 to run over the color degrees of freedom, the covariant derivatives are:

Dµui = ∂µui + ig3G
a
µT aj

i uj + ieAµ(
2

3
)ui, (11.1.5)

Dµdi = ∂µdi + ig3G
a
µT aj

i dj + ieAµ(−1

3
)di. (11.1.6)

Here g3 is the coupling constant associated with the SU(3)c gauge interactions. The strength of the

strong interactions comes from the fact that g3 ≫ e.

Using the general results for a gauge theory in subsection 10.2, we know that the propagator for

the gluon is that of a massless vector field just like the photon:

←→ δab i

p2 + iϵ

[
−gµν + (1− ξ)pµpν

p2

]µ, a ν, b

Note that it is traditional, in QCD, to use “springy” lines for gluons, to easily distinguish them from

wavy photon lines. There are also quark-gluon interaction vertices for each flavor of quark:

←→ −ig3T
aj
i γµ

j

i

µ, a

Here the quark line can be any of u, d, s, c, b, t. The gluon interaction changes the color of the quarks

when T a is non-diagonal, but never changes the flavor of the quark line, so an up quark remains an up

quark, a down quark remains a down quark, etc.

The Lagrangian density also contains a “pure glue” part:

Lglue = −1

4
FµνaF a

µν (11.1.7)

F a
µν = ∂µGa

ν − ∂νG
a
µ − g3f

abcGb
µGc

ν , (11.1.8)

where fabc are the structure constants for SU(3)c given in eqs. (10.1.62)-(10.1.64). In addition to the

propagator, this implies that there are three-gluon and four-gluon interactions:

The spacetime- and gauge-index structure are just as given in section 10.2 in the general case, with

g → g3.
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11.2 Quark-quark scattering (qq → qq)

To see how the Feynman rules for QCD work in practice, let us consider the example of quark-quark

scattering. This is not a directly observable process, because the quarks in both the initial state and

final state are parts of bound states. However, it does form the microscopic part of a calculation for

the observable process hadron+hadron→jet+jet. We will see how to use the microscopic cross-section

result to obtain the observable cross-section later, in subsection 11.5. To be specific, let us consider

the process of an up-quark and down-quark scattering from each other:

ud→ ud. (11.2.1)

Let us assign momenta, spin, and color to the quarks as follows:

Particle Momentum Spin Spinor Color
initial u p s1 u(p, s1) = u1 i
initial d p′ s2 u(p′, s2) = u2 j
final u k s3 u(k, s3) = u3 l
final d k′ s4 u(k′, s4) = u4 m

(11.2.2)

At leading order in an expansion in g3, there is only one Feynman diagram:

u

d

p, i

p′, j

k, l

k′,m

p− k

µ, a

ν, b

The reduced matrix element can now be written down by the same procedure as in QED. One obtains,

using Feynman gauge (ξ = 1):

M =
[
u3(−ig3γµT ai

l )u1

] [
u4(−ig3γνT

bj
m )u2

] [−igµνδab

(p− k)2

]

(11.2.3)

= ig2
3T

ai
l T aj

m [u3γµu1] [u4γ
µu2] /t (11.2.4)

where t = (p− k)2. This matrix element is exactly what one finds in QED for e−µ− → e−µ−, but with

the QED squared coupling replaced by a product of matrices depending on the color combination:

e2 → g2
3T

ai
l T aj

m . (11.2.5)

This illustrates that the “color charge matrix” g3T ai
l is analogous to the electric charge eQf . There are

34 = 81 color combinations for quark-quark scattering.

In order to find the differential cross-section, we continue as usual by taking the complex square of

the reduced matrix element:

|M|2 = g4
3(T

ai
l T aj

m )(T bi
l T bj

m )∗|M̂|2, (11.2.6)
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for each i, j, l,m (with no implied sum yet), and

M̂ = [u3γµu1] [u4γ
µu2] /t. (11.2.7)

It is not possible, even in principle, to distinguish between colors. However, one can always imagine

fixing, by an arbitrary choice, that the incoming u-quark has color red= 1; then the colors of the other

quarks can be distinguished up to SU(3)c rotations that leave the red component fixed. In practice,

one does not measure the colors of quarks in an experiment, even with respect to some arbitrary choice,

so we will sum over the colors of the final state quarks and average over the colors of the initial state

quarks:

1

3

∑

i

1

3

∑

j

∑

l

∑

m

|M|2. (11.2.8)

To do the color sum/average most easily, we note that, because the gauge group generator matrices

are Hermitian,

(T bi
l T bj

m )∗ = (T bl
i T bm

j ). (11.2.9)

Therefore, the color factor is

1

3

∑

i

1

3

∑

j

∑

l

∑

m

(T ai
l T aj

m )(T bi
l T bj

m )∗ =
1

9

∑

i,j,l,m

(T ai
l T bl

i )(T aj
m T bm

j ) (11.2.10)

=
1

9
Tr(T aT b)Tr(T aT b) (11.2.11)

=
1

9
I(3)δabI(3)δab (11.2.12)

=
1

9
(
1

2
)2dG (11.2.13)

=
2

9
(11.2.14)

In doing this, we have used the definition of the index of a representation eq. (10.1.17); the fact that

the index of the fundamental representation is 1/2; and the fact that the sum over a, b of δabδab just

counts the number of generators of the Lie algebra dG, which is 8 for SU(3)c.

Meanwhile, the rest of |M|2, including a sum over final state spins and an average over initial state

spins, can be taken directly from the corresponding result for e−µ− → e−µ− in QED, which we found

by crossing symmetry in eq. (7.7.10). Stripping off the factor e4 associated with the QED charges, we

find in the high energy limit of negligible quark masses,

1

2

∑

s1

1

2

∑

s2

∑

s3

∑

s4

|M̂|2 = 2

(
s2 + u2

t2

)

. (11.2.15)

Putting this together with the factor of g4
3 and the color factor above, we have

|M|2 ≡ 1

9

∑

colors

1

4

∑

spins

|M|2 =
4g4

3

9

(
s2 + u2

t2

)

. (11.2.16)
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The notation |M|2 is a standard notation, which for a general process implies the appropriate sum/average

over spin and color. The differential cross-section for this process is therefore:

dσ

d(cos θ)
=

1

32πs
|M|2 =

2πα2
s

9s

(
s2 + u2

t2

)

, (11.2.17)

where

αs =
g2
3

4π
(11.2.18)

is the strong-interaction analog of the fine structure constant. Since we are neglecting quark masses,

the kinematics for this process is the same as in any massless 2→2 process, for example as found in

eqs. (7.5.28)-(7.5.32). Therefore, one can replace cos θ in favor of the Mandelstam variable t, using

d(cos θ) =
2dt

s
, (11.2.19)

so

dσ

dt
=

4πα2
s

9s2

(
s2 + u2

t2

)

. (11.2.20)

11.3 Renormalization

Since the strong interactions involve a coupling g3 that is not small, we should worry about higher-order

corrections to the treatment of quark-quark scattering in the previous subsection. Let us discuss this

issue in a more general framework than just QCD. In a general gauge theory, the Feynman diagrams

contributing to the reduced matrix element at one-loop order in fermion+fermion′ → fermion+fermion′

scattering are the following:
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In each of these diagrams, there is a loop momentum ℓµ that is unfixed by the external 4-momenta, and

must be integrated over. Only the first two diagrams give a finite answer when one naively integrates

d4ℓ. This is not surprising; we do not really know what physics is like at very high energy and mo-

mentum scales, so we have no business in integrating over them. Therefore, one must introduce a very

high cutoff mass scale M , and replace the loop-momentum integral by one that kills the contributions

to the reduced matrix element from |ℓµ| ≥M . Physically, M should be the mass scale at which some

as-yet-unknown new physics enters in to alter the theory. It is generally thought that the highest this

cutoff is likely to be is about MPlanck = 2.4 × 1018 GeV (give or take an order of magnitude), but it

could conceivably be much lower.

As an example of what can happen, consider the next-to-last Feynman diagram given above. Let

us call qµ = pµ − kµ the 4-momentum flowing through either of the vector-boson propagators. Then

the part of the reduced matrix element associated with the fermion loop is:

∑

f

(−1)
∫

|ℓµ|≤M
d4ℓ Tr

{[
−iĝ(Tf )aj

i γ
µ
] [ i(/ℓ + /q + m̂f )

(ℓ+ q)2 − m̂2
f + iϵ

] [
−iĝ(Tf )bij γ

ν
] [ i(/ℓ + m̂f )

ℓ2 − m̂2
f + iϵ

]}

.

(11.3.1)

This involves a sum over all fermions that can propagate in the loop, and a trace over the spinor indices

of the fermion loop. For reasons that will become clear shortly, we are calling the gauge coupling of

the theory ĝ and the mass of each fermion species m̂f . We are being purposefully vague about what
∫
|ℓµ|≤M d4ℓ means, in part because there are actually several different ways to cutoff the integral at large

M . (A straightforward step-function cutoff will work, but is clumsy to carry out and even clumsier to

interpret.)

The d4ℓ factor can be written as an angular part times a radial part |ℓ|3d|ℓ|. Now there are up to

five powers of |ℓ| in the numerator (three from the d4ℓ, and two from the propagators), and four powers
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of |ℓ| in the denominator from the propagators. So naively, one might expect that the result of doing

the integral will scale like M2 for a large cutoff M . However, there is a conspiratorial cancellation, so

that the large-M behavior is only logarithmic. The result is proportional to:

ĝ2(q2gµν − qµqν)
∑

f

Tr(T a
f T b

f ) [ln (M/m) + . . .] (11.3.2)

where the . . . represents a contribution that does not get large as M gets large. The m is a characteristic

mass scale of the problem; it is something with dimensions of mass built out of qµ and the m̂f . It must

appear in the formula in the way it does in order to make the argument of the logarithm dimensionless.

The arbitrariness in the precise definition of m can be absorbed into the “. . .”.

When one uses eq. (11.3.2) in the rest of the Feynman diagram, it is clear that the entire contribution

must be proportional to:

Mfermion loop in gauge prop. ∝ ĝ4
∑

f

I(Rf )ln(M/m) + . . . . (11.3.3)

What we are trying to keep track of here is just the number of powers of ĝ, the group-theory factor,

and the large-M dependence on ln(M/m).

A similar sort of calculation applies to the last diagram involving a gauge vector boson loop. Each

of the three-vector couplings involves a factor of fabc, with two of the indices contracted because of

the propagators. So it must be that the loop part of the diagram make a contribution proportional to

facdf bcd = C(G)δab. It is again logarithmically divergent, so that

Mgauge loop in gauge prop. ∝ ĝ4C(G)ln(M/m) + . . . . (11.3.4)

Doing everything carefully, one finds that the contributions to the differential cross-section is given by:

dσ = dσtree(ĝ)

⎧
⎨

⎩1 +
ĝ2

4π2

⎡

⎣11

3
C(G)− 4

3

∑

f

I(Rf )

⎤

⎦ ln(M/m) + . . .

⎫
⎬

⎭ , (11.3.5)

where dσtree(ĝ) is the tree-level result (which we have already worked out in the special case of QCD),

considered to be a function of ĝ. To be specific, it is proportional to ĝ4. Let us ignore all the other

diagrams for now; the justification for this will be revealed soon.

The cutoff M may be quite large. Furthermore, we typically do not know what it is, or what the

specific very-high-energy physics associated with it is. (If we did, we could just redo the calculation

with that physics included, and a higher cutoff.) Therefore, it is convenient to absorb our ignorance of

M into a redefinition of the coupling. Specifically, inspired by eq. (11.3.5), one defines a renormalized

or running coupling g(µ) by writing:

ĝ = g(µ)

⎧
⎨

⎩1− (g(µ))2

16π2

⎡

⎣11

3
C(G)− 4

3

∑

f

I(Rf )

⎤

⎦ ln(M/µ)

⎫
⎬

⎭ , (11.3.6)
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Here µ is a new mass scale, called the renormalization scale, that we get to pick. (It is not uncommon

to see the renormalization scale denoted by Q instead of µ.) The original coupling ĝ is called the bare

coupling. One can invert this relation to write the renormalized coupling in terms of the bare coupling:

g(µ) = ĝ

⎧
⎨

⎩1 +
ĝ2

16π2

⎡

⎣11

3
C(G)− 4

3

∑

f

I(Rf )

⎤

⎦ ln(M/µ) + . . .

⎫
⎬

⎭ , (11.3.7)

where we are treating g(µ) as an expansion in ĝ, dropping terms of order ĝ5 everywhere.

The reason for this strategic definition is that, since we know that dσtree(ĝ) is proportional to ĝ4,

we can now write, using eqs. (11.3.5) and (11.3.6):

dσ = dσtree(g) (ĝ/g)4

⎧
⎨

⎩1 +
ĝ2

4π2

⎡

⎣11

3
C(G)− 4

3

∑

f

I(Rf )

⎤

⎦ ln(M/m) + . . .

⎫
⎬

⎭ (11.3.8)

= dσtree(g)

⎧
⎨

⎩1 +
g2

4π2

⎡

⎣11

3
C(G)− 4

3

∑

f

I(Rf )

⎤

⎦ ln(µ/m) + . . .

⎫
⎬

⎭ . (11.3.9)

Here we are again dropping terms that go like g4; these are comparable to 2-loop contributions that

we are neglecting anyway. The factor dσtree(g) is the tree-level differential cross-section, but with g(µ)

in place of ĝ. This formula looks very much like eq. (11.3.5), but with the crucial difference that the

unknown cutoff M has disappeared, and is replaced by the scale µ that we know, because we get to

pick it.

What should we pick µ to be? In principle we could pick it to be the cutoff M , except that we do

not know what that is. Besides, the logarithm could then be very large, and perturbation theory would

converge very slowly or not at all. For example, suppose that M = MPlanck, and the characteristic

energy scale of the experiment we are doing is, say, m = 0.511 MeV or m = 1000 GeV. These choice

might be appropriate for experiments involving a non-relativistic electron and a TeV-scale collider,

respectively. Then

ln(M/m) ≈ 50 or 35. (11.3.10)

This logarithm typically gets multiplied by 1/16π2 times g2 times a group-theory quantity, but is still

large. This suggests that a really good choice for µ is to make the logarithm ln(µ/m) as small as

possible, so that the correction term in eq. (11.3.9) is small. Therefore, one should choose

µ ≈ m. (11.3.11)

Then, to a first approximation, one can calculate using the tree-level approximation using a renormal-

ized coupling g(µ), knowing that the one-loop correction from these diagrams is small. The choice of

renormalization scale eq. (11.3.11) allows us to write:

dσ ≈ dσtree(g(µ)). (11.3.12)
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Of course, this is only good enough to get rid of the large logarithmic one-loop corrections. If you really

want all one-loop corrections, there is no way around calculating all the one-loop diagrams, keeping all

the pieces, not just the ones that get large as M →∞.

What about the remaining diagrams? If we isolate the M → ∞ behavior, they fall into three

classes. First, there are diagrams that are not divergent at all (the first two diagram). Second, there

are diagrams (the third through sixth diagrams) that are individually divergent like ln(M/m), but sum

up to a total that is not divergent. Finally, the seventh through tenth diagrams have a logarithmic

divergence, but it can be absorbed into a similar redefinition of the mass. A clue to this is that they

all involve sub-diagrams:

The one-loop renormalized or running mass mf (µ) is defined in terms of the bare mass m̂f by

m̂f = mf (µ)

(

1− g2

2π2
C(Rf )ln(M/µ)

)

, (11.3.13)

or

mf (µ) = m̂f

(

1 +
g2

2π2
C(Rf )ln(M/µ) + . . .

)

, (11.3.14)

where C(Rf ) is the quadratic Casimir invariant of the representation carried by the fermion f . It is

an amazing fact that the two redefinitions eqs. (11.3.6) and (11.3.13) are enough to remove the cutoff

dependence of all cross-sections in the theory up to and including one-loop order. In other words,

one can calculate dσ for any process, and express it in terms of the renormalized mass m(µ) and

the renormalized coupling g(µ), with no M -dependence. This is what it means for a theory to be

renormalizable at one loop order.

In Yang-Mills theories, one can show that by doing some redefinitions of the form:

ĝ = g(µ)

[

1 +
L∑

n=1

bng2npn(ln(M/µ))

]

, (11.3.15)

m̂f = mf (µ)

[

1 +
L∑

n=1

cng2nqn(ln(M/µ))

]

, (11.3.16)

one can simultaneously eliminate all dependence on the cutoff in any process up to L-loop order. Here

pn(x) and qn(x) are polynomials of degree n, and bn, cn are some constants that depend on group

theory invariants like the Casimir invariants of the group and the representations, and the index. At

any finite loop order, what is left in the expression for any cross-section after writing it in terms of the

renormalized mass m(µ) and renormalized coupling g(µ) is a polynomial in ln(µ/m); these are to be

made small by choosing† µ ≈ m. This is what it means for a theory to be renormalizable at all loop

†Of course, there might be more than one characteristic energy scale in a given problem, rather than a single m. If so,
and if they are very different from each other, then one may be stuck with some large logarithms, no matter what µ is
chosen. This has to be dealt with by fancier methods.
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orders. Typically, the specifics of these redefinitions is only known at 2- or 3- or occasionally 4- loop

order, except in some special theories. If a theory is non-renormalizable, it does not necessarily mean

that the theory is useless; we saw that the four-fermion theory of the weak interactions makes reliable

predictions, and we still have no more predictive theory for gravity than Einstein’s relativity. It does

mean that we expect the theory to have trouble making predictions about processes at high energy

scales.

We have seen that we can eliminate the dependence on the unknown cutoff of a theory by defining

a renormalized running coupling g(µ) and mass mf (µ). When one does an experiment in high energy

physics, the results are first expressed in terms of observable quantities like cross-sections, decay rates,

and physical masses of particles. Using this data, one extracts the value of the running couplings and

running masses at some appropriately-chosen renormalization scale µ, using a theoretical prediction

like eq. (11.3.9), but with the non-logarithmic corrections included too. (The running mass is not quite

the same thing as the physical mass. The physical mass can be determined from the experiment by

kinematics, the running mass is related to it by various corrections.) The running parameters can then

be used to make predictions for other experiments. This tests both the theoretical framework, and the

specific values of the running parameters.

The bare coupling and the bare mass never enter into this process of comparing theory to experi-

ment. If we measure dσ in an experiment, we see from eq. (11.3.5) that in order to determine the bare

coupling ĝ from the data, we would also need to know the cutoff M . However, we do not know what

M is. We could guess at it, but this would usually be a wild guess, devoid of practical significance.

A situation that arises quite often is that one extracts running parameters from an experiment

with a characteristic energy scale µ0, and one wants to compare with data from some other experiment

that has a completely different characteristic energy scale µ. Here µ0 and µ each might be the mass

of some particle that is decaying, or the momentum exchanged between particles in a collision, or

some suitable average of particle masses and exchanged momenta. It would be unwise to use the same

renormalization scale when computing the theoretical expectations for both experiments, because the

loop corrections involved in at least one of the two cases will be unnecessarily large. What we need is

a way of taking a running coupling as determined in the first experiment at a renormalization scale µ0,

and getting from it the running coupling at any other scale µ. The change of the choice of scale µ is

known as the renormalization group.‡

As an example, let us consider how g(µ) changes in a Yang-Mills gauge theory. Since the differential

cross-section dσ for fermion+fermion′ →fermion+fermion′ is an observable, in principle it should not

depend on the choice of µ, which is an arbitrary one made by us. Therefore, we can require that

eq. (11.3.9) is independent of µ. Remembering that dσtree ∝ g4, we find:

0 =
d

dµ
(dσ) = (dσtree)

⎧
⎨

⎩
4

g

dg

dµ
+

g2

4π2

⎡

⎣11

3
C(G)− 4

3

∑

f

I(Rf )

⎤

⎦ 1

µ
+ . . .

