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Abstract

Parton distributions, a(x, µ2), are essential ingredients for almost all theoretical

calculations at hadron colliders. They give the number densities of the colliding par-

tons (quarks and gluons) inside their parent hadrons at a given momentum fraction x

and scale µ2. The scale dependence of the parton distributions is given by DGLAP

evolution, while the x dependence must be determined from a global analysis of

deep-inelastic scattering (DIS) and related hard-scattering data.

In Part I we introduce ‘doubly-unintegrated’ parton distributions, fa(x, z, k2
t , µ

2),

which additionally depend on the splitting fraction z and the transverse momentum

kt associated with the last evolution step. We show how these distributions can be

used to calculate cross sections for inclusive jet production in DIS and compare the

predictions to data taken at the HERA ep collider. We then calculate the transverse

momentum distributions of W and Z bosons at the Tevatron pp̄ collider and of

Standard Model Higgs bosons at the forthcoming LHC.

In Part II we study diffractive DIS, which is characterised by a large rapidity

gap between the slightly deflected proton and the products of the virtual photon

dissociation. We perform a novel QCD analysis of recent HERA data and extract

diffractive parton distributions. The results of this analysis are used to investigate

the effect of absorptive corrections in inclusive DIS. These absorptive corrections

are due to the recombination of partons within the proton and are found to enhance

the size of the gluon distribution at small x. We discuss the problem that the gluon

distribution decreases with decreasing x at low scales while the sea quark distribution

increases with decreasing x, whereas Regge theory predicts that both should have

the same small-x behaviour. Our study hints at the possible importance of power

corrections at low scales of around 1 GeV.
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Chapter 1

Parton evolution and factorisation

The theory of the strong interaction is quantum chromodynamics (QCD), where

the fundamental entities are quarks and gluons. However, the initial-state particles

collided in particle physics experiments—such as the HERA and Tevatron colliders

and the forthcoming LHC—are not quarks and gluons, but hadrons. Therefore, it

is essential to know the momentum distributions of the partons (quarks and gluons)

inside the colliding hadrons in order to relate theoretical QCD calculations with

experimental data. These parton distribution functions (PDFs) are the subject of

this thesis.

The conventional collinear factorisation approach expresses hadronic observables

as the convolution of the PDFs with partonic hard-scattering coefficients, computed

assuming that the hard scattering is initiated by a parton collinear to its parent

hadron. The separation of parton emissions associated with the initial hadron or

with the hard scattering is provided via a factorisation scale. The scale dependence

of the PDFs is governed by Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [1–

5] evolution. Both the DGLAP splitting kernels and the hard-scattering coefficients

are calculable as perturbation series in the running strong coupling. This formalism

is often applied unquestioned, with a huge amount of effort expounded on calculating

higher-order corrections to the perturbation series. In this thesis, we study simple

modifications to standard DGLAP evolution.

In Part I, we introduce PDFs which depend on the transverse momentum, rela-

tive to the parent hadron, of the parton initiating the hard scattering. We use these

unintegrated PDFs to calculate the transverse momentum distributions of final-state

particles produced in deep-inelastic scattering (DIS) and hadron-hadron collisions.

In Part II, we study a subset of DIS events known as diffractive. We perform a

novel QCD analysis of recent diffractive DIS data taken at the HERA collider, and

extract diffractive PDFs. We then use this diffractive DIS analysis to calculate the

2



1.1 Colour factors and running coupling 3

effect of absorptive corrections on the DGLAP evolution of PDFs, arising from the

recombination of partons within the proton.

In this introductory chapter we concentrate on only a few aspects of perturbative

QCD phenomenology which are particularly relevant to the research presented in

later chapters. For more details, the reader is referred to the textbooks [6–19] and

review articles [20–27].

1.1 Colour factors and running coupling

First we give the formulae used for calculating colour factors throughout this thesis.

We use the convention that indices a, b, . . . run over the NC = 3 colour degrees

of freedom of the quark fields, while indices A, B, . . . run over the (N 2
C − 1) = 8

colour degrees of freedom of the gluon field. The SU(NC) generators tA satisfy the

following properties:

[tA, tB] = ifABCtC , (1.1)

tAabt
B
ba ≡ Tr(tAtB) = TR δAB with TR ≡ 1

2
, (1.2)

tAabt
A
bc = CF δac with CF ≡ N2

C − 1

2NC
=

4

3
, (1.3)

fABCfABD = CA δCD with CA ≡ NC = 3. (1.4)

The scale dependence of the running coupling αS is given by the renormalisation

group equation,

ln
Q2

µ2
=

∫ αS(Q2)

αS(µ2)

dαS

β(αS)
=

∫ αS(Q2)

αS(µ2)

dαS

{

−b α2
S

[

1 + b′αS + O(α2
S)
]}−1

, (1.5)

where the one- and two-loop coefficients are

b =
(11 CA − 2 nf)

12π
=

(33 − 2 nf)

12π
, (1.6)

b′ =
(17 C2

A − 5 CA nf − 3 CF nf )

2π(11 CA − 2 nf)
=

(153 − 19 nf)

2π(33 − 2 nf)
, (1.7)

and nf is the number of active quark flavours.1 At leading order (LO), where we

1The discovery of ‘asymptotic freedom’ in 1973, meaning that the strong interaction gets weaker
at small distances, earned Gross, Politzer, and Wilczek the 2004 Nobel Prize.
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keep only the first (one-loop) term on the right-hand side (RHS) of (1.5),

αS(Q2) =
αS(µ2)

1 + b αS(µ2) ln(Q2/µ2)
, (1.8)

while at next-to-leading order (NLO), where we also keep the second (two-loop)

term on the RHS of (1.5),

1

αS(Q2)
− 1

αS(µ2)
+ b′ ln

{

αS(Q2) [1 + b′αS(µ2)]

αS(µ2) [1 + b′αS(Q2)]

}

= b ln
Q2

µ2
. (1.9)

These equations (1.8) and (1.9) allow αS(Q2) to be calculated if the coupling is

known at some reference scale µ. Typically, µ = MZ and αS(M2
Z) is extracted

from experimental data. An alternative approach is to introduce a parameter ΛQCD

instead of αS(µ2), defined as the scale at which the coupling would diverge, that is,

αS(µ2) → ∞ as µ → Λ+
QCD. (1.10)

With this definition, (1.8) becomes

αS(Q2) =
1

b ln(Q2/Λ2
QCD)

, (1.11)

while (1.9) becomes

1

αS(Q2)
+ b′ ln

[

b′αS(Q2)

1 + b′αS(Q2)

]

= b ln
Q2

Λ2
QCD

. (1.12)

This last equation (1.12) can be solved approximately for αS(Q2) by expanding in

inverse powers of ln(Q2/Λ2
QCD):

αS(Q2) =
1

b ln(Q2/Λ2
QCD)

+
b′

b2 ln2(Q2/Λ2
QCD)

(

ln
b′

b
− ln ln

Q2

Λ2
QCD

)

+ O
(

1

ln3(Q2/Λ2
QCD)

)

. (1.13)

Redefining ΛQCD to absorb the term proportional to ln(b′/b) we obtain

αS(Q2) ' 1

b ln(Q2/Λ2
QCD)

[

1 − b′

b

ln ln(Q2/Λ2
QCD)

ln(Q2/Λ2
QCD)

]

. (1.14)

Note that ΛQCD depends on the number of active flavours, nf , with the dependence
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e e′

X
p

q

Figure 1.1: Deep-inelastic ep scattering mediated by a virtual photon γ∗.

determined by ensuring that αS(Q2) is continuous across the flavour thresholds, that

is,

αS(m2
c)
∣

∣

nf=3
= αS(m2

c)
∣

∣

nf=4
, αS(m2

b)
∣

∣

nf=4
= αS(m2

b)
∣

∣

nf=5
. (1.15)

Due to the various ambiguities involved in specifying ΛQCD, such as the flavour

dependence, the renormalisation scheme dependence, and whether it is defined ac-

cording to (1.11), (1.12), or (1.14), it is better to specify the absolute value of the

running coupling by giving αS(µ2) at some reference scale µ, usually at µ = MZ .

1.2 Deep-inelastic ep scattering

Deep-inelastic ep scattering is mediated by exchange of a virtual photon with mo-

mentum2 q = e−e′, where e and e′ are the momenta of the initial and final electrons,

see Fig. 1.1. The virtual photon (γ∗) has spacelike virtuality q2 ≡ −Q2. We ne-

glect the proton mass assuming that mp � Q, and assume that Q2 is sufficiently

small that Z boson exchange can be neglected. The ep centre-of-mass (CM) en-

ergy squared is s ≡ (e + p)2 = 2 e · p, where p is the momentum of the initial

proton. The Bjorken-x variable is xB ≡ Q2/(2 p · q). The γ∗p CM energy squared is

W 2 ≡ (q + p)2 = Q2(1/xB − 1).

The total ep → eX cross section can be written as a contraction of a leptonic

tensor (representing e → eγ∗) and a hadronic tensor (representing γ∗p → X). The

hadronic tensor, W µν , can be written in terms of two independent structure func-

tions, after utilising gauge, Lorentz, and time-reversal invariance, parity conservation

2‘Momentum’ always refers to 4-momentum throughout this thesis.
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and assuming unpolarised beams. The final result is

d2σep

dxB dQ2
=

2πα2
em(Q2)

xB Q4

{[

1 + (1 − y)2
]

FT (xB, Q2) + 2(1 − y) FL(xB, Q2)
}

,

(1.16)

where y ≡ (q · p)/(e · p) = Q2/(xB s). The subscripts T and L on the structure

functions FT,L denote the separate contributions from a virtual photon with trans-

verse and longitudinal polarisations respectively. Analogous to (1.8) the very weak

running of the electromagnetic coupling is taken to be

αem(Q2) =
α

1 − α
3π

ln(Q2/m2
e)

, (1.17)

where α ' 1/137 is the fine-structure constant and me is the electron mass.

The structure functions of the proton are related to the γ∗p cross sections by

FT,L =
Q2

4π2αem

σγ∗p
T,L, (1.18)

F2(xB, Q2) ≡ FT (xB, Q2) + FL(xB, Q2), (1.19)

so the ep cross section can be obtained from the γ∗p cross sections by

d2σep

dy dQ2
=

αem(Q2)

2πy Q2

{

[

1 + (1 − y)2
]

σγ∗p
T + 2(1 − y) σγ∗p

L

}

. (1.20)

1.2.1 Operator product expansion

The hadronic tensor governing the γ∗p interaction, also known as the forward Comp-

ton amplitude, is

W µν = i

∫

d4x eiq·x 〈p|T {Jµ(x)Jν(0)} |p〉 , (1.21)

that is, it involves taking the Fourier transform of the proton matrix element of a

time-ordered product of currents. An alternative strategy to the parton model for

calculating W µν is to expand this product as a series of local operators. This is

known as the operator product expansion (OPE).3 The most important terms in

the operator product of two currents Jµ come from products of two quark currents

q̄γµq with quarks of the same flavour. The relative size of contributions from the

OPE to DIS is controlled by the twist of the operator, defined by t = d− s, where d

is the (mass) dimension and s is the spin of the operator. A given operator of twist

3See, for example, Chapter 18 of [6] for more details.
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t is suppressed by at least a factor

(

1

Q

)t−2

. (1.22)

The dimensions of quark and gluon operators are 3/2 and 2 respectively, while their

spins are 1/2 and 1 respectively. Thus the leading contribution from two quark op-

erators is twist-two (‘leading-twist’) while the leading contribution from four gluon

or four quark operators is twist-four (‘higher-twist’). Note that a contribution sup-

pressed by (1/Q)t−2 does not necessarily originate from an operator of twist t. For

example, a contribution behaving like 1/Q2 could be either a sub-leading twist-two

contribution or a leading twist-four contribution.

1.3 DGLAP evolution and collinear factorisation

It is convenient to use a Sudakov decomposition, whereby a general momentum k can

be expanded in a basis of the proton momentum p, a lightlike 4-vector q ′ ≡ q +xB p,

and a transverse component k⊥, which satisfy the relations

p2 = 0 = q′
2
, p · k⊥ = 0 = q′ · k⊥, k2

⊥ = −k2
t , p · q′ =

Q2

2xB

. (1.23)

We define the plus and minus components of a 4-vector k as k± ≡ k0 ± k3. In the

Breit frame

p = (p+, p−, pt) = (Q/xB, 0, 0), q′ = (0, Q, 0), k⊥ = (0, 0, kt). (1.24)

We adopt a physical4 (axial) gluon gauge, where only the two transverse gluon

polarisations propagate. The numerator of a gluon propagator with momentum k

in an axial gauge is

dµν(k, n) = −gµν +
kµ nν + nµ kν

k · n − n2 kµ kν

(k · n)2
. (1.25)

Although the propagator is more complicated in an axial gauge than in covariant

gauges, for example the Feynman gauge where dµν = −gµν , a physical gauge has the

distinct advantage that ghost fields are not required to cancel the unphysical gluon

polarisations. Choosing a lightlike gauge-fixing vector n = q ′ gives the light-cone

4For more information on physical gauges, see [21, 28].
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(a) γ∗

q

...

p

=⇒µ

kn

kn−1

k1

P = kn + q

pn

pn−1

p2

(b) γ∗ γ∗

q q

...
...

p p

µ

kn

kn−1

kn

kn−1

k1 k1

pn

pn−1

p2

Figure 1.2: (a) The parton evolution chain, simplified so that all the partons in the
chain are gluons. (b) The evolution ladder, given by the amplitude of diagram (a)
multiplied by its complex conjugate. The horizontal gluons cut by the dashed line
are on-shell, p2

i = 0.

gauge,

dµν(k, q′) = −gµν +
kµ q′ν + q′µ kν

k · q′ . (1.26)

For the special case when k possesses only a plus (p) component, then dµν(k, q′) =

−g⊥
µν, where g⊥

µν is the transverse part of the metric, that is,

g⊥
µν = gµν −

pµ q′ν + q′µ pν

p · q′ . (1.27)

In an axial gluon gauge, the logarithmic scaling violations of the proton structure

function F2(xB, Q2) are given by multiparton emission diagrams, such as that shown

in Fig. 1.2(a), with strongly-ordered transverse momenta along the evolution chain.

The shaded circle at the top of Fig. 1.2(a) indicates some hard subprocess with an

associated factorisation scale µ. The ladder diagram representing the amplitude of

Fig. 1.2(a) multiplied by its complex conjugate is shown in Fig. 1.2(b). Using a

Sudakov decomposition of the momenta of the propagator partons,

ki = xi p − βi q
′ + ki⊥, (1.28)
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where the Sudakov (light-cone) variables xi, βi ∈ [0, 1]. In the infinite momentum

frame, the plus momentum fractions xi = k+
i /p+ become the longitudinal momen-

tum fractions of the proton. The emitted partons along the evolution chain have

momenta

pi = ki−1 − ki = (xi−1 − xi) p + (βi − βi−1) q′ + pi⊥, (1.29)

where pi⊥ = ki−1⊥ − ki⊥, while the total momentum going into the hard subprocess

at the top of the ladder is

P ≡ kn + q = (xn − xB) p + (1 − βn) q′ + kn⊥. (1.30)

Since the outgoing partons must be on-shell (p2
i = 0), we have

(βi − βi−1) =
xB

xi−1(1 − zi)

p2
i,t

Q2
, (1.31)

where zi ≡ xi/xi−1, and the Sudakov variables of the propagator partons obey the

ordering

. . . > xn−1 > xn > xB, . . . < βn−1 < βn < 1. (1.32)

The kinematics we have discussed so far are completely general, and also hold

for the different types of parton evolution we will discuss later. We now consider the

approximation made in DGLAP evolution, where transverse momenta are assumed

to be strongly ordered,

µ2 � k2
n,t � k2

n−1,t � . . . � k2
2,t � k2

1,t � k2
0, (1.33)

where k0 is an infrared cutoff. Schematically, neglecting the running of the strong

coupling, the diagram in Fig. 1.2(b) with n propagators gives a contribution pro-

portional to

(αS)n

∫ µ2

k2

0

dk2
n,t

k2
n,t

∫ k2
n,t

k2

0

dk2
n−1,t

k2
n−1,t

. . .

∫ k2

2,t

k2

0

dk2
1,t

k2
1,t

∼ 1

n!

(

αS ln µ2
)n

, (1.34)

The leading logarithmic approximation (LLA) includes a sum of all such terms.

We write the momentum of the last parton in the evolution chain, which initiates

the hard scattering, as kn ≡ k = x p − β q′ + k⊥. Since this parton has kt � µ,

it can be taken to be approximately collinear with the proton, k = x p. We write

a(x, µ2) as a shorthand for the PDFs of the proton, xq(x, µ2) or xg(x, µ2). We

neglect non-perturbative power-suppressed contributions of O([ΛQCD/µ]p), where

the power p > 0. These contributions should be negligible as long as µ � ΛQCD,
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(a) γ∗

q
γ∗

q

k k

p p

σ̂γ∗q(x, µ2)

x q(x, µ2)

(b) γ∗

q
γ∗

q

k k

p p

σ̂γ∗g(x, µ2)

x g(x, µ2)

Figure 1.3: Illustration of collinear factorisation. The hard scattering is initiated by
either (a) a quark or (b) a gluon with momentum k = x p.

where ΛQCD is typically a few hundred MeV. The collinear factorisation formula,

illustrated in Figure 1.3, expresses the hadronic (γ∗p) cross section in terms of the

PDFs, a(x, µ2), and the partonic (γ∗a) cross sections:

σγ∗p =
∑

a=q,g

∫ 1

xB

dx

x
a(x, µ2) σ̂γ∗a(x, µ2). (1.35)

The partonic cross section σ̂ is calculable as a perturbation series in αS,

σ̂ = αr
S

[

σ̂LO + αS σ̂NLO + α2
S σ̂NNLO + . . .

]

, (1.36)

where r is the smallest power of αS contributing to a specific process. For example,

r = 0 for inclusive DIS, but r = 1 for inclusive jet production. For inclusive DIS,

the usual choice of scale is given by the photon virtuality, µ = Q. Currently,

σ̂LO and σ̂NLO have been calculated for a large number of processes. By contrast,

the next-to-next-to-leading order (NNLO) partonic cross section, σ̂NNLO, is only

known for a few simple processes, such as inclusive DIS and Drell-Yan (and related)

processes in hadron-hadron collisions, but calculations of σ̂NNLO will increasingly

become available over the next few years.

The partonic cross section,

dσ̂ = dΦ |M|2 / F, (1.37)

is calculated for an on-shell incoming parton with momentum k = x p, neglecting

the minus and transverse components of k. The squared matrix element, |M|2,
is calculated from the Feynman rules,5 summing over all outgoing helicities and

colours and averaging over all incoming helicities and colours. This averaging is

5In fact, by the optical theorem, dΦ |M|2 can be written down directly from the imaginary part
of the forward scattering amplitude, using ‘cut’ diagrams with slightly modified Feynman rules.
Here, we prefer to keep the two factors distinct.
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often denoted explicitly by the notation 〈|M|2〉, |M|2, or
∑

|M|2. Throughout this

thesis, |M|2 will always denote implicitly an averaging over all incoming helicities

and colours. The Lorentz-invariant phase space for a subprocess with final state

particles of momenta pi is

dΦ = (2π)4δ(4)

(

k + q −
∑

i

pi

)

∏

i

d3pi

2Ei (2π)3
, (1.38)

and the flux factor for a collinear collision between the virtual photon and the

incoming parton is

F = 4 k · q = 4x p · q. (1.39)

Since
∫

d4pi δ(p2
i − m2

i ) Θ(Ei) =

∫

d3pi

1

2Ei
, (1.40)

the phase space element (1.38) can be written

dΦ = (2π)4δ(4)

(

k + q −
∑

i

pi

)

∏

i

d4pi

(2π)3
δ(p2

i − m2
i ) Θ(Ei). (1.41)

Beyond LO, the calculation of σ̂ gives rise to both ultraviolet and infrared diver-

gences. Usually, dimensional regularisation is used to regulate them both, where the

entire calculation is performed in 4 − 2ε dimensions, then the divergences appear

as poles in ε. The ultraviolet divergences are subtracted according to a particular

renormalisation scheme, while the infrared divergences are subtracted according to a

particular factorisation scheme. Both the renormalisation and factorisation schemes

are usually taken to be the modified minimal subtraction (MS) scheme. For more

details, see [29] in [10].

The scale dependence of the PDFs is governed by the DGLAP equation,

∂a(x, µ2)

∂ ln µ2
=

αS(µ2)

2π

∑

b=q,g

∫ 1

x

dz Pab

(

z, αS(µ2)
)

b
(x

z
, µ2
)

, (1.42)

where the splitting kernels Pab correspond to a b → ac branching in the evolution

chain, and are expansions in αS,

Pab (z, αS) = P LO
ab (z) + αSPNLO

ab (z) + α2
SPNNLO

ab (z) + . . . . (1.43)

Here, the NLO kernels correspond to O(αS) corrections to each rung of the evo-

lution ladder, while the NNLO kernels corresponds to O(α2
S) corrections. Note

however, that the assumption of strongly-ordered transverse momenta between each
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‘rung’ remains, so that the parton initiating the hard subprocess still has negligible

transverse momentum even after including higher-order corrections to the splitting

kernels. The LO and NLO kernels have been known for more than 20 years, while

the calculation of the NNLO kernels has only recently been completed [30,31]. The

LO DGLAP splitting kernels are

P LO
qq (z) = CF

[

1 + z2

(1 − z)+

+
3

2
δ(1 − z)

]

, (1.44)

P LO
gq (z) = CF

1 + (1 − z)2

z
, (1.45)

P LO
qg (z) = TR

[

z2 + (1 − z)2
]

, (1.46)

P LO
gg (z) = 2 CA

[

z

(1 − z)+
+

1 − z

z
+ z(1 − z)

]

+
1

6
(11 CA − 4 nf TR) δ(1 − z). (1.47)

Here, the ‘plus’ distribution is defined such that

∫ 1

0

dz
f(z)

(1 − z)+
=

∫ 1

0

dz
f(z) − f(1)

1 − z
, (1.48)

which encapsulates the cancellation between the real and virtual soft singularities.

The real parts of the LO kernels are derived in Section 2.2.3. The coefficients of

the virtual parts, proportional to δ(1 − z), can be obtained from quark number

conservation
∫ 1

0

dz P LO
qq (z) = 0, (1.49)

and momentum conservation

∫ 1

0

dz z
[

P LO
qq (z) + P LO

gq (z)
]

= 0,

∫ 1

0

dz z
[

2nfP
LO
qg (z) + P LO

gg (z)
]

= 0. (1.50)

For a consistent calculation, the order in αS of the partonic cross section and

the splitting kernel used in the evolution should match. For example, NLO partonic

cross sections should be convoluted with PDFs evolved with NLO DGLAP splitting

kernels.

Extending the lower limit of the integral to 0 in (1.42), with the understanding

that b(x/z, µ2) ≡ 0 for z < x, and inserting the LO splitting kernels, P LO
ab (z), we
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obtain

∂ a(x, µ2)

∂ ln µ2
=

αS(µ2)

2π

∑

b=q,g

[∫ 1

x

dz Pab(z) b
(x

z
, µ2
)

− a(x, µ2)

∫ 1

0

dζ ζ Pba(ζ)

]

,

(1.51)

where the ‘unregularised’ LO DGLAP splitting kernels are

Pqq(z) = CF
1 + z2

1 − z
, (1.52)

Pgq(z) = Pqq(1 − z) = CF
1 + (1 − z)2

z
, (1.53)

Pqg(z) = Pqg(1 − z) = TR

[

z2 + (1 − z)2
]

, (1.54)

Pgg(z) = Pgg(1 − z) = 2 CA

[

z

1 − z
+

1 − z

z
+ z(1 − z)

]

. (1.55)

The two terms on the RHS of (1.51) correspond to real emission and virtual contri-

butions respectively. The first (real) term describes the number density increase of

partons with plus momentum fraction x from the splitting of parent partons with

plus momentum fraction x/z. The second (virtual) term describes the number den-

sity decrease of partons with plus momentum fraction x splitting to partons with

plus momentum fraction ζx. The extra factor of ζ in the virtual term avoids double-

counting the s- and t-channel partons. The factor ζ is equivalent to a factor of a

half when integrating over ζ and summing over b.

1.3.1 Global parton analysis

Formally, the PDFs are defined in terms of the expectation values of suitable renor-

malised quantum mechanical operators (see, for example, [32]). Since the PDFs

contain non-perturbative physics, they cannot be computed completely using per-

turbation theory. In principle, lattice QCD could be used to calculate the PDFs

(see, for example, [33]). In practice, however, the PDFs are determined using ex-

perimental data, primarily inclusive DIS data, but also data from hadron-hadron

colliders such as inclusive jet production. The situation is similar to that for the

running coupling αS, where the scale dependence is known from the renormalisa-

tion group equation (1.5), but an absolute value αS(M2
Z) must be determined from

experiment. In the case of PDFs, the scale dependence is known from the DGLAP

equation (1.42), but the x dependence must be determined from experiment. The

PDFs are parameterised at some starting scale Q2
0. The distributions a(x, Q2

0) are

then evolved up to higher scales and predictions calculated with the collinear fac-

torisation formula (1.35) are compared with data. The parameters in the starting
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distributions are adjusted until the optimum fit is obtained. Currently, the two

major groups performing global parton analysis to DIS and related hard-scattering

data are MRST [34] and CTEQ [35]. We will look in more detail at how these fits

are done in Part II of this thesis.

1.3.2 Parton showers

The DGLAP formalism is amenable to implementation in a parton shower algo-

rithm (see, for example, Chapter 5 of [8]). As we will see in Section 2.2.2, in the

limit of strongly-ordered transverse momenta the partonic cross section for n parton

branchings, where the nth parton branching is b → ac, factorises as

dσ̂γ∗b
n = dΦγ∗b

n |Mγ∗b
n |2 / F γ∗b =

dxn

xn

dk2
n,t

k2
n,t

zn

αS(k2
n,t)

2π
Pab(zn) dσ̂γ∗a

n−1. (1.56)

This procedure can be used recursively to generate a parton shower, as implemented

in the Monte Carlo event generators herwig [36] and pythia [37]. In a parton

shower, the transverse momenta of successive emissions are ordered, but not strongly

ordered, that is, (1.33) becomes

µ2 > k2
n,t > k2

n−1,t > . . . > k2
2,t > k2

1,t > k2
0. (1.57)

Such a procedure accounts for all (αS ln µ2)n terms. Note that the evolution variable

is not restricted to being the transverse momentum. Since the branching formula

(1.56) contains a factor

dxn

xn

dk2
n,t

k2
n,t

=
dzn

zn

dk2
n,t

k2
n,t

=
dzn

zn

d[k2
n,t f(zn)]

[k2
n,t f(zn)]

, (1.58)

then the evolution variable can be taken to be [k2
n,t f(zn)], for any reasonable func-

tion f(zn). For example, the evolution variable used in herwig is related to the

angle of parton emission, allowing angular ordering due to colour coherence (see Sec-

tion 1.5.1) to be built in from the outset. By contrast, the evolution variable used

in pythia is the parton virtuality, and so angular ordering must be imposed as an

additional constraint. By accounting for angular ordering and momentum conserva-

tion along the evolution chain, an accuracy approaching next-to-leading logarithmic

(NLL) can be obtained, that is, where all terms like αS(αS ln µ2)n−1 are included in

addition to the LLA terms.
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1.4 BFKL evolution and kt-factorisation

We now consider semihard processes [23] where xB � 1. Since W 2 = Q2(1/xB−1) '
Q2/xB, the small-xB limit is also referred to as the high-energy limit, W � Q. The

hard scale Q is much less than the γ∗p CM energy W , but still large enough for

perturbative QCD to be applicable, that is, Q � ΛQCD. In this regime, gluons are

the predominant partons. The gluons emitted from the evolution chain take away

the major part of the plus momenta of the propagating gluons, so (1 − zi) ∼ 1.

Consider what happens if, in addition to strongly-ordered transverse momenta,

we also have strongly-ordered plus momenta,

xB � xn � xn−1 � . . . � x2 � x1 � 1, (1.59)

along the evolution chain. In this limit the gluon splitting kernel Pgg(zi) ' 2CA/zi

and the parton branching equation (1.56) becomes

dσ̂γ∗b
n =

dxn

xn

dk2
n,t

k2
n,t

αS(k2
n,t)

2π
2CA dσ̂γ∗a

n−1. (1.60)

In addition to the factor of (αS ln µ2)n coming from the integration over successive

transverse momenta we have an additional factor

∫ 1

xB

dxn

xn

∫ 1

xn

dxn−1

xn−1

. . .

∫ 1

x2

dx1

x1

∼ 1

n!

(

ln
1

xB

)n

, (1.61)

so the total contribution in the so-called double leading logarithmic approximation

(DLLA) contains all terms proportional to [αS ln(µ2) ln(1/xB)]n. However, there are

additional [αS ln(1/xB)]n terms which are not accompanied by a factor [ln(µ2)]n,

corresponding to the situation where the plus momenta are strongly ordered along

the evolution chain, but the transverse momenta are not. The LL Balitsky-Fadin-

Kuraev-Lipatov (BFKL) equation [38–40] sums all [αS ln(1/xB)]n terms. The domi-

nance of ladder diagrams such as that in Figure 1.2 is now only true if the triple-gluon

vertices are replaced by non-local effective vertices and the t-channel gluons are re-

placed by so-called ‘reggeised’ gluons with modified propagators, which account for

virtual radiative corrections.

Since transverse momentum is not strongly ordered in the BFKL formalism, the

parton entering the subprocess at the top of the evolution ladder has non-negligible

transverse momentum. Therefore, instead of the conventional PDFs, a(x, µ2), used

in collinear factorisation, it is necessary to define PDFs which depend on this trans-

verse momentum. Recall that, at least at LO, the number of partons in the proton
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γ∗

q
γ∗

q

k k

p p

σ̂γ∗g∗(x, k2
t [, µ

2])

fg(x, k2
t [, µ

2])

Figure 1.4: Illustration of kt-factorisation. The gluon initiating the hard scattering
has momentum k = x p+ k⊥. The unintegrated gluon distribution fg(x, k2

t ) satisfies
BFKL evolution. For CCFM evolution there is an extra argument µ2 related to the
maximum angle for gluon emission.

with (plus) momentum fraction between x and x + dx, integrated over transverse

momentum kt between zero and the factorisation scale µ, is

a(x, µ2)
dx

x
. (1.62)

By analogy, we define unintegrated parton distribution functions (UPDFs), fa(x, k2
t [, µ

2]),

such that the number of partons with plus momentum fraction between x and x+dx

and transverse momentum squared between k2
t and k2

t + dk2
t is

fa(x, k2
t [, µ

2])
dx

x

dk2
t

k2
t

. (1.63)

Thus the UPDFs should satisfy the normalisation relation,

a(x, µ2) =

∫ µ2

0

dk2
t

k2
t

fa(x, k2
t [, µ

2]). (1.64)

At small x only the unintegrated gluon distribution need be considered. The uninte-

grated gluon distribution fg(x, k2
t ) satisfies BFKL evolution. For CCFM evolution,

considered in Section 1.5.2, there is an extra argument µ2 related to the maximum

angle for gluon emission. Compared to the collinear factorisation approach to cal-

culate hadronic cross sections, there is an additional convolution over kt:

σγ∗p =

∫ 1

xB

dx

x

∫ ∞

0

dk2
t

k2
t

fg(x, k2
t ) σ̂γ∗g∗(x, k2

t ). (1.65)

This approach is called kt-factorisation [41, 42] or the semihard approach [23, 43],

illustrated in Fig. 1.4.6 The partonic cross section σ̂γ∗g∗ is taken off-shell, indicated

6For a review of the kt-factorisation approach, see [26, 27].
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by the notation ‘g∗’. It is given by (1.37), calculated with the incoming gluon having

momentum k = x p + k⊥ and virtuality k2 = −k2
t . Since the flux factor is not well-

defined, it is taken to be the usual on-shell flux factor, F = 4x p · q. The summation

over the incoming gluon polarisations is performed using

∑

λ

εµ(k, λ) ε∗ν(k, λ) = 2
k⊥µk⊥ν

k2
t

. (1.66)

The LL BFKL equation, which governs the x dependence of the unintegrated

gluon distribution, is

∂fg(x, k2
t )

∂ ln(1/x)
= ᾱS k2

t

∫ ∞

0

dk′
t
2

k′
t
2

[

fg(x, k′
t
2) − fg(x, k2

t )

|k′
t
2 − k2

t |
+

fg(x, k2
t )

(4k′
t
4 + k4

t )
1/2

]

, (1.67)

where ᾱS ≡ CA αS/π. The NLL BFKL corrections, which sum all αS[αS ln(1/xB)]n−1

terms, have also been calculated [44, 45], and were found to be larger than the LL

BFKL contribution, giving cross sections that were not even positive-definite. How-

ever, resumming additional collinearly-enhanced contributions stabilises the result

(see, for example, [47]).7

1.5 CCFM evolution and kt-factorisation

The (true) rapidity of an outgoing particle of mass mi with momentum

pi =
(

p+
i , p−i , pi,t

)

=
(

p+
i , [m2

i + p2
i,t]/p

+
i , pi,t

)

(1.68)

is

ηi ≡
1

2
ln

p+
i

p−i
. (1.69)

Rapidity has the useful property that it is additive under boosts in the z direction.

The pseudorapidity of a particle is defined as

ηpseudo
i ≡ − ln tan(θi/2), (1.70)

7It has been found in [46] that predictions for the transverse momentum distribution of gluons
calculated using either resummed NLL BFKL or LO DGLAP do not differ significantly, provided
that the initial and final virtualities are not too close to each other.
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where θi is the angle of the 3-momentum of the particle relative to the z axis.

Rapidity and pseudorapidity are related by

sinh ηpseudo
i =

(√

1 +
m2

i

k2
i,t

)

sinh ηi, (1.71)

so the distinction disappears in the limit that mi � ki,t. For a pedagogical discussion

of light-cone variables, rapidity and pseudorapidity, see [48].

1.5.1 Angular ordering

Colour coherence effects impose the angular ordering of the gluons emitted from

the evolution chain, originating from the destructive interference between the gluon

emission amplitudes (see, for example, [8, 11]). The angle θi between the direction

of the emitted gluons, with momenta pi, and the proton beam direction should

increase as we move towards the hard scattering at the top of the evolution ladder.

To be more precise, the ordering is in the rapidity variable (1.69), which should

reduce as we move towards the hard subprocess. Of course, angular ordering (or

pseudorapidity ordering) and rapidity ordering are equivalent in all evolution steps

prior to the last, since the emitted partons are massless. The smallest allowed

rapidity, ηmin, is fixed by the rapidity of the subprocess, which usually has some

finite invariant mass, so that the rapidity and pseudorapidity are not equal in this

case. We will refer to ‘angular ordering’ throughout this thesis, but the reader should

bear in mind that it is really rapidity ordering which is implied.

It is convenient to introduce a variable ξi ≡ p−i /p+
i . Then the rapidities of the

emitted gluons are

ηi = −1

2
ln ξi [= − ln tan(θi/2)] , (1.72)

and the ‘angular ordering’,

. . . > ηn−1 > ηn > ηmin, (1.73)

is equivalent to an ordering in ξi,

. . . < ξn−1 < ξn < Ξ, (1.74)

where

Ξ ≡ P−

P+
=

(1 − βn)

xn/xB − 1
(1.75)
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provides the smallest allowed rapidity, ηmin = −(1/2) ln Ξ. From (1.29) and (1.31),

ξi =
p−i
p+

i

=

(

xB pi,t/Q

xi−1(1 − zi)

)2

=

(

xB pi

xi−1Q

)2

, (1.76)

where we have defined the rescaled transverse momenta pi of the emitted gluons to

be

pi ≡
pi,t

1 − zi
=

xi−1

xB

Q
√

ξi. (1.77)

In angular-ordered evolution, the factorisation scale µ plays the rôle of the maximum

rescaled transverse momentum, so

µ =
xn

xB

Q
√

Ξ. (1.78)

Therefore, the angular ordering (1.74) can be written as

. . . , zn−1 pn−1 < pn, zn pn < µ. (1.79)

These angular-ordering constraints are automatically satisfied by both DGLAP

evolution (with strongly-ordered transverse momenta) and BFKL evolution (with

strongly-ordered plus momenta).

1.5.2 The CCFM equation

The Catani-Ciafaloni-Fiorani-Marchesini (CCFM) equation [49–52] resums large

logarithms of 1/(1− z) in addition to those of 1/z summed by the BFKL equation.

Moreover, angular ordering of emitted gluons due to colour coherence is imposed, as

given by (1.79). For large and small z, CCFM evolution becomes similar to DGLAP

and BFKL evolution respectively. In the small-xB regime, kt-factorisation can again

be used, where the cross section is written in terms of an off-shell partonic cross

section and an unintegrated gluon distribution, fg(x, k2
t , µ

2):

σγ∗p =

∫ 1

xB

dx

x

∫ ∞

0

dk2
t

k2
t

fg(x, k2
t , µ

2) σ̂γ∗g∗(x, k2
t , µ

2). (1.80)

The extra argument with respect to (1.65) is the factorisation scale µ, given by

(1.78), which is related to the smallest rapidity allowed for gluon emission. The
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differential form of the CCFM equation, as given in [52, 53], is

∂

∂ ln µ2

(

fg(x, k2
t , µ

2)

∆s(µ2, Q2
0)

)

=

∫ 1−Q0/µ

x

dz
Pgg (z, (µ/z)2, k2

t )

∆s(µ2, Q2
0)

fg

(

x/z, k′
t
2
, (µ/z)2

)

,

(1.81)

where Q0 is an infrared cutoff, k′

t
≡ kt+[(1−z)µ/z]n̂, and the azimuthal integration

over the direction of the two-dimensional unit vector n̂ is understood. It is important

to note that (1.81) is an evolution equation in the angular variable µ/x = (Q/xB)
√

Ξ

rather in µ itself. The gluon Sudakov form factor in the DLLA is

∆s(µ
2, Q2

0) = exp

[

−
∫ µ2

Q2

0

dq2

q2

∫ 1−Q0/q

0

dz
ᾱS

1 − z

]

. (1.82)

The splitting function is

Pgg

(

z, (µ/z)2, k2
t

)

= ᾱS

[

1

(1 − z)
+

1

z
∆ns(z, (µ/z)2, k2

t )

]

, (1.83)

where the non-Sudakov form factor,

∆ns(z, (µ/z)2, k2
t ) = exp

[

−ᾱS

∫ 1

z

dz′

z′

∫ k2
t dq2

q2
Θ
(

q − z′
µ

z

)

]

, (1.84)

regularises the 1/z divergence in the splitting function (1.83) in a similar way that

the Sudakov form factor regularises the 1/(1 − z) divergence.

The CCFM equation (1.81) has been used as the basis for the Monte Carlo event

generators smallx [54, 55] and cascade [53, 56]. A reformulation of the CCFM

equation known as the linked dipole chain (LDC) model is implemented in the Monte

Carlo program ldcmc [57, 58].

In the context of the cascade event generator, attempts have been made to

modify the CCFM equation (1.81) to include the full LO DGLAP splitting function.

However, näıvely making the replacement

1

1 − z
→ 1

1 − z
− 2 + z(1 − z) (1.85)

in the gluon splitting function (1.83) leads to negative branching probabilities [26]. A

positive definite branching probability can be obtained by making the replacements

[26, 27, 59]

1

1 − z
→ z

1 − z
+ z(1 − z)/2,

1

z
→ 1 − z

z
+ z(1 − z)/2, (1.86)
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in the gluon splitting function (1.83) and the Sudakov form factor (1.82), with a

similar replacement for 1/z′ in the non-Sudakov form factor (1.84).

Ideally, we would like to construct UPDFs with an analytic solution which include

both quarks and gluons in the evolution, the correct angular ordering, the complete

LO DGLAP splitting functions, and which are not restricted to the small-xB domain.

We will do this in the next chapter.



Chapter 2

Unintegrated parton distributions

and inclusive jet production at

HERA

The UPDFs depend on two hard scales, kt and µ, and so the evolution is much more

complicated than conventional DGLAP evolution. For example, the unintegrated

gluon distribution, fg(x, k2
t , µ

2), satisfies the CCFM evolution equation based on

angular ordering of gluon emissions along the chain, in the approximation where

only the 1/z and 1/(1 − z) singular terms of the splitting function Pgg(z) are kept.

So far, working with this equation has only proved possible with Monte Carlo event

generators [53–56].

However, in [60–62] it was shown that it is possible to obtain the two-scale

unintegrated distributions, fa(x, k2
t , µ

2), from single-scale distributions, ha(x, k2
t ),

with the dependence on the second scale µ introduced only in the last step of the

evolution. We call this the Kimber-Martin-Ryskin (KMR) procedure.1 In [61], two

alternatives for the evolution of ha(x, k2
t ) were considered:

(i) pure DGLAP evolution, or

(ii) a unified evolution equation [65] which embodies both the leading ln k2
t (DGLAP)

and ln(1/x) (BFKL) effects, as well as including a major part of the sub-leading

ln(1/x) contributions.

As expected, the gluon and sea quark distributions, fa(x, k2
t , µ

2), extended into the

kt > µ region, and indeed populated this domain more and more as x decreased.

An interesting result was that the UPDFs obtained via the unified BFKL-DGLAP

evolution of prescription (ii) were not very different from those based on the simpler

1Alternative formalisms are given in [63, 64].

22
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Figure 2.1: A schematic diagram of inclusive jet production in DIS at LO which
shows the approximate equality between (a) the formalism based on the doubly-
unintegrated quark distribution, where the incoming quark is off-shell with finite
transverse momentum, and (b) the conventional QCD approach using integrated
PDFs, where the incoming partons are on-shell with zero transverse momentum.

DGLAP evolution of (i). It was concluded that the imposition of the angular-

ordering constraint in the last step of the evolution was more important than in-

cluding BFKL effects. Here, we pay particular attention to probing the unintegrated

quark distribution at larger values of x, so prescription (i) will certainly be a good

approximation.

In this chapter, we refine and extend the KMR last-step procedure [61] for de-

termining the UPDFs. First we note that in [61] angular ordering was imposed on

both quark and gluon emissions; we correct this and only impose angular ordering

on gluon emissions. Second, the KMR procedure was based on kt-factorisation or

the semihard approach in which the unintegrated parton distribution is convoluted

with an off-shell partonic cross section where the incoming parton has virtuality

−k2
t . This is only valid for gluons in the high-energy approximation where z → 0,

with z the fraction of the plus momentum of the parent parton carried by the un-

integrated parton. Here, we generalise the notion of kt-factorisation and show that

it is more accurate to calculate observables using ‘doubly-unintegrated’ parton dis-

tribution functions (DUPDFs), fa(x, z, k2
t , µ

2), where the off-shell parton now has

virtuality −k2
t /(1 − z).

In Section 2.1 we describe how the UPDFs, fa(x, k2
t , µ

2), can be determined

from the conventional integrated PDFs a(x, µ2). Then in Section 2.2 we define the

DUPDFs, fa(x, z, k2
t , µ

2), and show how kt-factorisation is generalised to ‘(z, kt)-

factorisation’. The most direct way to test the DUPDFs is via inclusive jet produc-

tion in DIS. Inclusive jet production, particularly in the current jet region, probes the

doubly-unintegrated quark distribution in a similar way that inclusive DIS probes
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the integrated quark densities. The idea is that the LO diagram at O(α0
S) com-

puted using (z, kt)-factorisation will reproduce, to a good approximation, the re-

sults of the conventional LO QCD diagrams at O(αS) computed using collinear

factorisation. This approximate equality is shown schematically in Fig. 2.1. The

respective formalisms are presented in Section 2.3 and their predictions for inclusive

jet production are compared with each other, and also with recent HERA data, in

Section 2.4. These sections not only compare the LO predictions, but also extend

the comparisons to NLO.

2.1 Unintegrated parton distributions from inte-

grated ones

The KMR proposal [61] to determine the UPDFs was to relax the DGLAP strong

ordering in the last evolution step only, that is, . . . � kn−1,t � kt ∼ µ, where we

have omitted the subscript n on the kt of the last propagator. This procedure is

expected to account for the major part of the conventional NLL terms, that is, terms

like αS(αS ln µ2)n−1, compared to the usual LLA where only terms like (αS ln µ2)n

are included. The procedure is as follows. We start from the LO DGLAP equation

in the form (1.51) evaluated at a scale kt:

∂ a(x, k2
t )

∂ ln k2
t

=
αS(k2

t )

2π

∑

b=q,g

[
∫ 1

x

dz Pab(z) b
(x

z
, k2

t

)

− a(x, k2
t )

∫ 1

0

dζ ζ Pba(ζ)

]

. (2.1)

The virtual (loop) contributions may be resummed to all orders by the Sudakov

form factor,

Ta(k
2
t , µ

2) ≡ exp

(

−
∫ µ2

k2
t

dκ2
t

κ2
t

αS(κ2
t )

2π

∑

b=q,g

∫ 1

0

dζ ζ Pba(ζ)

)

, (2.2)

which gives the probability of evolving from a scale kt to a scale µ without parton

emission. Differentiating, we obtain

1

Ta(k2
t , µ

2)

∂ Ta(k
2
t , µ

2)

∂ ln k2
t

=
αS(k2

t )

2π

∑

b=q,g

∫ 1

0

dζ ζ Pba(ζ), (2.3)

so that the LO DGLAP equation (2.1) can be written in the form

∂ a(x, k2
t )

∂ ln k2
t

=
αS(k2

t )

2π

∑

b=q,g

∫ 1

x

dz Pab(z) b
(x

z
, k2

t

)

− a(x, k2
t )

Ta(k2
t , µ

2)

∂ Ta(k
2
t , µ

2)

∂ ln k2
t

. (2.4)
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We define the UPDFs to be

fa(x, k2
t , µ

2) ≡ ∂

∂ ln k2
t

[

a(x, k2
t ) Ta(k

2
t , µ

2)
]

= Ta(k
2
t , µ

2)
∂ a(x, k2

t )

∂ ln k2
t

+ a(x, k2
t )

∂ Ta(k
2
t , µ

2)

∂ ln k2
t

= Ta(k
2
t , µ

2)
αS(k2

t )

2π

∑

b

∫ 1

x

dz Pab(z) b
(x

z
, k2

t

)

. (2.5)

This definition is meaningful for kt > µ0, where µ0 ∼ 1 GeV is the minimum scale

for which DGLAP evolution of the conventional PDFs, a(x, µ2), is valid. Integrating

over transverse momentum up to the factorisation scale we find that

∫ µ2

µ2

0

dk2
t

k2
t

fa(x, k2
t , µ

2) =
[

a(x, k2
t ) Ta(k

2
t , µ

2)
]kt=µ

kt=µ0

= a(x, µ2) − a(x, µ2
0) Ta(µ

2
0, µ

2), (2.6)

since Ta(µ
2, µ2) = 1. Thus, the normalisation condition (1.64) will be exactly satis-

fied if we define

1

k2
t

fa(x, k2
t , µ

2)

∣

∣

∣

∣

kt<µ0

=
1

µ2
0

a(x, µ2
0) Ta(µ

2
0, µ

2), (2.7)

so that the density of partons in the proton is constant for kt < µ0 at fixed x and µ.

So far, we have ignored the singular behaviour of the unregularised splitting

kernels, Pqq(z) and Pgg(z), at z = 1, corresponding to soft gluon emission. These

soft singularities cancel between the real and virtual parts of the DGLAP equation

(2.1). After resumming the virtual part to all orders in the Sudakov form factor

(2.2) the singularities must be regulated for the unintegrated distributions to be

defined. The singularities indicate a physical effect that we have not yet accounted

for. Here, it is the angular ordering caused by colour coherence, implying a cutoff

on the splitting fraction z for those splitting kernels where a real gluon is emitted

in the s-channel.

We now apply the angular-ordering constraints of Section 1.5.1 specifically to the

last evolution step. For all other evolution steps, the strong ordering in transverse

momentum automatically ensures angular ordering. The condition zn pn < µ (1.79)

implies

z
kt

1 − z
< µ ⇐⇒ z <

µ

µ + kt
, (2.8)

where, as before, we have dropped the subscript n specifying the last evolution

step. Recall from (1.78) that µ is entirely determined from the kinematics of the
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subprocess at the top of the evolution ladder,

µ = Q
x

xB

√
Ξ = Q

x

xB

√

1 − β

x/xB − 1
. (2.9)

Equation (2.8) applies only to those splitting functions in the real part of the DGLAP

equation associated with gluon emission in the s-channel. By unitarity the same

form of the cutoff must be chosen in the virtual part. We define ζmax = 1 − ζmin =

µ/(µ + κt) and insert Θ(ζmax − ζ) into the Sudakov form factor for those splitting

functions where a gluon is emitted in the s-channel and Θ(ζ− ζmin) where a gluon is

emitted in the t-channel. Note that there is no ‘coherence’ effect for quark (fermion)

emission and therefore the phase space available for quark emission is not restricted

by the angular-ordering condition (2.8).2

The precise expressions for the unintegrated quark and gluon distributions are

fq(x, k2
t , µ

2) = Tq(k
2
t , µ

2)
αS(k2

t )

2π

∫ 1

x

dz

[

Pqq(z)
x

z
q
(x

z
, k2

t

)

Θ

(

µ

µ + kt

− z

)

+ Pqg(z)
x

z
g
(x

z
, k2

t

)

]

(2.10)

and

fg(x, k2
t , µ

2) = Tg(k
2
t , µ

2)
αS(k2

t )

2π

∫ 1

x

dz

[

∑

q

Pgq(z)
x

z
q
(x

z
, k2

t

)

+ Pgg(z)
x

z
g
(x

z
, k2

t

)

Θ

(

µ

µ + kt
− z

)

]

. (2.11)

The exponent of the quark Sudakov form factor can be simplified using the fact

that Pgq(1 − ζ) = Pqq(ζ). Then

∫ ζmax

0

dζ ζ Pqq(ζ) +

∫ 1

ζmin

dζ ζ Pgq(ζ) =
1

2

[
∫ ζmax

0

dζ Pqq(ζ) +

∫ 1

ζmin

dζ Pgq(ζ)

]

=

∫ ζmax

0

dζ Pqq(ζ),

(2.12)

so that

Tq(k
2
t , µ

2) = exp

(

−
∫ µ2

k2
t

dκ2
t

κ2
t

αS(κ2
t )

2π

∫ ζmax

0

dζ Pqq(ζ)

)

. (2.13)

2This is in contrast to [61], where a cutoff on the splitting fraction was applied both to quark
and gluon emissions. Also, in [61], the scale µ was treated as a free parameter, which was chosen
to be the hard scale of the subprocess, or a combination of hard scales. Here we fix µ using (2.9).
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Similarly, the exponent of the gluon Sudakov form factor can be simplified by ex-

ploiting the symmetry Pqg(1 − ζ) = Pqg(ζ). We have

∑

q

∫ 1

0

dζ ζ Pqg(ζ) = 2nf

∫ 1

0

dζ
1

2
Pqg(ζ) = nf

∫ 1

0

dζ Pqg(ζ), (2.14)

so that the gluon Sudakov form factor is

Tg(k
2
t , µ

2) = exp

(

−
∫ µ2

k2
t

dκ2
t

κ2
t

αS(κ2
t )

2π

(
∫ ζmax

ζmin

dζ ζ Pgg(ζ) + nf

∫ 1

0

dζ Pqg(ζ)

)

)

.

(2.15)

Sample plots of the unintegrated gluon distribution at µ2 = 100 GeV2 are shown

in Fig. 2.2, using the MRST2001 LO [66] and CTEQ6L1 [35] PDFs as input. We use

the one-loop expression for αS (1.11). The results when using the MRST99 NLO [67]

parton set and the two-loop expression (1.14) for αS are also shown, cf. Fig. 3

of [61]. For the remainder of this thesis, we use MRST2001 LO PDFs as input

unless otherwise specified. Sample plots of the unintegrated quark distributions are

shown in Fig. 2.3. Note that the charm and bottom quark distributions are zero for

k2
t < m2

c,b.

It is important to note that the starting point of our derivation is the LO DGLAP

equation (2.1), with LO DGLAP splitting kernels and one-loop running coupling.