⎫
⎬

⎭ , (11.3.17)

‡The use of the word “group” is historical; this is not a group in the mathematical sense defined earlier.
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where we are dropping all higher-loop-order terms that are proportional to (dσtree)g4. The first term

in eq. (11.3.17) comes from the derivative acting on the g4 inside dσtree. The second term comes from

the derivative acting on the lnµ one-loop correction term. The contribution from the derivative acting

on the g2 in the one-loop correction term can be self-consistently judged, from the equation we are

about to write down, as proportional to (dσtree)g5, so it is neglected as a higher-loop-order effect in

the expansion in g2. So, it must be true that:

µ
dg

dµ
=

g3

16π2

⎡

⎣−11

3
C(G) +

4

3

∑

f

I(Rf )

⎤

⎦+ . . . . (11.3.18)

This differential equation, called the renormalization group equation or RG equation, tells us how

to change the coupling g(µ) when we change the renormalization scale. An experimental result will

provide a boundary condition at some scale µ0, and then we can solve the RG equation to find g(µ) at

some other scale. Other experiments then test the whole framework. The right-hand side of the RG

equation is known as the beta function for the running coupling g(µ), and is written β(g), so that:

µ
dg

dµ
= β(g). (11.3.19)

In a Yang-Mills gauge theory, including the effects of Feynman diagrams with more loops,

β(g) =
g3

16π2
b0 +

g5

(16π2)2
b1 +

g7

(16π2)3
b2 + . . . (11.3.20)

where we already know that

b0 = −11

3
C(G) +

4

3

∑

f

I(Rf ), (11.3.21)

and, just to give you an idea of how it goes,

b1 = −34

3
C(G)2 +

20

3
C(G)

∑

f

I(Rf ) + 4
∑

f

C(Rf )I(Rf ), (11.3.22)

etc. In QCD, the coefficients up to b3 (four-loop order) have been calculated. In practical applications,

it is usually best to work within an effective theory in which fermions much heavier than the scales µ of

interest are ignored. The sum over fermions then includes only those satisfying mf
<∼ µ. The difference

between this effective theory and the more complete theory with all known fermions included can be

absorbed into a redefinition of running parameters. The advantage of doing this is that perturbation

theory will converge more quickly and reliably if heavy fermions (that are, after all, irrelevant to the

process under study) are not included.

In the one-loop order approximation, one can solve the RG equation explicitly. Writing

dg2

dlnµ
=

b0

8π2
g4, (11.3.23)

you can check that

g2(µ) =
g2(µ0)

1− b0g2(µ0)
8π2 ln(µ/µ0)

. (11.3.24)
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To see how this works in QCD, let us examine the one-loop beta function. In SU(3), C(G) = 3,

and each quark flavor is in a fundamental 3 representation with I(3) = 1/2. Therefore,

b0,QCD = −11 +
2

3
nf (11.3.25)

where nf is the number of “active” quarks in the effective theory, usually those with mass <∼ µ.

The crucial fact is that since there are only 6 quark flavors known, b0,QCD is definitely negative for

all accessible scales µ, and so the beta function is definitely negative. For an effective theory with

nf = (3, 4, 5, 6) quark flavors, b0 = (−9,−25/3,−23/3,−7). Writing the solution to the RG equation,

eq. (11.3.24), in terms of the running αs, we have:

αs(µ) =
αs(µ0)

1− b0αs(µ0)
2π ln(µ/µ0)

. (11.3.26)

Since b0 is negative, we can make αs blow up by choosing µ small enough. To make this more explicit,

we can define a quantity

ΛQCD = µ0e
2π/b0αs(µ0), (11.3.27)

with dimensions of [mass], implying that

αs(µ) =
2π

b0ln(µ/ΛQCD)
. (11.3.28)

This shows that at the scale µ = ΛQCD, the QCD gauge coupling is predicted to blow up, according to

the 1-loop RG equation. A qualitative graph of the running of αs(µ) as a function of renormalization

scale µ is shown below:

Renormalization scale Q

αS(Q)

ΛQCD

Of course, once αs(µ) starts to get big, we should no longer trust the one-loop approximation,

since two-loop effects are definitely big. The whole analysis has been extended to four-loop order,
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with significant numerical changes, but the qualitative effect remains: at any finite loop order, there is

some scale ΛQCD at which the gauge coupling is predicted to blow up in a theory with a negative beta

function. This is not a sign that QCD is wrong. Instead, it is a sign that perturbation theory is not

going to be able to make good predictions when we do experiments near µ = ΛQCD or lower energy

scales. One can draw Feynman diagrams and make rough qualitative guesses, but the numbers cannot

be trusted. On the other hand, we see that for experiments conducted at characteristic energies much

larger than ΛQCD, the gauge coupling is not large, and is getting smaller as µ gets larger. This means

that perturbation theory becomes more and more trustworthy at higher and higher energies. This nice

property of theories with negative β functions is known as asymptotic freedom. The name refers to the

fact that quarks in QCD are becoming free (since the coupling is becoming small) as we probe them

at larger energy scales.

Conversely, the fact that the QCD gauge coupling becomes non-perturbative in the infrared means

that we cannot expect to describe free quarks at low energies using perturbation theory. This theoretical

prediction goes by the name of infrared slavery. It agrees well with the fact that one does not observe

free quarks outside of bound states. While it has not been proved mathematically that the infrared

slavery of QCD necessarily requires the absence of free quarks, the two ideas are certainly compatible,

and more complicated calculations show that they are plausibly linked. Heuristically, the growth of the

QCD coupling means that at very small energies or large distances, the force between two free color

charges is large and constant as the distance increases. In the early universe, after the temperature

dropped below ΛQCD, all quarks and antiquarks and gluons arranged themselves into color-singlet

bound states, and have remained that way ever since.

An important feature of the renormalization of QCD is that we can actually trade the gauge

coupling as a parameter of the theory for the scale ΛQCD. This is remarkable, since g3 (or equivalently

αs) is a dimensionless coupling, while ΛQCD is a mass scale. If we want, we can specify how strong

the QCD interactions are either by quoting what αs(µ0) is at some specified µ0, or by quoting what

ΛQCD is. This trade of a dimensionless parameter for a mass scale in a gauge theory is known as

dimensional transmutation. Working in a theory with five “active” quarks u, d, s, c, b (the top quark

is treated as part of the unknown theory above the cutoff), one finds ΛQCD is about 210 MeV. One

can also work in an effective theory with only four active quarks u, d, s, c, in which case ΛQCD is

about 300 MeV. Alternatively, αs(mZ) = 0.1184 ± 0.0007. Recently, it has become standard to use

this second way of specifying the QCD coupling strength. These results hold when the details of

the cutoff and the renormalization are treated in the most popular way, called the MS scheme.§ A

summary of the experimental data on the QCD coupling is shown in the figures below (from S. Bethke,

Eur. Phys. J. C64, 689, (2009) [arXiv:0908.1135]).

§In this scheme, one cuts off loop momentum integrals by a process known as dimensional regularization, which
continuously varies the number of spacetime dimensions infinitesimally away from 4, rather than putting in a particular
cutoff M . Although bizarre physically, this scheme is relatively easy to calculate in.
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The data determine αS(µ) at a variety of renormalization scales µ between 1.78 GeV and 209 GeV.

(In the figure, Q was used as the name of the renormalization scale instead of µ.) The most accurate

determinations come from lattice QCD calculations of the mass splittings in the Υ bottomonium system

and from the hadronic branching ratio in τ decays. The four-loop renormalization group running of

αS(µ) is then used to determine the reference value αS(mZ).

We can contrast this situation with the case of QED. For a U(1) group, there is no non-zero structure

constant, so C(G) = 0. Also, since the generator of the group in a representation of charge Qf is just

the 1× 1 matrix Qf , the index for a fermion with charge Qf is I(Rf ) = Q2
f . Therefore,

b0,QED =
4

3

[
3nu(2/3)2 + 3nd(−1/3)2 + nℓ(−1)2

]
=

16

9
nu +

4

9
nd +

4

3
nℓ, (11.3.29)

where nu is the number of up-type quark flavors (u, c, t), and nd is the number of down-type quark

flavors (d, s, b), and nℓ is the number of charged leptons (e, µ, τ) included in the chosen effective theory.

If we do experiments with a characteristic energy scale me
<∼ µ <∼ mµ, then only the electron itself

contributes, and b0,EM = 4/3, so:

de

dlnµ
= βe =

e3

16π2

(
4

3

)
(me

<∼ µ <∼ mµ). (11.3.30)

This corresponds to a very slow running. (Notice that the smaller a gauge coupling is, the slower it

will run.) If we do experiments at characteristic energies that are much less than the electron mass,

then the relativistic electron is not included in the effective theory (virtual electron-positron pairs are

less and less important at low energies), so b0,EM = 0, and the electron charge does not run at all:

de

dlnµ
= 0 (µ≪ me). (11.3.31)

195



This means that QED is not quite “infrared free”, since the effective electromagnetic coupling is

perturbative, but does not get arbitrarily small, at very large distance scales. At extremely high

energies, the coupling e could in principle become very large, because the QED beta function is always

positive. Fortunately, this is predicted to occur only at energy scales far beyond what we can probe,

because e runs very slowly. Furthermore, QED is embedded in a larger, more complete theory anyway

at energy scales in the hundreds of GeV range, so the apparent blowing up of α = e2/4π much farther

in the ultraviolet is just an illusion.

11.4 Gluon-gluon scattering (gg → gg)

Let us now return to QCD scattering processes. Because there are three-gluon and four-gluon interac-

tion vertices, one has the interesting process gg → gg even at tree-level. (It is traditional to represent

the gluon particle name, but not its quantum field, by g.) The corresponding QED process of γγ → γγ

does not happen at tree-level, but does occur at one loop. In QCD, because of the three-gluon and

four-gluon vertices, there are four distinct Feynman diagrams that contribute at tree-level:

The calculation of the differential cross-section from these diagrams is an important, but quite tedious,

one. Just to get an idea of how this proceeds, let us write down the reduced matrix element for the

first (“s-channel”) diagram, and then skip directly to the final answer.

Choosing polarization vectors and color indices for the gluons, we have:

Particle Polarization vector Color
initial gluon ϵµ1 = ϵµ(p,λ1) a
initial gluon ϵν2 = ϵν(p′,λ2) b
final gluon ϵρ∗3 = ϵρ∗(k,λ3) c
final gluon ϵσ∗4 = ϵσ∗(k′,λ4) d

(11.4.1)

Let the internal gluon line carry (vector,gauge) indices (κ, e) on the left and (λ, f) on the right. Labeling

the Feynman diagram in detail:

p + p′

p

p′

k

k′

µ, a

ν, b

ρ, c

σ, d

κ, e λ, f

The momenta flowing into the leftmost 3-gluon vertex are, starting from the upper-left incoming gluon

and going clockwise, (p,−p− p′, p′). Also, the momenta flowing into the rightmost 3-gluon vertex are,
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starting from the upper-right final-state gluon and going clockwise, (−k,−k′, k + k′). So we can use

the Feynman rules of section 10.2 to obtain:

Mgg→gg,s-channel = ϵµ1 ϵ
ν
2ϵ

ρ∗
3 ϵ

σ∗
4

[
−gfaeb {gµκ(2p + p′)ν + gκν(−p− 2p′)µ + gνµ(p′ − p)κ

}]

[
−gf cdf {gρσ(k′ − k)λ + gσλ(−2k′ − k)ρ + gλρ(2k + k′)σ

}]

[
−igκλδef

(p + p′)2

]

. (11.4.2)

After writing down the reduced matrix elements for the other three diagrams, adding them together,

taking the complex square, summing over final state polarizations and averaging over initial state po-

larizations, summing over final-state gluon colors and averaging over initial-state gluon colors according

to 1
8

∑
a

1
8

∑
b
∑

c
∑

d one finds:

dσgg→gg

dt
=

9πα2
s

4s2

[
u2 + t2

s2
+

s2 + u2

t2
+

s2 + t2

u2
+ 3

]

. (11.4.3)

When we collide a proton with another proton or an antiproton, this process, and the process ud→ ud,

are just two of many possible subprocesses that can occur. There is no way to separate the proton

into simpler parts, so one must deal with all of these possible subprocesses. We will consider the

subprocesses of proton-(anti)proton scattering more systematically in the next subsection.

11.5 The parton model, parton distribution functions, and hadron-hadron scat-
tering

The last 10 years and at least the next 10 years of particle physics will be dominated by hadron-hadron

colliders. The Tevatron has explored pp collisions at
√

s = 1.96 TeV, and the Large Hadron Collider

is now taking over the frontier with pp collisions up to, hopefully,
√

s = 14 TeV. It is virtually certain

that the most exciting discoveries in high-energy physics in the next decade will occur at the LHC.

Therefore, we will spend several sections here on the basic ideas behind hadron-hadron collisions.

In general, a hadron is a QCD bound state of quarks, anti-quarks, and gluons. The characteristic

size of a hadron, like the proton or antiproton, is always roughly 1/ΛQCD ≈ 10−13 cm, since this is

the scale at which the strongly-interacting particles are confined. In general, the point-like quark,

antiquark, and gluon parts of a hadron are called partons, and the description of hadrons in terms of

them is called the parton model.

Suppose we scatter a hadron off of another particle (which might be another hadron or a lepton or

photon) with a total momentum exchange much larger than ΛQCD. The scattering can be thought of

as a factored into a “hard scattering” of one of the point-like partons, with the remaining partons as

spectators, and “soft” QCD processes that involve exchanges and radiation of low energy virtual gluons.

The hard scattering subprocess takes place on a time scale much shorter than 1/ΛQCD expressed in

seconds. Because of asymptotic freedom, at higher scattering energies it becomes a better and better

approximation to think of the partons as individual entities that move collectively before and after the
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scattering, but are free particles at the moment of scattering. As a first approximation, we can consider

only the hard scattering processes, and later worry about adding on the various soft processes as part

of the higher-order corrections. This way of thinking about things allows us to compute cross-sections

for hadron scattering by first calculating the partonic cross-sections leading to a desired final state, and

then combining them with information about the multiplicity and momentum distributions of partons

within the hadronic bound states.

For example, suppose we want to calculate the scattering of a proton and antiproton. This involves

the following 2→2 partonic subprocesses:

qq → q′q′, qq′ → qq′, qq′ → qq′, qg → qg, qg → qg, gg → gg, (11.5.1)

where g is a gluon and q is any quark flavor and q′ is a possibly different quark flavor. Let the center-

of-mass energy of the proton and antiproton be called
√

s. Each parton only carries a fraction of the

energy of the energy of the proton it belongs to, so the partonic center-of-mass energy, call it
√

ŝ, will

be significantly less than
√

s. One often uses hatted Mandelstam variables ŝ, t̂ and û for the partonic

scattering event. If
√

ŝ ≫ ΛQCD, then the two partons in the final state will be sufficiently energetic

that they can usually escape from most or all of the spectator quarks and gluons before hadronizing

(forming bound states). However, before traveling a distance 1/ΛQCD, they must rearrange themselves

into color-singlet combinations, possibly by creating quark-antiquark or gluon-antigluon pairs out of

the vacuum. This hadronization process can be quite complicated, but will usually result in a jet of

hadronic particles moving with roughly the same 4-momentum as the parton that was produced. So,

all of the partonic process cross-sections in eq. (11.5.1) contribute to the observable cross-section for

the process:

pp→ jj + X, (11.5.2)

where j stands for a jet and the X includes stray hadronic junk left over from the original proton and

antiproton. Similarly, partonic hard scatterings like:

qq → q′q′g, qg → qgg, qg → qgg, gg → ggg, (11.5.3)

and so on, will contribute to an observable cross-section for

pp→ jjj + X. (11.5.4)

The 2× 2 hard scattering processes can also contribute to this process if one of the final state partons

hadronizes by splitting into two jets, or if there is an additional jet from the initial state.

In order to use the calculation of cross-sections for partonic processes like eq. (11.5.1) to obtain

measurable cross-sections, we need to know how likely it is to have a given parton inside the initial-state

hadron with a given 4-momentum. Since we are mostly interested in high-energy scattering problems,

we can make things simple, and treat the hadron and all of its constituents as nearly massless. (For
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the proton, this means that we are assuming that
√

s≫ mp ≈ 1 GeV.) Suppose we therefore take the

total 4-momentum of the hadron h in an appropriate Lorentz frame to be:

pµ
h = (E, 0, 0, E). (11.5.5)

This is sometimes called the “infinite momentum frame”, even though E is finite, since E ≫ mp.

Consider a parton constituent A (a quark, antiquark, or gluon) that carries a fraction x of the hadron’s

momentum:

pµ
A = x(E, 0, 0, E). (11.5.6)

The variable x is a standard notation, and is called the (longitudinal) momentum fraction for the

parton, or Feynman’s x. It is older than QCD, dating back to a time when the proton was suspected

to contain point-like partons with properties that were then obscure. In order to describe the partonic

content of a hadron, one defines:
⎛

⎝
Probability of finding a parton of type A with

4-momentum between xpµ and (x + dx)pµ

inside a hadron h with 4-momentum pµ

⎞

⎠ = fh
A(x) dx . (11.5.7)

The function fh
A(x) is called the parton distribution function or PDF for the parton A in the hadron

h. The parton can be either one of the two or three valence quarks or antiquarks that are the nominal

constituents of the hadron, or one of an indeterminate number of virtual sea quarks and gluons. Either

type of parton can participate in a scattering event.

Hadronic collisions studied in laboratories usually involve protons or antiprotons, so the PDFs of

the proton and antiproton are especially interesting. The proton is nominally a bound state of three

valence quarks, namely two up quarks and one down quark, so we are certainly interested in the

up-quark and down-quark distribution functions

fp
u(x) and fp

d (x).

The proton also contains virtual gluons, implying a gluon distribution function:

fp
g (x). (11.5.8)

Furthermore, there are always virtual quark-antiquark pairs within the proton. This adds additional

contributions to fp
u(x) and fp

d (x), and also means that there is a non-zero probability of finding antiup,

antidown, or strange or antistrange quarks:

fp
u(x), fp

d
(x), fp

s (x), fp
s (x). (11.5.9)

These parton distribution functions are implicitly summed over color and spin. So fp
u(x) tells us the

probability of finding an up quark with the given momentum fraction x and any color and spin. Since

the gluon is its own antiparticle (it lives in the adjoint representation of the gauge group, which is

always a real representation), there is not a separate fp
g (x).
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[Although the charm, bottom and top quarks are heavier than the proton, virtual charm-anticharm,

bottom-antibottom, and top-antitop pairs can exist as long as their total energy does not exceed mp.

This can happen because, as virtual particles, they need not be on-shell. So, one can even talk about

the parton distribution functions fp
c (x), fp

c (x), fp
b (x), fp

b
(x), fp

t (x), fp
t
(x). Fortunately, these are small

so one can often neglect them, although they can be important for processes involving charm or bottom

quarks in the final state.]

Given the PDFs for the proton, the PDFs for the antiproton follow immediately from the fact that

it is the proton’s antiparticle. The probability of finding a given parton in the proton with a given

x is the same as the probability of finding the corresponding antiparton in the antiproton with the

same x. Therefore, if we know the PDFs for the proton, there is no new information in the PDFs for

the antiproton. We can just describe everything having to do with proton and antiproton collisions in

terms of the proton PDFs. To simplify the notation, it is traditional to write the proton and antiproton

PDFs as:

g(x) = fp
g (x) = fp

g (x), (11.5.10)

u(x) = fp
u(x) = fp

u(x), (11.5.11)

d(x) = fp
d (x) = fp

d
(x), (11.5.12)

u(x) = fp
u(x) = fp

u(x), (11.5.13)

d(x) = fp

d
(x) = fp

d (x), (11.5.14)

s(x) = fp
s (x) = fp

s (x), (11.5.15)

s(x) = fp
s (x) = fp

s (x). (11.5.16)

The PDFs are also functions of another parameter Q (sometimes denoted µ or µF ), known as the

factorization scale. The factorization scale can be thought of as the energy scale that serves as the

boundary between what is treated as the short-distance hard partonic process and what is taken to be

part of the long-distance physics associated with hadronization. The choice of the factorization scale

is an arbitrary one, and in principle the final result should not depend on it, just like the choice of

renormalization scale discussed in section 11.3 is arbitrary. It is very common to choose the factorization

scale equal to the renormalization scale, although this is not mandatory. (When they are distinguished

in the literature, some authors use Q for the renormalization scale and µ for the factorization scale,

and some use the reverse as we have here. Some use the same letter for both, especially when choosing

them to be the same numerically.) The PDFs have a mild logarithmic dependence on the choice of

factorization scale Q, which can be computed in perturbation theory by a set of equations known as the

DGLAP (Dokshitzer–Gribov–Lipatov–Altarelli–Parisi) equations. So they are really functions g(x,Q2)

etc., although the Q-dependence is often left implicit for brevity, as we will mostly do below.

It is usual to choose the factorization scale Q to be comparable to some energy scale relevant to the

physical process of interest. For example, in deeply inelastic scattering of leptons off of protons, with

momentum transfer to the scattered quark qµ, the factorization scale is typically chosen as Q2 = −q2.
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This Q2 is positive, since qµ is a spacelike vector. When producing a pair of heavy particles with some

mass m, it is common to choose Q = m or some fraction thereof. After having completed a calculation,

one often varies the renormalization and factorization scales (either together or independently) over a

range (say, from Q = m/4 to Q = 2m in the case just mentioned) to see how the cross-section or other

observables that resulted from the calculation vary. This is a test of the accuracy of the perturbation

theory calculation, since in principle if one could calculate exactly rather than to some low order in

perturbation theory, the results should not depend on either scale choice at all.

In the proton, antiquarks are always virtual, and so must be accompanied by a quark with the

same flavor. This implies that if we add up all the up quarks found in the proton, and subtract all the

anti-ups, we must find a total of 2 quarks:

∫ 1

0
dx

[
u(x,Q2)− u(x,Q2)

]
= 2. (11.5.17)

Similarly, summing over all x the probability of finding a down quark with a given x, and subtracting

the same thing for anti-downs, one has:

∫ 1

0
dx

[
d(x,Q2)− d(x,Q2)

]
= 1. (11.5.18)

Most of the strange quarks in the proton come from the process of a virtual gluon splitting into a strange

and anti-strange pair. Since the virtual gluon treats quarks and antiquarks on an equal footing, for

every strange quark with a given x, there should be† an equal probability of finding an antistrange

with the same x:

s(x,Q2) = s(x,Q2). (11.5.19)

The up-quark PDF can be thought of as divided into a contribution uv(x) from the two valence quarks,

and a contribution us(x) from the sea (non-valence) quarks that are accompanied by an anti-up. (Here

and below the factorization scale dependence is left implicit, for brevity.) So we have:

u(x) = uv(x) + us(x), us(x) = u(x); (11.5.20)

d(x) = dv(x) + ds(x), ds(x) = d(x). (11.5.21)

There is also a constraint that the total 4-momentum of all partons found in the proton must be equal

to the 4-momentum of the proton that they form. This rule takes the form:

∫ 1

0
dx x[g(x) + u(x) + u(x) + d(x) + d(x) + s(x) + s(x) + . . .] = 1, (11.5.22)

or more generally, for any hadron h made out of parton species A,

∑

A

∫ 1

0
dx xfh

A(x) = 1. (11.5.23)

†Although QCD interactions do not change quark flavors, there is a small strangeness violation in the weak interactions,
so the following rule is not quite exact.
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Each term xfh
A(x) represents the probability that a parton is found with a given momentum fraction

x, multiplied by that momentum fraction. One of the first compelling pieces of evidence that the

gluons are actual particles carrying real momentum and energy, and not just abstract group-theoretic

constructs, was that if one excludes them from the sum rule eq. (11.5.22), only about half of the

proton’s 4-momentum is accounted for:

∫ 1

0
dx x[u(x) + u(x) + d(x) + d(x) + s(x) + s(x) + . . .] ≈ 0.5. (11.5.24)

If we could solve the bound state problem for the proton in QCD, like one can solve the hydrogen

atom in quantum mechanics, then we could derive the PDFs directly from the Hamiltonian. However,

we saw in section 11.3 why this is not practical; perturbation theory in QCD is not accurate for study-

ing low-energy problems like bound-state problems, because the gauge coupling becomes very large at

low energies. Instead, the proton PDFs are measured by experiments including those in which charged

leptons and neutrinos probe the proton, like ℓ−p → ℓ− + X and νp → ℓ− + X. Several collabora-

tions perform fits of available data to determine the PDFs, and periodically publish updated result

both in print and as computer code. Two such collaborations are CTEQ (Coordinated Theoretical-

Experimental Project on QCD) and MSTW (Martin, Stirling, Thorne, Watt), formerly MRST (Martin,

Roberts, Stirling, Thorne). In each case, the PDFs are given in the form of computer codes obtained

by fitting to experimental data. Because of different techniques and weighting of the data, the PDFs

from different groups are always somewhat different.

As an example, let us consider the CTEQ5L PDF set. Here, the “5” says which update of the PDFs

is being provided, this one from the year 2000, and the “L” stands for “lowest order”, which means

it is the set appropriate when one only has the lowest-order calculation of the partonic cross-section.

This set is somewhat old; I used it only because it was relatively easy to evaluate, since it is given in

parameterized function form rather than interpolation table form. There are more recent sets CTEQ6

and CT10 from CTEQ, and MSTW2008 from MSTW. Each of these has a version appropriate for

lowest-order work, and other versions appropriate when one has the next-to-leading order (NLO) or

next-next-leading order (NNLO) formulas for the hard scattering process of interest. At Q = 10 GeV,

the CTEQ5L PDFs for u(x), u(x), and the valence contribution uv(x) ≡ u(x)− u(x) are shown below,

together with a similar graph for the down quark and antiquark distributions:
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Here I follow tradition by graphing x times the PDF in each case, since they all tend to get large near

x = 0.

We see from the first graph that the valence up-quark distribution is peaked below x = 0.2, with

a long tail for larger x (where an up-quark is found to have a larger fraction of the proton’s energy).

There is even a significant chance of finding that an up quark has more than half of the proton’s

4-momentum. In contrast, the sea quark distribution u(x) is strongly peaked near x = 0. This is a

general feature of sea partons; the chance that a virtual particle can appear is greater when it carries a

smaller energy, and thus a smaller fraction x of the proton’s total momentum. The solid curve shows

the total up-quark PDF for this value of Q. The sea distribution d(x) is not very different from that of

the anti-up, but the distribution dv(x) is of course only about half as big as uv(x), since there is only

one valence down quark to find in the proton.

Next, let us look at the strange and gluon PDFs:
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The parton distribution function for gluons grows very quickly as one moves towards x = 0. This is

because there are 8 gluon color combinations available, and each virtual gluon can give rise to more

virtual gluons because of the 3-gluon and 4-gluon vertex. This means that the chance of finding a

gluon gets very large if one requires that it only have a small fraction of the total 4-momentum of the

proton. The PDFs s(x) = s(x) are suppressed by the non-zero strange quark mass, since this imposes

a penalty on making virtual strange and antistrange quarks. This explains why s(x) < d(x).

The value of the factorization scale Q = 10 GeV corresponds roughly to the appropriate energy scale

for many of the experiments that were actually used to fit for the PDFs. However, at the Tevatron and

LHC, one will often be studying events with a much larger characteristic energy scale, like Q ∼ mt for

top events and perhaps Q ∼ 1000 GeV for supersymmetry events at the LHC. Larger Q is appropriate

for probing the proton at larger energy scales, or shorter distance scales. The next two graphs show

the CTEQ5L PDFs for Q = 100 and 1000 GeV:
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As Q increases from Q = 100 to 1000 GeV, the PDFs become larger at very small x (although this

is hard to see from the graphs), but smaller for x >∼ 0.015 for gluons and x >∼ 0.04 for quarks. More

generally, the variation with Q can be made quantitative using the DGLAP equations, which are built

into the computer codes that provide the parton distributions as a function of x and Q.

Now suppose we have available a set of PDFs, and let us see how to use them to get a cross-section.

Consider scattering two hadrons h and h′, and let the partonic differential cross-sections for the desired

final state X be

dσ̂(ab→ X) (11.5.25)

for any two partons a (to be taken from h) and b (from h′). The hat is used as a reminder that this is

a partonic process. If X has two particles 1,2 in it, then one defines partonic Mandelstam variables:

ŝ = (pa + pb)
2, (11.5.26)
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t̂ = (pa − k1)
2, (11.5.27)

û = (pa − k2)
2. (11.5.28)

Let us work in the center-of-momentum frame, with approximately massless hadrons and partons, so

that

pµ
h = (E, 0, 0, E), (11.5.29)

pµ
h′ = (E, 0, 0,−E). (11.5.30)

Then we can define a Feynman x for each of the initial-state partons, xa and xb, so:

pµ
a = xa(E, 0, 0, E), (11.5.31)

pµ
b = xb(E, 0, 0,−E). (11.5.32)

It follows that, with s = (ph + ph′)2 for the whole hadronic event,

ŝ = (xa + xb)
2E2 − (xa − xb)E

2 = 4xaxbE
2 = sxaxb. (11.5.33)

Here s is determined by the collider [(1960 GeV)2 at the Tevatron], while ŝ is different for each event.

Now, to find the total cross-section to produce the final state X in h, h′ collisions, we should multiply

the partonic cross-section by the probabilities of finding in h a parton a with momentum fraction in

the range xa to xa + dxa and the same probability for parton b in h′; then integrate over all possible

xa and xb, and then sum over all the different parton species a and b. The result is:

dσ(hh′ → X) =
∑

a,b

∫ 1

0
dxa

∫ 1

0
dxb dσ̂(ab→ X) fh

a (xa) fh′

b (xb). (11.5.34)

This integration is done by computer, using PDFs with Q chosen equal to some energy characteristic of

the event. The partonic differential cross-section dσ̂(ab→ X) depends on the momentum fractions xa

and xb through pµ
a = xap

µ
h and pµ

b = xbp
µ
h′ , with pµ

h and pµ
h′ controlled or known by the experimenter.

11.6 Top-antitop production in pp and pp collisions

As an example, let us consider top-antitop production, first at the Tevatron. The parton-level processes

that can contribute to this are, with the first parton taken to be from the proton and the second from

the antiproton:

uu→ tt, dd→ tt, gg → tt, dd→ tt, uu→ tt, ss→ tt, ss→ tt. (11.6.1)

These are listed in the order of their numerical importance in contributing to the total cross-section for

tt at the Tevatron. Notice that the most likely thing is to find a quark in the proton and an antiquark

in the anti-proton, but there is also a small but non-zero probability of finding an anti-quark in the
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proton, and a quark in the anti-proton. All of the processes involving quark and antiquark in the initial

state involve the same parton-level cross-section

dσ̂(qq → tt)

dt̂
, (11.6.2)

which is left for you to compute as an exercise. The gluon-gluon process has a partonic cross-section

that is somewhat harder to obtain:

dσ̂(gg → tt)

dt̂
=

πα2
s

8ŝ2

[
6(m2 − t̂)(m2 − û)

ŝ2
− m2(ŝ− 4m2)

3(m2 − t̂)(m2 − û)

+
4[(m2 − t̂)(m2 − û)− 2m2(m2 + t̂)]

3(m2 − t̂)2
+

4[(m2 − t̂)(m2 − û)− 2m2(m2 + û)]

3(m2 − û)2

−3[(m2 − t̂)(m2 − û) + m2(û− t̂)]

ŝ(m2 − t̂)
− 3[(m2 − t̂)(m2 − û) + m2(t̂− û)]

ŝ(m2 − û)

]
, (11.6.3)

where m is the mass of the top quark. Even these leading-order partonic differential cross-sections

depend implicitly on the renormalization scale µ, through the renormalized coupling αS(µ).

In order to find the total cross-section, one can first integrate the partonic cross-sections with

respect to t̂; this is equivalent to integrating over the final-state top quark angle θ̂ in the partonic COM

frame, since they are related linearly by

t̂ = m2
t +

ŝ

2

(
−1 + cos θ̂

√
1− 4m2

t /ŝ
)

. (11.6.4)

Therefore, for each partonic process one has

σ̂ =
∫ t̂max

t̂min

dσ̂

dt̂
dt̂ , (11.6.5)

where

t̂max,min = m2
t +

ŝ

2

(
−1 ±

√
1− 4m2

t /ŝ
)

. (11.6.6)

It is also useful to note that eq. (11.5.33) implies

xb =
ŝ

xas
; dxb =

dŝ

xas
. (11.6.7)

So instead of integrating over xb, we can integrate over ŝ. The limits of integration on ŝ are from

ŝmin = 4m2
t (the minimum required to make a top-antitop pair) to ŝmax = s (the maximum available

from the proton and antiproton, corresponding to xa = xb = 1). For a given ŝ, the range of xa is from

ŝ/s to 1. Relabeling xa as just x, we therefore have:

σ(pp→ tt) =
∫ s

4m2
t

dŝ
∫ 1

ŝ/s
dx

1

xs

{
σ̂(qq → tt)

[
u(x)u(ŝ/xs) + d(x)d(ŝ/xs) + u(x)u(ŝ/xs)

+d(x)d(ŝ/xs) + 2s(x)s(ŝ/xs)
]
+ σ̂(gg → tt)g(x)g(ŝ/xs)

}
. (11.6.8)

Using the CTEQ5L PDFs and mt = 173 GeV, with
√

s = 1960 GeV, and computing αs(µ) using

eq. (11.3.26) starting from αs(mt) = 0.1082, and working with the leading-order partonic cross-sections,

the results as a function of the common factorization and renormalization scale Q = µ look like:
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Unfortunately, the accuracy of the above results, obtained with only leading order partonic cross-

sections and PDFs, is clearly not very high. Ideally, the lines should be flat, but there is instead

a strong dependence of the leading-order prediction on Q = µ. The higher-order corrections to the

quark-antiquark processes turn out to be of order 10 to 20%, while the gluon-gluon process gets about

a 70% correction from its leading-order value at Q = µ = mt. Accurate comparisons with experiment

require a much more detailed and sophisticated treatment of the higher-order effects, including at least

a next-to-leading order calculation of the partonic cross-sections. Still, some useful information can be

gleaned. Experience has shown that evaluating the leading-order result at Q ∼ mt/2 gives a decent

estimate of the total cross-section, although a principled justification for this scale choice is hard to

make. Also, the relative sizes of the parton-level contributions can be understood qualitatively from the

PDFs as follows. To produce a top-antitop pair, we must have ŝ > 4m2
t , so according to eq. (11.5.33),

xaxb > 4m2
t /s = 4(173)2/(1960)2 = 0.0312. (11.6.9)

So at least one of the momentum fraction x’s must be larger than 0.1765 for mt = 173 GeV. This

means that the largest contributions come from the valence quarks. Since there are roughly twice as

many valence up quarks as down quarks in the proton for a given x, and twice as many antiups as

antidowns in the antiproton, the ratio of top-antitop events produced from up-antiup should be about

4 times that from down-antidown. The gluon-gluon contribution is suppressed in this case because

most of the gluons are at small x and do not have enough energy to make a top-antitop pair. Finally,

the contributions from sea partons (u, d, s, s in the proton, and u, d, s, s in the antiproton) are highly

suppressed for the same reason.

Let us now consider tt production for the Large Hadron Collider, a pp collider, by taking into

account the larger
√

s and the different parton distribution function roles. Since both of the initial-
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state hadrons are protons, the formula for the total cross-section is now:

σ(pp→ tt) =
∫ s

4m2
t

dŝ
∫ 1

ŝ/s
dx

1

xs

{
σ̂(qq → tt)

[
2u(x)u(ŝ/xs) + 2d(x)d(ŝ/xs) + 2s(x)s(ŝ/xs)

]

+σ̂(gg → tt) g(x)g(ŝ/xs)
}

. (11.6.10)

The factors of 2 are present because each proton can contribute either the quark, or the antiquark;

then the contribution of the other proton is fixed. The gluon-gluon contribution has the same form as

in pp collisions, because the gluon distribution is identical in protons and in antiprotons.

Numerically integrating the above formula with a computer using the CTEQ5L PDFs, one finds

the leading order results shown below, as a function of the common factorization and renormalization

scale Q = µ:
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Again these leading-order results are highly dependent on Q = µ, and subject to large corrections at

next-to-leading order and beyond. The most striking feature of the LHC result is that in contrast to

the Tevatron situation, the gluon-gluon partonic contribution is dominant over the quark-antiquark

contributions for the LHC. This is partly because all of the quark-antiquark contributions now require

a sea antiquark PDF, but that is not the main reason. The really important effect is that at very

high energies like at the LHC, the top quark can be considered light (!) and so one can make them

using partons with much lower x. For example, with
√

s = 14 TeV, the kinematic constraint on the

longitudinal momentum fractions becomes

xaxb > 4(173)2/(14000)2 = 0.000611, (11.6.11)

so that now the smaller one can be as low as 0.0247. At low x, we saw above that the gluon distribution

function is very large; one has plenty of gluons available with less than 1/10 of the protons’ total energy,

and they dominate over the quark and antiquark PDFs. This is actually a common feature, and is why
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you sometimes hear people somewhat whimsically call the LHC a “gluon collider”; with so much energy

available for the protons, many processes are dominated by the large gluon PDF at low x. There are

some processes that do not rely on gluons at all, however. We will see one example in subsection 11.8.

Those processes are dominated by sea quarks at the LHC. Also, many processes get a large contribution

from gluon-squark scattering as well, for example gluon-squark production in supersymmetry.

One can also look at the distribution of tt production as a function of the total invariant mass

Minv =
√

ŝ of the hard scattering process, by leaving the ŝ integration in eqs. (11.6.8) and (11.6.10)

unperformed. The resulting shape of the distribution normalized by the total cross-section,

1

σ(tt)

dσ(tt)

dMinv
=

2
√

s

σ(tt)

dσ(tt)

dŝ
, (11.6.12)

is shown below for the Tevatron and the LHC with
√

s = 14 TeV:
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The invariant mass distribution of the tt system is peaked not far above 2mt in both cases, indicating

that the top and antitop usually have only semi-relativistic velocities. This is because the PDFs fall

rapidly with increasing x, so the most important contributions to the production cross-section occur

when both x’s are not very far above their minimum allowed values. At the LHC, the top and antitop

are likelier to be produced with higher energy than at the Tevatron, with a more substantial tail at

high mass.

11.7 Kinematics in hadron-hadron scattering

Let us now consider the general problem of kinematics associated with hadron-hadron collisions with

underlying 2 → 2 parton scattering. To make things simple, we will suppose all of the particles are

essentially massless, so what we are about to do does not work for tt in the final state (but could be

generalized to do so). After doing a sum/average over spins, colors, and any other unobserved degrees

of freedom, we should be able to compute the differential cross-section for the partonic event from its
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Feynman diagrams as:

dσ̂(ab→ 12)

dt̂
. (11.7.1)

As we learned in subsection 11.5, we can then write:

dσ(hh′ → 12 + X) =
∑

a,b

fh
a (xa)f

h′

b (xb)
dσ̂(ab→ 12)

dt̂
dt̂ dxa dxb. (11.7.2)

A picture of the scattering process in real space might look like:

fh
a fh′

b
dσ̂
dt̂

ph → ← ph′

h h′

xaph → ← xbph′

a b

1

2

k1

k2

There are several different ways to choose the kinematic variables describing the final state. There are

three significant degrees of freedom: two angles at which the final-state particles emerge with respect to

the collision axis, and one overall momentum scale. (Once the magnitude of the momentum transverse

to the beam for one particle is specified, the other is determined.) The angular dependence about the

collision axis is trivial, so we can ignore it.

For example, we can use the following three variables: momentum of particle 1 transverse to

the collision axis, pT ; the total center-of-momentum energy of the final state partons,
√

ŝ; and the

longitudinal rapidity of the two-parton system in the lab frame, defined by

Y =
1

2
ln(xa/xb). (11.7.3)

This may look like an obscure definition, but it is the rapidity (see section 2) needed to boost along

the collision axis to get to the center-of-momentum frame for the two-parton system. It is equal to 0

if the final-state particles are back-to-back, which would occur in the special case that the initial-state

partons have the same energy in the lab frame. Instead of the variables (xa, xb, t̂), we can use the more

directly observable variables (ŝ, p2
T , Y ), or perhaps some subset of these with the others integrated over.

Working in the center-of-momentum frame of the partons, we can write:

pµ
a = (Ê, 0, 0, Ê), (11.7.4)
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pµ
b = (Ê, 0, 0,−Ê), (11.7.5)

kµ
1 = (Ê, 0, pT ,

√
Ê2 − p2

T ), (11.7.6)

kµ
2 = (Ê, 0,−pT ,−

√
Ê2 − p2

T ), (11.7.7)

with

ŝ = 4Ê2 = xaxbs, (11.7.8)

from which it follows that

t̂ = (pa − k1)
2 =

ŝ

2

(
1 +

√
1− 4p2

T /ŝ
)

, (11.7.9)

û = (pa − k2)
2 =

ŝ

2

(
1−

√
1− 4p2

T /ŝ
)

, (11.7.10)

and so

p2
T =

t̂û

ŝ
= − t̂(sxaxb + t̂)

sxaxb
, (11.7.11)

where the last equality uses û = −ŝ − t̂ = −sxaxb − t̂ for massless particles. Making the change of

variables (xa, xb, t̂) to (ŝ, p2
T , Y ) for a differential cross-section requires

dt̂ dxa dxb = J dŝ d(p2
T ) dY, (11.7.12)

where J is the determinant of the Jacobian matrix of the transformation. Evaluating it, by taking the

inverse of the determinant of its inverse, one finds:

J =

∣∣∣∣∣
∂(ŝ, p2

T , Y )

∂(t̂, xa, xb)

∣∣∣∣∣

−1

=
xaxb

ŝ + 2t̂
. (11.7.13)

Therefore, eq. (11.7.2) becomes:

dσ(hh′ → 12 + X)

dŝ d(p2
T ) dY

=
xaxb

ŝ + 2t̂

∑

a,b

fh
a (xa)f

h′

b (xb)
dσ̂(ab→ 12)

dt̂
, (11.7.14)

where the variables xa, xb, t̂ on the right-hand side are understood to be determined in terms of ŝ, p2
T

and Y by eqs. (11.7.8), (11.7.11), and (11.7.3).