Therefore, in order for the normalisation (1.64) to be satisfied, it is essential that

we use a LO parton set where the integrated PDFs have been determined using

the same splitting kernels and running coupling. In [61], the MRST99 parton set

was used, which has been determined using NLO DGLAP splitting kernels and two-

loop running coupling, therefore (1.64) was found not to be satisfied. Also, in [61]

the angular-ordering constraints were not correctly applied and the Sudakov form

factor Ta(µ
2
0, µ

2) was omitted from (2.7). The refined prescription now gives (almost)

exactly the normalisation of (1.64), as shown in Fig. 2.4. The small differences,

especially for the unintegrated gluon, are due to the fact that the angular ordering

constraints are not applied in the conventional global analyses which determine the

integrated PDFs.

2.2 (z, kt)-factorisation in deep-inelastic scattering

We have defined UPDFs, fa(x, k2
t , µ

2), valid for all values of x with both quarks and

gluons included in the evolution. This was done by assuming that the transverse

momentum of the parton initiating the hard scattering is generated entirely in the
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Figure 2.2: Sample plots of the unintegrated gluon distribution with MRST2001
LO, CTEQ6L1 and MRST99 NLO PDFs as input.
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Figure 2.3: Sample plots of the unintegrated quark distributions with MRST2001
LO PDFs as input.
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last evolution step and then imposing constraints from angular ordering to regulate

the soft gluon singularities. It now remains to specify the prescription for calculating

observables such as cross sections.

The penultimate parton in the evolution chain has momentum kn−1 = (x/z) p.

In the final evolution step, it splits into a parton with momentum kn ≡ k = x p −
β q′+k⊥ and an emitted parton of momentum pn = kn−1−kn. The Sudakov variable

β is specified by the on-shell condition, p2
n = 0, which gives

β =
xB

x

z

(1 − z)

k2
t

Q2
. (2.16)

Hence k2 = −k2
t /(1 − z). The rapidity of the emitted parton is

ηBreit =
1

2
ln

p+
n

p−n
=

1

2
ln

x (1 − z)

xB z β
. (2.17)

In the small-x regime, where gluons dominate, the main contribution comes

from the z → 0 limit, where k ' x p + k⊥, k2 ' −k2
t , and the emitted gluon

has a large positive rapidity. In this case, observables can be calculated from the

kt-factorisation prescription (1.80). At small x, we would expect that the leading

ln(1/x) terms would need to be resummed. However, in [61] it was found that the

unintegrated gluon based on a unified BFKL-DGLAP equation was very similar to

the unintegrated gluon calculated purely from the DGLAP equation, as in Section

2.1.

In [61] the kt-factorisation approach was used to calculate the unintegrated gluon

contribution to the proton structure function F2(xB, Q2) via the subprocess γ∗g∗ →
qq̄. The unintegrated quark contribution was included via a LLA calculation of

the process γ∗q∗ → qg. In [60] the normal on-shell partonic cross section was

evaluated with off-shell kinematics to estimate the cross section for prompt photon

hadroproduction. Again, the z dependence of the hard-scattering coefficient was

neglected.

2.2.1 Generalising kt-factorisation

Clearly, it is desirable to formulate a more general prescription for the calculation

of cross sections using UPDFs. This prescription should be valid for both quarks

and gluons and without taking the limit z → 0. The ‘partonic cross section’ will

necessarily have some z dependence, therefore we must consider parton distributions,

fa(x, z, k2
t , µ

2), doubly-unintegrated over both z and k2
t , satisfying the normalisation
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conditions
∫ 1

x

dz fa(x, z, k2
t , µ

2) = fa(x, k2
t , µ

2) (2.18)

and
∫ 1

x

dz

∫ µ2

0

dk2
t

k2
t

fa(x, z, k2
t , µ

2) = a(x, µ2). (2.19)

These normalisation conditions are only satisfied for fixed x and µ, independent of

the integration variables z or kt. Apart from the angular-ordering constraints, the

distributions may be obtained from (2.5):

fa(x, z, k2
t , µ

2) = Ta(k
2
t , µ

2)
αS(k2

t )

2π

∑

b

Pab(z) b
(x

z
, k2

t

)

. (2.20)

The explicit forms, including the constraints, follow from (2.10) and (2.11):

fq(x, z, k2
t , µ

2) = Tq(k
2
t , µ

2)
αS(k2

t )

2π

[

Pqq(z)
x

z
q
(x

z
, k2

t

)

Θ

(

µ

µ + kt

− z

)

+ Pqg(z)
x

z
g
(x

z
, k2

t

)

]

(2.21)

and

fg(x, z, k2
t , µ

2) = Tg(k
2
t , µ

2)
αS(k2

t )

2π

[

∑

q

Pgq(z)
x

z
q
(x

z
, k2

t

)

+ Pgg(z)
x

z
g
(x

z
, k2

t

)

Θ

(

µ

µ + kt
− z

)

]

. (2.22)

The universal factorisation formula involving these DUPDFs, analogous to (1.80),

is

σγ∗p =
∑

a

∫ 1

xB

dx

x

∫ 1

x

dz

∫ ∞

0

dk2
t

k2
t

fa(x, z, k2
t , µ

2) σ̂γ∗a∗

(x, z, k2
t , µ

2), (2.23)

where σ̂γ∗a∗

are now the partonic cross sections for an incoming parton with (plus)

momentum fraction x and transverse momentum kt, which has split from a parent

parton with (plus) momentum fraction x/z and zero transverse momentum. We will

refer to this generalised form of kt-factorisation as ‘(z, kt)-factorisation’.

There will be an effective upper bound on the kt integration from kinematics, but

note that there is no restriction to the domain kt < µ, as in conventional DGLAP

calculations. For kt > µ, the Sudakov form factors Ta(k
2
t , µ

2) are defined to be 1.

Taking the limit z → 0 of σ̂γ∗g∗(x, z, k2
t , µ

2) in (2.23) we essentially recover the
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conventional kt-factorisation prescription of (1.80). Alternatively, in the limit kt →
0, we recover the conventional collinear factorisation prescription.

Note that fa(x, z, k2
t , µ

2) is undefined for kt < µ0 ∼ 1 GeV and also that (2.7)

no longer applies since there is now a z dependence involved. To approximate the

kt < µ0 contribution of (2.23), we choose to take the collinear limit kt → 0 in the

hard-scattering coefficients, so that

σ̂γ∗a∗

(x, z, k2
t , µ

2)
∣

∣

kt<µ0

= lim
kt→0

σ̂γ∗a∗

(x, z, k2
t , µ

2) ≡ σ̂γ∗a(x, µ2). (2.24)

We then make the replacement

∫ 1

x

dz

∫ µ2

0

0

dk2
t

k2
t

fa(x, z, k2
t , µ

2) = a(x, µ2
0) Ta(µ

2
0, µ

2), (2.25)

so that the (z, kt)-factorisation formula (2.23) becomes

σγ∗p =
∑

a

∫ 1

xB

dx

x

[

a(x, µ2
0) Ta(µ

2
0, µ

2) σ̂γ∗a(x, µ2)

+

∫ 1

x

dz

∫ ∞

µ2

0

dk2
t

k2
t

fa(x, z, k2
t , µ

2) σ̂γ∗a∗

(x, z, k2
t , µ

2)

]

. (2.26)

In the first term, the limit kt → 0 must also be taken in the expressions determining

x and µ. In the following, we will use (2.23) for brevity, with the understanding

that the kt < µ0 region is to be dealt with as in (2.26).

2.2.2 Motivation for the (z, kt)-factorisation formula

At this stage, it is perhaps unclear exactly how we should calculate the partonic cross

sections, σ̂γ∗a∗

(x, z, k2
t , µ

2), since the incoming parton is now off-shell with virtuality

k2 = −k2
t /(1 − z), and so the usual kt-factorisation approach does not apply. This

issue can be clarified by starting with the collinear factorisation formula one rung

down. That is,

σγ∗p =
∑

b=q,g

∫ 1

x

d(x/z)

(x/z)
b(x/z, k2

t ) σ̂γ∗b(x/z, k2
t ), (2.27)

where we have chosen the factorisation scale to be kt, and b is the penultimate par-

ton in the evolution chain of Fig. 1.2, so that σ̂γ∗b incorporates the last evolution

step. From Fig. 1.2 we see that the parton b, with momentum kn−1 = (x/z) p, splits

into a parton of type a with momentum kn ≡ k = x p−β q′+k⊥, which then goes on
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Figure 2.5: Illustration of (z, kt)-factorisation for the doubly-unintegrated quark
distribution, fq(x, z, k2

t , µ
2), shown in the final diagram. In the first two diagrams the

penultimate parton in the DGLAP evolution chain, with momentum kn−1 = (x/z) p,
splits into a quark with momentum kn ≡ k = x p − β q′ + k⊥.

to initiate the hard subprocess at a scale µ given by (2.9). To derive formula (2.23)

we need to show that the partonic cross section σ̂γ∗b can be factorised to give a

partonic cross section for the γ∗a∗ subprocess, σ̂γ∗a∗

, with the remainder being ab-

sorbed into the definition of the DUPDF, fa(x, z, k2
t , µ

2). This idea is illustrated

in Fig. 2.5 for the doubly-unintegrated quark distribution, and in Fig. 2.6 for the

doubly-unintegrated gluon distribution.

The squared matrix element can be factorised if we assume the LLA, so that

only the leading 1/k2
t term is kept and terms not giving a logarithmic divergence in

the collinear limit are neglected. We find that

|Mγ∗b|2 = 16π2 (1 − z)

zk2
t

αS(k2
t )

2π

∑

a

Pab(z) |Mγ∗a∗ |2 × [1 + O(β)] , (2.28)

where |Mγ∗a∗ |2 represents the squared matrix element of the γ∗a∗ subprocess, con-

taining one power of αS less than |Mγ∗b|2. We have used this method to derive the

form of all four splitting kernels, Pab(z) (see Section 2.2.3). It is crucial that we

adopt a physical gauge for the gluon so that the splitting kernels are obtained from

only the ladder-type diagrams.

The extra terms of (2.28) are proportional to β and so are negligible for either

kt → 0 or z → 0. Away from these limits, it is far from obvious that these ‘beyond

LLA’ terms will be small, a necessary condition for the factorisation to hold. We will

observe that the main effect of the extra terms is to suppress the contribution from

large z for gluon emission. In our approach, we achieve the same effect with angular

ordering, so the extra terms may be neglected. We will provide some numerical
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Figure 2.6: Illustration of (z, kt)-factorisation for the doubly-unintegrated gluon
distribution, fg(x, z, k2

t , µ
2), shown in the final diagram. In the first two diagrams the

penultimate parton in the DGLAP evolution chain, with momentum kn−1 = (x/z) p,
splits into a gluon with momentum kn ≡ k = x p − β q′ + k⊥.

evidence to justify this in Section 2.4.1.

In (2.28), |Mγ∗a∗ |2 should also be evaluated in the LLA for the factorisation to

hold, so terms proportional to k2
t should be neglected when calculating this. This

amounts to the replacement k → x p in the numerator of |Mγ∗a∗ |2, but not in the

propagator virtualities in the denominator. For example, if a = g, the unintegrated

gluon, we make the replacement dµν(k, q′) → dµν(x p, q′) = −g⊥
µν in the sum over ini-

tial gluon polarisations. If a = q, the unintegrated quark, we make the replacement

k → x p in the trace. Of course, x may have some kt dependence from kinematics,

so some terms beyond the LLA are included in this respect. In Section 3.4.2, we

will briefly discuss the possibility of evaluating |Mγ∗a∗ |2 with k → x p + k⊥, as in

the kt-factorisation prescription.

The phase space dΦγ∗b can be factorised easily to give the phase space dΦγ∗a∗

:

dΦγ∗b = dΦγ∗a∗ × 1

(2π)3
d4pn δ( p2

n ) = dΦγ∗a∗ × 1

(2π)3
d4k δ( p2

n )

= dΦγ∗a∗ × 1

16π2
dx dβ dk2

t

z

x(1 − z)
δ

(

β − xB

x

z

(1 − z)

k2
t

Q2

)

= dΦγ∗a∗ × 1

16π2
dx dk2

t

z

x(1 − z)
,

(2.29)

where we have used d4k = p · q dx dβ d2kt and d2kt = kt dkt dφ = πdk2
t , after

integrating over the azimuthal angle φ. The β integration absorbs the delta function,

determining β as given by (2.16).

The partonic flux factor F γ∗a∗

is not well defined since the parton a is off-shell

and non-collinear with the photon. As in conventional kt-factorisation, we define it
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to be3

F γ∗a∗ ≡ z F γ∗b = z 4 kn−1 · q = 4x p · q. (2.30)

Finally, we have the relationship

dσ̂γ∗b = dΦγ∗b |Mγ∗b|2 / F γ∗b =
dx

x

dk2
t

k2
t

z
αS(k2

t )

2π

∑

a

Pab(z) dσ̂γ∗a∗

. (2.31)

To calculate the hadronic cross section, we insert (2.31) into (2.27)

dσγ∗p =
∑

b=q,g

d(x/z)

(x/z)
b(x/z, k2

t ) dσ̂γ∗b

=
∑

b=q,g

dz

z

dx

x

dk2
t

k2
t

z
αS(k2

t )

2π

∑

a

Pab(z) b(x/z, k2
t ) dσ̂γ∗a∗

→
∑

a

dx

x
dz

dk2
t

k2
t

fa(x, z, k2
t , µ

2) dσ̂γ∗a∗

(x, z, k2
t , µ

2),

(2.32)

where in the last step we recognise the ‘real’ part of the DUPDFs given in (2.20).

The (z, kt)-factorisation formula (2.23) follows easily.

2.2.3 Derivation of splitting kernels

Here, we derive the four LO DGLAP splitting kernels from the relevant Feynman

diagrams shown in Fig. 2.7. The presentation is similar to that given in Chapter 1

of [11]. In all four cases, we shall show that the squared matrix element factorises

in the LLA as

|Mγ∗b|2 LLA≈ 16π2 (1 − z)

zk2
t

αS(k2
t )

2π
Pab(z) |Mγ∗a∗ |2. (2.33)

Pqq(z):

The squared matrix element corresponding to Fig. 2.7(a) is

|Mγ∗q|2 =
1

2
Cac

g2

k4
Tr[Xac /kγµ/lγν/k] dµν(l − k, q′), (2.34)

where g2 = 4παS(k2
t ) and the colour factor is

Cac =
1

NC
tAabt

A
bc =

CF

NC
δac. (2.35)

3Choosing another definition for the flux factor is a NLL effect.
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q
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q
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Figure 2.7: Cut diagrams giving the LO DGLAP splitting kernels: (a) Pqq(z), (b)
Pqg(z), (c) Pgq(z), (d) Pgg(z). Here, j, k, l, q are momenta, a, b, c = 1, . . . , NC and
A, B, C, D = 1, . . . , (N 2

C − 1) are colour indices, and α, β, γ, µ, ν, α′, β ′, γ′, µ′, ν ′ are
Lorentz indices. In each case, the box labelled X contains additional Lorentz and
colour structure.

Simplifying the trace using identities such as /k/l = −/l/k + 2k · l gives

Tr[Xac /kγµ/lγν/k] dµν(l − k, q′) = −2k2Tr[Xac (/l − /k)] − k2

(l − k) · q′

×
{

2l · q′ Tr[Xac /k] + 2k · q′ Tr[Xac /l] − k2 Tr[Xac /q′]
}

. (2.36)

To extract the LLA contribution we must only keep the terms proportional to k2

in this expression, neglecting ‘beyond LLA’ terms such as those proportional to k4.

To this accuracy, we may replace /l with /k/z on the RHS of (2.36). Thus,

Tr[Xac /kγµ/lγν/k] dµν(l − k, q′)
LLA≈ −2k2 Tr[Xac /k]

(

1 − z

z
+

2

1 − z

)

. (2.37)

Substituting into (2.34) we obtain

|Mγ∗q|2 LLA≈ 16π2 (1 − z)

zk2
t

αS(k2
t )

2π

(

CF
1 + z2

1 − z

) (

1

2
Tr[Xac /k]

1

NC
δac

)

≡16π2 (1 − z)

zk2
t

αS(k2
t )

2π
Pqq(z) |Mγ∗q∗|2,

(2.38)
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where |Mγ∗q∗|2 should be evaluated with k = x p in order not to lose the logarithmic

divergence.

Pqg(z):

The squared matrix element corresponding to Fig. 2.7(b) is

|Mγ∗g|2 =
1

2
Cac

g2

k4
Tr[Xac /kγµ(/l − /k)γν/k] dµν(l, q

′), (2.39)

where dµν(l, q
′) = −g⊥

µν and the colour factor is

Cac =
1

(N2
C − 1)

tAabt
A
bc =

CF

(N2
C − 1)

δac =
TR

NC
δac. (2.40)

Using the identity γµ(/l − /k)γν (−g⊥
µν) = 2(/l − /k‖), we obtain

Tr[Xac /kγµ(/l− /k)γν/k] (−g⊥
µν) = −2k2Tr[Xac (/l− /k‖)]+ 2k2(1− 2z)Tr[Xac /k]. (2.41)

As before, within the LLA we can replace /l by /k/z and /k‖ by /k, so that

Tr[Xac /kγµ(/l − /k)γν/k] (−g⊥
µν)

LLA≈ −2k2 Tr[Xac /k]

(

1 − z

z
− 1 + 2z

)

. (2.42)

Substituting into (2.39) we obtain

|Mγ∗g|2 LLA≈ 16π2 (1 − z)

zk2
t

αS(k2
t )

2π

(

TR[z2 + (1 − z)2]
)

(

1

2
Tr[Xac /k]

1

NC

δac

)

≡16π2 (1 − z)

zk2
t

αS(k2
t )

2π
Pqg(z) |Mγ∗q∗|2,

(2.43)

where again |Mγ∗q∗|2 should be evaluated with k = x p in order not to lose the

logarithmic divergence.

Pgq(z):

The squared matrix element corresponding to Fig. 2.7(c) is

|Mγ∗q|2 =
1

2
CAB g2

k4
Xµν,AB Tr[(/l − /k)γµ′

/lγν′

] dµµ′(k, q′) dνν′(k, q′), (2.44)

where the colour factor is

CAB =
1

NC
tAabt

B
ba =

1

NC
Tr[tAtB] =

TR

NC
δAB =

CF

(N2
C − 1)

δAB. (2.45)
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Evaluating the trace, we obtain

Tr[(/l − /k)γµ′

/lγν′

] dµµ′(k, q′) dνν′(k, q′) = 4

[

(l − k)µ′

dµµ′(k, q′) lν
′

dνν′(k, q′)

+lµ
′

dµµ′(k, q′) (l − k)ν′

dνν′(k, q′) +
k2

2
dµµ′(k, q′)dνν′(k, q′)

]

. (2.46)

Now in the first two terms of (2.46) we can replace

lµdµν(k, q′) =
1

z

(

kµ + β q′
µ − kµ

⊥

)

(

−gµν +
kµq′ν + q′µkν

k · q′
)

=
1

z

(

k⊥ν +
zk2

k · q′ q′ν

)

LLA≈ 1

z
k⊥ν ,

(2.47)

and

kµdµν(k, q′) =
k2

k · q′ q
′
ν

LLA≈ 0, (2.48)

while in the third term of (2.46) we can replace

dµν(k, q′)
LLA≈ dµν(x p, q′) = −g⊥

µν . (2.49)

Averaging over the azimuthal angle,

〈

k⊥µk⊥ν

〉

≡
∫ 2π

0

dφ

2π
k⊥µk⊥ν = −1

2
k2

t g
⊥
µν =

1

2
k2(1 − z)g⊥

µν , (2.50)

we obtain

Tr[(/l − /k)γµ′

/lγν′

] dµµ′(k, q′) dνν′(k, q′)
LLA≈ 4k2g⊥

µν

(

1 − z

z2
+

1

2

)

, (2.51)

and substituting into (2.44) gives

|Mγ∗q|2 LLA≈ 16π2 (1 − z)

zk2
t

αS(k2
t )

2π

(

CF
1 + (1 − z)2

z

) (

Xµν,AB(−g⊥
µν/2)

δAB

(N2
C − 1)

)

≡16π2 (1 − z)

zk2
t

αS(k2
t )

2π
Pgq(z) |Mγ∗g∗|2,

(2.52)

where again |Mγ∗g∗|2 should be evaluated with k = x p in order not to lose the

logarithmic divergence.
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Pgg(z):

The squared matrix element corresponding to Fig. 2.7(d) is

|Mγ∗g|2 =
1

2
CAB g2

k4
Xµν,AB dµγ(k, q′) dνγ′(k, q′) dαα′(l, q′) dββ′(l − k, q′)

×
[

(2l − k)γgαβ + (2k − l)αgβγ − (k + l)βgγα
]

× (−1)
[

(2l − k)γ′

gα′β′

+ (2k − l)α′

gβ′γ′ − (k + l)β′

gγ′α′
]

, (2.53)

where the colour factor is

CAB =
1

(N2
C − 1)

fACDfBCD =
CA

(N2
C − 1)

δAB. (2.54)

Using the form [68] program to evaluate (2.53), substituting

gµν → g⊥
µν +

pµq
′
ν + q′µpν

p · q′ , (2.55)

and keeping only the LLA terms proportional to g⊥
µν, we obtain

|Mγ∗g|2 LLA≈ 16π2 (1 − z)

zk2
t

αS(k2
t )

2π

(

2CA
(1 − z + z2)2

z(1 − z)

) (

Xµν,AB(−g⊥
µν/2)

δAB

(N2
C − 1)

)

≡16π2 (1 − z)

zk2
t

αS(k2
t )

2π
Pgg(z) |Mγ∗g∗|2,

(2.56)

where again |Mγ∗g∗|2 should be evaluated with k = x p in order not to lose the

logarithmic divergence.

2.3 Application to inclusive jet production in DIS

The simplest process that we can consider to illustrate the use of the DUPDFs is

current jet production in DIS. The subprocess is simply γ∗q∗ → q at the top of the

evolution chain. In the normal collinear factorisation approach, this diagram gives

the parton model prediction for the structure function F2(xB, Q2). Indeed, measure-

ments of F2(xB, Q2) are used to determine the integrated quark distribution q(x, µ2).

In the new (z, kt)-factorisation framework of Section 2.2, where the incoming quark

has transverse momentum kt, we produce a current jet with transverse momentum

kt and transverse energy ET = kt. The parton emitted in the last evolution step

will emerge with transverse momentum −kt and transverse energy ET = kt.
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The inclusive jet cross section counts all jets passing the required cuts. Having

calculated the ep cross section from (1.20), we need the differential cross section

with respect to the transverse energy ET and the rapidity η:

d4σep

dy dQ2 dET dη
=

d2σep

dy dQ2

∑

i

δ(ET − ET (ji)) δ(η − η(ji)), (2.57)

where the sum is over jets with momenta ji, transverse energy ET (ji) and rapidity

η(ji). Experimental data are usually given in bins of y, Q2, ET , and η, which we

need to integrate over to obtain a prediction:

σep =

∫ ymax

ymin

dy

∫ Q2
max

Q2

min

dQ2

∫ ET,max

ET,min

dET

∫ ηmax

ηmin

dη
d4σep

dy dQ2 dET dη

=

∫ ymax

ymin

dy

∫ Q2
max

Q2

min

dQ2 d2σep

dy dQ2

∑

i

Θ (η(ji) − ηmin) Θ (ηmax − η(ji))

× Θ (ET (ji) − ET,min) Θ (ET,max − ET (ji)) .

(2.58)

The differential cross sections are easily obtained by dividing by the size of the bin,

for example,
dσep

dET
= σep/(ET,max − ET,min). (2.59)

In Section 2.2 we gave the general prescription for calculating the cross section.

Recall that it was necessary to consider the DUPDFs, fa(x, z, k2
t , µ

2), to keep the

precise kinematics in the subprocess, without taking the limit z → 0. We now

check that this prescription reproduces with good accuracy the conventional LO

QCD calculation with integrated partons, where all O(αS) diagrams are included,

not just the ones which give the leading dk2
t /k

2
t term. With the (z, kt)-factorisation

approach, in addition to the jets produced in the hard subprocess, we must also

count the parton emitted in the last evolution step with transverse energy ET = kt

and rapidity given by (2.17).

We also explain how the prescription may be extended to higher orders in per-

turbation theory. The conventional NLO QCD diagrams are at O(α2
S). These

include all real and virtual O(αS) corrections to the LO QCD diagrams. The hard-

scattering coefficients obtained from these diagrams are convoluted with NLO inte-

grated PDFs, a(x, µ2), satisfying the DGLAP equation with two-loop αS and NLO

splitting kernels. Several codes are available which include these NLO QCD calcu-

lations, for example, disaster++ [69], disent [70], jetvip [71], mepjet [72], and

nlojet++ [73]. There is no longer a one-to-one correspondence between partons

and jets. The momenta of the outgoing partons should be passed through a jet al-
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gorithm to assign the partons to jets. At NLO in the (z, kt)-factorisation approach,

we continue to use the LO doubly-unintegrated partons constructed in Section 2.1

and only calculate the O(αS) diagrams expected to dominate.

The procedure involved in going from σγ∗p to σep, via (1.20) and (2.58), is the

same in all the theoretical approaches we describe, therefore in the following sections

we only describe how to calculate σγ∗p.

2.3.1 Collinear factorisation approach at LO

In the collinear approximation, the LO QCD Feynman diagrams are at O(αS).

These are the boson-gluon fusion process, γ∗g → qq̄, and the QCD Compton process,

γ∗q → qg, illustrated in Fig. 2.1(b). These partonic processes give rise to two jets

with equal transverse energy and opposite transverse momentum. There is a one-

to-one correspondence between partons and jets. There are no singularities to be

regulated and no cutoff is imposed on gluon emission.

We now explain a few of the details involved since this calculation offers valuable

insights into the (z, kt)-factorisation approach. The cut diagrams are illustrated in

Fig. 2.8. Note that the direction of fermion number flow is not indicated in these

diagrams. The arrows indicate only the direction of the labelled momentum and

this is taken to be the same for both quarks and antiquarks. The contribution from

diagrams (a) to (f) to σγ∗p need to be added together. Diagrams (a) to (d) have the

same kinematics, so we calculate them first. We label the momenta by

q = q′ − xB p, l =
x

z
p, k = x p − β q′ + k⊥,

j1 = k + q = (x − xB) p + (1− β) q′ + k⊥, j2 = l − k =
x

z
(1 − z) p + β q′ − k⊥,

(2.60)

with x ≥ xB. The 2-body phase space is

dΦγ∗a = (2π)4 δ(4)(l + q− j1 − j2)
d4j1

(2π)3
δ(j2

1)
d4j2

(2π)3
δ(j2

2) =
d4k

4π2
δ(j2

1) δ(j2
2). (2.61)

The two delta functions can be used to determine β and x:

β =
xB z r

x (1 − z)
and x± =

xB

2(1 − z)

(

1 − z + r ±
√

(1 − z + r)2 − 4rz(1 − z)
)

,

(2.62)
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Figure 2.8: Cut diagrams contributing to inclusive jet production in LO QCD.
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where r ≡ k2
t /Q

2. The flux factor is F γ∗a = 4 l · q, so that

dΦγ∗a

F γ∗a
=

dk2
t

16π

(

xB

Q2

)2
∑

x=x±

z2

x2(1 − z)

1

1 − xBβ/x
. (2.63)

In practice, the condition x ≥ xB ensures that only the x = x+ solution contributes.

The squared matrix elements of all six diagrams can be written in the form

|Mγ∗a
T,L|2 =

1

2
e2 g2 Mµν εµ(q, λ)ε∗ν(q, λ), (2.64)

where λ is either T or L and the initial factor of 1/2 is to average over the helicity

of the incoming parton. Appropriate scales have been chosen for the two running

couplings, e2 = 4παem(Q2) and g2 = 4παS(k2
t ). We have

(a) Mµν =

(

∑

q

e2
q

)

TR
1

k4
Tr [/kγρ/j2γ

σ/kγν/j1γ
µ] dρσ(l, q

′), (2.65)

(b) Mµν =

(

∑

q

e2
q

)

TR
1

k2

1

(k + q − l)2
Tr [/kγρ/j2γ

ν(/k + /q − /l)γσ/j1γ
µ] dρσ(l, q

′),

(2.66)

(c) Mµν = e2
qCF

1

k4
Tr [/kγρ/lγσ/kγν/j1γ

µ] dρσ(j2, q
′), (2.67)

(d) Mµν = e2
qCF

1

k2

1

(l + q)2
Tr [/kγρ/lγν(/l + /q)γσ/j1γ

µ] dρσ(j2, q
′). (2.68)

For diagrams (e) and (f) of Fig. 2.8, the momenta can be parameterised as

q = q′ − xB p, l = X p, j1 = ξ p + b q′ + k⊥,

j2 = l + q − j1 = (X − xB − ξ) p + (1 − b) q′ − k⊥, (2.69)

with 0 ≤ ξ ≤ X − xB ≤ 1 and 0 ≤ b ≤ 1. This time the 2-body phase space

determines

b = xBr/ξ, ξ± =
1

2

{

X − xB ±
√

(X − xB)(X − (1 + 4r)xB)
}

. (2.70)

Dividing the phase space by the flux factor gives

dΦγ∗q

F γ∗q
=

dk2
t

16π

(

xB

Q2

)2
∑

ξ=ξ±

1

Xξ

1

|1 − b(X − xB)/ξ| , (2.71)
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and the squared matrix elements are

(e) Mµν = e2
qCF

1

(l + q)2

1

(j1 − q)2
Tr [/lγσ(/j1 − /q)γν/j1γ

ρ(/l + /q)γµ] dρσ(j2, q
′),

(2.72)

(f) Mµν = e2
qCF

1

(l + q)2

1

(l + q)2
Tr [/lγν(/l + /q)γσ/j1γ

ρ(/l + /q)γµ] dρσ(j2, q
′). (2.73)

Averaging over the transverse photon polarisations in (2.64), we have

εµ(q, T ) ε∗ν(q, T ) → −1

2
g⊥

µν, (2.74)

while demanding that the longitudinal polarisation vector is normalised, [ε(q, L)]2 =

1, and satisfies the Lorentz condition, q · ε(q, L) = 0, leads to

εµ(q, L) =
1

Q
(2xBpµ + qµ). (2.75)

Gauge invariance ensures that the qµ term does not contribute to the squared matrix

element if all diagrams are included, courtesy of the Ward identity

qµM
µν = 0 = qνM

µν . (2.76)

Therefore, we are free to neglect the qµ term of (2.75) from the outset, so that

εµ(q, L) ε∗ν(q, L) → 4x2
B

Q2
pµpν. (2.77)

Finally, the contribution to the γ∗p cross section from Fig. 2.8 (a), (b), (c), and (d),

calculated with the aid of the form [68] program, is

σγ∗p
T,L =

∑

q

4π2αeme2
q

Q2

∫ 1

x

dz

∫ ∞

0

dk2
t

k2
t

∑

x=x±

xB/x

1 − xBβ/x

αS(k2
t )

2π

×
{

Pqg(z)
x

z
g(

x

z
, µ2)

[

Ca
T,L + Cb

T,L

]

+ Pqq(z)
x

z
q(

x

z
, µ2)

[

Cc
T,L + Cd

T,L

]

}

, (2.78)

while the contribution from diagrams (e) and (f) is

σγ∗p
T,L =

∑

q

4π2αeme2
q

Q2

∫ 1

xB

dX

∫ ∞

0

dk2
t

k2
t

xB

X

k2
t

Q2

∑

ξ=ξ±

xB/ξ

|1 − b(X − xB)/ξ|
αS(k2

t )

2π

× CF Xq(X, µ2)
[

Ce
T,L + Cf

T,L

]

, (2.79)
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where the coefficients are

Ca
T = 1 − β (x + 2 xB z − 4 x z − 2 xB z2 + 4 x z2)

x (1 − 2 z + 2 z2)
, Ca

L =
8 β (1 − β) xB (1 − z) z

x (1 − 2 z + 2 z2)
,

Cb
T = A (x − 2 β x − 2 β xB z − 2 x z + 4 β x z) , Cb

L = 8 A β (1 − β) xB z ,

Cc
T = 1 − β (x + xB z − x z − xB z2 + 2 x z2)

x (1 + z2)
, Cc

L =
4 β (1 − β) xB (1 − z) z

x (1 + z2)
,

Cd
T =

−β x z (1 − z)

(x − xB z) (1 + z2)
, Cd

L = 0,

Ce
T =

−b ξ (ξ + xB)

(X − xB) (X − xB − ξ) (ξ + (1 − b) xB)
, Ce

L = 0,

Cf
T =

ξ

(X − xB)2 , Cf
L = 0, (2.80)

where

A ≡ β (1 − z)

(x + xB z − β xB z − x z)(1 − 2 z + 2 z2)
. (2.81)

Note that for high ET jet production in LO QCD there are no infrared singularities

from either on-shell propagators or soft gluon emission. We will take the factorisation

scale to be µ = ET = kt, in order to compare directly with the approach based on

DUPDFs. The inclusive jet cross section calculated using (2.78) and (2.79) was

found to be in agreement with the LO QCD predictions of the disent [70] and

jetvip [71] programs.

At this point it is an interesting check to take the DGLAP limit, so that we

insert Θ(µ−kt) and take the limit kt → 0, so that the only contributions come from

the ladder-type diagrams of Fig. 2.8 (a) and (c), and

σγ∗p
T =

∑

q

4π2αeme2
q

Q2

∫ 1

x

dz

∫ µ2

0

dk2
t

k2
t

αS(k2
t )

2π

{

Pqg(z)
x

z
g(

x

z
, µ2) + Pqq(z)

x

z
q(

x

z
, µ2)

}

,

(2.82)

with x = xB and σγ∗p
L = 0. At lowest order,

F2(xB, µ2) =
Q2

4π2αem

(

σγ∗p
T + σγ∗p

L

)

=
∑

q

e2
qx q(x, µ2), (2.83)

leading to the well-known logarithmic scaling violation of F2, or equivalently the

‘real’ part of the DGLAP equation for the (integrated) quark distribution,

∂ q(x, µ2)

∂ ln µ2
=

αS(µ2)

2π

∫ 1

x

dz

z

{

Pqg(z) g(
x

z
, µ2) + Pqq(z) q(

x

z
, µ2)

}

, (2.84)



2.3 Application to inclusive jet production in DIS 47

where the conventional choice of scale is µ = Q. Of course, for high ET jet produc-

tion, it is not appropriate to take the limit kt → 0.

Let us anticipate how this calculation would be treated in terms of DUPDFs,

where we would want to factor out the emission with momentum j2 in Fig. 2.8 (a)

and (c) into the doubly-unintegrated quark distribution, fq(x, z, k2
t , µ

2). For this to

be possible, we must assume that Ca
T = 1 = Cc

T , and neglect all other contributions.

The diagrams in Fig. 2.8 (d), (e), and (f) come from the subprocess γ∗q → qg, where

the gluon is radiated off the final quark line. Such diagrams are strongly suppressed

in an axial gluon gauge, due to one or more of the propagators having very large

virtualities, and can be neglected. Similarly, for the crossed quark box diagram of

Fig. 2.8 (b). Numerically, the terms proportional to β in diagrams (a) and (c) are

found to be very small. The one exception is the term proportional to β in Cc
T .

This is negative and increasingly important as z increases; that is, it is a destructive

interference term. In the case of the doubly-unintegrated quark distribution, the

same effect is obtained with an explicit constraint from angular ordering, so the

term proportional to β is redundant. We will look at this in more detail in Section

2.4.1.

Ultimately, we will need to resort to explicit numerical comparison of (z, kt)-

factorisation with the conventional collinear factorisation approach in order to demon-

strate the approximate equivalence of the two methods.

2.3.2 (z, kt)-factorisation approach at LO

Within the new (z, kt)-factorisation framework developed in Section 2.2 the LO

diagram is simply γ∗q∗ → q, illustrated in Fig. 2.1(a), where the incoming quark has

momentum k = x p − β q′ + k⊥. The partonic cross section contained in (2.23) is

dσ̂γ∗q∗

T,L (x, z, k2
t , µ

2) = dΦγ∗q∗ |Mγ∗q∗

T,L |2 / F γ∗q∗, (2.85)

where F γ∗q∗ = 4x p · q = 2x Q2/xB. Labelling the current jet by

P = k + q = (x − xB) p + (1 − β) q′ + k⊥, (2.86)

where x ≥ xB, the 1-body phase space is

dΦγ∗q∗ = (2π)4δ(4) (k + q − P )
d4P

(2π)3
δ(P 2) = 2π δ( P 2 )

= 2π
xB

Q2

∑

i=±

1

1 − xBβ/x
δ( x − xi ),

(2.87)
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γ∗

q

γ∗

q

k k
P

µ ν

Figure 2.9: Cut diagram contributing at LO in the (z, kt)-factorisation approach.

where x± is given by (2.62) with r ≡ k2
t /Q

2. Again, the condition x ≥ xB means

that only the x = x+ solution contributes. The rapidity of the current jet in the

Breit frame is

ηBreit
P =

1

2
ln

P+

P−
=

1

2
ln

x/xB − 1

1 − β
. (2.88)

The squared matrix element, given by the cut diagram of Fig. 2.9, is

|Mγ∗q∗

T,L |2 =
1

2
e2e2

q Tr [/k γν (/k + /q) γµ ] εµ(q, λ) ε∗ν(q, λ), (2.89)

where λ is either T or L. We use the same formulae, (2.74) and (2.77), to sum over

the photon polarisations as before.

Note that our approach is not gauge invariant since we do not include the com-

plete set of cut diagrams shown in Fig. 2.8. Rather, we only keep the leading

dk2
t /k

2
t term coming from Fig. 2.8 (a) and (c). We rely on using a physical gluon

gauge where the neglected diagrams are suppressed. We represent this approach by

Fig. 2.9, where the incoming quark is off-shell with virtuality −k2
t /(1 − z). Strictly

speaking, the Ward identity (2.76) does not apply to Fig. 2.9. To show this we

define the trace Tr[. . .] of (2.89) to be Mµν . Then, with k = x p,

qµMµν = 4Q2

(

x

xB

− 1

)

6= 0, (2.90)

unless x = xB which is not true for non-zero kt due to the relation (2.62).

For example, the qµ term of the longitudinal photon polarisation vector (2.75)

gives rise to large cancellations between the contributions from Fig. 2.8 (a) and (b)

to ensure that the Ward identity is satisfied. When the diagram of Fig. 2.8(b) is

neglected, as in Fig. 2.9, the qµ term in εµ(q, L) gives a much too large σL. Therefore,

we should not include the qµ term in εµ(q, L); this is equivalent to an appropriate

choice for the photon gauge.

According to the prescription given in Section 2.2 we should only keep the leading
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dk2
t /k

2
t term in the squared matrix element and so terms explicitly of O(k2

t ) should

be neglected when calculating |Mγ∗q∗

T,L |2. This amounts to the substitution k = x p

in the trace (2.89), leading to

|Mγ∗q∗

T |2 = 4παem e2
q Q2 x

xB

, |Mγ∗q
L |2 = 0. (2.91)

The partonic cross sections are then

σ̂γ∗q∗

T (x, z, k2
t , µ

2) =
4π2αem

Q2

xB

1 − xBβ/x
δ(x − x+)e2

q, σ̂γ∗q∗

L (x, z, k2
t , µ

2) = 0.

(2.92)

Inserting into (2.23) we obtain the hadronic cross sections

σγ∗p
T =

4π2αem

Q2

∫ 1

x

dz

∫ ∞

0

dk2
t

k2
t

xB/x

1 − xBβ/x

∑

q

e2
qfq(x, z, k2

t , µ
2), σγ∗p

L = 0,

(2.93)

with x = x+. Again, it is an interesting check to take the collinear limit, kt → 0,

so that we insert Θ(µ − kt) and take µ = Q. Then, x → xB, β → 0, and by the

normalisation condition (2.19) we recover the parton model prediction for the proton

structure function F2 = FT + FL:

F2(xB, Q2) =
Q2

4π2αem
(σγ∗p

T + σγ∗p
L ) =

∑

q

e2
q xB q(xB, Q2). (2.94)

Alternatively, taking the limit z → 0 of x and β in (2.93), then using the normali-

sation (2.18), gives

F2(xB, µ2) =

∫ ∞

0

dk2
t

k2
t

xB

x

∑

q

e2
qfq(x, k2

t , µ
2), (2.95)

with x = xB(1 + k2
t /Q

2).

2.3.3 Towards a NLO (z, kt)-factorisation approach

It is beyond the scope of this work to perform a full NLO calculation within the

framework of (z, kt)-factorisation. Rather, at this exploratory stage, we aim to

produce a simplified description using the LO DUPDFs and computing only the

O(αS) diagrams expected to be dominant. The major loop corrections are already

accounted for by the Sudakov form factor (2.2). The diagram where a gluon is

radiated from the final quark line is strongly suppressed in a physical gauge. This

leaves the cut diagrams of Fig. 2.10 as the only contributions which should be
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(a) γ∗

q

γ∗

q

k k

k′ k′

j1

j2

µ ν

ρ σ

(b) γ∗

q

γ∗

q

k k

k′ k′ + q − k

j1

j2

µ ν

ρ σ

(c) γ∗

q

γ∗

q

k k

k′ k′

j1

j2

µ ν

ρ σ

Figure 2.10: Cut diagrams contributing at ‘NLO’ in the (z, kt)-factorisation ap-
proach.

included. It is debatable whether or not the crossed box diagram of Fig. 2.10(b)

should be included. We choose to include it, although it gives only a relatively small

contribution to the cross section.

All diagrams in Fig. 2.10 have the same kinematics. An initial parton, with

momentum k = x p−β q′+k⊥, splits to a quark with momentum k′ = x′ p−β ′ q′+k′
⊥,

which goes on to interact with the photon. The outgoing partons have momentum

j1 = k′ + q and j2 = k − k′ where xB ≤ x′ ≤ x ≤ 1 and 0 ≤ β ≤ β ′ ≤ 1. Note

that the diagrams of Fig. 2.10 naturally include the LO contribution of Fig. 2.9 in

the limit that kt � k′
t. Therefore, the LO contribution does not have to be added

in explicitly.

The ktjet package [74], together with the clhep package [75], were used to

cluster the three outgoing partons into jets. The jet algorithm was run in the

inclusive mode, in the ∆R scheme and ET recombination scheme, in order to mirror

the analyses of the experimental data considered in Section 2.4. It is necessary to

pass the algorithm the complete 4-vectors of the outgoing partons with momenta

j1 = (x′ − xB) p + (1 − β ′) q′ + k′
⊥ =













Q
2

[x′/xB − β ′]

k′
t cos(φk′x)

k′
t sin(φk′x)

Q
2

[x′/xB − 2 + β ′]













, (2.96)
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j2 = (x − x′) p + (β ′ − β) q′ + k⊥ − k′
⊥ =













Q
2

[(x − x′) /xB + β ′ − β]
∣

∣kt − k′

t

∣

∣ cos(φkk′x)
∣

∣kt − k′

t

∣

∣ sin(φkk′x)
Q
2

[(x − x′) /xB − β ′ + β]













, (2.97)

pn =
x

z
(1 − z) p + β q′ − k⊥ =













Q
2

[

x
z
(1 − z) /xB + β

]

−kt cos(φkx)

−kt sin(φkx)
Q
2

[

x
z
(1 − z) /xB − β

]













, (2.98)

where φk′x is the angle between k′

t
and the x axis, φkk′x is the angle between (kt−k′

t
)

and the x axis, and φkx is the angle between kt and the x axis. Together with φkk′,

the angle between kt and k′

t
, only two of these angles are independent. These are

chosen to be φkk′ and φkx, which are averaged over by introducing two additional

integrations into (2.58):
∫ 2π

0

dφkk′

2π

∫ 2π

0

dφkx

2π
. (2.99)

The other two angles are given by

φk′x = φkx + φkk′, φkk′x = φkx + cos−1

(

kt − k′
t cos(φkk′)

∣

∣kt − k′

t

∣

∣

)

. (2.100)

We find that the 2-body phase space divided by the flux factor is given by

dΦγ∗a

F γ∗a
=

dk′
t
2

16πx

(

xB

Q2

)2
∑

x′=x′
±

|x − xBβ − (1 − β)x′ − (x − xB)β ′|−1
, (2.101)

where β ′ = β + (xBR)/(x − x′), and

x′
± =

1

2(1 − β)

{

x(1 − β) + xB(1 − β − R) + xBr′

±
√

[xB(1 − β + R) − x(1 − β)]2 + xBr′ [xBr′ − 2 (x(1 − β) − xB(1 − β − R))]

}

,

with r′ ≡ k′
t
2/Q2 and R ≡ |kt − k′

t
|2/Q2.

The cut diagrams representing the squared matrix elements are shown in Fig. 2.10.

Again, we write

|Mγ∗a
T,L|

2
=

1

2
e2 g2 Mµν εµ(q, λ)ε∗ν(q, λ), (2.102)

where λ is either T or L and the initial factor of 1/2 is to average over the helicity

of the incoming parton. We take e2 = 4πα(Q2) and g2 = 4παS(µ2
R), with µR =
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max(kt, k
′
t). We have

(a) Mµν =

(

∑

q

e2
q

)

TR
1

k′4
Tr [/k′γρ/j2γ

σ/k′γν/j1γ
µ] dρσ(k, q′), (2.103)

(b) Mµν =

(

∑

q

e2
q

)

TR
1

k′2

1

(k′ + q − k)2
Tr [/k′γρ/j2γ

ν(/k′ + /q − /k)γσ/j1γ
µ] dρσ(k, q′),

(2.104)

(c) Mµν = e2
qCF

1

k′4
Tr [/k′γρ/kγσ/k′γν/j1γ

µ] dρσ(j2, q
′). (2.105)

In order to keep only the leading dk2
t /k

2
t term, we make the replacement k → x p in

the numerator of these expressions, but not in the virtualities in the denominator.

Inserting the partonic cross sections into (2.23) we finally obtain

σγ∗p
T,L =

∑

q

4π2αem e2
q

Q2

(

xB

Q2

)
∫ 1

0

dx

∫ 1

x

dz

∫ ∞

0

dk2
t

k2
t

∫ ∞

0

dk′
t
2 xB

x

αS(µ2
R)

2π

×
∑

x′=x′
±

|x − xBβ − (1 − β)x′ − (x − xB)β ′|−1

×
{

TR fg(x, z, k2
t , µ

2)
[

Ca
T,L + Cb

T,L

]

+ CF fq(x, z, k2
t , µ

2) Cc
T,L

}

, (2.106)

where the coefficients are

Ca
T =

(1 − 2 β ′ (1 − β ′)) x (x′ − xB) + (β ′ (xB − 2 x′) + x′) ((1 − β ′) xB + (2 β ′ − 1) x′)

x ((1 − β ′) xB − x′)2 ,

Ca
L =

4 (1 − β ′) β ′ xB (x′ − xB + β ′ (x + xB − 2 x′))

x ((1 − β ′) xB − x′)2 ,

Cb
T =

(1 − β ′) (x′ − xB) ((1 − 2 β ′) x + 2 (β ′ (2 x′ − xB) − x′))

x (x′ − (1 − β ′) xB) ((1 + β − β ′) (x − x′) + (1 + β − β ′ + R) xB)
,

Cb
L =

8 (1 − β ′)2 β ′ xB (x′ − xB)

x (x′ − (1 − β ′) xB) ((1 + β − β ′) (x − x′) + (1 + β − β ′ + R) xB)
,

Cc
T =

(1 − 2 β ′ (1 − β ′)) x (x′ − xB) + x′
(

(2 β ′ − 1) xB +
(

1 − 2 β ′2
)

x′
)

(x − x′) ((1 − β ′) xB − x′)2 ,

Cc
L =

4 (1 − β ′) β ′2 xB

((1 − β ′) xB − x′)2 .

(2.107)

Inspection of the coefficient Cc
T reveals a pole at z′ ≡ x′/x = 1, corresponding to soft

gluon emission. We can regulate this singularity by appealing to angular ordering.
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(a) γ∗

q

k′′

k′

k

(b) γ∗

q

k′′

k′

k

(c) γ∗

q

k′′

k′

k

(d) γ∗

q

k′′

k′

k

Figure 2.11: Feynman diagrams contributing at ‘NNLO’ in the (z, kt)-factorisation
approach.

The rapidity of the gluon, with momentum j2, should be greater than the rapidity

of the quark, with momentum j1:

ηBreit
j2 > ηBreit

j1 ⇐⇒ z′ <
µ′

µ′ +
∣

∣kt − k′

t

∣

∣

, with µ′ ≡ Q
x′

xB

√

1 − β ′

x′/xB − 1
.

(2.108)

This condition applies only to the diagram where a quark radiates a gluon, Fig. 2.10(c),

and not to the diagrams where a gluon radiates a quark, Fig. 2.10 (a) and (b).

2.3.4 An estimate of the NNLO contribution

The NNLO diagrams have not yet been calculated in the collinear approximation

(NNLO QCD). As we will explain in Section 2.4, the ‘NLO’ calculation of Sec-

tion 2.3.3 gives reasonable agreement with conventional NLO QCD. It is possible

that a simplified ‘NNLO’ (z, kt)-factorisation calculation may provide an estimate

of whether the NNLO QCD corrections are likely to be important, especially at low

ET and low Q2 in the forward region, where there is a discrepancy between NLO

QCD and the data.

The four contributing diagrams, all of which have the same kinematics (phase

space), are shown in Fig. 2.11. Diagrams (a) and (b) are the doubly-unintegrated

quark contribution, while diagrams (c) and (d) are the doubly-unintegrated gluon

contribution. Encouraged by the fact that the crossed quark box of Fig. 2.10(b)

gives only a small contribution, we may neglect the interference cut graphs arising



2.4 Description of HERA inclusive jet production data 54

from Fig. 2.11 as a first approximation, leaving only four squared matrix elements

to be calculated.

This simplified approach provides an approximation of QCD, in which only

ladder-type diagrams remain. The soft gluon singularities are regulated by angular

ordering. There are no infrared singularities remaining. We can add an arbitrary

number of rungs to the ladder and the answer will be finite. However, with more

rungs, the number of neglected interference terms grows; it is likely that the approx-

imate treatment of these terms by imposing angular-ordering constraints will spoil

the accuracy of the method if too many rungs are added.

2.4 Description of HERA inclusive jet production

data

Data are available for inclusive jet production in DIS measured at the HERA collider.

We may therefore check how well the simpler (z, kt)-factorisation approach is able to

reproduce the conventional collinear factorisation approach, and at the same time

see how well these calculations describe the data.

Recall from Section 2.3 that at LO the (z, kt)-factorisation approach is based

on the simple γ∗q∗ → q subprocess driven by the doubly-unintegrated quark dis-

tribution, fq(x, z, k2
t , µ

2), retaining the full kinematics. On the other hand, in the

LO QCD description the subprocesses are γ∗g → qq̄ and γ∗q → gq evaluated with

collinear kinematics and conventional integrated PDFs, g(x, Q2) and q(x, Q2).

A computer program was written to calculate the conventional LO QCD pre-

diction and the LO and ‘NLO’ predictions of the new (z, kt)-factorisation approach.

The GNU Scientific Library [76] implementation of the vegas algorithm [77] was

used to perform multidimensional Monte Carlo integration.

2.4.1 Comparison with ZEUS data at high Q2

We now compare our predictions to the experimental data obtained by the ZEUS

Collaboration [78]. This data was taken during 1996 and 1997, when HERA collided

protons of energy Ep = 820 GeV with positrons of energy Ee = 27.5 GeV at a

CM energy of
√

s =
√

4EpEe ' 300 GeV. Rather than make cuts on the variable

y = Q2/(xBs), ZEUS make cuts on cos γ, one of the angles used in reconstructing

the kinematical variables using the double-angle method, where

cos γ =
xB(1 − y)Ep − yEe

xB(1 − y)Ep + yEe

. (2.109)
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Figure 2.12: Comparison with ZEUS inclusive jet production data [78] at high Q2.
The feint and bold lines correspond, respectively, to the predictions of the con-
ventional QCD approach and the (z, kt)-factorisation approach based on DUPDFs.