11.8 Drell-Yan scattering (ℓ+ℓ− production in hadron collisions)

As an example, let us consider the process of Drell-Yan scattering, which is the production of lepton

pairs in hadron-hadron collisions through a virtual photon:

hh′ → ℓ+ℓ−. (11.8.1)

This does not involve QCD as the hard partonic scattering, since the leptons ℓ = e, µ, or τ are singlets

under SU(3)c color. However, it still depends on QCD, because to evaluate it we need to know the
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PDFs for the quarks inside the hadrons. Since gluons have no electric charge and do not couple to

photons, the underlying partonic process is always:

qq → ℓ+ℓ−. (11.8.2)

with the q coming from either h or h′. The cross-section for this, for
√

s ≪ mZ and not near a

resonance, can be obtained by exactly the same methods as in 7.2 for e+e− → µ+µ−; we just need to

remember to use the charge of the quark Qq instead of the charge of the electron, and to average over

initial-state colors. The latter effect leads to a suppression of 1/3; there is no reaction if the colors do

not match. One finds that the differential partonic cross-section is:

dσ̂(qq → ℓ+ℓ−)

dt̂
=

2πα2Q2
q(t̂

2 + û2)

3ŝ4
. (11.8.3)

Therefore, using û = −ŝ − t̂ for massless scattering, and writing separate contributions from finding

the quark, and the antiquark, in h:

dσ(hh′ → ℓ+ℓ−)

dŝ dp2
T dY

=
2πα2

3

t̂2 + (ŝ + t̂)2

ŝ4(ŝ + 2t̂)
xaxb

∑

q

Q2
q

[
fh

q (xa)f
h′

q (xb) + fh
q (xa)f

h′

q (xb)
]
. (11.8.4)

This can be used to make a prediction for the experimental distribution of events with respect to each

of ŝ, pT , and Y .

Alternatively, we can choose to integrate the partonic differential cross-section with respect to t̂

first. Since t̂ determines the scattering angle with respect to the collision axis, this will eliminate the

integration over p2
T . The total partonic cross-section obtained by integrating eq. (11.8.3) is:

σ̂(qq → ℓ+ℓ−) =
4πα2Q2

q

9ŝ
. (11.8.5)

Therefore we get:

dσ(hh′ → ℓ+ℓ−) = dxadxb
4πα2

9ŝ

∑

q

Q2
q

[
fh

q (xa)f
h′

q (xb) + fh
q (xa)f

h′

q (xb)
]
. (11.8.6)

Now making the change of variables from (xa, xb) to (ŝ, Y ) requires:

dxadxb =

∣∣∣∣
∂(ŝ, Y )

∂(xa, xb)

∣∣∣∣
−1

dŝ dY =
dŝ dY

s
, (11.8.7)

we therefore have:

dσ(hh′ → ℓ+ℓ−)

dŝ dY
=

4πα2

9sŝ

∑

q

Q2
q

[
fh

q (xa)f
h′

q (xb) + fh
q (xa)f

h′

q (xb)
]
. (11.8.8)

Still another way to present the result is to leave only ŝ unintegrated, by again first integrating the

partonic differential cross-section with respect to t̂, and then trading one of the Feynman-x variables

for ŝ, and do the remaining x-integration. This is how we wrote the top-antitop total cross-section.

The Jacobian factor in the change of variables from (xa, xb)→ (xa, ŝ) is now:

dxa dxb =

∣∣∣∣
∂ŝ

∂xb

∣∣∣∣
−1

dxa dŝ =
dxa dŝ

xas
. (11.8.9)
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Using this in eq. (11.8.6) now gives, after replacing xa by x and integrating:

dσ(hh′ → ℓ+ℓ−)

dŝ
=

4πα2

3ŝ2

∑

q

Q2
q

∫ 1

ŝ/s
dx

ŝ

xs

[
fh

q (x)fh′

q (ŝ/xs) + fh
q (x)fh′

q (ŝ/xs)
]
. (11.8.10)

This version makes a nice prediction that is (almost) independent of the actual parton distribution

functions. The right-hand side could have depended on both ŝ and s in an arbitrary way, but to the

extent that the PDFs are independent of Q, we see that it is predicted to scale like 1/ŝ2 times some

function of the ratio ŝ/s. Since the PDFs run slowly with Q, this is a reasonably good prediction.

Drell-Yan scattering has been studied in hh′ = pp, pp, π±p, and K±p scattering experiments, and in

each case the results indeed satisfy the scaling law:

ŝ2 dσ(hh′ → ℓ+ℓ−)

dŝ
= Fhh′(ŝ/s) (11.8.11)

to a very good approximation, for low ŝ not near a resonance. Furthermore, the functions Fhh′ gives

information about the PDFs.

Because of the relatively clean signals of muons in particle detectors, the Drell-Yan process

pp→ µ−µ+ + X or pp→ µ−µ+ + X (11.8.12)

is often one of the first things one studies at a hadron collider to make sure everything is working

correctly and understood. It also provides a test of the PDFs, especially at small x.

For larger
√

s, one must take into account the s-channel Feynman diagram with a Z boson in place

of the virtual photon. The resulting cross-section can be obtained from eq. (11.8.10) by replacing

4πα2

3ŝ2

∑

q

Q2
q → 4πα2

3

∑

q

[
Q2

q

ŝ2
+

(V 2
q + A2

q)(V
2
ℓ + A2

ℓ)

(ŝ−m2
Z)2 + m2

ZΓ2
Z

− 2QqVqVℓ(1−m2
Z/ŝ)

(ŝ−m2
Z)2 + m2

ZΓ2
Z

]

, (11.8.13)

where Vf and Af are coupling coefficients associated with the Z–fermion–antifermion interaction vertex,

and will be specified explicitly at the end of section 13.1. The first term is from the virtual photon

contribution to the matrix element, while the second comes from the virtual Z boson contribution,

and features a Breit-Wigner resonance denominator from the Z boson propagator, which depends on

the mass and width mZ = 91.19 GeV and ΓZ = 2.495 GeV. The last term is due to the interference

between these two amplitudes.

At the end of 2010, the CMS and ATLAS LHC detector collaborations released their measurements

of the µ−µ+ and e−e+ invariant mass distributions. The dimuon plot from CMS is shown below:
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Clearly visible are the effects of the η, ρ, ω, φ, J/ψ, ψ′, and Υ 1S, 2S, and 3S meson resonances, the

Z boson resonance, and the general decrease of the cross-section with
√

ŝ (the invariant mass of the

final state). The distribution includes the effects of the intrinsic widths of the resonances as well as

detector resolution effects and trigger and detector efficiencies. A similar plot is shown below for the

e−e+ final state. Note that the detector resolution and the trigger efficiency are evidently worse for

electrons than for muons.
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12 Spontaneous symmetry breaking

12.1 Global symmetry breaking

Not all of the symmetries of the laws of physics are evident in the state that describes a physical system,

or even in the vacuum state with no particles. For example, in condensed matter physics, the ground

state of a ferromagnetic system involves a magnetization vector that points in some particular direction,

even though Maxwell’s equations in matter do not contain any special direction. This is because it

is energetically favorable for the magnetic moments in the material to line up, rather than remaining

randomized. The state with randomized magnetic moments is unstable to small perturbations, like a

stick balanced on one end, and will settle in the more energetically-favored magnetized state.

The situation in which the laws of physics are invariant under some symmetry transformations,

but the vacuum state is not, is called spontaneous symmetry breaking. In this section we will study

how this works in quantum field theory. There are two types of continuous symmetry transformations;

global, in which the transformation does not depend on position in spacetime, and local (or gauge) in

which the transformation can be different at each point. We will work out how spontaneous symmetry

breaking works in each of these cases, using the example of a U(1) symmetry, and then guess the

generalizations to non-Abelian symmetries.

Consider a complex scalar field φ(x) with a Lagrangian density:

L = ∂µφ∗∂µφ− V (φ,φ∗), (12.1.1)

with potential energy

V (φ,φ∗) = m2φ∗φ+ λ(φ∗φ)2, (12.1.2)

where m2 and λ are parameters of the theory. This Lagrangian is invariant under the global U(1)

transformations:

φ(x)→ φ′(x) = eiαφ(x) (12.1.3)

where α is any constant. The classical equations of motion for φ and φ∗ following from L are [see

eq. (5.1.25)]:

∂µ∂µφ+
δV

δφ∗
= 0, (12.1.4)

∂µ∂µφ
∗ +

δV

δφ
= 0. (12.1.5)

Clearly, there is a solution with ∂µφ = ∂µφ∗ = 0, where φ(x) is just equal to any constant that

minimizes the potential.

If m2 > 0 and λ > 0, then the minimum of the potential is at φ = 0. The quantum mechanical

counterpart of this statement is that the ground state of the system will be one in which the expectation

value of φ(x) vanishes:

⟨0|φ(x)|0⟩ = 0. (12.1.6)
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The scalar particles created and destroyed by the field φ(x) correspond to quantized oscillations of

φ(x) about the minimum of the potential. They have squared mass equal to m2, and interact with a

four-scalar vertex proportional to λ.

Let us now consider what happens if the signs of the parameters m2 and λ are different. If λ < 0,

then the potential V (φ,φ∗) is unbounded from below for arbitrarily large |φ|. This cannot lead to

an acceptable theory. Classically there would be runaway solutions in which |φ(x)| → ∞, gaining an

infinite amount of kinetic energy. The quantum mechanical counterpart of this statement is that the

expectation value of φ(x) will grow without bound.

However, there is nothing wrong with the theory if m2 < 0 and λ > 0. (One should think of m2 as

simply a parameter that appears in the Lagrangian density, and not as the square of some mythical real

number m.) In that case, the potential V (φ,φ∗) has a “Mexican hat” shape, with a local maximum at

φ = 0, and a degenerate set of minima with

|φmin|2 =
v2

2
, (12.1.7)

where we have defined:

v =
√
−m2/λ. (12.1.8)

The potential V does not depend on the phase of φ(x) at all, so it is impossible to unambiguously

determine the phase of φ(x) at the minimum. However, by an arbitrary choice, we can make Im(φmin) =

0. In quantum mechanics, the system will have a ground state in which the expectation value of φ(x)

is constant and equal to the classical minimum:

⟨0|φ(x)|0⟩ =
v√
2
. (12.1.9)

The quantity v is a measurable property of the vacuum state, known as the vacuum expectation value,

or VEV, of φ(x). If we now ask what the VEV of φ is after performing a U(1) transformation of the

form eq. (12.1.3), we find:

⟨0|φ′(x)|0⟩ = eiα⟨0|φ(x)|0⟩ = eiα v√
2
̸= v√

2
. (12.1.10)

The VEV is not invariant under the U(1) symmetry operation acting on the fields of the theory; this

reflects the fact that we had to make an arbitrary choice of phase. One cannot restore the invariance

by defining the symmetry operation to also multiply |0⟩ by a phase, since ⟨0| will rotate by the opposite

phase, canceling out of eq. (12.1.10). Therefore, the vacuum state must not be invariant under the

global U(1) symmetry rotation, and the symmetry is spontaneously broken. The sign of the parameter

m2 is what determines whether or not spontaneous symmetry breaking takes place in the theory.

In order to further understand the behavior of this theory, it is convenient to rewrite the scalar field

in terms of its deviation from its VEV. One way to do this is to write:

φ(x) =
1√
2

[v + R(x) + iI(x)] , (12.1.11)

φ∗(x) =
1√
2

[v + R(x)− iI(x)] , (12.1.12)
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where R and I are each real scalar fields, representing the real and imaginary parts of φ. The derivative

part of the Lagrangian can now be rewritten in terms of R and I, as:

L =
1

2
∂µR∂µR +

1

2
∂µI∂µI. (12.1.13)

The potential appearing in the Lagrangian can be found in terms of R and I most easily by noticing

that it can be rewritten as

V (φ,φ∗) = λ(φ∗φ− v2/2)2 − λv4/4. (12.1.14)

Dropping the last term that does not depend on the fields, and plugging in eqs. (12.1.11) and (12.1.12),

this becomes:

V (R, I) =
λ

4
[(v + R)2 + I2 − v2]2 (12.1.15)

= λv2R2 + λvR(R2 + I2) +
λ

4
(R2 + I2)2. (12.1.16)

Comparing this expression with our previous discussion of real scalar fields in section 6, we can interpret

the terms proportional to λv as RRR and RII interaction vertices, and the last term proportional to λ

as RRRR, RRII, and IIII interaction vertices. The first term proportional to λv2 is a mass term for

R, but there is no term quadratic in I, so it corresponds to a massless real scalar particle. Comparing

to the Klein-Gordon Lagrangian density of eq. (5.1.18), we can identify the physical particle masses:

m2
R = 2λv2 = −2m2, (12.1.17)

m2
I = 0. (12.1.18)

It is useful to redo this analysis in a slightly different way, by writing

φ(x) =
1√
2
[v + h(x)]eiG(x)/v , (12.1.19)

φ∗(x) =
1√
2
[v + h(x)]e−iG(x)/v , (12.1.20)

instead of eqs. (12.1.11), (12.1.12). Again h(x) and G(x) are two real scalar fields, related to R(x) and

I(x) by a non-linear functional transformation. In terms of these fields, the potential is:

V (h) = λv2h2 + λvh3 +
λ

4
h4. (12.1.21)

Notice that the field G does not appear in V at all. This is because G just corresponds to the phase of

φ, and the potential was chosen to be invariant under U(1) phase transformations. However, G does

have interactions coming from the part of the Lagrangian density containing derivatives. To find the

derivative part of the Lagrangian, we compute:

∂µφ =
1√
2
eiG/v [∂µh +

i(v + h)

v
∂µG], (12.1.22)

∂µφ
∗ =

1√
2
e−iG/v [∂µh− i(v + h)

v
∂µG], (12.1.23)
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so that:

Lderivatives =
1

2
∂µh∂µh +

1

2

(
1 +

h

v

)2

∂µG∂µG. (12.1.24)

The quadratic part of the Lagrangian, which determines the propagators for h and G, is

Lquadratic =
1

2
∂µh∂µh− 1

2
m2

hh2 +
1

2
∂µG∂µG, (12.1.25)

with

m2
h = 2λv2, (12.1.26)

m2
G = 0. (12.1.27)

This confirms the previous result that the spectrum of particles consists of a massive real scalar (h) and

a massless one (G). The interaction part of the Lagrangian following from eqs. (12.1.21) and (12.1.24)

is:

Lint =
(

1

v
h +

1

2v2
h2
)
∂µG∂µG− λvh3 − λ

4
h4. (12.1.28)

The field and particle represented by G is known as a Nambu-Goldstone boson (or sometimes just a

Goldstone boson). The original U(1) symmetry acts on G by shifting it by a constant that depends on

the VEV:

G→ G′ = G + αv; (12.1.29)

h→ h′ = h. (12.1.30)

This explains why G only appears in the Lagrangian with derivatives acting on it. In general, a broken

global symmetry is always signaled by the presence of a massless Nambu-Goldstone boson with only

derivative interactions. This is an example of Goldstone’s theorem, which we will state in a more

general framework in subsection 12.3.

12.2 Local symmetry breaking and the Higgs mechanism

Let us now consider how things change if the spontaneously broken symmetry is local, or gauged. As

a simple example, consider a U(1) gauge theory with a fermion ψ with charge Q and gauge coupling g

and a vector field Aµ transforming according to:

ψ(x) → eiQθ(x)ψ(x), (12.2.1)

ψ(x) → e−iQθ(x)ψ(x), (12.2.2)

Aµ(x) → Aµ(x)− 1

g
∂µθ(x). (12.2.3)

In order to make a gauge-invariant Lagrangian density, the ordinary derivative is replaced by the

covariant derivative:

Dµψ = (∂µ + iQgAµ)ψ. (12.2.4)
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Now, in order to spontaneously break the gauge symmetry, we introduce a complex scalar field φ with

charge +1. It transforms under a gauge transformation like

φ(x) → eiθ(x)φ(x); φ∗(x) → e−iθ(x)φ∗(x). (12.2.5)

To make a gauge-invariant Lagrangian, we again replace the ordinary derivative acting on φ,φ∗ by

covariant derivatives:

Dµφ = (∂µ + igAµ)φ; Dµφ
∗ = (∂µ − igAµ)φ∗. (12.2.6)

The Lagrangian density for the scalar and vector degrees of freedom of the theory is:

L = Dµφ
∗Dµφ− V (φ,φ∗)− 1

4
FµνFµν , (12.2.7)

where V (φ,φ∗) is as given before in eq. (12.1.2). Because the covariant derivative of the field transforms

like

Dµφ→ eiθDµφ, (12.2.8)

this Lagrangian is easily checked to be gauge-invariant. If m2 > 0 and λ > 0, then this theory

describes a massive scalar, with self-interactions with a coupling proportional to λ, and interaction

with the massless vector field Aµ.

However, if m2 < 0, then the minimum of the potential for the scalar field brings about a non-zero

VEV ⟨0|φ|0⟩ = v/
√

2 =
√
−m2/2λ, just as in the global symmetry case. Using the same decomposition

of φ into real fields h and G as given in eq. (12.1.19), one finds:

Dµφ =
1√
2

[
∂µh + ig(Aµ +

1

gv
∂µG)(v + h)

]
eiG/v . (12.2.9)

It is convenient to define a new vector field:

Vµ = Aµ +
1

gv
∂µG, (12.2.10)

since this is the combination that appears in eq. (12.2.9). Then

Dµφ =
1√
2

[∂µh + igVµ(v + h)] eiG/v , (12.2.11)

Dµφ
∗ =

1√
2

[∂µh− igVµ(v + h)] e−iG/v. (12.2.12)

Note also that since

∂µAν − ∂νAµ = ∂µVν − ∂νVµ, (12.2.13)

the vector field strength part of the Lagrangian is the same written in terms of the new vector Vµ as

it was in terms of the old vector Aµ:

−1

4
FµνFµν = −1

4
(∂µVν − ∂νVµ)(∂µV ν − ∂νV µ). (12.2.14)
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The complete Lagrangian density of the vector and scalar degrees of freedom is now:

L =
1

2

[
∂µh∂µh + g2(v + h)2V µVµ

]
− 1

4
FµνFµν − λ(vh + h2/2)2. (12.2.15)

This Lagrangian has the very important property that the field G has completely disappeared! Reading

off the part quadratic in h, we see that it has the same squared mass as in the global symmetry case,

namely

m2
h = 2λv2. (12.2.16)

There is also a term quadratic in the vector field:

LV V = −1

4
FµνFµν +

g2v2

2
V µVµ. (12.2.17)

This means that by spontaneously breaking the gauge symmetry, we have given a mass to the corre-

sponding vector field:

m2
V = g2v2. (12.2.18)

We can understand why the disappearance of the field G goes along with the appearance of the

vector boson mass as follows. A massless spin-1 vector boson (like the photon) has only two possible

polarization states, each transverse to its direction of motion. In contrast, a massive spin-1 vector

boson has three possible polarization states; the two transverse, and one longitudinal (parallel) to its

direction of motion. The additional polarization state degree of freedom had to come from somewhere,

so one real scalar degree of freedom had to disappear. The words used to describe this are that the

vector boson becomes massive by “eating” the would-be Nambu-Goldstone boson G, which becomes

its longitudinal polarization degree of freedom. This is called the Higgs mechanism. The original field

φ(x) is called a Higgs field, and the surviving real scalar degree of freedom h(x) is called by the generic

term Higgs boson. The Standard Model Higgs boson and the masses of the W± and Z bosons result

from a slightly more complicated version of this same idea, as we will see.

An alternative way to understand what has just happened to the would-be Nambu-Goldstone boson

field G(x) is that it has been “gauged away”. Recall that

φ =
1√
2
(v + h)eiG/v (12.2.19)

behaves under a gauge transformation as:

φ→ eiθφ. (12.2.20)

Normally we think of θ in this equation as just some ordinary function of spacetime, but since this is

true for any θ, we can choose it to be proportional to the Nambu-Goldstone field itself:

θ(x) = −G(x)/v. (12.2.21)
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This choice, known as “unitary gauge”, eliminates G(x) completely, just as we saw in eq. (12.2.15). In

unitary gauge,

φ(x) =
1√
2
[v + h(x)]. (12.2.22)

Notice also that the gauge transformation eq. (12.2.21) gives exactly the term in eq. (12.2.10), so that

Vµ is simply the unitary gauge version of Aµ. The advantage of unitary gauge is that the true physical

particle content of the theory (a massive vector and real Higgs scalar) is more obvious than in the

version of the Lagrangian written in terms of the original fields φ and Aµ. However, it turns out to be

easier to prove that the theory is renormalizable if one works in a different gauge in which the would-be

Nambu-Goldstone bosons are retained. The physical predictions of the theory do not depend on which

gauge one chooses, but the ease with which one can compute those results depends on picking the right

gauge for the problem at hand.