In the parton model, γ∗q → q, the angle γ corresponds to the direction of the

scattered quark. In (2.58) we therefore set ymin = 0 and ymax = 1 and demand

instead that cos γ satisfies the ZEUS experimental cuts, −0.7 < cos γ < 0.5.

In Fig. 2.12 we show the rapidity distribution, dσ/dηBreit, integrated over Q2

from 125 to 105 GeV2 and over ET from 8 to 100 GeV. The parton-to-hadron cor-

rection factors given in Table 3 of the ZEUS paper [78] have been applied to the

theory predictions. For the results presented, we used MRST2001 LO PDFs [66] as

input. The NLO QCD predictions have been taken from the plot in Fig. 3b) of [78];

these were obtained with the disent program [70] using MRST99 PDFs [67], a

renormalisation scale of ET , and a factorisation scale of Q. The statistical, system-

atic and jet-energy-scale uncertainties have been added in quadrature to estimate

the total experimental uncertainty. All the theory predictions give a reasonably

good description of the data. The NLO predictions generally give a slightly bet-

ter description than the LO predictions. For the (z, kt)-factorisation approach, the

‘NLO’ corrections are only significant in the forward region.
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Note from Fig. 2.12 that the LO (z, kt)-factorisation predictions are slightly larger

than the data in the current jet (negative rapidity) region. One possible explanation

for this is provided by a colour coherence phenomenon known as the ‘drag effect’

(see, for example, [11]), a consequence of which is that the current jet is pulled

towards the proton direction. A constant 1 GeV shift in the z component of the

current jet momentum is found to shift the rapidity distribution to obtain slightly

better agreement with the experimental data.

To test the assertion that the angular-ordering constraint mimics the major ne-

glected terms in the LO QCD calculation of Section 2.3.1, we can replace Pqg(z) by

Pqg(z) (Ca + Cb) and Pqq(z) by Pqq(z) Cc in the real part of the doubly-unintegrated

quark (2.21), where the coefficients C were given in (2.80). The inclusive jet cross

section calculated in this manner, with separate coefficients for the T and L contri-

butions, is found to be almost unchanged, as seen in Fig. 2.13, providing evidence

that the ‘beyond LLA’ terms in the conventional LO QCD calculation have much

the same effect as an explicit angular-ordering constraint.

In order to verify that the extra z convolution of (z, kt)-factorisation with respect

to kt-factorisation is important, we also repeated the calculation taking the limit

z → 0 in the partonic cross section. The parton emitted in the last evolution step

then goes in the proton direction and is not counted in the inclusive jet cross section.

In general, the predictions are much worse, even in the current jet region, providing

evidence that the extra z convolution of our method is important.

2.4.2 Comparison with H1 data at low Q2

The H1 Collaboration have measured the inclusive jet cross section in DIS at high

Q2 [79] and at low Q2 [80]. Here, we focus on the latter, where Q2 = 5 to 100 GeV2.

In this region, the NLO QCD corrections to LO QCD are larger than at high Q2,

and the advantages of our approach become more apparent. Again, this data was

taken during 1996 and 1997.

The H1 Collaboration use the electron method to reconstruct the kinematical

variables, so cuts are imposed directly on the variable y, namely 0.2 < y < 0.6. We

therefore set ymin = 0.2 and ymax = 0.6 in (2.58). Also, H1 present their data in

rapidity bins in the lab frame rather than the Breit frame, so we need to be able

to calculate the rapidity in the lab frame.

In the Breit frame, we write the momenta of the incoming and outgoing positron

as e = ae p+be q′+e⊥ and e′ = e−q respectively. The on-shell conditions e2 = 0 = e′2

imply that e2
t = aebeQ

2/xB and e ·q = −Q2/2. In the lab frame, we write the initial

proton and positron momenta as plab = (Ep, 0, 0, Ep) and elab = (Ee, 0, 0,−Ee),
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t /k
2
t term. Without an explicit angular-ordering constraint, as in LO QCD, the

extra terms have a large effect, as seen by the difference between the dotted and
solid feint lines. With an explicit angular-ordering constraint, as in LO (z, kt)-
factorisation, the extra terms have little effect, as seen by the difference between the
solid and dotted bold lines.
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where Ep = 820 GeV, Ee = 27.5 GeV, and plab · elab = 2EpEe = p · e. Taking dot

products of e with p and q′ determines be and ae respectively:

be = 4EpEe
xB

Q2
, ae = xB(be − 1), (2.110)

so

e2
t = 4EpEexB

(

4EpEe
xB

Q2
− 1

)

. (2.111)

The momentum of an outgoing parton can be written j = aj p + bj q′ + j⊥ and

jlab = alab

j plab + blab

j elab + jlab

⊥ in the Breit and lab frames respectively. We have

e · j = (aebj + beaj) p · q′ + e⊥ · j⊥
= [be(aj + bjxB) − xBbj] p · q′ − et · jt

=

[

4EpEe
xB

Q2
(aj + xBbj) − xBbj

]

p · q′ − etjt cos φej,

(2.112)

where φej is the angle between et and jt. Taking dot products of jlab with plab and

elab determines alab

j and blab

j in terms of e · j and p · j:

alab

j =
e · j
p · e, blab

j =
p · j
p · e = bj

p · q′
p · e . (2.113)

The rapidity in the lab frame is then

ηlab

j =
1

2
ln

(

alab

j

blab

j

Ep

Ee

)

=
1

2
ln

(

e · j
bj p · q′

Ep

Ee

)

=
1

2
ln

[(

4EpEe
xB

Q2

(

aj

bj

+ xB

)

− xB − 2xB

bjQ2
etjt cos φej

)

Ep

Ee

]

.

(2.114)

It is necessary to average the cross section over the azimuthal angle φej between

the initial positron and the outgoing jet in the transverse plane. For the ‘NLO’

(z, kt)-factorisation calculation, the jet momenta are not necessarily the same as the

momenta of the outgoing partons. It is necessary to pass the momenta through a

jet algorithm. Rather than use (2.114) to determine ηlab, which would require an

additional azimuthal averaging, it is simpler to explicitly transform the momenta

from the Breit to the lab frame, then to calculate the rapidities of the resultant

momenta. This is done by first boosting along the z axis to transform the momenta

from the Breit frame to the γ∗p CM frame. The momenta are then transformed

from the γ∗p CM frame to the lab frame using the method described in Section 6.2

of [62], which involves boosts along the z and x axes followed by rotations about

the y and z axes. The final rotation about the z-axis does not change the rapidity
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Figure 2.14: Comparison with H1 inclusive jet production data [80] at low Q2. The
predictions of the (z, kt)-factorisation approach based on DUPDFs (which is much
simpler to implement) are in good agreement with the conventional QCD approach.
In some bins the predictions of the latter approach are hidden beneath the bold lines
of the (z, kt)-factorisation approach, at the respective order.

or the transverse energy and may be omitted. It was checked numerically that this

method is equivalent to the method of (2.114).

In Fig. 2.14 we show dσ/dET integrated over Q2 between 5 and 100 GeV2 in

three rapidity intervals. For the results presented, we used the MRST2001 LO

PDFs [66] as input. The NLO QCD predictions have been taken from the plot

in Fig. 1 of the H1 paper [80]; these were obtained with the DISENT program [70]

using CTEQ5M PDFs [81], a renormalisation scale of ET and a factorisation scale

of Q. The hadronisation correction factors used in [80] have been applied to all the

theory predictions. The statistical and systematic uncertainties have been added in

quadrature to estimate the total experimental uncertainty.

The LO (z, kt)-factorisation calculation is in excellent agreement with conven-

tional LO QCD, but neither describe the data well, especially in the forward ra-

pidity region. The ‘NLO’ (z, kt)-factorisation calculation is in very good agreement

with conventional NLO QCD, although the agreement gets slightly worse as ET
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increases.4 Deviations of the data from NLO QCD are seen only at small ET in

the forward region. Here, the NLO corrections are quite large and it is likely that

NNLO corrections or resolved virtual photon contributions are important in this

region. Again, taking the limit z → 0 makes the (z, kt)-factorisation predictions

much worse, showing that it is important to keep the precise kinematics.

2.5 Summary

In this chapter, we have presented a method for determining UPDFs, fa(x, k2
t , µ

2),

from the conventional (integrated) PDFs, by considering the last DGLAP evolution

step separately, and imposing angular-ordering constraints on gluon emission. To

include the precise kinematics in the hard subprocess initiated by the final parton

in the evolution ladder, it is necessary to consider DUPDFs, fa(x, z, k2
t , µ

2). We

gave a prescription, called (z, kt)-factorisation, for the computation of cross sections

using these distributions. This prescription is a natural generalisation of the kt-

factorisation approach.

We used (z, kt)-factorisation to estimate the cross section for inclusive jet pro-

duction at HERA at lowest order. Using the same LO DUPDFs, we then carried

out a ‘NLO’ calculation which included the dominant Feynman diagrams with the

soft gluon singularities being regulated by angular ordering.

We showed that at O(α0
S) the predictions of the approach based on DUPDFs,

with exact kinematics, are close to the conventional LO QCD calculation at O(αS).

The relative simplicity of the former approach is shown schematically in Fig. 2.1.

Similarly, at O(αS) the predictions of the approach based on DUPDFs are close to

the conventional NLO QCD calculation at O(α2
S).

It was seen that the NLO corrections are large in the forward region at low ET and

low Q2 where the agreement with the data is poor. It is possible that the simplified

(z, kt)-factorisation approach might help to evaluate the rôle of the conventional

NNLO QCD calculation. Alternatively, the resolved photon contribution is known

to be important in the regime where ET is much greater than Q. It would be

better to calculate the resolved photon contribution in terms of the DUPDFs of the

photon.5

By reorganising the perturbative expansion in αS to keep only the most impor-

4In two bins the ‘NLO’ (z, kt)-factorisation predictions are significantly higher than the NLO
QCD predictions. This is due to the jet algorithm applied, which increases the ‘NLO’ (z, kt)-
factorisation predictions by more than a factor of two in these two bins only, compared to the
result when no jet algorithm is applied.

5In Ref. [82], for example, the KMR prescription was applied to obtain the unintegrated gluon
distribution of the photon.
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tant terms, our method provides a simple but effective way of estimating exclusive

(and inclusive) observables.

The logical next step is to show that DUPDFs can be applied to pp and pp̄

collisions. The simplest calculation is the transverse momentum distributions of

produced W and Z bosons. We will carry out this calculation in the next chapter.



Chapter 3

Unintegrated parton distributions

and electroweak boson production

at hadron colliders

At present, it is not straightforward to describe the transverse momentum (PT )

distributions of electroweak bosons produced in hadron-hadron collisions. In the

usual collinear approximation, the transverse momentum of the incoming partons is

neglected and so, for the Born level subprocesses q1 q2 → V (where V = γ∗, W, Z)

or g1 g2 → H, the transverse momentum of the final electroweak boson is zero.

Therefore, initial-state QCD radiation is necessary to generate the PT distributions.

Both the LO and NLO differential cross sections diverge for PT � MV,H , with terms

proportional to ln(MV,H/PT ) appearing due to soft and collinear gluon emission,

requiring resummation to achieve a finite PT distribution.

Traditional calculations combine fixed-order perturbation theory at high PT with

either analytic resummation or numerical parton shower formalisms at low PT , with

some matching criterion to decide when to switch between the two. In addition, a

parameterisation is needed to account for non-perturbative effects at the lowest PT

values. Analytic resummation can be performed either in the transverse momentum

space (see, for example, [83]) or in the Fourier conjugate impact parameter space

(see, for example, [84]).

An alternate description is provided in terms of UPDFs, where each incoming

parton carries its own transverse momentum kt, so that the subprocesses q1 q2 → V

and g1 g2 → H already generate the LO PT distributions in the kt-factorisation

approach. It has been shown in [85, 86] that UPDFs obtained from an approxi-

mate solution of the CCFM evolution equation embody the conventional soft gluon

resummation formulae.

62
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The UPDFs that we use are obtained from the familiar DGLAP-evolved PDFs

determined from a global parton analysis of deep-inelastic and related hard-scattering

data. The transverse momentum of the parton is generated entirely in the last evo-

lution step [60–63]. Angular-ordering constraints are imposed which regulate the

singularities arising from soft gluon emission, while the virtual terms in the DGLAP

equation are resummed into Sudakov form factors. In Chapter 2 it was shown that it

is necessary to extend the ‘last-step’ formalism of [61] to consider DUPDFs in order

to preserve the exact kinematics. It was demonstrated that the main features of

conventional higher order calculations can be accounted for within a much simpler

theoretical framework, named (z, kt)-factorisation.1

Strictly speaking, the integrated PDFs used as input to the last evolution step

should themselves be determined from a new global fit to data using the (z, kt)-

factorisation approach. For the present work, we take the input PDFs from a global

fit to data using the conventional collinear approximation [66]. This treatment

is adequate for these initial investigations. However, we expect it to lower our

predictions for quark-initiated processes by ∼10% compared to the case where the

input PDFs are determined from a global fit using the (z, kt)-factorisation approach.

We will illustrate this point in Section 3.4 by comparing predictions for the proton

structure function F2 in the collinear approximation and in the (z, kt)-factorisation

formalism.

The ‘last-step’ prescription has some features in common with the initial-state

parton shower algorithms implemented in Monte Carlo event generators (for a recent

review, see [87]) such as the DGLAP-based herwig [36] and pythia [37] programs

and the CCFM-based cascade [56] program. The main advantage of our approach

is that we use simple analytic formulae which implement the crucial physics in a

transparent way, without the additional details or tuning which are frequently in-

troduced in Monte Carlo programs. The PT distributions are generated entirely

from known and universal DUPDFs. For example, fits to Z production data at the

Tevatron using parton showers favour a large intrinsic partonic transverse momen-

tum 〈kt〉 ≈ 2 GeV, while confinement of partons inside the proton would imply a

〈kt〉 ≈ 0.3 GeV [88–90].

The DGLAP-based parton showers used in [36, 37] are theoretically justified

only in the limit of strongly-ordered transverse momenta, since only the collinear

divergent part of the squared matrix element is kept in each parton branching.

Similarly, the CCFM-based parton shower used in [56] is strictly justified only in

1The idea is an extension of the original DDT formula [21]; however, in comparison with [21]
we go beyond the double leading logarithmic approximation (DLLA) and account for the precise
kinematics of the two incoming partons, as well as the angular ordering of emitted gluons.
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the limit of strongly-ordered angles, which reduces to the limit of strongly-ordered

transverse momenta as long as x is not too small. In this limit, the transverse

momentum generated in all evolution steps prior to the last is negligible. Therefore,

neglecting transverse momentum in every evolution step prior to the last should be

a good approximation to the parton shower algorithms in which finite transverse

momentum is generated at every evolution step.

The goal of the present chapter is to demonstrate that the PT distributions of

electroweak bosons can be successfully generated by DUPDFs. We do not aim to

produce a better description of the data than existing calculations, but rather a sim-

pler analytic description which reproduces the main features. With this approach,

it is easy to see the physical origin of the PT distributions and to identify the most

important Feynman diagrams. Since the DUPDFs are universal—that is, they apply

equally well to all hard hadronic processes—it is important to check them in a new

kinematic domain.

One topical application is the prediction of the cross section for diffractive Higgs

boson production at the LHC [91], which is driven by the unintegrated2 gluon distri-

bution fg(x, k2
t , µ

2), where µ is the hard scale of the subprocess. At the moment, the

only possibility to check the behaviour of UPDFs in the domain kt � µ is to com-

pare predictions with the observed PT distributions of W and Z bosons produced at

the Tevatron. We will show that the doubly-unintegrated quark distributions, gen-

erated directly from the known integrated PDFs under the ‘last-step’ prescription,

satisfactorily describe these data, including the region of interest, PT � MW,Z .

In Section 3.1 we describe the formalism for (z, kt)-factorisation at hadron-hadron

colliders, and in Section 3.2 we apply it to calculate the PT distributions of elec-

troweak bosons at LO. An estimate of the dominant higher-order corrections is made

in Section 3.3 and numerical results are given in Section 3.4.

3.1 (z, kt)-factorisation at hadron-hadron colliders

We now extend the formalism of Chapter 2, which concerned deep-inelastic scatter-

ing, to hadron-hadron collisions. The basic idea is illustrated in Fig. 3.1(a), which

shows only one of the possible configurations. All permutations of quarks and glu-

ons must be included. The arrows show the direction of the labelled momenta. The

blobs represent the familiar integrated PDFs. The transverse momenta of the two

incoming partons to the subprocess, represented by the rectangles labelled σ̂q∗
1

q∗
2 in

Fig. 3.1, are generated by a single parton emission in the last evolution step.

2To be precise, the skewed unintegrated gluon distribution is required. However, in the relevant
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Figure 3.1: Illustration of (z, kt)-factorisation at hadron-hadron colliders. (a) The
transverse momentum of each parton entering the subprocess is generated by a single
parton emission in the last evolution step. (b) The last evolution step is factorised
into fqi

(xi, zi, k
2
i,t, µ

2
i ), where i = 1, 2.
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We use a Sudakov decomposition of the momenta of the two incoming partons,

ki = xi Pi − βi Pj + ki⊥, (3.1)

where (i, j) = (1, 2) or (2, 1). We work in the CM frame of the colliding hadrons and

neglect the hadron masses so that the squared CM energy is s ≡ (P1+P2)
2 ' 2 P1·P2.

Then,

P1 = (P+
1 , P−

1 , P1⊥) =
√

s (1, 0, 0), P2 =
√

s (0, 1, 0) ki⊥ = (0, 0, ki,t).

(3.2)

The penultimate propagators in the evolution ladder have momenta li = (xi/zi) Pi,

so that the partons emitted in the last step have momenta

pi = li − ki =
xi

zi
(1 − zi) Pi + βi Pj − ki⊥. (3.3)

The on-shell condition for the emitted partons, p2
i = 0, determines

βi =
zi ri

xi (1 − zi)
, (3.4)

where ri ≡ k2
i,t/s, so that the two incoming partons have virtuality k2

i = −k2
i,t/(1 −

zi). The total momentum going into the subprocess labelled σ̂q∗
1

q∗
2 in Fig. 3.1 is

q ≡ k1 + k2 = (x1 − β2) P1 + (x2 − β1) P2 + q⊥, (3.5)

where q⊥ = k1⊥ + k2⊥. The kinematic variables obey the ordering

0 < βj < xi < zi < 1. (3.6)

Analogous to (1.35), the collinear factorisation formula for hadron-hadron colli-

sions is

σ =
∑

a1 , a2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2
a1(x1, µ

2) a2(x2, µ
2) σ̂a1 a2 , (3.7)

where µ is the factorisation scale and the partonic cross sections σ̂a1 a2 are calculated

with on-shell incoming partons with momenta ki = xi Pi. As in Chapter 2, we

relax the DGLAP approximation of strongly-ordered transverse momenta in the

last evolution step only.

If pi are gluon momenta, then we must additionally impose angular-ordering3

small-x domain the skewed effect can be included by the Shuvaev prescription [92–94].
3We remind the reader that ‘angular ordering’ is a misnomer. It is rapidity ordering which



3.1 (z, kt)-factorisation at hadron-hadron colliders 67

constraints due to colour coherence,

ξ1 < Ξ < ξ2, (3.8)

where ξi ≡ p−i /p+
i and Ξ ≡ q−/q+. That is, the subprocess separates gluons emitted

from each of the two hadrons. This condition leads to a suppression of soft gluon

emission,

zi <
µi

µi + ki,t

, (3.9)

with µ1 ≡ x1

√
s Ξ and µ2 ≡ x2

√

s / Ξ.

The integrated PDFs, ai(xi, µ
2), of (3.7) are replaced by DUPDFs, fai

(xi, zi, k
2
i,t, µ

2
i ),

requiring additional convolutions over the splitting fractions zi and the transverse

momenta k2
i,t, giving the (z, kt)-factorisation formula

σ =
∑

a1, a2

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

∫ 1

x1

dz1

∫ 1

x2

dz2

∫ ∞

0

dk2
1,t

k2
1,t

∫ ∞

0

dk2
2,t

k2
2,t

× fa1
(x1, z1, k

2
1,t, µ

2
1) fa2

(x2, z2, k
2
2,t, µ

2
2) σ̂a∗

1
a∗
2 . (3.10)

Here, the ‘∗’ indicates that the incoming partons, with momenta ki given by (3.1),

are off-shell with virtuality k2
i = −k2

i,t/(1 − zi). This formula (3.10) is represented

schematically in Fig. 3.1(b) for the case where the off-shell partons a∗
1 and a∗

2 are

both quarks. The partonic cross sections in (3.10) are given by

dσ̂a∗
1

a∗
2 = dΦa∗

1
a∗
2 |Ma∗

1
a∗
2 |2 / F a∗

1
a∗
2 , (3.11)

where the flux factor F a∗
1

a∗
2 = 2 x1 x2 s. The last evolution steps in Fig. 3.1(a) fac-

torise from the rest of the diagram, to give the LO DGLAP splitting kernels, in

the leading logarithmic approximation (LLA) where only the dk2
i,t/k

2
i,t term is kept.

Therefore, |Ma∗
1

a∗
2 |2 is calculated with the replacement ki → xi Pi in the numerator

in order to keep only this collinear divergent term. However, any propagator vir-

tualities appearing in the denominator of |Ma∗
1

a∗
2 |2 may be evaluated with the full

kinematics, as may the phase space element dΦa∗
1

a∗
2 .

For this approach to work, it is vital that the dk2
i,t/k

2
i,t term is obtained only from

ladder-type diagrams like that in Fig. 3.1(a), and not from interference (non-ladder)

diagrams. This is true if we use a physical gauge for the gluon, where only the two

transverse polarisations propagate. For hadron-hadron collisions, the natural choice

should be applied.
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is the planar gauge where the sum over gluon polarisations is performed using

dµν(k, n) = −gµν +
kµ nν + nµ kν

k · n , (3.12)

where we take the gauge-fixing vector n = x1 P1 + x2 P2. Note that n2 = x1 x2 s 6=
0, unlike the light-cone gauge of (1.26). Such a gauge choice ensures that the

dk2
i,t/k

2
i,t term is obtained from ladder-type diagrams on both sides of the subprocess

represented by the rectangle in Fig. 3.1(a).

A related requirement is that terms beyond the leading dk2
i,t/k

2
i,t term, coming

from non-ladder diagrams, for example, give a negligible contribution. Such terms

are proportional to the Sudakov variable βi (3.4) and hence vanish in the limit that

zi → 0 or ki,t → 0. Away from these limits it is not obvious that these ‘beyond

LLA’ terms will be small, a necessary condition for the factorisation to hold. For the

case of inclusive jet production in DIS and working in an axial gluon gauge, it was

observed in Chapter 2 that the main effect of the extra terms was to suppress soft

gluon emission. When the angular-ordering constraint (3.9) was applied, the extra

terms were found to make a negligible difference to the cross section, see Fig. 2.13.

For hadron-hadron collisions, although the number of possible non-ladder diagrams

is larger, it is therefore reasonable to expect that the extra terms will have little

numerical effect, at least for ki,t less than the hard scale of the subprocess. A similar

argument is made to justify the approximation made in the DGLAP-based parton

showers used in Monte Carlo simulations, where only the collinear divergent part of

the squared matrix element for each parton branching is kept and angular ordering

is imposed in all evolution steps to account for some of the missing terms. Here, we

are more conservative and apply this approximation to the last evolution step only.

The DUPDFs in (3.10) are only defined for ki,t > µ0, where µ0 ∼ 1 GeV is the

minimum scale for which DGLAP evolution of the integrated PDFs is valid. The

approximation of the ki,t < µ0 contribution made in Chapter 2 was to take the limit

ki,t → 0 in the kinematic variables (and in σ̂a∗
1

a∗
2), then to make the replacement

∫ 1

xi

dzi

∫ µ2

0

0

dk2
i,t

k2
i,t

fai
(xi, zi, k

2
i,t, µ

2
i ) = ai(xi, µ

2
0) Tai

(µ2
0, µ

2
i ), (3.13)

where Tai
(µ2

0, µ
2
i ) are the Sudakov form factors (2.13) or (2.15). This replacement

ensures that the normalisation conditions (2.19) are satisfied. A better approxima-

tion, which retains the ki,t dependence, is to take the limit zi → 0 in the kinematic
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variables, then to make the replacement

∫ 1

xi

dzi fai
(xi, zi, k

2
i,t, µ

2
i ) ≡ fai

(xi, k
2
i,t, µ

2
i ) =

k2
i,t

µ2
0

ai(xi, µ
2
0) Tai

(µ2
0, µ

2
i ), (3.14)

where we have used (2.7). The requirement that fai
(xi, k

2
i,t, µ

2
i ) ∼ k2

i,t as k2
i,t → 0 is

a consequence of gauge invariance [23, 95].

A more complicated extrapolation of the DUPDFs for kt < µ0, which allows

both the kt and z dependence to be retained in the kinematic variables, is to assume

the polynomial form

fa(x, z, k2
t , µ

2) =
k2

t

µ2
0

[

A(x, z, µ2) +
k2

t

µ2
0

B(x, z, µ2)

]

. (3.15)

The two coefficients A and B can be determined to ensure continuity at kt = µ0 and

the correct normalisation (3.13), leading to

A(x, z, µ2) = −fa(x, z, µ2
0, µ

2) + 2 a(x, µ2
0) Ta(µ

2
0, µ

2) / (1 − x), (3.16)

B(x, z, µ2) = 2 fa(x, z, µ2
0, µ

2) − 2 a(x, µ2
0) Ta(µ

2
0, µ

2) / (1 − x). (3.17)

If (3.15) becomes negative, which is possible for kt � µ0, then fa(x, z, k2
t , µ

2) is

simply set to zero.

This extrapolation of the perturbative formulae accounts for some non-perturbative

‘intrinsic’ kt of the initial partons, which is often parameterised by a Gaussian distri-

bution with 〈kt〉 . µ0. Numerical results are insensitive to the precise form (3.13),

(3.14), or (3.15) used for the kt < µ0 contribution. However, for the rest of this

chapter we will use the form (3.15) which ensures continuity at kt = µ0.

3.2 Application to the PT distributions of elec-

troweak bosons

Perhaps the simplest application of (z, kt)-factorisation at hadron-hadron colliders

is electroweak boson production, where at LO the subprocess is simply q∗1 q∗2 → V ,

illustrated in Fig. 3.2, or g∗
1 g∗

2 → H, illustrated in Fig. 3.3. In the collinear ap-

proximation, these diagrams give the Born level estimate of the total cross section

σ. When each parton carries finite transverse momentum ki,t, the final electroweak

boson has transverse momentum qt = k1,t + k2,t, so we can calculate the PT distri-

bution
dσ

dPT
= σ δ(qt − PT ), (3.18)
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k2

k1

q∗1

q∗2

q = k1 + k2

V = W, Z

Figure 3.2: LO Feynman diagram contributing to the PT distributions of W or Z
bosons in the (z, kt)-factorisation approach.

k2

k1

g∗1

g∗2

q = k1 + k2
H

Figure 3.3: LO Feynman diagram contributing to the PT distribution of SM Higgs
bosons in the (z, kt)-factorisation approach. The triangle represents the effective
ggH vertex in the limit MH � 2mt.
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with σ given by the (z, kt)-factorisation formula (3.10).

The squared matrix element for W production is

|M(q∗1 q∗2 → W )|2 =
1

4NC

(

gW

2
√

2

)2

|Vq1q2
|2 Tr[/k1γ

µ(1 − γ5)/k2γ
ν(1 − γ5)]

(

−gµν +
qµqν

M2
W

)

=

√
2

NC
GF M2

W |Vq1q2
|2 x1 x2 s, (3.19)

where NC = 3 is the number of colours, g2
W = 8M2

W GF/
√

2 is the weak charge

squared, GF is the Fermi coupling constant, and |Vq1q2
|2 is the Cabibbo-Kobayashi-

Maskawa (CKM) matrix element squared. For Z production the corresponding

result is

|M(q∗1 q∗2 → Z)|2 =
1

4NC

(

gW

2 cos θW

)2

Tr[/k1γ
µ(Vq − Aqγ

5)/k2γ
ν(Vq − Aqγ

5)]

(

−gµν +
qµqν

M2
Z

)

=

√
2

NC
GF M2

Z (V 2
q + A2

q) x1 x2 s, (3.20)

where cos θW = MW /MZ is the weak mixing angle, Vq = T 3
q − 2eq sin2 θW is the

vector coupling, Aq = T 3
q is the axial vector coupling, and T 3

q is the weak isospin

(T 3
u,c,t = +1/2, T 3

d,s,b = −1/2). The phase space element is

dΦ(q∗1 q∗2 → V ) = (2π)4δ(4) (k1 + k2 − q)
d4q

(2π)3
δ(q2 −M2

V ) = 2π δ(q2 −M2
V ), (3.21)

and the flux factor is F (q∗1 q∗2 → V ) = 4k1 · k2 = 2x1x2s.

The partonic differential cross sections for W or Z production are then

dσ̂

dPT
(q∗1 q∗2 → V ) =

π

NC

√
2 GF M2

V V 2
V δ(q2 − M2

V ) δ(qt − PT ), (3.22)

where V 2
W ≡ |Vq1q2

|2 and V 2
Z ≡ V 2

q + A2
q.

The dominant mechanism for SM Higgs production in hadron-hadron collisions

is by gluon-gluon fusion via a top quark loop. For the case where MH � 2mt, the

well-known effective ggH vertex can be derived from the Lagrangian [96, 97]

Leff = −1

4

(

1 − αS(M2
H)

3π

H

v

)

GA
µν GAµν , (3.23)

where v2 = (
√

2GF )−1, GA
µν is the gluon field strength tensor, and H is the Higgs
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field. The squared matrix element is then

|M(g∗
1 g∗

2 → H)|2 =
1

4(N2
C − 1)

(√
2GF

α2
S(M2

H)

9π2

)

× (k1 · k2 gµν − kµ
2 kν

1) (k1 · k2 gρσ − kρ
2k

σ
1 ) dµρ(k1, n)dνσ(k2, n)

=
√

2GF
αS(M2

H)

576π2
(x1 x2 s)2 , (3.24)

where the sum over gluon polarisations is performed using the planar gauge (3.12).

The phase space element and the flux factor for SM Higgs production are the same

as for q∗1 q∗2 → V , leading to the partonic differential cross section

dσ̂

dPT

(g∗
1 g∗

2 → H) =

√
2GF x1 x2 s

576 π
α2

S(M2
H) δ(q2 − M2

H) δ(qt − PT ). (3.25)

For q2 = x1 x2 s and qt = 0, these expressions (3.22) and (3.25) are exactly as

in the collinear approximation. The difference arises when we consider the precise

kinematics

q2 = s [(x1 − β2)(x2 − β1) − R] , R ≡ q2
t /s, (3.26)

q2
t = |k1,t + k2,t|2 = k2

1,t + k2
2,t + 2 k1,t k2,t cos φ. (3.27)

Applying the (z, kt)-factorisation formula (3.10), the first delta function in (3.22)

and (3.25) can be used to do the x2 integration in (3.10), while the second delta

function can be used to do the k2,t integration. In addition, we need to average over

the azimuthal angle φ between k1,t and k2,t.

The final hadronic differential cross sections for W or Z production are

dσ

dPT
=

π

NC

√
2GF τ

∑

x2=x±

2

∑

k2,t=k±

2,t

∫ 1

0

dx1

x1

∫ 1

x1

dz1

∫ 1

x2

dz2

∫ ∞

0

dk2
1,t

k2
1,t

∫ 2π

0

dφ

2π

× 2 PT Θ(k2,t)

k2,t|k2,t + k1,t cos φ|
1

x1 x2 − β1 β2

∑

q1, q2

V 2
V fq1

(x1, z1, k
2
1,t, µ

2
1) fq2

(x2, z2, k
2
2,t, µ

2
2),

(3.28)

with τ ≡ M2
V /s, k±

2,t ≡ −k1,t cos φ ±
√

P 2
T − k2

1,t sin
2 φ, and

x±
2 ≡ 1

2x1







τ + R + x1β1 +
z2r2

1 − z2
±

√

(

τ + R + x1β1 +
z2r2

1 − z2

)2

− 4x1β1
z2r2

1 − z2







.

(3.29)
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In practice, the kinematic constraints (3.6) mean that the x2 = x−
2 solution does

not contribute. The corresponding result for SM Higgs production is

dσ

dPT

=

√
2GF

576 π
α2

S(M2
H)

∑

x2=x±

2

∑

k2,t=k±

2,t

∫ 1

0

dx1

x1

∫ 1

x1

dz1

∫ 1

x2

dz2

∫ ∞

0

dk2
1,t

k2
1,t

∫ 2π

0

dφ

2π

× 2 PT Θ(k2,t)

k2,t|k2,t + k1,t cos φ|
x1 x2

x1 x2 − β1 β2
fg(x1, z1, k

2
1,t, µ

2
1) fg(x2, z2, k

2
2,t, µ

2
2), (3.30)

where τ ≡ M2
H/s, and k±

2,t and x±
2 are as above. Note that we have taken the ggH

vertex in the MH � 2mt limit. For MH < 2mt, the correction to the total cross

section due to the top quark mass can be approximated [8] by a factor

[

1 +

(

MH

2mt

)2
]2

. (3.31)

The ki,t < µ0 contributions of (3.28) and (3.30) are accounted for using the approx-

imation (3.15).4

3.3 The K-factors

In the collinear approximation, higher order QCD corrections to the LO diagrams,

q1 q2 → V or g1 g2 → H, are known to be significant when calculating the total cross

section. The ratio of the corrected result to the leading order result is the so-called

K-factor. A part of these higher order corrections is kinematic in nature, arising

from real parton emission, which we have already accounted for at LO in the (z, kt)-

factorisation approach (see Fig. 3.1). Another part comes from the logarithmic loop

corrections which have already been included in the Sudakov form factors (2.13) and

(2.15). However, we need to include the non-logarithmic loop corrections arising,

for example, from the gluon vertex correction to Figs. 3.2 and 3.3.

A large part of these non-logarithmic corrections have a semi-classical nature and

may be obtained from the analytic continuation of the double logarithm in the Su-

dakov form factors in going from spacelike (DIS) to timelike (Drell-Yan) electroweak

boson momenta [98–100]. In the soft (ζ → 1) and collinear (kt, κt � µ) limits, the

4Other contributions in the region ki,t < µ0, such as the inclusion of additional intrinsic partonic
transverse momentum with 〈kt〉 ≈ 0.3 GeV, would only affect the PT distributions at very low
PT . 1 GeV.
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Sudakov form factors (2.13) and (2.15) can be written

Ta(k
2
t , µ

2) ' exp

(

−
∫ µ2

k2
t

dκ2
t

κ2
t

αS(κ2
t )

2π
Ca ln

µ2

κ2
t

)

, (3.32)

where Cq ≡ CF and Cg ≡ CA. Accounting for the running coupling αS(κ2
t ) given

by (1.11) and performing the κt integral, we obtain the Sudakov form factors in the

DLLA,

Ta(k
2
t , µ

2) ' exp

(

− Ca

2 π b
L ln L

)

, (3.33)

where L ≡ ln(µ2/Λ2
QCD) and b = (33 − 2nf )/(12π).

Replacing µ2 by −µ2, we obtain the π2-enhanced part of the K-factors via

K(a∗
1 a∗

2 → V, H) '
∣

∣

∣

∣

Ta(k
2
t ,−µ2)

Ta(k2
t , µ

2)

∣

∣

∣

∣

2

. (3.34)

Using the identity ln(−µ2) = ln µ2 + iπ and the Mercator series ln(1 + x) = x −
x2/2 + . . ., then

ln ln(−µ2) = ln

[

ln µ2

(

1 +
iπ

ln µ2

)]

= ln ln µ2 +

[

iπ

ln µ2
− 1

2

(

iπ

ln µ2

)2

+ . . .

]

.

(3.35)

The final results for the K-factors are5

K(q∗1 q∗2 → V ) '
∣

∣

∣

∣

Tq(k
2
t ,−µ2)

Tq(k2
t , µ

2)

∣

∣

∣

∣

2

' exp

(

CF
αS(µ2)

2 π
π2

)

(3.36)

and

K(g∗
1 g∗

2 → H) '
∣

∣

∣

∣

Tg(k
2
t ,−µ2)

Tg(k
2
t , µ

2)

∣

∣

∣

∣

2

' exp

(

CA
αS(µ2)

2 π
π2

)

. (3.37)

A particular scale choice µ2 = P
4/3
T M

2/3
V,H has been found to eliminate certain sub-

leading logarithms in the Sudakov form factors [102]. Therefore, we choose this scale

to evaluate αS(µ2) in (3.36) and (3.37).

5Note the extra factor of 1/2 in the exponents of (3.36) and (3.37) compared to [101], where
the Mercator series was truncated after only the first term.
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3.4 Numerical results

3.4.1 W and Z boson production at the Tevatron

The PT distributions of produced W and Z bosons were measured by the CDF [103]

and DØ [104, 105] Collaborations during the Tevatron Run 1, in pp̄ collisions at a

CM energy of
√

s = 1.8 TeV. Measurements were made of W → eν and Z → ee

decays; therefore, we must multiply the theoretical predictions for W or Z pro-

duction by the appropriate leptonic branching ratios.6 We use the MRST2001 LO

PDFs [66] as input, with µ2
0 = 1.25 GeV2. As in Chapter 2, the GNU Scientific

Library [76] implementation of the vegas algorithm [77] was used to perform mul-

tidimensional Monte Carlo integration. The LO predictions for the PT distributions

(3.28), integrated over bins of 1 GeV, are shown by the dashed lines in Figs. 3.4, 3.5

and 3.6. The integrated luminosity uncertainty (3.9% for CDF or 4.4% for DØ) is

not included in the error bars for the plotted data. The LO predictions multiplied

by the K-factor (3.36) are shown by the solid lines. Although the K-factor makes

up the major part of the discrepancy, we see that the solid lines in Figs. 3.4, 3.5,

and 3.6 still underestimate the precise measurements at small PT to some extent.

Normalising to the total measured cross sections (248 pb, 221 pb, and 2310 pb) by

factors 1.23, 1.10, and 1.08 respectively, as shown by the dotted lines in Figs. 3.4,

3.5, and 3.6, gives a very good description of the data over the entire PT range.

Although it makes sense to take µ2
0 as low as possible, the insensitivity of the PT

distributions to the kt < µ0 treatment can be demonstrated by taking µ2
0 = 2.5 GeV2.

The PT distributions obtained are practically identical to those with µ2
0 = 1.25 GeV2,

with less than a 0.5% change in the total cross sections.

Notice that the predicted PT distribution of Z bosons peaks about 0.5–1.0 GeV

below the CDF data (Fig. 3.4). One possible explanation for this is provided by

non-perturbative power corrections, part of which may be interpreted as a negative

correction of about −3 GeV2 to the factorisation scale at which the integrated PDFs

are evaluated [107]. Such a shift in the factorisation scale is found to move the peak

of the PT distribution about 0.2 GeV in the direction of the CDF data, with a

slightly larger normalisation factor of 1.24. The inclusion of small-x broadening in

the Collins-Soper-Sterman [108] resummation formalism, which has been observed

to improve the agreement with semi-inclusive DIS data [109], has been predicted to

have a negligible effect on the W and Z PT distributions integrated over rapidity at

the Tevatron Run 2 (
√

s = 1.96 TeV) [110].

In Fig. 3.7 we show the importance of the extra zi convolutions of (z, kt)-

6BR(W → eν) = 0.1072 and BR(Z → ee) = 0.03363 [106].
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Figure 3.4: PT distribution of Z bosons compared to CDF data [103].
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Figure 3.5: PT distribution of Z bosons compared to DØ data [104].
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Figure 3.6: PT distribution of W bosons compared to DØ data [105].

factorisation with respect to kt-factorisation by taking zi → 0 in the kinematic

variables. In this limit, βi → 0 and the integrals of the DUPDFs over zi in (3.28)

give the UPDFs, fqi
(xi, k

2
i,t, µ

2
i ). At small PT there is little difference from the result

obtained with the full kinematics, since at small PT the major contribution comes

from small zi � 1 parton branching. However, at large PT the difference is signif-

icant and the zi → 0 prediction overestimates the data. In Fig. 3.8 we show the

prediction for the PT distribution of W bosons using CTEQ6L1 PDFs [35] as input

(with µ2
0 = 1.69 GeV2) rather than the MRST2001 LO PDFs [66]; the difference is

negligible over the whole PT range.

The small residual discrepancy between the solid lines in Figs. 3.4, 3.5, and 3.6

and the data is easily understood. Note that the MRST2001 LO PDFs [66] have been

determined by a global fit to data using the conventional collinear approximation.

A more precise treatment would fit the integrated PDFs, used as input to the last

evolution step, to the proton structure function F2, for example, using the (z, kt)-

factorisation formalism at LO. We would expect this treatment to give slightly larger

integrated PDFs than the conventional sets by a factor of ≈ 1.1 and so eliminate

the small discrepancy between the (z, kt)-factorisation predictions and the data.

Alternatively, it was found in the last chapter that the major higher order correc-

tions to the inclusive jet cross section in DIS could be accounted for by adding extra
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Figure 3.7: Effect of taking zi → 0 in the kinematic variables on the PT distribution
of W bosons compared to DØ data [105].
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Figure 3.8: Effect of using CTEQ6L1 PDFs [35] rather than MRST2001 LO PDFs
[66] on the PT distribution of W bosons compared to DØ data [105].
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parton emissions to the LO diagram, γ∗q∗ → q. In an axial gluon gauge, ladder-

type diagrams gave the dominant contributions. Thus, it is likely that calculating

the O(αS) subprocesses q∗1 q∗2 → g V and q∗i g∗
j → q V using the (z, kt)-factorisation

prescription would account for any significant higher order corrections not already

included and so reduce the observed discrepancy without refitting the input inte-

grated PDFs.

Proton structure function F2(xB, Q2)

These reasons for the small discrepancies discussed in the previous two paragraphs

can be illustrated by considering the proton structure function F2(xB, Q2), which

is plotted for two Q2 values in Fig. 3.9. In the collinear approximation, the LO

prediction for this observable comes from γ∗q → q,

F2(xB, Q2) =
∑

q

e2
q xBq(xB, Q2), (3.38)

indicated by the solid lines in Fig. 3.9, which gives a good description of the data

points since this data set was included in the MRST2001 LO global fit. The LO

(z, kt)-factorisation prediction comes from γ∗q∗ → q and may be obtained from

(2.93):

F2(xB, Q2) =
∑

q

e2
q xBq(xB, µ2

0) Tq(µ
2
0, Q

2)

+

∫ 1

x

dz

∫ ∞

µ2

0

dk2
t

k2
t

xB/x

1 − xBβ/x

∑

q

e2
qfq(x, z, k2

t , µ
2), (3.39)

where the Sudakov variables x = x+ and β are given in (2.62) and the factorisation

scale µ is given in (2.9). The predictions of this formula are shown as the dashed

lines in Fig. 3.9, while the first term of (3.39), representing the non-perturbative

contributions from kt < µ0, is also shown separately as the dotted lines. There is

a clear difference between the predictions of (3.38) and (3.39), which increases as

xB decreases, due to the extra kinematic factor in the second term of (3.39). This

difference would be eliminated by fitting the input integrated PDFs using (3.39).

Alternatively, a ‘NLO’ prediction for F2 may be calculated from the subprocesses

γ∗g∗ → qq̄ and γ∗q∗ → qg, and can be obtained from (2.106). Here, a lower limit of

µ0 is taken in the k′
t integration, and the k′

t < µ0 contribution is instead accounted

for using the first term of (3.39). It is seen that these ‘NLO’ predictions, shown as

the dot-dashed lines in Fig. 3.9, give almost the same results as (3.38).
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Figure 3.9: Predictions for F2(xB, Q2) at Q2 values of 22 GeV2 (top) and 200 GeV2

(bottom) in the collinear approximation, where the 1996/97 ZEUS data [111] has
been included in the MRST2001 LO fit [66], and in the (z, kt)-factorisation approach
using the same PDFs as input. The discrepancy between the data and the LO (z, kt)-
factorisation prediction can be eliminated by either refitting the input integrated
PDFs or by adding some ‘NLO’ contribution.
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3.4.2 Standard Model Higgs boson production at the LHC

The PT distribution (3.30) for SM Higgs bosons of mass 125 GeV produced at

the LHC (
√

s = 14 TeV) is shown in Fig. 3.10. To allow direct comparison with

the results of [112], we do not account for top quark mass effects. Note that the

peak in the Higgs PT distribution is broader and occurs at a higher PT than for

vector boson production. This is primarily due to the enhanced g → gg colour

factor (CA = 3) compared to the q → qg colour factor (CF = 4/3), resulting in a

larger Sudakov suppression at low PT . By the same reason the K-factor (3.37) is

larger. For PT . MH , the PT distribution is in good agreement with recent, more

sophisticated, resummation predictions (see, for example, [112]), bearing in mind

the spread in the various predictions available due to the different approaches and

PDFs used, see Fig. 3.11. However, the peak occurs at a PT about 1–2 GeV lower

than the majority of the resummation predictions. Evaluating the total cross section

by integrating over all PT gives 38.6 pb, close to the NNLO QCD calculation which

gives 39.4 pb [112].

Note that matrix-element corrections are necessary in parton shower simulations

at large PT . Without such corrections, the herwig parton shower prediction falls off

dramatically at large PT & MH [113,114], see Fig. 3.11. The same effect is observed

in herwig predictions for the PT distributions of W and Z production [115], whereas

we manage to describe the Tevatron data at large PT & MV without explicit matrix-

element corrections. The fact that our predictions are much closer to the fixed-order

results at large PT than parton shower predictions suggests that we have successfully

accounted for a large part of the sub-leading terms.

Off-shell matrix elements

The (z, kt)-factorisation prescription involves calculating the squared matrix element

|M|2 essentially on-shell, that is, with the incoming partons having momenta ki =

xi Pi. This prescription was chosen so as to approximately reproduce the collinear

factorisation calculation starting one rung down, for example, the O(α4
S) calculation

for Higgs production at large PT , where there are up to two hard emissions. However,

we note from (2.28) that the non-factorisable ‘beyond LLA’ terms are proportional

to the Sudakov variable βi, confirmed by the explicit calculation of Section 2.3.1.

Therefore, it is permissible to calculate |M|2 off-shell, that is, with the incoming

partons having momentum ki = xi Pi + ki⊥, as in the conventional kt-factorisation

prescription. Note however, that |M|2 cannot be calculated with the incoming

partons having momentum ki = xi Pi − βi Pj + ki⊥, since in this case meaningless

non-factorisable terms proportional to βi would be obtained.
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Figure 3.10: PT distribution of SM Higgs bosons produced at the LHC with mass
125 GeV.

The squared matrix element |M(g∗
1 g∗

2 → H)|2, given in the first line of (3.24),

was evaluated with ki = xi Pi + ki⊥ and the sums over gluon polarisations dµρ(k1, n)

and dνσ(k2, n) replaced by the BFKL-like polarisation tensors (1.66), as in the kt-

factorisation prescription. The difference with respect to the last line of (3.24) is an

extra factor of 2 cos2 φ, where φ is the azimuthal angle between k1,t and k2,t. This

extra factor makes little difference to the PT distribution shown in Figs. 3.10 and

3.11, except in the region of low PT . 10 GeV where the cross section is slightly

enhanced.

3.5 Summary

In this chapter we have extended the method of (z, kt)-factorisation using DUPDFs

to hadron-hadron collisions. The key idea is that the incoming partons to the

subprocess have finite transverse momenta, which can be observed in the particles

produced in the final state. This transverse momentum is generated perturbatively

in the last evolution step, with a suitable extrapolation for the non-perturbative

contribution. Virtual terms in the DGLAP equation are resummed into Sudakov

form factors and angular-ordering constraints are applied which regulate soft gluon
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Figure 3.11: PT distribution of SM Higgs bosons produced at the LHC with mass
125 GeV, compared to various resummed and parton shower predictions which are
all matched to fixed-order calculations at large PT (apart from herwig) [112].
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emission. By accounting for the precise kinematics in the subprocess, together with

these Sudakov form factors and angular-ordering constraints, we are able to include

the main part of conventional higher order calculations.

We used this framework to calculate the PT distributions of W and Z bosons

produced at the Tevatron Run 1. The predictions gave a very good description

of CDF and DØ data over the whole PT range, after multiplying by an overall

factor of 1.1–1.2, corresponding to multiplying each DUPDF by a factor . 1.1. We

explained the origin of the need for this extra factor, which should not be regarded

as a deficiency of our approach, but rather reflects the fact that the input integrated

PDFs should themselves be determined from data using (z, kt)-factorisation.

We also used the framework to calculate the PT distribution for SM Higgs bosons

of mass 125 GeV produced at the LHC. For PT . MH , our simple prescription was

found to reproduce, to a fair degree, the predictions of more elaborate theoretical

studies [112].
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Chapter 4

Diffractive deep-inelastic

scattering

In this introductory chapter to Part II we begin by introducing the Pomeron in

the context of Regge theory, and explain how it appears in diffractive processes,

particularly in diffractive DIS. We describe one of the most popular descriptions of

diffractive DIS, in which the Pomeron is treated as having PDFs just like a hadron.

Finally, we explain how the Pomeron may be interpreted in QCD as two gluons

or two sea quarks in a colour singlet, and we evaluate the corresponding Feynman

diagrams at lowest order in αS.

4.1 Regge theory

Before QCD emerged victorious as the theory of the strong interaction, the most

promising candidate was Regge theory [116, 117], also known as the theory of com-

plex angular momentum [118], which provided a natural framework to discuss par-

ticles scattering at high CM energies, s � |t|. Regge theory was founded on some

very general properties of the S-matrix, namely Lorentz invariance, unitarity, and

analyticity. Here, we briefly review a few key features of Regge phenomenology; for

more details, see the textbooks [15–19].

In Regge theory, the scattering amplitude A(s, t) can be viewed as the exchange

in the t-channel of a Regge trajectory or ‘Reggeon’ with ‘angular momentum’ α(t).

The Reggeon is not a single particle, but rather a series of particles of different

spins. For positive t the amplitude has poles corresponding to the exchange of

physical particles of mass mi and spin Ji, where α(m2
i ) = Ji. Plotting the spins of

86
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low-lying mesons against their masses squared gives a linear trajectory [117, 119],

α(t) = α(0) + α′ t, (4.1)

with α(0) = 0.55 and α′ = 0.86 GeV−2 for the ρ-trajectory [17]. The asymptotic

behaviour of the total cross section for a scattering process dominated by a particular

Regge trajectory is given by

σtot ∝ sα(0)−1. (4.2)

Therefore, a Regge trajectory with intercept α(0) < 1 leads to a total cross section

which falls as s increases. In fact a consequence of the Pomeranchuk theorem [120,

121], which proved that cross sections for particle–particle and particle–antiparticle

scattering become equal at asymptotic energies, is that the cross section vanishes

asymptotically for any scattering process with charge exchange. Conversely, if a

cross section does not fall as s increases then that process must be dominated by

the exchange of vacuum quantum numbers [122]. The fact that total cross sections

are observed experimentally to slowly rise with increasing s may be attributed to an

effective Reggeon with intercept αIP (0) > 1 and with the quantum numbers of the

vacuum.1 This effective Regge trajectory was called the Pomeron [123]. It has been

claimed that glueball states lie on this trajectory when extrapolated to positive t,

although this interpretation is controversial.

Donnachie and Landshoff [124] made a fit to total cross sections for pp and pp̄

scattering:

σpp =
(

21.7 s0.08 + 56.1 s−0.45
)

mb,

σpp̄ =
(

21.7 s0.08 + 98.4 s−0.45
)

mb,
(4.3)

with s in GeV2. Here, the first term is the Pomeron (IP ) contribution with intercept

αIP (0) = 1.08, while the second term is a sub-leading Reggeon (IR) contribution

with intercept αIR(0) = 0.55. Note that associating αIP (0) = 1.08 to a simple Regge

pole would eventually lead to a violation of the Froissart-Martin bound [125, 126]:

σtot < C ln2 s, (4.4)

where C ∼ 60 mb. However, αIP (0) = 1.08 is only an effective Pomeron intercept

which includes the effects of exchange of two or more Pomerons (so-called Regge

cuts). For example, taking into account the IP pole and the IP ⊗ IP cut (4.2) is

1Originally, a Reggeon with αIP (0) = 1 was introduced to account for the asymptotically con-
stant total cross sections expected in the early 1960s.
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modified to [18]

σtot ∼ AIP sαIP (0)−1 − AIP⊗IP
s2(αIP (0)−1)

ln s
. (4.5)

These multiple exchanges tame the asymptotic rise of the cross section leading to

the ultimate preservation of unitarity. The success of the Donnachie-Landshoff fit

(4.3) suggests that the reduction of the effective Pomeron intercept as the energy

increases is very slow. In any case, with αIP (0) = 1.08 the Froissart-Martin bound

(4.4) is not violated for CM energies less than the Planck scale.