Let us catalog the propagators and interactions of this theory, in unitary gauge. The propagators

of the Higgs scalar and the massive vector are:

←→ i

p2 −m2
V + iϵ

[

−gµν +
pµpν

m2
V

]
µ ν

←→ i

p2 −m2
h + iϵ

From eq. (12.2.15), there are also hV V and hhV V interaction vertices:

←→ 2ig2vgµν

ν

µ

←→ 2ig2gµν

µ

ν

and hhh and hhhh self-interactions:

←→ −6iλv ←→ −6iλ

Finally, a fermion with charge Q inherits the same interactions with Vµ that it had with Aµ, coming

from the covariant derivative:
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←→ −iQgγµ
µ

This is a general way of making massive vector fields in gauge theories with interacting scalars and

fermions, without ruining renormalizability.

12.3 Goldstone’s Theorem and the Higgs mechanism in general

Let us now state, without proof, how all of the considerations above generalize to arbitrary groups.

First, suppose we have scalar fields φi in some representation of a global symmetry group with gener-

ators T aj
i . There is some potential

V (φi,φ
∗
i ), (12.3.1)

which we presume has a minimum where at least some of the φi are non-zero. This of course depends on

the parameters and couplings appearing in V . The fields φi will then have VEVs that can be written:

⟨0|φi|0⟩ =
vi√
2
. (12.3.2)

Any group generators that satisfy

T aj
i vj = 0 (12.3.3)

correspond to unbroken symmetry transformations. In general, the unbroken global symmetry group

is the one formed from the unbroken symmetry generators, and the vacuum state is invariant under

this unbroken subgroup. The broken generators satisfy

T aj
i vj ̸= 0. (12.3.4)

Goldstone’s Theorem states that for every spontaneously broken generator, labeled by a, of a global

symmetry group, there must be a corresponding Nambu-Goldstone boson. [The group U(1) has just

one generator, so there was just one Nambu-Goldstone boson.]

In the case of a local or gauge symmetry, each of the would-be Nambu-Goldstone bosons is eaten

by the vector field with the corresponding index a. The vector fields for the broken generators become

massive, with squared masses that can be computed in terms of the VEV(s) and the gauge coupling(s)

of the theory. There are also Higgs boson(s) for the uneaten components of the scalar fields that

obtained VEVs.

One might also ask whether it is possible for fields other than scalars to obtain vacuum expectation

values. If one could succeed in concocting a theory in which a fermion spinor field or a vector field has

a VEV:

⟨0|Ψα|0⟩ ≠ 0 (?), (12.3.5)

⟨0|Aµ|0⟩ ≠ 0 (?), (12.3.6)
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then Lorentz invariance will necessarily be broken, since the alleged VEV carries an uncontracted spinor

or vector index, and therefore transforms non-trivially under the Lorentz group. This would imply that

the broken generators would include Lorentz boosts and rotations, in contradiction with experiment.

However, there can be vacuum expectation values for antifermion-fermion composite fields, since they

can form a Lorentz scalar:

⟨0|ΨΨ|0⟩ ≠ 0. (12.3.7)

This is called a fermion-antifermion condensate. In fact, in QCD the quark-antiquark composite fields

do have vacuum expectation values:

⟨0|uu|0⟩ ≈ ⟨0|dd|0⟩ ≈ ⟨0|ss|0⟩ ≈ µ3 ̸= 0, (12.3.8)

where µ is a quantity with dimensions of [mass] which is set by the scale ΛQCD at which non-perturbative

effects become important. This is known as chiral symmetry breaking. The chiral symmetry is a global,

approximate symmetry by which left-handed u, d, s quarks are rotated into each other and right-handed

u, d, s quarks are rotated into each other. (The objects qq are color singlets, so these antifermion-fermion

VEVs do not break SU(3)c symmetry.) Chiral symmetry breaking is actually the mechanism that is

responsible for most of the mass of the proton and the neutron, and therefore most of the mass of

everyday objects. When the chiral symmetry is spontaneously broken, the Nambu-Goldstone bosons

that arise include the pions π± and π0. They are not exactly massless because the chiral symmetry was

really only approximate to begin with, but the Goldstone theorem successfully explains why they are

much lighter than the proton; m2
π ≪ m2

p. They are often called pseudo-Nambu-Goldstone bosons, or

PNGBs, with the “pseudo” indicating that the associated spontaneously broken global symmetry was

only an approximate symmetry. Extensions of the Standard Model that feature new approximate global

symmetries that are spontaneously broken generally predict the existence of heavy exotic PNGBs. For

example, these are a ubiquitous feature of technicolor models.
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13 The standard electroweak model

13.1 SU(2)L × U(1)Y representations and Lagrangian

In this section, we will study the Higgs mechanism of the Standard Model, which is responsible for

the masses of W± and Z bosons, and the masses of the leptons and most of the masses of the heavier

quarks.

The electroweak interactions are mediated by three massive vector bosons W±, Z and the massless

photon γ. The gauge group before spontaneous symmetry breaking must therefore have four generators.

After spontaneous symmetry breaking, the remaining unbroken gauge group is electromagnetic gauge

invariance. A viable theory must explain the qualitative experimental facts that the W± bosons

couple only to L-fermions (and R-antifermions), that the Z boson couples differently to L-fermions

and R-fermions, but γ couples with the same strength to L-fermions and R-fermions. Also, there are

very stringent quantitative experimental tests involving the relative strengths of fermion-antifermion-

vector couplings and the ratio of the W and Z masses. The Standard Model (SM) of electroweak

interactions of Glashow, Weinberg and Salam successfully incorporates all of these features and tests

into a spontaneously broken gauge theory. In the SM, the gauge symmetry breaking is:

SU(2)L × U(1)Y → U(1)EM. (13.1.1)

We will need to introduce a Higgs field to produce this pattern of symmetry breaking.

The SU(2)L subgroup is known as weak isospin. Left-handed SM fermions are known to be doublets

under SU(2)L:

(
νe

eL

)
,

(
νµ

µL

)
,

(
ντ

τL

)
,

(
uL

dL

)
,

(
cL

sL

)
,

(
tL
bL

)
. (13.1.2)

Notice that the electric charge of the upper member of each doublet is always 1 greater than that of the

lower member. The SU(2)L representation matrix generators acting on these fields are proportional

to the Pauli matrices:

T a = σa/2, (a = 1, 2, 3) (13.1.3)

with corresponding vector gauge boson fields:

W a
µ , (a = 1, 2, 3) (13.1.4)

and a coupling constant g. The right-handed fermions

eR, µR, τR, uR, cR, tR, dR, sR, bR, (13.1.5)

are all singlets under SU(2)L.

Meanwhile, the U(1)Y subgroup is known as weak hypercharge and has a coupling constant g′ and

a vector boson Bµ, sometimes known as the hyperphoton. The weak hypercharge Y is a conserved
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charge just like electric charge q, but it is different for left-handed and right-handed fermions. Both

members of an SU(2)L doublet must have the same weak hypercharge in order to satisfy SU(2)L gauge

invariance.

Following the general discussion of Yang-Mills gauge theories in section 10.2 [see eqs. (10.2.18) and

(10.2.19)], the pure-gauge part of the electroweak Lagrangian density is:

Lgauge = −1

4
W a

µνW
aµν − 1

4
BµνB

µν , (13.1.6)

where:

W a
µν = ∂µW a

ν − ∂νW
a
µ − gϵabcW b

µW c
ν ; (13.1.7)

Bµν = ∂µBν − ∂νBµ (13.1.8)

are the SU(2)L and U(1)Y field strengths. The totally antisymmetric ϵabc (with ϵ123 = +1) are the

structure constants for SU(2)L. This Lgauge provides for kinetic terms of the vector fields, and W a
µ

self-interactions.

The interactions of the electroweak gauge bosons with fermions are determined by the covariant

derivative. For example, the covariant derivatives acting on the lepton fields are:

Dµ

(
νe

eL

)
=

[
∂µ + ig′BµYℓL

+ igW a
µT a

] ( νe

eL

)
; (13.1.9)

DµeR =
[
∂µ + ig′BµYℓR

]
eR. (13.1.10)

where YℓL
and YℓR

are the weak hypercharges of left-handed leptons and right-handed leptons, and

2 × 2 unit matrices are understood to go with the ∂µ and Bµ terms in eq. (13.1.9). A multiplicative

factor can always be absorbed into the definition of the coupling g′, so without loss of generality, it is

traditional† to set YℓR
= Qℓ = −1. The weak hypercharges of all other fermions are then fixed. Using

the explicit form of the SU(2)L generators in terms of Pauli matrices in eq. (13.1.3), the covariant

derivative of left-handed leptons is:

Dµ

(
νe

eL

)
= ∂µ

(
νe

eL

)
+ i

[
g′YℓL

(
Bµ 0
0 Bµ

)
+

g

2

(
W 3

µ W 1
µ − iW 2

µ

W 1
µ + iW 2

µ −W 3
µ

)](
νe

eL

)
. (13.1.11)

Therefore, the covariant derivatives of the lepton fields can be summarized as:

Dµνe = ∂µνe + i
(

g′YℓL
Bµ +

g

2
W 3

µ

)
νe + i

g

2
(W 1

µ − iW 2
µ)eL; (13.1.12)

DµeL = ∂µeL + i
(

g′YℓL
Bµ −

g

2
W 3

µ

)
eL + i

g

2
(W 1

µ + iW 2
µ)νe; (13.1.13)

DµeR = ∂µeR − ig′BµeL. (13.1.14)

The covariant derivative of a field must carry the same electric charge as the field itself, in order for

charge to be conserved. Evidently, then, W 1
µ − iW 2

µ must carry electric charge +1 and W 1
µ + iW 2

µ must

†Some references define the weak hypercharge normalization so that Y is a factor of 2 larger than here, for each particle.
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carry electric charge −1, so these must be identified with the W± bosons of the weak interactions.

Consider the interaction Lagrangian following from

L = i ( νe eL ) γµDµ

(
νe

eL

)
(13.1.15)

= −g

2
νeγ

µeL(W 1
µ − iW 2

µ)− g

2
eLγ

µνe(W
1
µ + iW 2

µ) + . . . . (13.1.16)

Comparing with eqs. (9.6.2), (9.6.3), and (9.7.4), we find that to reproduce the weak-interaction La-

grangian of muon decay, we must have:

W+
µ ≡ 1√

2
(W 1

µ − iW 2
µ); (13.1.17)

W−
µ ≡ 1√

2
(W 1

µ + iW 2
µ). (13.1.18)

The 1/
√

2 normalization agrees with our previous convention; the real reason for it is so that the kinetic

terms for W± have a standard normalization: L = −1
2(∂µW+

ν − ∂νW+
µ )(∂µW−ν − ∂νW−µ).

The vector bosons Bµ and W 3
µ are both electrically neutral. As a result of spontaneous symmetry

breaking, we will find that they mix. In other words, the fields with well-defined masses (“mass

eigenstates” or “mass eigenfields”) are not Bµ and W 3
µ , but are orthogonal linear combinations of

these two gauge eigenstate fields. One of the mass eigenstates is the photon field Aµ, and the other

is the massive Z boson vector field, Zµ. One can write the relation between the gauge eigenstate and

mass eigenstate fields as a rotation in field space by an angle θW , known as the weak mixing angle or

Weinberg angle:
(

W 3
µ

Bµ

)
=
(

cos θW sin θW

− sin θW cos θW

)(
Zµ

Aµ

)
, (13.1.19)

with the inverse relation:
(

Zµ

Aµ

)
=
(

cos θW − sin θW

sin θW cos θW

)(
W 3

µ

Bµ

)
. (13.1.20)

We now require that the resulting theory has the correct photon coupling to fermions, by requiring

that the field Aµ appears in the covariant derivatives in the way dictated by QED. The covariant

derivative of the right-handed electron field eq. (13.1.14) can be written:

DµeR = ∂µeR − ig′ cos θW AµeR + ig′ sin θW ZµeR. (13.1.21)

Comparing to DµeR = ∂µeR − ieAµeR from QED, we conclude that:

g′ cos θW = e. (13.1.22)

Similarly, one finds using eq. (13.1.19) that:

DµeL = ∂µeL + i
(

g′YℓL
cos θW −

g

2
sin θW

)
AµeL + . . . (13.1.23)
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Again comparing to the prediction of QED that DµeL = ∂µeL − ieAµeL, it must be that:

g

2
sin θW − g′YℓL

cos θW = e (13.1.24)

is the electromagnetic coupling. In the same way:

Dµνe = ∂µνe + i
(

g′YℓL
cos θW +

g

2
sin θW

)
Aµνe + . . . (13.1.25)

where the . . . represent W and Z terms. However, we know that the neutrino has no electric charge, and

therefore its covariant derivative cannot involve the photon. So, the coefficient of Aµ in eq. (13.1.25)

must vanish:

g

2
sin θW + g′YℓL

cos θW = 0. (13.1.26)

Now combining eqs. (13.1.22), (13.1.24), and (13.1.26), we learn that:

YℓL
= −1/2, (13.1.27)

e =
gg′

√
g2 + g′2

, (13.1.28)

tan θW = g′/g, (13.1.29)

so that

sin θW =
g′

√
g2 + g′2

; cos θW =
g

√
g2 + g′2

. (13.1.30)

These are requirements that will have to be satisfied by the spontaneous symmetry breaking mechanism.

The numerical values from experiment are approximately:

g = 0.652; (13.1.31)

g′ = 0.357; (13.1.32)

e = 0.313; (13.1.33)

sin2 θW = 0.231. (13.1.34)

These are all renormalized, running parameters, evaluated at a renormalization scale µ = mZ = 91.1876

GeV in the MS scheme.

In a similar way, one can work out what the weak hypercharges of all of the other SM quarks

and leptons have to be, in order to reproduce the correct electric charges appearing in the coupling

to the photon field Aµ from the covariant derivative. The results can be summarized in terms of the

SU(3)c × SU(2)L × U(1)Y representations:
(
νe

eL

)
,
(
νµ

µL

)
,
(
ντ

τL

)
, ←→ (1, 2, −1

2)

eR, µR, τR, ←→ (1, 1, −1)(
uL

dL

)
,
(

cL

sL

)
,
(

tL
bL

)
, ←→ (3, 2, 1

6 )

uR, cR, tR, ←→ (3, 1, 2
3 )

dR, sR, bR, ←→ (3, 1, −1
3).

(13.1.35)
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In general, the electric charge of any field f is given in terms of the eigenvalue of the 3 component of

weak isospin matrix, T 3, and the weak hypercharge Y , as:

Qf = T 3
f + Yf . (13.1.36)

Here T 3
f is +1/2 for the upper component of a doublet, −1/2 for the lower component of a doublet, and

0 for an SU(2)L singlet. The couplings of the SM fermions to the Z boson then follow as a prediction.

One finds for each SM fermion f :

LZff = −Zµfγµ(gf
LPL + gf

RPR)f, (13.1.37)

where

gf
L = g cos θW T 3

fL
− g′ sin θW YfL

=
g

cos θW

(
T 3

fL
− sin2 θW Qf

)
, (13.1.38)

gf
R = −g′ sin θW YfR

= − g

cos θW

(
sin2 θW Qf

)
, (13.1.39)

with coefficients:

fermion T 3
fL

YfL
YfR

Qf

νe, νµ, ντ
1
2 −1

2 0 0

e, µ, τ −1
2 −1

2 −1 −1

u, c, t 1
2

1
6

2
3

2
3

d, s, b −1
2

1
6 −1

3 −1
3

Equation (13.1.37) can also be rewritten in terms of vector and axial-vector couplings to the Z boson:

LZff = −Zµfγµ(gf
V − gf

Aγ5)f, (13.1.40)

with

gf
V =

1

2

(
gf
L + gf

R

)
=

g

2 cos θW

(
T 3

fL
− 2 sin2 θW Qf

)
, (13.1.41)

gf
A =

1

2

(
gf
L − gf

R

)
=

g

2 cos θW

(
T 3

fL

)
. (13.1.42)

The coupling parameters appearing in eq. (11.8.13) are Vf = gf
V /e and Af = gf

A/e.

The partial decay widths and branching ratios of the Z boson can be worked out from these

couplings (see homework), and agree with the results from experiment:

BR(Z → ℓ+ℓ−) = 0.033658 ± 0.000023 (for ℓ = e, µ, τ , each) (13.1.43)

BR(Z → invisible) = 0.2000 ± 0.0006 (13.1.44)

BR(Z → hadrons) = 0.6991 ± 0.0006. (13.1.45)

The “invisible” branching ratio matches up extremely well with the theoretical prediction for the sum

over the three νℓνℓ final states, while “hadrons” is due to quark-antiquark final states. It is an important

fact that the Z branching ratio into charged leptons is small. This is unfortunate, since backgrounds

for leptons are smaller than for hadrons or missing energy, and Z bosons can appear in many searches

for new phenomena.
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13.2 The Standard Model Higgs mechanism

Let us now turn to the question of how to spontaneously break the electroweak gauge symmetry in a

way that satisfies the above conditions. There is actually more that one way to do this, but we will

follow the simplest possibility, which is to introduce a complex SU(2)L-doublet scalar Higgs field with

weak hypercharge YΦ = +1/2:

Φ =
(
φ+

φ0

)
←→ (1,2,

1

2
). (13.2.1)

Each of the fields φ+ and φ0 is a complex scalar field; we know that they carry electric charges +1 and

0 respectively from eq. (13.1.36). Under gauge transformations, Φ transforms as:

SU(2)L : Φ(x)→ Φ′(x) = eiθa(x)σa/2Φ(x); (13.2.2)

U(1)Y : Φ(x)→ Φ′(x) = eiθ(x)/2Φ(x). (13.2.3)

The Hermitian conjugate field transforms as:

SU(2)L : Φ† → Φ′† = Φ†e−iθaσa/2; (13.2.4)

U(1)Y : Φ† → Φ′† = Φ†e−iθ/2. (13.2.5)

It follows that the combinations

Φ†Φ and DµΦ†DµΦ (13.2.6)

are gauge singlets. We can therefore build a gauge-invariant potential:

V (Φ,Φ†) = m2Φ†Φ + λ(Φ†Φ)2, (13.2.7)

and the Lagrangian density for Φ is:

L = DµΦ†DµΦ− V (Φ,Φ†). (13.2.8)

Now, provided that m2 < 0, then Φ =
(

0
0

)
is a local maximum, rather than a minimum, of the

potential. This will ensure the spontaneous symmetry breaking that we demand. There are degenerate

minima of the potential with

Φ†Φ = v2/2; v =
√
−m2/λ. (13.2.9)

Without loss of generality, we can choose the VEV of Φ to be real, and entirely in the second (electrically

neutral) component of the Higgs field:

⟨0|Φ|0⟩ =
(

0
v/
√

2

)
. (13.2.10)

This is a convention, which can always be achieved by doing an SU(2)L gauge transformation on the

field Φ to make it so. By definition, the surviving U(1) gauge symmetry is U(1)EM, so the component
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of Φ obtaining a VEV must be the one assigned 0 electric charge. The U(1)EM gauge transformations

acting on Φ are a combination of SU(2)L and U(1)Y transformations:

Φ→ Φ′ = exp
[
iθ
(

1 0
0 0

)]
Φ, (13.2.11)

or, in components,

φ+ → eiθφ+, (13.2.12)

φ0 → φ0. (13.2.13)

Comparing with the QED gauge transformation rule of eq. (10.1.5), we see that indeed φ+ and φ0 have

charges +1 and 0, respectively.

The Higgs field Φ has two complex, so four real, scalar field degrees of freedom. Therefore, following

the example of section 12.2, we can write it as:

Φ(x) = eiGa(x)σa/2v
(

0
v+h(x)√

2

)
, (13.2.14)

where Ga(x) (a = 1, 2, 3) and h(x) are each real scalar fields. The Ga are would-be Nambu-Goldstone

bosons, corresponding to the three broken generators in SU(2)L × U(1)Y → U(1)EM. The would-be

Nambu-Goldstone fields can be removed by going to unitary gauge, which means performing an SU(2)L

gauge transformation of the form of eq. (13.2.2), with θa = −Ga/v. This completely eliminates the Ga

from the Lagrangian, so that in the unitary gauge we have simply

Φ(x) =
(

0
v+h(x)√

2

)
. (13.2.15)

The field h creates and destroys the physical Higgs particle, an electrically neutral real scalar boson

that has yet to be discovered experimentally. We can now plug this into the Lagrangian density of

eq. (13.2.8), to find interactions and mass terms for the remaining Higgs field h and the vector bosons.