In low-Q2 DIS the γ∗p CM energy W plays the rôle of
√

s in hadronic cross

sections. Hence, for Q2 � W 2, then xB ' Q2/W 2 � 1 and we would expect the

proton structure function to satisfy

F2(xB, Q2 . 1 GeV2) ∼ AIP x
1−αIP (0)
B + AIR x

1−αIR(0)
B

' AIP x−0.08
B

+ AIR x0.45
B

,
(4.6)

where we have taken the same intercepts as found in the Donnachie-Landshoff

fit (4.3). At higher Q2 & 1 GeV2, QCD evolution takes over modifying the xB

dependence. Indeed, parameterising the HERA data for xB < 0.1 in the form

F2(xB, Q2) = A(Q2) x−λ
B

gives λ ' 0.1 at small Q2 . 1 GeV2, and λ ' 0.3 at

large Q2 ∼ 10–100 GeV2. In terms of PDFs, the Pomeron is identified with the

flavour-singlet sea quark and gluon distributions, while the sub-leading Reggeon is

identified with the non-singlet valence quark distributions. Thus, the Regge theory

predictions for the small-x and low Q2 . 1 GeV2 behaviour of the PDFs are

xqV (x, Q2) ∼ x1−αIR(0) ' x0.45,

xS(x, Q2), xg(x, Q2) ∼ x1−αIP (0) ' x−0.08.
(4.7)

In Table 4.1 we compare these predictions with the x → 0 behaviour of the MRST2001

NLO PDFs [127] at the input scale of Q2
0 = 1 GeV2. The valence quark distributions

are roughly in line with the Regge theory expectations. However, the sea quark and

gluon distributions behave very differently. The sea quark distribution increases

with decreasing x while the gluon becomes increasingly negative with decreasing x.

The negative gluon was introduced by MRST to achieve an acceptable fit to data;

demanding a positive gluon would lead to a strongly valence-like input gluon distri-

bution and to a much worse description of the data [127]. Such differing behaviour

of the sea quark and gluon distributions is totally contradictory to Regge theory

expectations. We will discuss this puzzle in more detail in Chapter 6.



4.2 What is diffraction? 89

Regge theory MRST2001 NLO
xuV (x, Q2

0) x0.45 x0.25

xdV (x, Q2
0) x0.45 x0.27

xS(x, Q2
0) x−0.08 x−0.26

xg(x, Q2
0) x−0.08 −x−0.33

Table 4.1: Regge theory expectations for the small-x behaviour of PDFs compared
to the x → 0 behaviour of the MRST2001 NLO PDFs [127] at Q2

0 = 1 GeV2.

4.2 What is diffraction?

The term ‘diffraction’ was introduced in nuclear high-energy physics in the 1950s, in

analogy with the familiar optical phenomenon. Two equivalent definitions of what

is meant by diffraction in high-energy physics are given in [18]. The first is due to

Good and Walker [128]:

A reaction in which no quantum numbers are exchanged between the

colliding particles is, at high energies, a diffractive reaction.

The Reggeon which dominates at asymptotic energies is the Pomeron. Some sec-

ondary Reggeons, contributing to non-diffractive events, also have the quantum

numbers of the vacuum, but are suppressed at high energies. It is often difficult

to know experimentally whether or not the outgoing system has the same quan-

tum numbers as the incoming particles. A more operational definition was given by

Bjorken [129]:

A diffractive reaction is characterised by a large, non-exponentially sup-

pressed, rapidity gap in the final state.

The large rapidity gap, a region of the detector devoid of particles, arises from the

fact that the colourless Pomeron does not radiate as it is exchanged. Again, the

requirement purely of a large rapidity gap will include some contamination from

non-diffractive events with secondary Reggeon exchange, but these contributions

are exponentially suppressed as a function of the gap size.

Soft diffractive reactions, such as elastic hadron-hadron scattering and diffractive

dissociation, are characterised by a scale of the order of the hadron size (∼ 1 fm),

and so are intrinsically non-perturbative and therefore unable to be described by

perturbative QCD. Regge theory has had considerable phenomenological success2 in

describing such soft reactions, where there is no alternative theoretical framework

available.

2Indeed, Donnachie and Landshoff [124] conclude their paper with the statement that “Regge
theory remains one of the great truths of particle physics.”
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Figure 4.1: Diffractive DIS kinematics.

On the other hand, hard diffractive reactions are characterised by an additional

‘hard’ energy scale (& 1 GeV2) and thus they allow use of perturbative QCD to

some extent. The ultimate goal is to translate Regge theory into QCD. We will play

a small part towards achieving this goal in Chapter 5, where we present a QCD

analysis of diffractive DIS. In this case, the hard energy scale is provided by the

photon virtuality Q2.

4.3 Diffractive DIS kinematics

A notable feature of deep-inelastic scattering is the existence of diffractive events,

γ∗p → Xp, in which the slightly deflected proton and the cluster X of outgoing

hadrons are well-separated in rapidity; see Fig. 4.1. The large number and distinc-

tive character of diffractive events discovered at HERA [130, 131] was somewhat

surprising [132]. The large rapidity gap is believed to be associated with Pomeron

exchange. The diffractive events make up an appreciable fraction (≈ 10%) of all

(inclusive) deep-inelastic events, γ∗p → X. We will refer to the diffractive and

inclusive processes as DDIS and DIS respectively.

First we define the basic kinematical variables in DDIS, without recourse to any

specific theoretical model for the Pomeron. We use a Sudakov decomposition of the

momenta of the incoming and outgoing protons:

p = P ′ + αp Q′, p′ = (1 − xIP ) P ′ + αp′ Q
′ + p′⊥, (4.8)

where P ′ and Q′ are lightlike 4-vectors (P ′2 = 0 = Q′2), and p′⊥ is a spacelike 4-

vector such that p′⊥
2 = −p′t

2. The on-shell conditions, p2 = m2
p = p′2, where mp is
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the proton mass, give

αp =
m2

p

2 P ′ · Q′
, αp′ =

m2
p + p′t

2

2 P ′ · Q′ (1 − xIP )
, (4.9)

leading to the squared momentum transferred by the Pomeron,

t ≡ (p − p′)2 = −
x2

IP m2
p + p′t

2

1 − xIP
. (4.10)

The minimum value of |t| occurs when p′
t = 0, that is,

tmin = −
x2

IP m2
p

1 − xIP
. (4.11)

Since most DDIS events occur for small values of |t|, and xIP � 1, m2
p, |t| �

Q2, M2
X , W 2, we will make the approximations mp ' 0 GeV and t ' tmin ' 0

GeV2 in our calculations. That is, we will assume that p ' P ′ and p′ ' (1− xIP )P ′.

As usual in DIS, we define the photon virtuality, q2 ≡ −Q2, the γ∗p CM energy

squared, W 2 ≡ (q + p)2, and the Bjorken-x variable,

xB ≡ Q2

2p · q =
Q2

Q2 + W 2
, (4.12)

which gives the fraction of the proton’s momentum carried by the struck quark. In

DDIS we additionally define the invariant mass squared of the hadronic system X

produced by the photon dissociation, M 2
X ≡ (q + p − p′)2. This definition leads to

xIP =
Q2 + M2

X

Q2 + W 2
, β ≡ xB

xIP
=

Q2

Q2 + M2
X

, (4.13)

where xIP is the fraction of the proton’s momentum carried by the Pomeron and β

is the fraction of the Pomeron’s momentum carried by the struck quark.

Neglecting the proton mass, the size of the rapidity gap between the outgoing

proton and the hadronic system X is

∆η ≡ η(p′) − η(q + p − p′) ' 1

2
ln

(

1 − xIP

x2
IP

Q2

|t|
1 − β

β

)

. (4.14)

If xIP � 1, Q2 ∼ |t|, β ∼ 0.5, then ∆η ∼ ln(1/xIP ).
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4.4 Diffractive structure function

Recall from (1.20) that the ep cross section in DIS is related to the γ∗p cross section

by
d2σep

dxB dQ2
=

αem

2πxBQ2

{

[

1 + (1 − y)2
]

σγ∗p − y2σγ∗p
L

}

, (4.15)

where σγ∗p = σγ∗p
T +σγ∗p

L , y = Q2/(xBs), and the ep CM energy squared, s = 4EeEp.

Now consider the more specific case of DDIS. We have xB = βxIP , so (4.15) can be

written
d2σep

dxIP dQ2
=

αem

2πxIPQ2

{

[

1 + (1 − y)2
]

σγ∗p − y2σγ∗p
L

}

, (4.16)

where σ are now the diffractive components of the ep or γ∗p cross sections. The

diffractive structure function, F
D(4)
2 (xIP , β, Q2, t), is defined via

d4σep

dxIP dβ dQ2 dt
=

2πα2
em

βQ4

{

[

1 + (1 − y)2
]

F
D(4)
2 − y2F

D(4)
L

}

. (4.17)

For small y, or assuming that F
D(4)
L � F

D(4)
2 , the last term may be neglected. By

comparing (4.16) and (4.17), we obtain

F
D(4)
2 =

Q2

4π2αem

β

xIP

d2σγ∗p

dβ dt
. (4.18)

Experimental measurements are usually integrated over t:

F
D(3)
2 (xIP , β, Q2) =

∫ tmin

tcut

dt F
D(4)
2 (xIP , β, Q2, t), (4.19)

where tcut = −1 GeV2 and tmin ' 0 GeV2.

4.5 Collinear factorisation in DDIS

Just as measurements of the DIS structure function F2(xB, Q2) are used to determine

the PDFs of the proton, a(x, Q2) = xg(x, Q2) or xq(x, Q2), so measurements of the

DDIS structure function F
D(3)
2 (xIP , β, Q2) can be used to determine the diffractive

PDFs (DPDFs) of the proton, aD(xIP , β, Q2) = βgD(xIP , β, Q2) or βqD(xIP , β, Q2).3

In DDIS, the collinear factorisation formula for the γ∗p cross section, analogous

3DPDFs are exactly the same as ‘extended fracture functions’ [133–135].
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Figure 4.2: LO contribution to DDIS in the ‘resolved’ Pomeron model.

to (1.35), can be written

dσγ∗p

dxIP
=
∑

a=q,g

∫ 1

β

dβ ′

β ′
aD(xIP , β ′, Q2) σ̂γ∗a, (4.20)

where aD(xIP , β ′, Q2) satisfy DGLAP evolution in Q2, and σ̂γ∗a are the same partonic

cross sections or hard-scattering coefficients as in DIS. Collinear factorisation was

proven to hold for all DDIS processes by Collins [136, 137], but fails for diffractive

hadron-hadron collisions, where an additional rapidity gap ‘survival probability’

[129] due to multi-Pomeron exchange is needed [138, 139]. The same factorisation

breaking has recently been observed for the resolved photon component in diffractive

dijet photoproduction [140, 141] and low-Q2 DIS [142] at HERA.

4.6 ‘Resolved’ Pomeron model

Ingelman-Schlein factorisation [143] is collinear factorisation together with ‘Regge

factorisation’ for the Pomeron exchange, where the xIP dependence of the DPDFs

factorises into a Pomeron flux factor, fIP (xIP ), and the β and Q2 dependence is

given by the PDFs of the Pomeron, aIP (β, Q2) = βgIP (β, Q2) or βqIP (β, Q2). In this

‘resolved’ Pomeron model, the Pomeron is treated as having partonic structure just

like a hadron; see Fig. 4.2 where the LO contribution to the Pomeron structure

function is shown. Variations of this method have been used to fit DDIS data

by many different groups (see, for example, [144–147]). Here, we summarise the

procedure recently used by the H1 Collaboration [148], where Regge factorisation is
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assumed,

aD(xIP , β, Q2) = fIP (xIP ) aIP (β, Q2), (4.21)

F
D(3)
2 (xIP , β, Q2) = fIP (xIP ) FIP

2 (β, Q2). (4.22)

The Pomeron flux factor is taken from Regge phenomenology,

fIP (xIP ) =

∫ tmin

tcut

dt
eBIP t

x
2αIP (t)−1
IP

, (4.23)

with αIP (t) = αIP (0) + α′
IP t. The parameters α′

IP and BIP are taken from fits to soft

hadron data, with

αIP (0) = 1.173 ± 0.018(stat.) ± 0.017(syst.)+0.063
−0.035(model) (4.24)

determined from a fit to the DDIS data. Note that the only real use of the Pomeron

in this analysis is as a label for a particular power law for the xIP dependence

of diffractive cross sections, with the exponent actually being a free power. The

value of αIP (0) extracted from the DDIS data lies significantly above the Donnachie-

Landshoff [124] value of 1.08, suggesting that there are large perturbative QCD

contributions.

In the preliminary H1 analysis [148], the input Pomeron PDFs at a scale Q2
0 = 3

GeV2 are parameterised in the form

aIP (β, Q2
0) =

[

2
∑

j=0

Ca
j Tj(2β − 1)

]2

exp

(

− 0.01

1 − β

)

, (4.25)

where Ca
j are free parameters, and T0(x) = 1, T1(x) = x, and T2(x) = 2x2−1 are the

first three Chebyshev polynomials. The sum of orthonormal polynomials is used so

that the input distributions are free to adopt the widest possible range of forms for

a given number of parameters. The square of this sum is taken to ensure positivity.

The exponential factor ensures that the Pomeron PDFs tend to 0 as β → 1. No

momentum sum rule is imposed on the Pomeron PDFs.

Although this type of description of F
D(3)
2 (xIP , β, Q2) is often referred to as a

‘QCD fit’, only the Q2 dependence is actually described by QCD, with the xIP

dependence being obtained by fitting a power law, and the β dependence taken to

be completely arbitrary. Clearly, we would like to be able to use QCD to constrain

the xIP and β dependence of F
D(3)
2 (xIP , β, Q2), as well as the Q2 dependence.

In the H1 analysis [148], a secondary Reggeon contribution is also included of
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a form similar to (4.22). The Reggeon flux factor is taken in the form (4.23) with

αIR(0) = 0.50. The Reggeon PDFs are assumed to be the same as the pion PDFs

[149]. This contribution is found to be significant only for xIP > 0.01.

Since the Pomeron is not a particle, and so the concept of a ‘Pomeron flux’ is not

well defined, the ‘resolved’ Pomeron model must be taken on a purely phenomeno-

logical basis.

4.7 The Pomeron in QCD

Attempts to understand the Pomeron in terms of QCD were first made by inter-

preting Pomeron exchange as two-gluon exchange [150, 151], two gluons being the

minimum number needed to reproduce the quantum numbers of the vacuum. Ac-

counting for all αS ln(1/xB) terms, the BFKL Pomeron is a gluon ladder in a colour

singlet configuration, as described in Section 1.4. The BFKL Pomeron is often

called the ‘hard’ Pomeron in distinction to the ‘soft’ Pomeron with effective inter-

cept αIP (0) ' 1.08 discussed in Section 4.1. The LL BFKL Pomeron has effective

intercept αIP (0) ' 1.5 while the resummed NLL BFKL Pomeron has effective in-

tercept αIP (0) ' 1.3 (see, for example, [47]), cf. the experimental value of ' 1.3

obtained from fitting F2 data at large Q2 ∼ 10–100 GeV2 (see Section 4.1). In näıve

Regge theory, it was assumed that the Pomeron singularity is a simple pole in the

complex angular momentum plane. By contrast, the BFKL Pomeron, consisting

of a ladder of reggeised gluons, is a branch cut in the complex angular momentum

plane [152]. Assuming that BFKL effects are not important at HERA energies,

we will regard the QCD Pomeron as being a DGLAP ladder rather than a BFKL

ladder.

In Section 4.7.1 we present calculations of the lowest order Feynman diagrams for

the two-gluon Pomeron in DDIS using the dipole formalism, reproducing the results

presented by Wüsthoff [153] in the limit of strongly-ordered transverse momenta. In

Section 4.7.2 we extend the same formalism to calculate the lowest order Feynman

diagrams for DDIS assuming that the Pomeron is represented by two sea quarks.

4.7.1 Two-gluon exchange

First we consider the kinematics of the quark dipole shown in Fig. 4.3(a). We use a

Sudakov decomposition of the momentum k of the off-shell quark,

k = α q′ + βk p + k⊥, (4.26)
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(a)

k

γ∗

p

l⊥l⊥ + xIPp

q q − k

k̃

p′

(b)

γ∗

p

l⊥l⊥ + xIPp

q

k

p′

q − k

k̃

Figure 4.3: (a) Quark dipole and (b) effective gluon dipole interacting with the
proton via a perturbative Pomeron represented by two t-channel gluons.

with q′ ≡ q + xB p, q′2 = 0 = p2, k2
⊥ = −k2

t . The two outgoing components of the

dipole have momenta

q − k = (1 − α) q′ + xB

k2
t /Q

2

1 − α
p − k⊥, (4.27)

k̃ = k + xIP p = α q′ + xB

k2
t /Q

2

α
p + k⊥, (4.28)

where the on-shell conditions, (q − k)2 = 0 and k̃2 = 0, determine

βk = −xB

(

1 +
k2

t /Q
2

1 − α

)

, xIP = xB

(

1 +
k2

t /Q
2

α(1 − α)

)

. (4.29)

The invariant mass of the qq̄ system is given by

M2
X = (q + xIP p)2 =

k2
t

α(1 − α)
. (4.30)

Since β = Q2/(Q2 + M2
X), this can be written as

α(1 − α)Q2 = β
k2

t

1 − β
≡ βµ2. (4.31)

The off-shell quark with momentum k has virtuality

k2 = − µ2

1 − α
' −µ2, (4.32)
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since α � 1 in the approximation of strongly-ordered transverse momentum, k2
t �

Q2, to which we are working.4

Quark dipole with a transversely polarised photon

The differential γ∗p cross section corresponding to Fig. 4.3(a) is given by a kt-

factorisation formula similar to that described in Section 1.4. It can be written in

terms of photon wave functions Ψ(α, kt), describing the fluctuation of the photon

into a quark–antiquark dipole, convoluted over α and kt with a dipole cross section

σ̂, describing the interaction of the dipole with the proton via two-gluon exchange.

The dipole factorisation formula for Fig. 4.3(a) with a transversely polarised photon

is

dσγ∗p
T,qq̄

dt

∣

∣

∣

∣

∣

t=0

=
NC

16π

∫ 1

0

dα

∫

dk2
t

2π

∑

f

e2
f αem

1

2

∑

γ=±1

∑

h=± 1

2

∣

∣

∣

∣

∫

d2lt

π
DΨγ

h

dσ̂

dl2t

∣

∣

∣

∣

2

, (4.33)

cf. the corresponding result for DIS,5

σγ∗p
T,qq̄ = NC

∫ 1

0

dα

∫

dk2
t

2π

∑

f

e2
f αem

1

2

∑

γ=±1

∑

h=± 1

2

∫

d2lt

π
|Ψγ

h(α, kt) − Ψγ
h(α, kt + lt)|2

dσ̂

dl2t
.

(4.34)

The light-cone wave functions for the quark–antiquark dipole with a transversely

polarised photon are [153]

Ψγ
h(α, kt) =

√
2

k2
t + α(1 − α)Q2

×































(α − 1) kt : γ = +1, h = + 1
2

α kt : γ = +1, h = − 1
2

α kt
∗ : γ = −1, h = + 1

2

(α − 1) kt
∗ : γ = −1, h = − 1

2

, (4.35)

where γ and h denote the helicity of the photon and the quark respectively. Here,

kt = k1
t + i k2

t = (k1
t , k

2
t ) and kt

∗ = k1
t − i k2

t = (k1
t ,−k2

t ). The denominator of these

wave functions is the virtuality of the off-shell quark with momentum k:

k2
t + α(1 − α)Q2 = (1 − β)µ2 + βµ2 = µ2 ' |k2|. (4.36)

Note that the wave functions are symmetric under α → (1 − α) and kt → −kt,

corresponding to q ↔ q̄, that is, (4.27) ↔ (4.28), so we only need to sum over

4Actually, from (4.31), k2
t � Q2 implies either α � 1 or (1 − α) � 1, but it is conventional to

take the former.
5Note the extra factor 2 in (4.34) compared to (7) of [153].
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Figure 4.4: The four different permutations of the couplings of the two t-channel
gluons to the two components of (a) the quark dipole and (b) the effective gluon
dipole.

flavours in (4.33) and not over quarks and antiquarks separately.

The four different permutations of the couplings of the two t-channel gluons to

the two components of the quark dipole, shown in Fig. 4.4(a), are obtained by simply

shifting the argument of the wave function:

DΨ(α, kt, lt) ≡ 2Ψ(α, kt) − Ψ(α, kt + lt) − Ψ(α, kt − lt). (4.37)

We choose a basis where kt = kt (1, 0) and lt = lt (cos φ, sin φ) and neglect the xIP p

components of the momenta. We work in the approximation of strongly-ordered

transverse momenta, lt � kt � Q, and expand DΨ in the limit lt → 0, only keeping

the leading term proportional to l2t . After doing the azimuthal integral, we find

∫ 2π

0

dφ

2π
DΨγ

h(α, kt, lt) = l2t
4
√

2α(1 − α)Q2

[k2
t + α(1 − α)Q2]

3 ×































(α − 1) kt : γ = +1, h = + 1
2

α kt : γ = +1, h = − 1
2

α kt
∗ : γ = −1, h = + 1

2

(α − 1) kt
∗ : γ = −1, h = − 1

2

,

(4.38)

cf. (21) of [153]. We need these expressions squared and summed over helicities.
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(a)

p p

ρ, A σ, B

l⊥ l⊥

kk

µ, A ν, B

(b)

p p

γ, C δ, D

kρ, B

l⊥ l⊥

k ν, Bµ, A σ, A

α, C β, D

Figure 4.5: Cut diagrams giving the dipole cross sections for the two-gluon Pomeron:
(a) qq → qq and (b) gq → gq.

Neglecting a term O(k2
t /Q

2) gives

∑

γ=±1

∑

h=± 1

2

∣

∣

∣

∣

∫ 2π

0

dφ

2π
DΨγ

h(α, kt, lt)

∣

∣

∣

∣

2

= l4t
64

µ6
β2(1 − β). (4.39)

The other necessary part of the calculation is the cross section for qp → qp, ob-

tained from the process qq → qq with t-channel gluon exchange, shown in Fig. 4.5(a).

(Note that we could equally well obtain the cross section for qp → qp from qg → qg,

but the algebra is slightly easier for qq → qq.) We assume that k2 ' 0 and neglect

the xIP p components of the momenta in these calculations.