The covariant derivative of Φ in unitary gauge is:

DµΦ =
1√
2

(
0
∂µh

)
+

i√
2

[
g′

2
Bµ +

g

2
W a

µσ
a
](

0
v + h

)
(13.2.16)

and its Hermitian conjugate is:

DµΦ† =
1√
2

( 0 ∂µh )− i√
2

( 0 v + h )
[
g′

2
Bµ +

g

2
W a

µσ
a
]
. (13.2.17)

Therefore,

DµΦ†DµΦ =
1

2
∂µh∂µh +

(v + h)2

8
( 0 1 )

(
g′Bµ + gW 3

µ

√
2gW−

µ√
2gW+

µ g′Bµ − gW 3
µ

)

(
g′Bµ + gW 3µ

√
2gW−µ

√
2gW+µ g′Bµ − gW 3µ

)(
0
1

)
, (13.2.18)

or, after simplifying,

DµΦ†DµΦ =
1

2
∂µh∂µh +

(v + h)2

4

[
g2W+

µ W−µ +
1

2
(gW 3

µ − g′Bµ)(gW 3µ − g′Bµ)
]
. (13.2.19)
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This can be further simplified using:

gW 3
µ − g′Bµ =

√
g2 + g′2

[
cos θW W 3

µ − sin θW Bµ

]
=
√

g2 + g′2Zµ, (13.2.20)

where the first equality uses eq. (13.1.30) and the second uses eq. (13.1.20). So finally we have:

LΦ kinetic = DµΦ†DµΦ =
1

2
∂µh∂µh +

(v + h)2

4

[
g2W+

µ W−µ +
1

2
(g2 + g′2)ZµZµ

]
. (13.2.21)

The parts of this proportional to v2 make up (mass)2 terms for the W± and Z vector bosons, vindicating

the earlier assumption of neutral vector boson mixing with the form that we took for the sine and

cosine of the weak mixing angle. Since there is no such (mass)2 term for the photon field Aµ, we have

successfully shown that the photon remains massless, in agreement with the fact that U(1)EM gauge

invariance remains unbroken. The specific prediction is:

m2
W =

g2v2

4
, m2

Z =
(g2 + g′2)v2

4
, (13.2.22)

which agrees with the experimental values provided that the VEV is approximately:

v =
√

2⟨φ0⟩ = 246 GeV (13.2.23)

in the conventions used here. (It should be noted that there is another extremely common convention

in which v is defined to be a factor 1/
√

2 smaller than here, so that v = ⟨φ0⟩ = 174 GeV in that

convention.) A non-trivial prediction of the theory is that

mW /mZ = cos θW . (13.2.24)

All of the above predictions are subject to small, but measurable, loop corrections. For example, the

present experimental values mW = 80.399 ± 0.023 GeV and mZ = 91.1876 ± 0.0021 GeV yield:

sin2 θon−shell
W ≡ 1−m2

W /m2
Z = 0.2226 ± 0.0005, (13.2.25)

which is significantly lower than the MS-scheme running value in eq. (13.1.34).

The remaining terms in eq. (13.2.21) are Higgs-vector-vector and Higgs-Higgs-vector-vector cou-

plings. This part of the Lagrangian density implies the following unitary gauge Feynman rules:

i

p2 −m2
W + iϵ

[

−gµν +
pµpν

m2
W

]

W±
µ ν

i

p2 −m2
Z + iϵ

[

−gµν +
pµpν

m2
Z

]

Zµ ν

igµνg2v/2

h

W ν

W µ

igµν(g2 + g′2)v/2

h

Zµ

Zν
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igµνg2/2

h

h

W µ

W ν

igµν(g2 + g′2)/2

h

h

Zµ

Zν

with the arrow direction on W± lines indicating the direction of the flow of positive charge. The

field-strength Lagrangian terms of eq. (13.1.6) provides the momentum part of the W , Z propagators

above, and also yields 3-gauge-boson and 4-gauge-boson interactions:

−ie[gµν(p− q)ρ + gνρ(q − k)µ + gρµ(k − p)ν ]

Wρ

Wν

Aµ
p

q

k

−ig cos θW [gµν(p − q)ρ + gνρ(q − k)µ + gρµ(k − p)ν ]

Wρ

Wν

Zµ
p

q

k

ig2Xµν,ρσ

W µ

W σ

W ν

W ρ

−ie2Xµν,ρσ

Aµ

Aν

W σ

W ρ

−ig2 cos2 θW Xµν,ρσ

Zµ

Zν

W ρ

W σ

−ig2 sin θW cos θW Xµν,ρσ

Aµ

Zν

W ρ

W σ

where:

Xµν,ρσ = 2gµνgρσ − gµρgνσ − gµσgνρ. (13.2.26)
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Finally, the Higgs potential V (Φ,Φ†) gives rise to a mass and self-interactions for h. In unitary gauge:

V (h) = λv2h2 + λvh3 +
λ

4
h4, (13.2.27)

just as in the toy model studied in 12.2. Therefore, the Higgs boson has self-interactions with Feynman

rules:

−6iλv −6iλ

and a mass

mh =
√

2λv, (13.2.28)

It would be great if we could evaluate this numerically using present data. Unfortunately, while we

know what the Higgs VEV v is, there is no present experiment that directly sheds light on λ. There are

indirect effects of the Higgs mass in loops that do affect some present experiments. These experiments

suggest that mh cannot be too large, but these bounds are not very strong, especially if we consider

that the SM is probably not the final story.

13.3 Fermion masses and Cabibbo-Kobayashi-Maskawa mixing

The gauge group representations for fermions in the Standard Model are chiral. This means that the

left-handed fermions transform in a different representation than the right-handed fermions. Chiral

fermions have the property that they cannot have masses without breaking the symmetry that makes

them chiral.

For example, suppose we try to write down a mass term for the electron:

Lelectron mass = −meee. (13.3.1)

The Dirac spinor for the electron can be separated into left- and right-handed pieces,

e = PLeL + PReR, (13.3.2)

and the corresponding barred spinor as:

e = (e†LPL + e†RPR)γ0 = e†Lγ
0PR + e†Rγ

0PL = eLPR + eRPL, (13.3.3)

where, to avoid any confusion between between (eL) and (e)PL, we explicitly define

eL ≡ e†Lγ
0; eR ≡ e†Lγ

0. (13.3.4)
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Equation (13.3.1) can therefore be written:

Lelectron mass = −me(eLeR + eReL). (13.3.5)

The point is that this is clearly not a gauge singlet. In the first place, the eL part of each term

transforms as a doublet under SU(2)L, and the eR is a singlet, so each term is an SU(2)L doublet.

Furthermore, the first term has Y = YeR
− YeL

= −1/2, while the second term has Y = 1/2. All terms

in the Lagrangian must be gauge singlets in order not to violate the gauge symmetry, so the electron

mass is disqualified from appearing in this form. More generally, for any Standard Model fermion f ,

the naive mass term

Lf mass = −mf (fLfR + fRfL) (13.3.6)

is not an SU(2)L singlet, and is not neutral under U(1)Y , and so is not allowed.

Fortunately, fermion masses can still arise with the help of the Higgs field. For the electron, there

is a gauge-invariant term:

Lelectron Yukawa = −ye ( νe eL )
(
φ+

φ0

)
eR + c.c. (13.3.7)

Here ye is a Yukawa coupling of the type we studied in 8.3. The field ( νe eL ) carries weak hypercharge

+1/2, as does the Higgs field, and eR carries weak hypercharge −1, so the whole term is a U(1)Y singlet,

as required. Moreover, the doublets transform under SU(2)L as:
(
φ+

φ0

)
→ e−iθaσa/2

(
φ+

φ0

)
, (13.3.8)

( νe eL ) → ( νe eL ) e+iθaσa/2, (13.3.9)

so eq. (13.3.7) is also an SU(2)L singlet. Going to the unitary gauge of eq. (13.2.15), it becomes:

LYukawa = − ye√
2
(v + h)(eLeR + eReL), (13.3.10)

or, reassembling the Dirac spinors without projection matrices:

LYukawa = − ye√
2
(v + h)ee. (13.3.11)

This can now be interpreted as an electron mass, equal to

me =
yev√

2
, (13.3.12)

and, as a bonus, an electron-positron-Higgs interaction vertex, with Feynman rule:

−iye/
√

2
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Since we know the electron mass and the Higgs VEV already, we can compute the electron Yukawa

coupling:

ye =
√

2
(

0.511 MeV

246 GeV

)
= 2.94 × 10−6. (13.3.13)

Unfortunately, this is so small that we can forget about ever observing the interactions of the Higgs

particle h with an electron. Notice that although the neutrino participates in the Yukawa interaction,

it disappears in unitary gauge from that term.

Masses for all of the other leptons, and the down-type quarks (d, s, b) in the Standard Model arise

in exactly the same way. For example, the bottom quark mass comes from the gauge-invariant Yukawa

coupling:

L = −yb ( tL bL )
(
φ+

φ0

)
bR + c.c., (13.3.14)

implying that, in unitary gauge, we have a b-quark mass and an hbb vertex:

L = − yb√
2
(v + h)bb. (13.3.15)

The situation is slightly different for up-type quarks (u, c, t), because the complex conjugate of the field

Φ must appear in order to preserve U(1)Y invariance. It is convenient to define

Φ̃ ≡
(

0 1
−1 0

)
Φ∗ =

(
φ0∗

−φ+∗

)
, (13.3.16)

which transforms as an SU(2)L doublet in exactly the same way that Φ does:

Φ → eiθaσa/2Φ; (13.3.17)

Φ̃ → eiθaσa/2Φ̃. (13.3.18)

Also, Φ̃ has weak hypercharge Y = −1/2. (The field φ+∗ has a negative electric charge.) Therefore,

one can write a gauge-invariant Yukawa coupling for the top quark as:

L = −yt ( tL bL )
(

φ0∗

−φ+∗

)
tR + c.c. (13.3.19)

Going to unitary gauge, one finds that the top quark has a mass:

L = − yt√
2
(v + h)tt. (13.3.20)

In all cases, the unitary-gauge version of the gauge-invariant Yukawa interaction is

L = − yf√
2
(v + h)ff. (13.3.21)

The mass and the h-fermion-antifermion coupling obtained by each Standard Model fermion in this

way are both proportional to yf . The Higgs mechanism not only explains the masses of the W± and

Z bosons, but also explains the masses of fermions. Notice that all of the particles in the Standard
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Model (except the photon and gluon, which must remain massless because of SU(3)c × U(1)EM gauge

invariance) get a mass from spontaneous electroweak symmetry breaking of the form:

mparticle = kv, (13.3.22)

where k is some combination of dimensionless couplings. For the fermions, it is proportional to a

Yukawa coupling; for the W± and Z bosons it depends on gauge couplings, and for the Higgs particle

itself, it is the Higgs self-coupling λ.

There are two notable qualifications for quarks. First, gluon loops make a large modification to the

tree-level prediction. For each quark, the physical mass measured from kinematics is

mq =
yqv√

2

[
1 +

4αs

3π
+ . . .

]
, (13.3.23)

where yq is the running (renormalized) Yukawa coupling evaluated at a renormalization scale µ = mq.

The QCD gluon-loop correction increases mt by roughly 6%, and has an even larger effect on mb because

αs is larger at the renormalization scale µ = mb than at µ = mt. The two-loop and higher corrections

(indicated by . . .) are smaller but still significant, and must be taken into account in precision work,

for example when predicting the branching ratios of the Higgs boson decay. This was the reason for

the notation mf (more nearly yfv/
√

2 than mf ) that was used in 8.3.

A second qualification is that there is actually another source of quark masses, coming from non-

perturbative QCD effects, as has already been mentioned at the end of section 12.3. If the Higgs

field did not break SU(2)L × U(1)Y , then these chiral symmetry breaking effects would do it anyway,

using an antifermion-fermion VEV rather than a scalar VEV. This gives contributions to all quark

masses that are roughly of order ΛQCD. For the top, bottom, and even charm quarks, this is relatively

insignificant. However, for the up and down quarks, it is actually the dominant effect. They get only a

few MeV of their mass from the Higgs field. Therefore, the most important source of mass in ordinary

nuclear matter is really chiral symmetry breaking in QCD, not the Standard Model Higgs field.

The Standard Model fermions consist of three families with identical gauge interactions. Therefore,

the most general form of the Yukawa interactions is actually:

Le,µ,τ Yukawas = −
(
νi ℓ

i
L

) (φ+

φ0

)
yei

jℓRj + c.c., (13.3.24)

Ld,s,b Yukawas = −
(
ui

L d
i
L

) (φ+

φ0

)
ydi

jdRj + c.c., (13.3.25)

Lu,c,t Yukawas = −
(
ui

L d
i
L

) ( φ0∗

−φ+∗

)
yui

juRj + c.c. (13.3.26)

Here i, j are indices that run over the three families, so that:

ℓRj =

⎛

⎝
eR

µR

τR

⎞

⎠ ; ℓLj =

⎛

⎝
eL

µL

τL

⎞

⎠ ; νi =

⎛

⎝
νe

νµ

ντ

⎞

⎠ ; (13.3.27)

dLj =

⎛

⎝
dL

sL

bL

⎞

⎠ ; dRj =

⎛

⎝
dR

sR

bR

⎞

⎠ ; uLj =

⎛

⎝
uL

cL

tL

⎞

⎠ ; uRj =

⎛

⎝
uR

cR

tR

⎞

⎠ . (13.3.28)
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In a general basis, the Yukawa couplings

yei
j, ydi

j , yui
j (13.3.29)

are complex 3× 3 matrices in family space. In unitary gauge, the Yukawa interaction Lagrangian can

be written as:

L = −
(

1 +
h

v

){
ℓ
′i
Lmei

jℓ′Rj + d
′i
Lmdi

jd′Rj + u′i
Lmui

ju′
Rj

}
+ c.c., (13.3.30)

where

mf i
j =

v√
2
yf i

j. (13.3.31)

(The fermion fields are now labeled with a prime, to distinguish them from the basis we are about to

introduce.) It therefore appears that the masses of Standard Model fermions are actually 3×3 complex

matrices.

Its is most convenient to work in a basis in which the fermion masses are real and positive, so that

the Feynman propagators are simple. This can always be accomplished, thanks to the following:

Mass Diagonalization Theorem. Any complex matrix M can be diagonalized by a

biunitary transformation:

U †
LMUR = MD (13.3.32)

where MD is diagonal with positive real entries, and UL and UR are unitary matrices.

To apply this in the present case, consider the following redefinition of the lepton fields:

ℓ′Li = LLi
jℓLj ; ℓ′Ri = LRi

jℓRj . (13.3.33)

where LLi
j and LRi

j are unitary 3×3 matrices. The lepton mass term in the unitary gauge Lagrangian

then becomes:

L = −
(

1 +
h

v

)
ℓ
i
L(L†

LmeLR)i
j
ℓRj . (13.3.34)

Now, the theorem just stated assures us that we can choose the matrices LL and LR so that:

L†
LmeLR =

⎛

⎝
me 0 0
0 mµ 0
0 0 mτ

⎞

⎠ . (13.3.35)

So we can write in terms of the unprimed (mass eigenstate) fields:

L = −
(

1 +
h

v

)
(meee + mµµµ + mτττ). (13.3.36)
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In the same way, one can do unitary-matrix redefinitions of the quark fields:

d′Li = DLi
jdLj; d′Ri = DRi

jdRj ; (13.3.37)

u′
Li = ULi

juLj; u′
Ri = URi

juRj , (13.3.38)

chosen in such a way that

D†
LmdDR =

⎛

⎝
md 0 0
0 ms 0
0 0 mb

⎞

⎠ ; (13.3.39)

U †
LmuUR =

⎛

⎝
mu 0 0
0 mc 0
0 0 mt

⎞

⎠ , (13.3.40)

with real and positive diagonal entries.

It might now seem that worrying about the possibility of 3× 3 Yukawa matrices was just a waste

of time, but one must now consider how these field redefinitions from primed (gauge eigenstate) to

unprimed (mass eigenstate) fields affect the other terms in the Lagrangian. First, consider the derivative

kinetic terms. For the leptons, L contains

iℓ
j′
L /∂ℓ′Lj = i(ℓLL†

L)j /∂(LLℓL)j = iℓ
j
L /∂ℓLj. (13.3.41)

This relies on the fact that the (constant) field redefinition matrix LL is unitary, L†
LLL = 1. The same

thing works for all of the other derivative kinetic terms, for example, for right-handed up-type quarks:

iuj′
R

/∂u′
Rj = i(uRU †

R)j /∂(URuR)j = iuj
R

/∂uRj , (13.3.42)

which relies on U †
RUR = 1. So the redefinition has no effect at all here; the form of the derivative

kinetic terms is exactly the same for unprimed fields as for primed fields.

There are also interactions of fermions with gauge bosons. For example, for the right-handed

leptons, the QED Lagrangian contains a term

−eAµℓ
j′
Rγ

µℓ′Rj = −eAµ(ℓRL†
R)jγµ(LRℓR)j = −eAµℓ

j
Rγ

µℓRj . (13.3.43)

Just as before, the unitary condition (this time L†
RLR = 1) guarantees that the form of the Lagrangian

term is exactly the same for unprimed fields as for primed fields. You can show quite easily that the

same thing applies to interactions of all fermions with Zµ and the gluon fields. The unitary redefinition

matrices for quarks just commute with the SU(3)c generators, since they act on different indices.

There is one place in the Standard Model where the above argument does not work, namely the

interactions of W± vector bosons. This is because the W± interactions involve two different types of

fermions, with different unitary redefinition matrices. Consider first the interactions of the W± with

leptons. In terms of the original primed fields:

L = − g√
2
W+

µ ν
′iγµℓ′Li + c.c., (13.3.44)
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so that

L = − g√
2
W+

µ ν
′iγµ(LLℓL)i + c.c. (13.3.45)

Since we did not include a Yukawa coupling or mass term for the neutrinos, we did not have to make

a unitary redefinition for them. But now we are free to do so; defining νi in the same way as the

corresponding charged leptons, ν ′i = LLνj, we get,

ν ′i = (νL†
L)i, (13.3.46)

resulting in

L = − g√
2
W+

µ ν
iγµℓLi + c.c. (13.3.47)

So once again the interactions of W± bosons have exactly the same form for mass-eigenstate leptons.

However, consider the interactions of W± bosons with quarks. In terms of the original primed fields,

L = − g√
2
W+

µ u′i
Lγ

µd′Li + c.c., (13.3.48)

which becomes:

L = − g√
2
W+

µ ui
Lγ

µ(U †
LDLdL)i + c.c. (13.3.49)

There is no reason why U †
LDL should be equal to the unit matrix, and in fact it is not. So we have

finally encountered a consequence of going to the mass-eigenstate basis. The charged-current weak

interactions contain a non-trivial matrix operating in quark family space,

V = U †
LDL, (13.3.50)

called the Cabibbo-Kobayashi-Maskawa matrix (or CKM matrix). The CKM matrix V is itself unitary,

since V † = (U †
LDL)† = D†

LUL, implying that V †V = V V † = 1. But, it cannot be removed by going to

some other basis using a further unitary matrix without ruining the diagonal quark masses. So we are

stuck with it.

One can think of V as just a unitary rotation acting on the left-handed down quarks. From

eq. (13.3.49), we can define

d′Li = Vi
jdLj, (13.3.51)

where the dLj are mass eigenstate quark fields, and the d′Li are the quarks that interact in a simple

way with W bosons:

L = − g√
2
W+

µ ui
Lγ

µd′Li + c.c., (13.3.52)

and so in terms of mass eigenstate quark fields:

L = − g√
2
Vi

j W+
µ ui

Lγ
µdLj + c.c. (13.3.53)
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This is the entire effect of the non-diagonal Yukawa matrices.

The numerical entries of the CKM matrix are a subject of continuing experimental investigation.

To a first approximation, it turns out that the CKM mixing is just a rotation of down and strange

quarks:

V =

⎛

⎝
cos θc sin θc 0
− sin θc cos θc 0

0 0 1

⎞

⎠ (13.3.54)

where θc is called the Cabibbo angle. This implies that the interactions of W+ with the mass-eigenstate

quarks are very nearly:

L = − g√
2
W+

µ

(
cos θc[uLγ

µdL + cLγ
µsL] + sin θc[uLγ

µsL − cLγ
µdL] + tLγ

µbL

)
. (13.3.55)

The terms proportional to sin θc are responsible for strangeness-changing decays. Numerically,

cos θc ≈ 0.974; sin θc ≈ 0.23. (13.3.56)

Strange hadrons have long lifetimes because they decay through the weak interactions, and with reduced

matrix elements that are proportional to sin2 θc = 0.05.

More precisely, the CKM matrix is:

V =

⎛

⎝
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞

⎠ ≈

⎛

⎝
0.9743 0.2252 0.004
0.230 0.975 0.041
0.008 0.04 0.999

⎞

⎠ , (13.3.57)

where the numerical values given are estimates of the magnitude only (not the sign or phase). In fact,

the CKM matrix contains one phase that cannot be removed by redefining phases of the fermion fields.

This phase is the only source of CP violation in the Standard Model.

Weak decays of mesons involving the W bosons allow the entries of the CKM matrix to be probed

experimentally. For example, decays

B → Dℓ+νℓ, (13.3.58)

where B is a meson containing a bottom quark and D contains a charm quark, can be used to extract

|Vcb|. The very long lifetimes of B mesons are explained by the fact that |Vub| and |Vcb| are very small.

One of the ways of testing the Standard Model is to check that the CKM matrix is indeed unitary:

V †V = 1, (13.3.59)

which implies in particular that VudV ∗
ub + VcdV ∗

cb + VtdV ∗
tb = 0. This is an automatic consequence of the

Standard Model, but if there is further unknown physics out there, then the weak interactions could

appear to violate CKM unitarity.

The partial decay widths and branching ratios of the W boson can be worked out from eqs. (13.3.47)

and (13.3.53), and agree well with the experimental results:

BR(W+ → ℓ+νℓ) = 0.1080 ± 0.0009 (for ℓ = e, µ, τ , each) (13.3.60)

BR(W+ → hadrons) = 0.6760 ± 0.0027. (13.3.61)
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where the “hadrons” refers mostly to Cabibbo-allowed final states ud and cs, with a much smaller

contribution from the Cabibbo-suppressed final states cd and us. The tb final state is of course not

available due to kinematics; this implies the useful fact that (up to a very small effect from CKM

mixing) b quarks do not result from W decays in the Standard Model.

Also, the very small magnitudes of Vtd and Vts imply that, to a very good approximation, top

quarks decay to bottom quarks every time:

BR(t→W+b) ≈ 1. (13.3.62)

This greatly simplifies the experimental identification of top quarks.

13.4 Neutrino masses and the seesaw mechanism

Evidence from observation of neutrinos produced in the Sun, the atmosphere, accelerators, and reactors

have now established that neutrinos do have mass. In the renormalizable version of the Standard Model

given up to here, this cannot be explained. The basic reason for this is the absence of right-handed

neutrinos from the list in eq. (13.1.35). To remedy the situation, we can add three right-handed

fermions that are singlets under all three components of the gauge group SU(3)c × SU(2)L × U(1)Y :

NR1, NR2, NR3 ←→ (1, 1, 0). (13.4.1)

With these additional gauge-singlet right-handed neutrino degrees of freedom, it is now possible to

write down a gauge-invariant Lagrangian interaction of the neutrinos with the Higgs field:

Lν neutrino Yukawas = −
(
νi ℓ

i
L

) ( φ0∗

−φ+∗

)
yν i

jNRj + c.c. (13.4.2)

Note the similarity of this with the up-type quark Yukawa couplings in eq. (13.3.26). Going to unitary

gauge, one obtains a neutrino mass matrix

mν i
j =

v√
2
yν i

j . (13.4.3)

just as in eq. (13.3.31) for the Standard Model charged fermions. This neutrino mass matrix can be

diagonalized to obtain the physical neutrino masses as the absolute values of its eigenvalues. The

neutrinos in this scenario are Dirac fermions, as the mass term couples together left-handed and right-

handed degrees of freedom that are independent.

Although the magnitudes of the neutrino masses are not yet determined by experiment, there are

strong upper bounds, as seen in Table 2 in the Introduction. Also, a conservative limit from the

WMAP measurements of the cosmic background radiation, interpreted within the standard cosmolog-

ical model, implies that the sum of the three Standard Model neutrinos should be at most 1.7 eV.

Neutrino oscillation data do not constrain the individual neutrino masses, but imply that the largest

differences between squared masses should be less than 3 × 10−3 eV2. So, several independent pieces

of evidence indicate that neutrino masses are much smaller that any of the charged fermion masses.
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To accommodate this within the Dirac mass framework of eq. (13.4.3), the eigenvalues of the neutrino

Yukawa matrix yν i
j would have to be extremely small, no larger than about 10−9. Such small di-

mensionless couplings appear slightly unnatural, in a purely subjective sense, and this suggests that

neutrino masses may have a different origin than quark and leptons masses.

The seesaw mechanism is a way of addressing this problem, such that very small neutrino masses

naturally occur, even if the corresponding Yukawa couplings are of order 1. One includes, besides

eq. (13.4.2), a new term in the Lagrangian:

L = −1

2
MijN iNj , (13.4.4)

where Ni are the Majorana fermion fields (see section 3.4) that include NRi, and Mij is a symmetric

mass matrix. If the neutrino fields carry lepton number 1, then this Majorana mass term necessarily

violates the total lepton number L = Le + Lµ + Lτ . Now the total mass matrix for the left-handed

neutrino fields νLi and the right-handed neutrino fields NRi, including both eq. (13.4.3) and eq. (13.4.4),

is:

M =

(
0 v√

2
yν

v√
2
yT

ν M

)

. (13.4.5)

The point of the seesaw mechanism is that if the eigenvalues of M are much larger than those of the

Dirac mass matrix v√
2
yν , then the smaller set of mass eigenvalues of M will be pushed down. Since

M does not arise from electroweak symmetry breaking, it can naturally be very large. For illustration,

taking M and yν to be 1× 1 matrices, the absolute values of the neutrino mass eigenvalues of M are

approximately:

v2yν
2

2M
, and M (13.4.6)

in the limit vyν ≪M. For example, to get a neutrino mass of order 0.1 eV, one could have yν = 1.0

and M = 3× 1014 GeV, or yν = 0.1 and M = 3× 1012 GeV. The light neutrino states (corresponding

to the lighter eigenvectors of M) are mostly the Standard Model νL and they are Majorana fermions.

There are also three extremely heavy Majorana neutrino mass eigenstates, which decouple from present

weak interaction experiments. The fact that the magnitude of M necessary to make this work is not

larger than the Planck scale, and is very roughly commensurate with other scales that occur in other

theories such as supersymmetry, is encouraging. In any case, the ease with which the seesaw mechanism

accommodates very small but non-zero neutrino masses has made it a favorite scenario of theorists.

In either of the two cases above, the left-handed parts of the neutrino mass eigenstates ν1, ν2, ν3

(with masses m1 < m2 < m3) can be related to the left-handed parts of the neutrino weak-interaction

eigenstates νe, νµ, ντ (which each couple to the corresponding charged lepton only, and the W boson)

by:
⎛

⎝
νeL

νµL

ντL

⎞

⎠ = U

⎛

⎝
ν1L

ν2L

ν3L

⎞

⎠ , (13.4.7)
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where U is a unitary matrix known as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. Neu-

trino oscillations are due to the fact that U is not equal to the identity matrix.

To recap, by introducing right-handed gauge-singlet neutrino decrees of freedom, there are two

distinct scenarios for neutrino masses. In the Dirac scenario, neutrinos and antineutrinos are distinct,

and total lepton number is conserved although the individual lepton numbers are violated. In the

Majorana scenario, neutrinos are their own antiparticles, and total lepton number is violated along with

the individual lepton numbers. At this writing, both possibilities are consistent with the experimental

data. To tell the difference between these two scenarios, one can look for neutrinoless double beta

decay, i.e. a nuclear transition

AZ → A(Z + 2) + e−e−, (13.4.8)

(at the nucleon level nn → ppe−e−), which can proceed via the quark-level Feynman diagram shown

below.

e−

e−

u

u

d

d

ν

W−

W−

Since this process requires a violation of total lepton number in the neutrino propagator, it can only

occur in the case of Majorana neutrinos. It is the subject of continuing searches.

13.5 Search for the Standard Model Higgs boson

The last remaining particle of the Standard Model that remains undiscovered is the Higgs scalar boson

h. The Tevatron continues to search for it, and the LHC will eventually be sensitive enough to discover

it, if it exists. In this section we will briefly review the processes that could lead to discovery of the

Higgs boson or limits on its mass.

13.5.1 Higgs decays revisited

In section 8.3, we have already calculated the leading-order decays of the Higgs boson into fermion-

antifermion final states. However, there are other final states that are quite important besides h→ ff .

First, the Higgs boson can decay into two gluons, h → gg, with the gluons eventually manifesting

themselves in the detector as jets. This decay cannot happen at tree level, but does occur through the

one-loop diagram below, where quarks (most importantly the top quark, because of its large Yukawa

coupling) go around the loop:
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h

g

g

q

q

q

(One must also include the Feynman graph with the quarks going the other direction around the loop.)

Even though one-loop graph amplitudes are usually not competitive with tree-level amplitudes, this is

an exception because the gluons have strong couplings and because yt is so much larger than yb (by

a factor of roughly 55). The decay h → γγ also does not occur at tree-level, but does occur due to

one-loop graphs where any charged particle goes around the loop, notably the top quark again but also

the W :

h

γ

γ

f

f

f
h

γ

γ

W

W

W

Although the branching ratio to two photons is much smaller (less than 3×10−3 in the Standard Model),

it can still be important as a discovery mode because the corresponding backgrounds at colliders are

also relatively tiny.

(The decay h → Zγ is also mediated by similar one-loop graphs, but it will be neglected here

because it turns out not to be as useful for searches.)

Another important effect is that tree-level decays into two vector bosons, h→W+W− and h→ ZZ,

corresponding to the Feynman rules found in section 13.2 [below eq. (13.2.25)] are large. In fact, they

are even important for Mh < 2mW and 2mZ respectively, when one of the vector bosons is virtual.

One indicates this by writing

h→WW (∗), h→ ZZ(∗), (13.5.1)

where the “(∗)” means that the corresponding particle may be off-shell, depending on the kinematics.

If one of the vector bosons is off-shell, the decay can be thought of as really three-body, that is

h→ W±f f̄ ′ or h→ Zff̄ , where f f̄ ′ could be any final state that couples to the off-shell W∓ and f f̄

is any fermion-antifermion final state that couples to the off-shell Z. For example, for leptonic final

states of the off-shell vector boson:
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h

W+

W−(∗) ℓ−

νℓ

h

Z

Z(∗) ℓ+

ℓ−

Again, since the tree-level two-body decays h → ff are suppressed by small Yukawa couplings, these

three-body decays can be competitive and even win, despite their kinematic suppression. The closer

the vector bosons are to being on-shell, the larger the amplitude will be. The decays h → WW (∗)

become increasingly important for larger Mh, and already dominate for Mh > 135 GeV.

The results of a careful computation (using the program HDECAY by A. Djouadi, J. Kalinowski,

and M. Spira, Comput. Phys. Commun. 108, 56, (1998), hep-ph/9704448) including all these effects are

shown in the two graphs below, which depict the state-of-the-art computations of branching ratios and

the total width Γtot for the Higgs boson, as a function of Mh. (Indirect constraints on the Higgs mass,

due to its effect on one-loop corrections to the γ, W , and Z propagators, suggest that h is probably

lighter than roughly 240 GeV within the context of the Standard Model, so only that range is shown

here. For larger masses, the main new important effect is that for Mh
>∼ 340 GeV, the decay h → tt

becomes significant, although its branching ratio never exceeds about 0.2.)
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The largest decay modes are bb and WW (∗) over the entire range of Mh, with the total width dra-

matically increasing when both W bosons can be on shell. Because it has very low backgrounds in

colliders, the γγ final state may be very important for the discovery of a light Higgs boson, despite its

tiny branching ratio. The ZZ(∗) final state can be important for Mh
>∼ 130 GeV, again because it can

lead to low-background signals if one or both of the Z bosons decays leptonically. The gg final state

is useless because of huge QCD backgrounds to dijet production, but it is important to keep track of

because it reduces the branching ratios into more useful final states. It is also important to keep in

mind that in some extensions of the Standard Model, the Higgs boson may decay into some new exotic

particles, or could greatly modify the branching ratios into Standard Model states because of radiative

corrections or modified Higgs couplings.

13.5.2 Limits from the LEP2 e−e+ collider

LEP2 searched for Higgs bosons in e−e+ collisions at various energies up to
√

s = 209 GeV, ending

in the year 2000. The main process for possible Standard Model Higgs production at LEP2 was

e−e+ → Zh due to the Feynman diagram shown below:

e−

e+

h

Z

Z

Searches were conducted for the following signatures:

• Four jets, from h→ bb and Z → qq.
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• Two tau leptons and two jets, either from h → bb and Z → τ+τ−, or from h → τ+τ− and

Z → qq.

• Two jets and missing energy, from h→ bb and Z → νν.

• Two (e, µ) leptons and two jets, mostly from h→ bb and Z → ℓ+ℓ−.

Tagging of b jets was used to increase the sensitivity. The ALEPH detector collaboration saw a 3σ

excess at Mh = 115 GeV, near the kinematic limit of the collider. However, the other three detectors

(DELPHI, L3, and OPAL) saw no evidence of an excess, but also could not exclude a Higgs of that

mass.

The end result is that the combination of the four LEP2 detector collaborations ruled out a Standard

Model Higgs boson at 95% confidence unless

Mh > 114.4 GeV. (95% CL, LEP2, Standard Model Higgs) (13.5.2)

If indeed there is no Higgs boson within the kinematic reach of LEP2, then if the entire LEP2 run

were repeated many times the expected bound would have been, on average, Mh > 115.3 GeV. Thus

the official impact of the ALEPH excess was to decrease the actual mass bound by about 0.9 GeV

compared to the expected bound. It cannot be overemphasized that the mass exclusion (13.5.2) need

not apply if the Standard Model is extended.

13.5.3 Searches at the Tevatron

At hadron colliders, the largest parton-level production processes for the Higgs boson are:

gg → h, (13.5.3)

qq → Zh, (13.5.4)

qq′ → W±h. (13.5.5)

The process gg → h cannot occur at tree-level, but does occur due to the same one-loop diagram

mentioned above in section 13.5.1 for the decay h → gg. (The roles of the initial state and the final

state are simply exchanged, by crossing.) This is actually the largest source of Higgs bosons at both

the Tevatron and the LHC, due to the large gluon PDFs, and favorable kinematics at the Tevatron.

However, the other channels often provide better discovery prospects because the presence of the extra

weak boson reduces backgrounds. The process qq → Zh occurs due to a Feynman diagram just like

the one given for LEP in the previous section, except that e− and e+ are replaced by a quark and

antiquark. The process qq′ →W±h is due to parton-level Feynman diagrams like the ones below:

u

d

h

W+

W

d

u

h

W−

W
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as well as others related by d→ s and/or u→ c.

The backgrounds relevant for Higgs detection in Tevatron pp collisions are much more severe than

at LEP2. The most important specific signatures that are being looked for at Tevatron are, for light

Higgs bosons Mh
<∼ 135 GeV:

• Two b jets with one lepton and missing energy, from pp→W±h followed by W → ℓν and h→ bb.

• Two b jets and missing energy, either from pp → Zh followed by Z → νν , or from pp → Wh

with W → ℓν and the lepton is missed, in both cases with h→ bb.

• Two leptons reconstructing a Z and two b jets, from pp→ Zh followed by Z → ℓ+ℓ− and h→ bb.

• Two taus, from pp→ h, Zh, or Wh, with h→ τ+τ−.

These signals retain some power up to Mh close to 150 GeV. However, for Higgs bosons with Mh
>∼ 135

GeV, the most important signature becomes

• Two leptons and missing transverse energy, from pp→ h → WW (∗) → ℓ+ℓ−′νℓνℓ′ . The W+W−

pairs in signal events have different spin correlations than in background events, which affects

the lepton kinematics and helps to distinguish the signal from the background of direct W+W−

production (without a Higgs).

At this writing, the combination of the CDF and D∅ detector collaborations have excluded a Standard

Model Higgs boson with mass in a range from 158 to 175 GeV, using 6.7 fb−1 of Tevatron pp collisions

at
√

s = 1.96 TeV. One can expect this range to increase somewhat in the near future, probably by

the time you are reading this.

13.5.4 Searches at the LHC

In pp collisions at LHC energies (up to
√

s = 14 TeV), the important production processes for a

Standard Model Higgs boson include the same ones as at Tevatron, eqs. (13.5.3)-(13.5.5). However,

also important are pp→ tth, which is due to Feynman diagrams including the one below:

g

g

t

t

h

as well as weak vector boson fusion, which refers to the parton-level processes qq → qqh, qq → qqh,

and q q → q qh through Feynman diagrams like this:
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q or q

q or q

W or Z

W or Z

h

In the last process, the quark jets in the final state are usually found at small angles with respect to

the beam. Tagging events with these forward jets is a way to reduce backgrounds.

The most important signals at LHC for a Standard Model Higgs boson will depend on collider and

detector performance, but should include:

• A diphoton peak, from inclusive Higgs production (mainly pp → h) followed by the rare but

low-background decay h→ γγ. This is appropriate for a lower mass Higgs boson.

• Four leptons ℓ+ℓ−ℓ+′ℓ−′ from inclusive Higgs production (mainly pp→ h) followed by h→ ZZ(∗).

This is appropriate for a higher mass Higgs boson.

• Forward jet tags from weak vector boson fusion together with h → τ+τ− or h → γγ or h →
WW (∗).

• A lepton together with a peak in bb or γγ distributions, with the lepton coming from either a W ,

Z, or t produced in association with the Higgs.

Determination of the Higgs mass is expected to be doable after discovery, and with great precision in

either the γγ or ZZ(∗) → ℓ+ℓ−ℓ+′ℓ−′ channels. Finding and definitively identifying the Higgs boson is

arguably the most important result that is likely to appear from the LHC.
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Appendix A: Natural units and conversions

The speed of light and h̄ are:

c = 2.99792458 × 1010 cm/sec = 2.99792458 × 108 m/sec, (A.1)

h̄ = 1.05457148 × 10−34 J sec = 6.58211814 × 10−25 GeV sec. (A.2)

The value of c is exact, by definition. (Since October 1983, the official definition of 1 meter is the

distance traveled by light in a vacuum in exactly 1/299792458 of a second.)

In units with c = h̄ = 1, some other conversion factors are:

1 GeV = 1.60217646 × 10−3 erg = 1.60217646 × 10−10 J, (A.3)

1 GeV = 1.78266173 × 10−24 g = 1.78266173 × 10−27 kg, (A.4)

1 GeV−1 = 1.97326937 × 10−14 cm = 1.97326937 × 10−16 m. (A.5)

Conversions of particle decay widths to mean lifetimes and vice versa are obtained using:

1 GeV−1 = 6.58211814 × 10−25 sec, (A.6)

1 sec = 1.51926778 × 1024 GeV−1. (A.7)

Conversions of cross-sections in GeV−2 to barn units involve:

1 GeV−2 = 3.89379201 × 10−4 barns (A.8)

= 3.89379201 × 105 nb (A.9)

= 3.89379201 × 108 pb (A.10)

= 3.89379201 × 1011 fb, (A.11)

and in reverse:

1 nb = 10−33 cm2 = 2.56819059 × 10−6 GeV2, (A.12)

1 pb = 10−36 cm2 = 2.56819059 × 10−9 GeV2, (A.13)

1 fb = 10−39 cm2 = 2.56819059 × 10−12 GeV2. (A.14)
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Appendix B: Dirac Spinor Formulas

In the Weyl (or chiral) representation):

γµ =
(

0 σµ

σµ 0

)
(B.1)

where

σ0 = σ0 =
(

1 0
0 1

)
; σ1 = −σ1 =

(
0 1
1 0

)
;

σ2 = −σ2 =
(

0 −i
i 0

)
; σ3 = −σ3 =

(
1 0
0 −1

)
.

γ0† = γ0; (γ0)2 = 1 (B.2)

γj† = −γj (j = 1, 2, 3) (B.3)

γ0γµ†γ0 = γµ (B.4)

γµγν + γνγµ = {γµ, γν} = 2gµν (B.5)

[γρ, [γµ, γν ]] = 4(gρµγν − gρνγµ) (B.6)

The trace of an odd number of γµ matrices is 0.

Tr(1) = 4 (B.7)

Tr(γµγν) = 4gµν (B.8)

Tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ) (B.9)

Tr(γµ1γµ2 . . . γµ2n) = gµ1µ2Tr(γµ3γµ4 . . . γµ2n)− gµ1µ3Tr(γµ2γµ4 . . . γµ2n)

. . . + (−1)kgµ1µk
Tr(γµ2γµ3 . . . γµk−1γµk+1 . . . γµ2n) + . . .

+gµ1µ2nTr(γµ2γµ3 . . . γµ2n−1) (B.10)

In the chiral (or Weyl) representation, in 2× 2 block form:

γ5 =
(−1 0

0 1

)
(B.11)

PL =
1− γ5

2
=
(

1 0
0 0

)
; PR =

1 + γ5

2
=
(

0 0
0 1

)
(B.12)

The matrix γ5 satisfies:

γ†5 = γ5; γ2
5 = 1; {γ5, γ

µ} = 0 (B.13)

Tr(γ5) = 0 (B.14)

Tr(γµγ5) = 0 (B.15)

Tr(γµγνγ5) = 0 (B.16)

Tr(γµγνγργ5) = 0 (B.17)

Tr(γµγνγργσγ5) = 4iϵµνρσ (B.18)
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γµγµ = 4 (B.19)

γµγνγµ = −2γν (B.20)

γµγνγργµ = 4gνρ (B.21)

γµγνγργσγµ = −2γσγργν (B.22)

(/p−m)u(p, s) = 0; (/p + m)v(p, s) = 0 (B.23)

u(p, s)(/p−m) = 0; v(p, s)(/p + m) = 0 (B.24)

u(p, s)u(p, r) = 2mδsr (B.25)

v(p, s)v(p, r) = −2mδsr (B.26)

v(p, s)u(p, r) = u(p, s)v(p, r) = 0 (B.27)

∑

s

u(p, s)u(p, s) = /p + m (B.28)

∑

s

v(p, s)v(p, s) = /p−m (B.29)
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Appendix C: Further Reading

For an up-to-the minute list of corrections to these notes, see: http://zippy.physics.niu.edu/ppp/

The Review of Particle Properties by the Particle Data Group, [K. Nakamura et al., J. Phys. G 37,

075021 (2010)] is a very useful source on the latest high-energy particle physics data, the Standard

Model and its interpretation, and limits on violations of conservation laws and on new physics models.

The corresponding web site http://pdg.lbl.gov/ is also handy.

Books that give general introductions to high-energy physics include:

• F. Halzen and A.D. Martin, Quarks and Leptons: An Introductory Course in Modern Particle

Physics, Wiley

• D.H. Perkins, Introduction to High Energy Physics, Cambridge University Press

• D. Griffiths, Introduction to Elementary Particles, Wiley-VCH

Two excellent modern books on relativistic quantum field theory, with different emphases, are:

• M.E. Peskin and D.V. Schroeder, An Introduction To Quantum Field Theory, Westview Press

• M. Srednicki, Quantum Field Theory, Cambridge University Press

Books that give good overviews of QCD, parton distribution functions, and collider processes include:

• R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and Collider Physics, Cambridge University Press

• V.D. Barger and R.J.N. Phillips, Collider Physics, Westview Press. (This book is out of date in

some places, but still useful.)

Books that give overviews of Standard Model phenomenology include:

• C. Burgess and G. Moore, The Standard Model: A Primer, Cambridge University Press

• J.F. Donoghue, E. Golowich, B.R. Holstein, Dynamics of the Standard Model, Cambridge Uni-

versity Press

• C. Quigg, Gauge Theories of the Strong, Weak, and Electromagnetic Interactions, Addison-Wesley
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Index

Abelian (commutative) group, 165, 166

action, 22, 43, 45

active quarks, 193, 194

adjoint representation, 169, 170, 173–175, 177,

182

Altarelli–Parisi (DGLAP) equations, 200, 204

angular momentum conservation, 105–107, 134,

141

angular momentum operator, 31

angular resolution, 112

annihilation operator, 50, 53, 54

anticommutation relations, 55, 56, 88

antineutrino, 137, 138

antineutrino-electron scattering, 153

antiparticle, 5, 6, 9, 35, 39, 42, 43, 54, 81, 101,

102

associativity property of group, 165

asymptotic freedom, 194, 197

ATLAS detector at LHC, 213

BaBar experiment, 140

bare coupling, 189, 191

bare mass, 190, 191

barn (unit of cross-section), 62, 63, 250

barred Dirac spinor, 29

baryons, 6–8

(J = 1/2), 7

(J = 3/2), 8

Belle experiment, 140

beta function, 192, 193, 195, 196

QCD, 193

QED, 195

Bhabha scattering, 107

biunitary transformation, 237

boost, 13, 14, 20, 28

Bose-Einstein statistics, 51

bottomonium, 10, 11, 214

branching ratios, 12, 133

charged pion, 138, 157

Higgs boson, 133, 236

lepton-number violating limits, 140

W boson, 240, 241

Z boson, 228

Breit-Wigner lineshape, 5, 213

Cabibbo angle, 240

Cabibbo-Kobayashi-Maskawa (CKM) mixing, 239,

240

canonical commutation relations, 32

canonical quantization

complex scalar field, 158

Dirac fermion fields, 55

real scalar fields, 49

Carbon-14 dating, 137, 138

Casimir invariant, 168

CDF detector at Tevatron, 248

charge conjugation, 148

charge conservation, 40, 41

charge density, 40

charge operator, 83

charged current, 154, 163

charmonium, 10, 11, 214

chiral (Weyl) representation of Dirac matrices,

26, 251

chiral representations (of gauge group), 233

chiral symmetry breaking, 8, 223, 236

closure property of group, 165, 167

CMS detector at LHC, 213

color, 5, 7

confinement, 5, 6, 97, 197

sum over, 185

commutation relations, 49, 50
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commutative (Abelian) group, 165

commutator of Lie algebra generators, 167

complex conjugate of spinor expressions, 92, 108,

142–144, 154

complex conjugate representation, 169

complex scalar field, 158

Compton scattering, 119–126

confinement of color, 5, 6, 97, 197

conservation of angular momentum, 105–107,

134, 141

conservation of charge, 40, 41

conservation of energy, 60, 70, 137

conservation of helicity, 107, 157

conservation of lepton number (or not), 139,

140, 242, 243

conservation of momentum, 15, 64, 89, 90

contravariant four-vector, 13–15, 21

Coulomb potential, 111

coupling

bare, 189, 191

electromagnetic (e), 48, 83, 227

electroweak (g), 163, 224–227

electroweak (g′), 224–227

Fermi (GF ), 142, 149

general, 79

QCD (g3,αs), 183, 184, 186, 193

experimental value, 194, 195

renormalized, 188–191, 227

scalar3, 69

scalar4, 57

scalarn, 76, 79

Yang-Mills gauge, 177–181, 218

Yukawa, 80, 131, 133, 134, 234–238

Yukawa, neutrino, 241, 242

covariant derivative

QED, 84, 85, 165

Yang-Mills, 177

covariant four-vector, 15

CPT Theorem, 148

creation operator, 50

fermionic, 54

cross-section, 62, 63

differential, 65

two particle → two particle, 68

crossing, 113–117, 126, 127, 151, 153

CTEQ parton distribution functions, 202

current density, electromagnetic, 40, 48, 83

cutoff, 53, 77, 90, 149, 161, 187–191, 194

D∅ detector at Tevatron, 248

decay rate (width, Γ), 128

defining representation, 167

density of states, 64

DGLAP equations, 200, 204

differential cross-section, 65

dimension of group (dG), 167, 168

dimension of representation (dR), 166

dimension of tensor product representation, 169

dimensional analysis, 147, 160, 161

dimensional regularization, 194

dimensional transmutation, 194

Dirac equation, 24–27

Dirac field, 43, 46, 47, 53–55

Dirac matrices, 26, 251

Dirac spinor, 25

direct sum representation, 168

double-counting problem, identical particles in

final state, 68, 69, 117, 127, 131

Drell-Yan scattering, 211–213

electroweak Standard Model (Glashow-Weinberg-

Salam) gauge theory, 224–233

electroweak vector boson interactions, 231, 232

energy conservation, 60, 70, 137

ϵµνρσ (Levi-Civita) tensor, 21

equal-time commutators, 49

equivalence of representations of group, 168
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ηb (scalar bottomonium), 10

ηc (scalar charmonium), 10

η meson, 214

Euler-Lagrange equations of motion, 43–47, 57

factorization scale, 200

femtobarns (fb), 62

Fermi constant (GF ), 142, 143

numerical value, 147

relation to mW , 163

Fermi weak interaction theory, 142

Fermi-Dirac statistics, 54, 87

fermion-antifermion condensate, 223

Feynman diagram, 61, 74–78

Feynman gauge, 87, 89, 117, 178

Feynman propagator

charged massive vector fields, 162

Dirac fields, 80, 81, 89

generic fields, 80

gluons, 183

Higgs boson, 221

massive vector fields, 164

photon, 86, 87

scalar, complex (π±), 158

scalar, real, 76

W boson, 162

Yang-Mills vector fields, 178

Feynman rules, 61

Fermi weak interaction theory, 142, 143

fermion external lines, 81, 82

fermions with known helicity, 101, 102

general, 78–81

massive vector bosons, 164

pion decay, 158–160

QCD, 183, 184

QED, 85–90

scalar φn theory, 76, 77, 79

standard electroweak gauge theory, 231–233

W -fermion-antifermion, 163

Yang-Mills, 178–180

Yukawa coupling, 79, 80

Yukawa coupling, electron, 234

Feynman slash notation, 26

Feynman’s x, 199

Feynman-Stückelberg interpretation, 34

field, 42

Dirac, 43, 46, 47, 53–55

electromagnetic, 40, 43, 47, 48

Majorana, 39, 46, 242

scalar, 42, 45

vector, 43, 46–48

Weyl, 46

field theory, 43

fine structure constant, 83, 95

flavors of quarks, 5, 6

four-fermion interaction, 142, 160, 162

four-vector, 13–15, 19

free field theory, 57

fundamental representation, 167

gµν (metric tensor), 15

γ matrices, 26

traces, 251, 252

γ5 matrix, 33, 251

gauge eigenstate fields, 226, 237–240

gauge fixing, 86, 87

gauge-fixing parameter (ξ), 86, 87

gauge invariance, 41, 84, 85, 165

Yang-Mills, 165, 166, 175–180

Gell-Mann matrices, 173

generators

SU(2), 171

SU(3), 173

SU(N), 172

of Lie algebra, 167

GeV, 24

256



global symmetry, 172, 215

global symmetry breaking, 215–218

glueballs, 11

gluon, 155, 182, 183

propagator, 183

gluon collider, 209

gluon-gluon scattering, 206–208

gluonium, 11

Goldstone boson, see Nambu-Goldstone boson

Goldstone’s theorem, 222

Grassmann (anticommuting) numbers, 55

gravity, 162, 191

group, 20, 165

hadron-hadron scattering, 197–202, 209–213

hadronization, 198

hadrons, 6, 7

half life, 137

Hamilton’s principle, 43

Hamiltonian

free Dirac field, 56

free scalar field, 49, 51–53

general classical system, 49

interaction, 57, 58, 81

single Dirac particle, 25, 31

single scalar particle, 23

hard scattering of partons, 197

helicity, 32, 33

helicity conservation, 107, 157

helicity flip, 157

helicity suppression, 157

Higgs boson, 7, 8, 63, 80, 132–135, 230, 231,

233, 245, 246

interactions with Z,W, h, 231–233

mass in Standard Model, 233

Higgs field

generic, 219, 220, 222, 224

Standard Model, 229–231, 233

Higgs mechanism, 219, 220, 222, 224

hole (absence of an electron), 34

identical final state particle overcounting prob-

lem, 68, 69, 117, 127, 131

identity element of group, 165

iϵ factor in propagators, 76

ignorance, parameterization of, 155, 188

IN state, 58, 59

index of representations, 167

SU(2), 171

SU(3), 173

adjoint, 169

infinite momentum frame, 199

infrared slavery, 194

integrated luminosity, 62

interaction Hamiltonian, 57, 58, 81

interaction Lagrangian, 57

internal line, 74

inverse metric tensor (gµν), 15

inverse muon decay, 151

inverse of group element, 165

irreducible representation, 168

isospin global symmetry, 172

Jacobi identity, 168

Jacobian, 211, 212

jet, 97, 184, 198

J/ψ (vector charmonium), 10, 11, 99, 214

Klein-Gordon equation, 24, 29, 46

Klein-Nishina formula for Compton scattering,

125

Lagrangian, 43, 45

Lagrangian density, 45

LAMPF, 140

Landau gauge, 87, 89, 178

Large Hadron Collider (LHC), 4, 63, 133, 197,

204, 207–209, 213, 243, 247–249
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left-handed fermions

and weak interactions, 141, 143, 154, 172,

224, 225, 233

Dirac, 33

projection matrix (PL), 33, 35

Weyl, 38

left-handed polarization of photon, 86

LEP e−e+ collider experiment, 7, 246, 247

lepton number (total), 140, 242, 243

lepton numbers (individual), 139, 140

leptons, 5

Levi-Civita (ϵµνρσ) tensor, 21

Lie algebra, 167

Lie group, 166

linear collider, 100

local (gauge) symmetry, 165, 215

breaking, 218–222

longitudinal momentum fraction (Feynman’s x),

199

longitudinal polarization of massive vector bo-

son, 220

longitudinal rapidity, 18, 210

loop corrections to muon decay, 149

loops in Feynman diagrams, 77, 78, 81, 90, 161,

180, 186–188, 190, 191, 236

fermion minus sign, 90

Lorentz transformations, 13, 20

Lorentz-invariant phase space

n-body, 66, 129

2-body, 67, 68, 124, 129

3-body, 135, 136

lowering operator, 50, 51

luminosity, 62

Majorana fermion, 38, 39, 242, 243

Majorana field, 242

Mandelstam variables (s, t, u), 75, 76, 108

Mandelstam variables, partonic (ŝ, t̂, û), 198, 204

mass diagonalization, 237

mass eigenstate fields, 226, 237–240

massive vector boson, 164, 180, 220–222, 224,

226

propagator, 164

matrix element, 61–63

reduced, 64

Maxwell’s equations, 40, 41, 48

mean lifetime, 129

mesons, 6, 9, 10

(J = 0), 9, 10

(J = 1), 10

metric tensor (gµν), 15

Mexican hat potential, 216

Møller scattering, 116

momentum conservation, 15, 64, 89, 90

momentum fraction (Feynman’s x), 199

MS renormalization scheme, 194, 227

MSTW parton distribution functions, 202

muon decay, 139, 142–147

muon production in e−e+ collisions, 91–96

Nambu-Goldstone boson, 217, 218, 222

pseudo, 223

would-be, 220–222, 230

nanobarns (nb), 62

natural units, 250

neutrino, 5, 38

anti-, 6, 137, 138

masses, 241–243

mixing, 242

seesaw mechanism, 242

Yukawa coupling, 241

neutrinoless double beta decay, 243

neutron, 7

neutron decay, 137

non-Abelian gauge invariance, 165, 166, 175–

178
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non-renormalizable theories, 161, 162, 180, 191

nuclear weak decays, 137, 138

nucleons, 7

ω meson, 214

on-shell, 15

OUT state, 59

overcounting problem for identical final state

particles, 68, 69, 117, 127, 131

parity, 19, 141, 148

parity violation, 20, 141–143

partial width, 12, 129

Particle Data Group, 4, 253

parton, 197, 199

parton distribution function (PDF), 199–204

parton model, 197

partonic subprocess, 197, 198

Pauli exclusion principle, 34, 54

Pauli matrices (σ1,2,3), 25, 251

φ meson, 214

photon field (Aµ), 43, 83–87

photon polarization, 85, 86

photon propagator, 86, 87, 89

picobarns (pb), 62

pion (π±) decay, 155–160

pion decay constant (fπ), 155, 156

polarization vector, 85

and gauge transformations, 118

massive vector boson, 164

polarized beams, 100, 101

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) ma-

trix, 242, 243

positron, 25, 34

potential energy, 43, 44, 215

projection matrices for helicity (PL, PR), 33, 251

propagator

charged massive vector boson, 162, 164

Dirac fermion, 81, 89

generic, 80

gluon, 183

Higgs boson, 221

massive vector boson, 162, 164

photon, 86, 87

scalar, complex (π±), 158

scalar, real, 76

W boson, 162

Yang-Mills vector fields, 178

proper interval, 14

proper Lorentz transformations, 20

proton, 7

pseudo-Nambu-Goldstone boson, 223

pseudo-rapidity, 18

pseudo-scalar fermion bilinear, 141

QCD coupling, 183, 184, 186, 193

experimental value, 194, 195

QCD scale (ΛQCD), 193

quadratic Casimir invariant, 168

Quantum Chromo-Dynamics (QCD), 97, 173,

182, 183

Quantum Electro-Dynamics (QED), 83–85

Feynman rules, 85–90

quark, 5

flavors, 5, 6

masses, 6, 7, 236

quark-antiquark condensate, 223

quark-quark scattering, 184–186

quarkonium, 11

raising operator, 50, 51

rapidity, 14, 28, 30

longitudinal, 18, 210

pseudo-, 18

reduced matrix element, 64

reducible representation, 168

regularization, 52, 77, 161, 187, 194

renormalizable theories, 161, 162
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renormalization, 52, 77, 149, 150

renormalization group, 191, 192

renormalization scale, 189, 191, 200

renormalized (running) coupling, 188–191

electroweak, 227

renormalized (running) mass, 190, 191

representation of group, 166

representations

of SU(2), 171, 172

of SU(3), 173–175

of SU(N), 175

of U(1), 166

of non-Abelian group, 166–171

Review of Particle Properties (Particle Data Group),

4, 99, 253

Rhadrons, 98–100

ρ meson, 214

right-handed antifermions and weak interactions,

141, 142, 152

right-handed fermions

Dirac, 33

Weyl, 38

right-handed polarization of photon, 86

right-handed projection matrix (PR), 35

rotations, 20

Rutherford scattering, 111, 112

scalar field, 42, 45

complex, 158

scalar function, 20

s-channel, 74–76

Schrodinger equation, 23

Schrodinger picture of quantum mechanics, 57,

58

sea partons, 199, 201, 203

sea quarks, 7, 201

seesaw mechanism for neutrino masses, 242

singlet representation, 166, 169

slash notation, 26

speed of light (c), 13, 250

spin operator, 32

spin-sum identities, 36, 252

spinor, 24

Dirac, 25

Majorana, 38

Weyl, 37

spontaneous symmetry breaking, 215

global, 215–218

local (gauge), 218–221

Standard Model, 224–233

structure constants of non-Abelian group, 167

SU(2) Lie algebra, 171, 172

SU(2)L (weak isospin), 172, 224, 225

SU(3) Lie algebra, 173–175

SU(N) Lie algebra, 172, 175

subprocess, partonic, 197, 198

supersymmetry, 7, 39, 204, 209

symmetry factor (of Feynman diagram), 77, 78,

90

tau decays, 12

t-channel, 75, 76, 108

technicolor, 7, 223

tensor, 21

tensor product of representations, 169

Tevatron, 62, 63, 133, 197, 204, 205, 209, 247,

248

Thomson scattering, 125, 126

three-body phase space, 135, 136

time reversal (T), 19, 20, 148

top quark, 6, 7

decay, 241

LHC production cross-section, 63, 207–209

Tevatron production cross-section, 63, 205–

207, 209

trace trick, 93
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traces of γ matrices, 27, 93, 251, 252

transverse momentum (pT ), 210

transverse polarization, 85, 220

tree-level diagrams, 77

triangle function (λ), 130

two-body phase space, 124

U(1) as a Lie group, 166

U(1) for electromagnetism, 166, 182

U(1)Y (weak hypercharge), 224, 225, 227, 229,

230

u-channel, 75, 76

unitarity of CKM matrix, 240

unitarity of quantum mechanical time evolution,

160, 162, 180

unitary gauge, 220–222

Standard Model, 230–232

units, 24, 250

Υ (vector bottomonium), 10, 11, 214

vacuum expectation value (VEV), 216

antiquark-quark, 223

Standard Model, 229

Standard Model numerical, 231

vacuum state, 42, 50, 54

valence quarks, 7, 155, 199, 201–203, 207

volume element, 22

W boson, 4

branching ratios, 240, 241

couplings to fermions, 238–240

interactions with Z,W, h, 231, 232

mass, measured, 4

mass, prediction, 231

width, measured, 4

width, predicted, 5

Ward identity, 118, 119

weak hypercharge [U(1)Y ], 224, 225, 227, 229,

230

weak isospin [SU(2)L], 172, 224, 225

weak mixing angle (Weinberg angle) θW , 226–

228, 231

weak-interaction charged current, 154, 163

Weyl (chiral) representation of Dirac matrices,

26, 251

Weyl equation, 37

Weyl fermion, 38

Weyl spinor, 37

would-be Nambu-Goldstone boson, 220–222, 230

Standard Model, 230

x, Feynman (momentum fraction), 199

ξ (gauge-fixing parameter), 86, 87

Yang-Mills theories, 164, 175–180

Yukawa coupling, 80, 131, 133, 134, 234–238

neutrino, 241

Z boson, 4, 213

branching ratios, 228

couplings to fermions, 228

interactions with Z,W, h, 231, 232

mass, measured, 4

mass, prediction, 231

resonance at LHC, 214

width, 4
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