First, we derive the differential cross section, dσ̂/d|t̂|, for a generic 2 → 2 scatter-

ing process. Let the incoming particles have momenta p1 and p2, while the outgoing

particles have momenta p3 and p4. We write the momenta in the CM frame of

the colliding particles as p1 = (E, 0, 0, E), p2 = (E, 0, 0,−E), p3 = (E3, p3), and

p4 = (E4, p4), where p2
1 = p2

2 = p3
3 = p2

4 = 0. The phase space element is

dΦ = (2π)4 δ(4) (p1 + p2 − p3 − p4)
d3p3

2E3 (2π)3

d3p4

2E4 (2π)3
(4.40)

=
1

4π2
δ (2E − E3 − E4)

d3p3

4E3E4
, (4.41)

with p3 = −p4 ≡ (lt, pz), E3 = E4 =
√

l2t + p2
z, and d3p3 = d2lt dpz = π dl2t dpz, so

dΦ =
1

8π
δ

(

E −
√

l2t + p2
z

)

dl2t dpz

4E3E4

=
1

8π

E
√

E2 − l2t

dl2t
4E2

. (4.42)

Taking the high-energy limit (E � lt) we have t̂ = (p1 − p3)
2 = (p2 − p4)

2 = −l2t ,

and so, since ŝ = (p1 + p2)
2 = (p3 + p4)

2 = 4E2, then dΦ = d|t̂|/(8πŝ). Since
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dσ̂ = dΦ |M|2 / F , where F = 2ŝ, we have the differential cross section

dσ̂

d|t̂|
=

|M|2
16πŝ2

. (4.43)

We now return to the qq → qq process shown in Fig. 4.5(a), where ŝ = 2 k · p =

α Q2/xB ' µ2/xIP and t̂ = −l2t . The squared matrix element for qq → qq is

|M|2 =
1

4
C g4

l4t
Tr[γµ/kγν(/k + /l⊥)] Tr[γρ/pγσ(/p − /l⊥)] (−gµρ)(−gνσ), (4.44)

where the colour factor is

C(qq → qq) =
1

N2
C

Tr[tAtB]Tr[tAtB] =
2

9
. (4.45)

In the high-energy limit, where only the terms to leading O(ŝ/|t̂|) are retained, that

is, in the lt → 0 limit,

dσ̂

dl2t
(qq → qq) =

1

l4t

8π

9
αS(l2t )αS(µ2), (4.46)

where appropriate scales for αS have been chosen corresponding to the two different

vertices in Fig. 4.5(a). The lower vertex in Fig. 4.5(a) may be considered as the

first step of DGLAP evolution, which generates the unintegrated gluon distribution

of the proton, fg(xIP , l2t , µ
2). Therefore, we obtain the cross section for qp → qp by

making the replacement

αS(l2t )

2π
xIP Pgq(xIP )

∣

∣

∣

∣

xIP �1

=
αS(l2t )

2π
2CF =

4

3π
αS(l2t ) → fg(xIP , l2t , µ

2). (4.47)

This replacement accounts for more complicated diagrams than Fig. 4.5(a) which

include the complete DGLAP evolution:

dσ̂

dl2t
(qp → qp) =

1

l4t

2π2

3
αS(µ2)fg(xIP , l2t , µ

2). (4.48)

Combining (4.39) and (4.48) we obtain

∑

γ=±1

∑

h=± 1

2

∣

∣

∣

∣

∫

d2lt

π
DΨγ

h

dσ̂

dl2t

∣

∣

∣

∣

2

=
64

µ6
β2(1 − β)

[

2π2

3
αS(µ2)

∫ µ2

0

dl2t
l2t

fg(xIP , l2t , µ
2)

]2

=
256π4

9µ2

[

αS(µ2)

µ2
xIP g(xIP , µ2)

]2

β2(1 − β), (4.49)
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where g(xIP , µ2) is the integrated gluon distribution of the proton. Strictly speaking,

this last expression should be written in terms of the off-diagonal (or skewed) gluon

distribution of the proton, since the left and right t-channel gluons in Fig. 4.3(a)

carry different fractions of the proton momentum. At small xIP , and assuming that

xIP g(xIP , µ2) ∝ x−λ
IP , then the off-diagonal gluon distribution is given by the diagonal

distribution multiplied by an overall constant factor [93],6

Rg(λ) =
22λ+3

√
π

Γ(λ + 5/2)

Γ(λ + 4)
. (4.50)

Recall from (4.31) that

α ' β
µ2

Q2
, k2

t = µ2(1 − β). (4.51)

Changing variables from (α, k2
t ) to (β, µ2) we have the Jacobian

∣

∣

∣

∣

∂(α, k2
t )

∂(β, µ2)

∣

∣

∣

∣

≡
∣

∣

∣

∣

∣

∂α/∂β ∂k2
t /∂β

∂α/∂µ2 ∂k2
t /∂µ2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

µ2/Q2 −µ2

β/Q2 1 − β

∣

∣

∣

∣

∣

=
µ2

Q2
. (4.52)

Assuming a t dependence of the form exp(BD t), where the diffractive slope param-

eter BD ' 6 GeV−2 from experiment, then

σγ∗p =

∫ tmin

tcut

dt eBD t dσγ∗p

dt

∣

∣

∣

∣

t=0

' 1

BD

dσγ∗p

dt

∣

∣

∣

∣

t=0

. (4.53)

Accounting for the skewed effect, the change of variables from (α, k2
t ) to (β, µ2), and

the t dependence, (4.33) becomes

σγ∗p
T,qq̄ =

R2
g

BD

NC

16π

∫ 1

0

dβ

∫

dµ2

2π

µ2

Q2

∑

f

e2
f αem

1

2

∑

γ=±1

∑

h=± 1

2

∣

∣

∣

∣

∫

d2lt

π
DΨγ

h

dσ̂

dl2t

∣

∣

∣

∣

2

. (4.54)

From (4.18),

F
D(3)
2 =

Q2

4π2αem

β

xIP

dσγ∗p

dβ
, (4.55)

so after combining (4.49), (4.54), and (4.55), we finally obtain

F
D(3)
T,qq̄ =

∫ Q2

Q2

0

dµ2 1

xIP

[

αS(µ2)

µ2
xIP g(xIP , µ2)

]2
∑

f

e2
f

R2
g

3BD

β3(1 − β), (4.56)

which coincides with (22) of [153] (apart from the extra factor R2
g/BD). Since

6This factor is not seen in calculating Fig. 4.5(a) since it is absent in the limit xIP → 0 [154].
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∑

f e2
f = nf〈e2

f 〉 (with nf = 3), this can be written

F
D(3)
T,qq̄ =

∫ Q2

Q2

0

dµ2 fIP=G(xIP ; µ2) 〈e2
f 〉 βΣIP=G(β, µ2; µ2), (4.57)

where the ‘Pomeron flux factor’ is

fIP=G(xIP ; µ2) =
1

xIP

[

αS(µ2)

µ2
xIP g(xIP , µ2)

]2

, (4.58)

and the quark singlet distribution at a scale µ originating from a component of the

Pomeron of size 1/µ is

βΣIP=G(β, µ2; µ2) = cLO
q/G β3(1 − β), (4.59)

with cLO
q/G ≡ R2

g/BD. The notation IP = G is used to indicate that the perturbative

Pomeron is represented by two t-channel gluons. Since only the combination of

(4.58) and (4.59) is meaningful, all the numerical factors have been collected in

(4.59). In the next chapter, we will use this formula (and others derived in the rest

of the chapter) as the basis for a QCD analysis of DDIS data, after adding DGLAP

evolution and NLO corrections to the Pomeron structure function, and replacing

cLO
q/G with a free parameter, cq/G, to take account of these higher-order corrections.

Quark dipole with a longitudinally polarised photon

The dipole factorisation formula for Fig. 4.3(a) with a longitudinally polarised pho-

ton is

dσγ∗p
L,qq̄

dt

∣

∣

∣

∣

∣

t=0

=
NC

16π

∫ 1

0

dα

∫

dk2
t

2π

∑

f

e2
f αem

∑

h=± 1

2

∣

∣

∣

∣

∫

d2lt

π
DΨγ=0

h

dσ̂

dl2t

∣

∣

∣

∣

2

, (4.60)

where the light-cone wave functions for the quark–antiquark dipole with a longitu-

dinally polarised photon are [153]

Ψγ=0
h (α, kt) = 2

α(1 − α)Q

k2
t + α(1 − α)Q2

: h = ±1

2
. (4.61)
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Taking the limit lt → 0 of the combination of wave functions (4.37) and doing the

azimuthal integral gives7

∫ 2π

0

dφ

2π
DΨγ=0

h (α, kt, lt) = l2t
α(1 − α)Q2 − k2

t

[k2
t + α(1 − α)Q2]

3 4α(1 − α)Q : h = ±1

2
. (4.62)

Squaring this expression and summing over the quark helicities gives

∑

h=± 1

2

∣

∣

∣

∣

∫ 2π

0

dφ

2π
DΨγ=0

h (α, kt, lt)

∣

∣

∣

∣

2

= l4t
32

µ6

µ2

Q2
β2(2β − 1)2. (4.63)

The dipole cross section, dσ̂/dl2t (qp → qp), is the same as (4.48), giving

F
D(3)
L,qq̄ =

Q2

4π2αem

β

xIP

dσγ∗p
L,qq̄

dβ
=

(

∫ Q2

Q2

0

dµ2 µ2

Q2
fIP=G(xIP ; µ2)

)

cLO
L/G β3(2β − 1)2,

(4.64)

where cLO
L/G = 2R2

g/(9BD); this result is a factor of 2 different from (23) of [153], but

is in agreement with [101]. Note that this term is twist-four due to the extra factor

µ2/Q2 with respect to (4.57), and hence we should not add DGLAP evolution.

Gluon dipole with a transversely polarised photon

Now consider the kinematics of the qq̄g system shown in Fig. 4.3(b). Although this

diagram has an extra factor αS with respect to the qq̄ system shown in Fig. 4.3(a),

it is known to be dominant at large MX (small β) due to the extra t-channel spin-1

gluon. Using a Sudakov parameterisation (4.26) of the momentum k of the off-shell

gluon gives the momenta of the outgoing qq̄ pair and gluon as

q − k = (1 − α) q′ +
xB

Q2

k2
t + M2

qq̄

1 − α
p − k⊥, (4.65)

k̃ = k + xIP p = α q′ + xB

k2
t /Q

2

α
p + k⊥, (4.66)

respectively, where Mqq̄ is the invariant mass of the qq̄ system. The on-shell condi-

tions, (q − k)2 = M2
qq̄ and k̃2 = 0, determine

βk = −xB

(

1 +
k2

t + M2
qq̄

(1 − α)Q2

)

, xIP = xB

(

1 +
k2

t + αM2
qq̄

α(1 − α)Q2

)

. (4.67)

7Note the extra factor 2 in (4.62) compared to (21) of [153].
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The invariant mass of the qq̄g system is given by

M2
X = (q + xIP p)2 =

k2
t + αM2

qq̄

α(1 − α)
. (4.68)

The calculation is greatly simplified in the approximation Mqq̄ � Q, in addition

to assuming strongly-ordered transverse momenta, lt � kt � Q. In this limit, the

kinematics of the (qq̄)g system is identical to the previously considered qq̄ system of

Fig. 4.3(a). The emitted (qq̄) pair is localised in impact parameter space, and forms

an effective ‘gluon’ conjugate in colour to the emitted gluon. The (qq̄)g system can

thus be considered as forming an effective gg dipole.

The dipole factorisation formula for Fig. 4.3(b) with a transversely polarised

photon is then

dσγ∗p
T,gg

dt

∣

∣

∣

∣

∣

t=0

=
N2

C − 1

16π

∫ 1

0

dα

∫

dk2
t

2π

∑

f

e2
f αem

∑

m,n=1,2

∣

∣

∣

∣

∫

d2lt

π
DΨmn dσ̂

dl2t

∣

∣

∣

∣

2

. (4.69)

Again there are four different permutations of the couplings of the two gluons to

the two components of the effective gluon dipole, shown in Fig. 4.4(b), which are

obtained by shifting the argument of the wave function as in (4.37). The light-cone

wave functions for the effective gluon dipole with a transversely polarised photon

are [153]

Ψmn(α, kt) =
1

√

α(1 − α)Q2

k2
t δ

mn − 2km
t kn

t

k2
t + α(1 − α)Q2

: m, n = 1, 2. (4.70)

Taking the limit lt → 0 of DΨmn and doing the azimuthal integral gives

∫ 2π

0

dφ

2π
DΨmn(α, kt, lt) = l2t

2k2
t

√

α(1 − α)Q2

3α(1 − α)Q2 + k2
t

[k2
t + α(1 − α)Q2]

3

(

δmn − 2km
t kn

t

k2
t

)

,

(4.71)

cf. (24) of [153]. Squaring this expression and summing over the indices m, n = 1, 2

gives
∑

m,n=1,2

∣

∣

∣

∣

∫ 2π

0

dφ

2π
DΨmn(α, kt, lt)

∣

∣

∣

∣

2

= l4t
8

µ6
(1 − β)2(1 + 2β)2 1

β
. (4.72)

The dipole cross section for gp → gp is obtained from the scattering process

gq → gq with t-channel gluon exchange, shown in Fig. 4.5(b). Here, the squared
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matrix element is

|M|2 =
1

4
C g4

l4t
Tr[/pγγ(/p − /l⊥)γδ] dµσ(k, p) dνρ(k + l⊥, p) (−gαγ) (−gβδ)

× [(2k + l⊥)αgµν − (k + 2l⊥)µgνα + (l⊥ − k)νgµα]

×
[

(2k + l⊥)βgρσ − (k + 2l⊥)σgρβ + (l⊥ − k)ρgσβ
]

, (4.73)

where the transverse polarisations of the incoming and outgoing gluons are summed

in a light-cone gauge,

dµσ(k, p) ≡ −gµσ +
kµpσ + pµkσ

p · k , (4.74)

and where the colour factor is

C(gq → gq) =
1

NC

1

(N2
C − 1)

fABCfABD Tr[tCtD] =
1

2
. (4.75)

In the high-energy limit, where only the terms to leading O(ŝ/|t̂|) are retained, that

is, in the lt → 0 limit,

dσ̂

dl2t
(gq → gq) =

1

l4t
2παS(l2t )αS(µ2), (4.76)

where appropriate scales for αS have been chosen corresponding to the two different

vertices in Fig. 4.5(b). As before, we obtain the cross section for gp → gp by making

the replacement (4.47), which gives

dσ̂

dl2t
(gp → gp) =

1

l4t

3π2

2
αS(µ2)fg(xIP , l2t , µ

2). (4.77)

Inserting (4.72) and (4.77) into (4.69), and accounting for the skewed effect, the

change of variables from (α, k2
t ) to (β, µ2), and the t dependence, we obtain

dσγ∗p
T,gg

dβ
=

4π2αem

Q2

∫ Q2

Q2

0

dµ2

[

αS(µ2)

µ2
xIPg(xIP , µ2)

]2
∑

f

e2
f

9R2
g

8BD

(1 − β)2(1 + 2β)2 1

β

(4.78)

We must account for the fact that the off-shell gluon with momentum k in

Fig. 4.3(b) does not interact directly with the photon, but first splits into a quark–

antiquark pair forming the ‘effective gluon’ of the dipole. To do this, we replace

β → β ′ in the previous formula and include the DGLAP splitting for g → qq̄, that
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(a)

k

γ∗

p

l⊥l⊥ + xIPp

q

p′

k̃

q − k

(b)

γ∗

p

l⊥l⊥ + xIPp

q

k

q − k

p′

k̃

Figure 4.6: (a) Quark dipole and (b) effective gluon dipole interacting with the
proton via a perturbative Pomeron represented by two t-channel sea quarks.

is,
dσγ∗p

T,(qq̄)g

dβ
=

αS(Q2)

2π
ln

(

Q2

µ2

)
∫ 1

β

dβ ′

β ′
Pqg

(

β

β ′

)

dσγ∗p
T,gg

dβ ′
. (4.79)

Putting everything together, we finally obtain

F
D(3)
T,(qq̄)g =

Q2

4π2αem

β

xIP

dσγ∗p
T,(qq̄)g

dβ
=

∫ Q2

Q2

0

dµ2 fIP=G(xIP ; µ2) 〈e2
f〉βΣIP=G(β, Q2; µ2),

(4.80)

where

βΣIP=G(β, Q2; µ2) = 2nf
αS(Q2)

2π
ln

(

Q2

µ2

)

β

∫ 1

β

dβ ′

β ′2
Pqg

(

β

β ′

)

β ′gIP=G(β ′, µ2; µ2),

(4.81)

with

β ′gIP=G(β ′, µ2; µ2) = cLO
g/G (1 − β ′)2(1 + 2β ′)2, (4.82)

where cLO
g/G = 9R2

g/(16BD). Note the extra factor 2 compared to (25) of [153] (this

was corrected in a later paper [155]).

4.7.2 Two-quark exchange

We now consider the Pomeron as being represented by two sea quarks rather than

two gluons, and calculate the lowest order Feynman diagrams using the same for-

malism as in Section 4.7.1. As far as we are aware, this is a completely new idea

which has not previously been proposed in the literature. The reason why a two-
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(a)

q − k

γ∗

q q − k

γ∗

q

k

l⊥l⊥

k

l⊥l⊥

k k

(b)
γ∗

q − kq q − k

γ∗

q

k

k

k

k

l⊥ l⊥ l⊥ l⊥

Figure 4.7: The two different permutations of the couplings of the two t-channel sea
quarks to the two components of (a) the quark dipole and (b) the effective gluon
dipole.

quark Pomeron is necessary is due to the valence-like shape of the gluon distribution

of the proton at low scales; we will discuss this problem in more detail in the next

two chapters. The quark dipole and effective gluon dipole interacting with the two-

quark Pomeron are shown in Fig. 4.6. The light-cone wave functions of the photon,

Ψ(α, kt), are the same as those given in Section 4.7.1. The two different permuta-

tions of the couplings of the two sea quarks to the two components of the dipole,

shown in Fig. 4.7, are obtained with

DΨ(α, kt) ≡ 2Ψ(α, kt), (4.83)

that is, there are no terms with a shifted argument as for the two-gluon Pomeron.

Since there is no lt dependence here, the integrals over lt in the dipole factorisation

formulae can be done immediately.
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(a)

p p

ρ, B σ, B

k

ν, Aµ, A

k

l⊥l⊥

(b)

p p

ρ, B σ, B

k

ν, Aµ, A

l⊥l⊥

k

Figure 4.8: Cut diagrams giving the dipole cross sections for the two-quark Pomeron:
(a) qq → gg and (b) gq → qg.

Quark dipole with a transversely polarised photon

The dipole factorisation formula for Fig. 4.6(a) with a transversely polarised photon

is
dσγ∗p

T,qq̄

dt

∣

∣

∣

∣

∣

t=0

=
NC

16π

∫ 1

0

dα

∫

dk2
t

2π

∑

f

e2
f αem

1

2

∑

γ=±1

∑

h=± 1

2

|DΨγ
h|

2 σ̂2, (4.84)

where
∑

γ=±1

∑

h=± 1

2

|DΨγ
h(α, kt)|2 =

16

µ2
(1 − β). (4.85)

The dipole cross section for qp → gp is obtained from the scattering process qq → gg

with t-channel sea quark exchange, shown in Fig. 4.8(a). Here, the squared matrix

element is

|M|2 =
1

4
C g4

l4t
Tr[γµ/kγν/l⊥γσ/pγρ/l⊥] dµν(k + l⊥, p) dρσ(p − l⊥, k), (4.86)

where the colour factor is

C(qq → qq) =
1

N2
C

Tr[tAtAtBtB] =
16

27
. (4.87)

In the high-energy limit, where only the terms to leading O(ŝ/|t̂|) are retained,

dσ̂

dl2t
(qq → gg) =

1

l2t

32π

27

xIP

µ2
αS(l2t )αS(µ2). (4.88)

Note that this expression is suppressed by an extra factor O(|t̂|/ŝ) compared to the

t-channel gluon exchange processes considered in Section 4.7.1, where ŝ ' µ2/xIP
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and t̂ = −l2t . We obtain the cross section for qp → gp by making the replacement

αS(l2t )

2π
xIP Pqq(xIP )

∣

∣

∣

∣

xIP �1

=
αS(l2t )

2π
xIP CF =

2

3π
xIPαS(l2t ) → fq(xIP , l2t , µ

2), (4.89)

where fq(xIP , l2t , µ
2) is the unintegrated quark distribution of the proton. This re-

placement gives

σ̂(qp → gp) =
16π2

9

αS(µ2)

µ2

∫ µ2

0

dl2t
l2t

fq(xIP , l2t , µ
2) =

8π2

27

αS(µ2)

µ2
xIP S(xIP , µ2), (4.90)

where S(xIP , µ2) is the integrated sea quark distribution of the proton and we have

assumed light quark flavour symmetry, S(xIP , µ2) = q(xIP , µ2)/(2nf), with nf = 3.

Again, we should really use the skewed quark distributions, which gives rise to an

extra factor [93]

Rq(λ) =
22λ+3

√
π

Γ(λ + 5/2)

Γ(λ + 3)
, (4.91)

assuming that xIP S(xIP , µ2) ∝ x−λ
IP at small xIP . The final result is

F
D(3)
T,qq̄ =

∫ Q2

Q2

0

dµ2 fIP=S(xIP ; µ2) 〈e2
f〉βΣIP=S(β, µ2; µ2), (4.92)

where the ‘Pomeron flux factor’ is

fIP=S(xIP ; µ2) =
1

xIP

[

αS(µ2)

µ2
xIP S(xIP , µ2)

]2

, (4.93)

and the quark singlet distribution at a scale µ originating from a component of the

Pomeron of size 1/µ is

βΣIP=S(β, µ2; µ2) = cLO
q/S β(1 − β), (4.94)

with cLO
q/S = 4R2

q/(81BD). The notation IP = S is used to indicate that the pertur-

bative Pomeron is represented by two t-channel sea quarks. In the next chapter we

will add DGLAP evolution and NLO corrections to the Pomeron structure function

in a QCD analysis of DDIS data.
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Quark dipole with a longitudinally polarised photon

The dipole factorisation formula for Fig. 4.6(a) with a longitudinally polarised pho-

ton is
dσγ∗p

L,qq̄

dt

∣

∣

∣

∣

∣

t=0

=
NC

16π

∫ 1

0

dα

∫

dk2
t

2π

∑

f

e2
f αem

∑

h=± 1

2

∣

∣DΨγ=0
h

∣

∣

2
σ̂2, (4.95)

where
∑

h=± 1

2

∣

∣DΨγ=0
h (α, kt)

∣

∣

2
=

32

µ2

µ2

Q2
β2, (4.96)

leading to

F
D(3)
L,qq̄ =

Q2

4π2αem

β

xIP

dσγ∗p
L,qq̄

dβ
=

(

∫ Q2

Q2

0

dµ2 µ2

Q2
fIP (xIP ; µ2)

)

cLO
L/S β3, (4.97)

where cLO
L/S = 32R2

q/(729BD). Note that this term is twist-four due to the extra factor

µ2/Q2 with respect to (4.92), and hence we should not add DGLAP evolution.

Gluon dipole with a transversely polarised photon

The dipole factorisation formula for Fig. 4.6(b) with a transversely polarised photon

is
dσγ∗p

gg,T

dt

∣

∣

∣

∣

∣

t=0

=
N2

C − 1

16π

∫ 1

0

dα

∫

dk2
t

2π

∑

f

e2
f αem

∑

m,n=1,2

|DΨm,n|2 σ̂2, (4.98)

where
∑

m,n=1,2

|DΨmn(α, kt)|2 =
8

µ2
(1 − β)2 1

β
. (4.99)

The squared matrix element for gq → qg, shown in Fig. 4.8(b), is

|M|2 =
1

4
C g4

l4t
Tr[γµ/l⊥γρ/pγσ/l⊥γν(/k + /l⊥)] dµν(k, p) dρσ(p − l⊥, k), (4.100)

where the colour factor is

C(gq → gq) =
1

NC

1

N2
C − 1

Tr[tAtAtBtB] =
2

9
. (4.101)

The dipole cross section is then

dσ̂

dl2t
(gq → qg) =

1

l2t

32π

27

xIP

µ2
αS(l2t )αS(µ2), (4.102)
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so, making the replacement (4.89), the gp → qp cross section is

σ̂(gp → qp) =
2π2

3

αS(µ2)

µ2

∫ µ2

0

dl2t
l2t

∑

q

fq(xIP , l2t , µ
2) =

2π2

3

αS(µ2)

µ2
xIP S(xIP , µ2).

(4.103)

Again, we account for the g → qq̄ splitting using (4.79). The final result is

F
D(3)
T,(qq̄)g =

∫ Q2

Q2

0

dµ2 fIP=S(xIP ; µ2) 〈e2
f〉βΣIP=S(β, Q2; µ2), (4.104)

where

βΣIP=S(β, Q2; µ2) = 2nf
αS(Q2)

2π
ln

(

Q2

µ2

)

β

∫ 1

β

dβ ′

β ′2
Pqg

(

β

β ′

)

β ′gIP=S(β ′, µ2; µ2),

(4.105)

with

β ′gIP=S(β ′, µ2; µ2) = cLO
g/S (1 − β ′)2, (4.106)

where cLO
g/S = R2

q/(9BD).



Chapter 5

A QCD analysis of diffractive

deep-inelastic scattering data

A simple parameterisation based on the two-gluon exchange calculations presented

in Section 4.7.1 was proposed by Bartels-Ellis-Kowalski-Wüsthoff (BEKW) in [156].

A slightly modified version of the BEKW parameterisation has been used by ZEUS

to describe their recent DDIS data [157, 158]:

xIP F
D(3)
2 (xIP , β, Q2) = cT F T

qq̄ + cL F L
qq̄ + cg F T

qq̄g, (5.1)

where

F T
qq̄ =

(

x0

xIP

)nT (Q2)

β(1 − β), (5.2)

F L
qq̄ =

(

x0

xIP

)nL(Q2)
Q2

0

Q2 + Q2
0

ln2

(

7

4
+

Q2

4βQ2
0

)

β3(1 − 2β)2, (5.3)

F T
qq̄g =

(

x0

xIP

)ng(Q2)

ln

(

1 +
Q2

Q2
0

)

(1 − β)γ, (5.4)

and n(Q2) = n0 + n1 ln(1 + Q2/Q2
0). This parameterisation is rather far from the

original perturbative QCD calculations of Section 4.7.1, with several parameters

required to be determined from experiment.

In this chapter we perform a perturbative QCD analysis of the new high precision

DDIS data, recently obtained by the ZEUS [157, 158] and H1 [148] Collaborations

at HERA. The analysis is novel in that it treats individually the components of the

Pomeron of different transverse size. The description of the DDIS data is based on

a purely perturbative QCD framework. We take input forms of the PDFs of the

Pomeron given by the calculation of the lowest-order QCD diagrams for γ∗p → Xp

112
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(a)

xIPg(xIP , µ2)xIPg(xIP , µ2)p

γ∗

βΣIP=G(β, Q2; µ2)

(b)

xIPS(xIP , µ2)xIPS(xIP , µ2)p

γ∗

βΣIP=S(β, Q2; µ2)

Figure 5.1: Cut diagrams illustrating the main ideas contained in (5.5). Each com-
ponent of the perturbative Pomeron of size 1/µ is represented by either (a) two
t-channel gluons in a colour singlet or (b) sea quark–antiquark exchange. The per-
turbative Pomeron flux factors fIP (xIP ; µ2) are given in terms of the gluon and sea
quark distributions of the proton, g(xIP , µ2) and S(xIP , µ2). The Pomeron structure
function FIP

2 (β, Q2; µ2) is evaluated from the quark singlet, ΣIP (β, Q2; µ2), and gluon,
gIP (β, Q2; µ2), distributions of the Pomeron.

(Section 4.7). In the ‘resolved’ Pomeron analyses described in Section 4.6, the

Pomeron is treated as a hadron-like object of more or less fixed size. However, the

microscopic structure of the Pomeron is different to that of a hadron. In perturbative

QCD, it is known that the Pomeron singularity is not an isolated pole, but a branch

cut, in the complex angular momentum plane [152]. The pole singularity corresponds

to a single particle, whereas a branch cut may be regarded as a continuum series

of poles. That is, the Pomeron wave function consists of a continuous number of

components. Each component i has its own size, 1/µi. The QCD DGLAP evolution

of a component should start from its own scale µi, provided that µi is large enough for

the perturbative evolution to be valid. Therefore, the expression for the diffractive

structure function F
D(3)
2 contains an integral over the Pomeron size, or rather over

the scale µ. So to obtain F
D(3)
2 we evolve the input PDFs of each component of

the Pomeron from their own starting scale µ up to the final scale Q. The extra

integral over µ reflects the fact that the partonic structure of the Pomeron is more

complicated than that of a normal hadron.



5.1 New perturbative QCD approach to DDIS 114

5.1 New perturbative QCD approach to DDIS

The fact that the Pomeron singularity is a cut rather than a pole implies an integral

over the Pomeron scale, cf. (4.22),

F
D(3)
2,P (xIP , β, Q2) =

∑

IP=G,S,GS

∫ Q2

Q2

0

dµ2 fIP (xIP ; µ2) FIP
2 (β, Q2; µ2); (5.5)

see Fig. 5.1. Here, the subscript P on F
D(3)
2,P is to indicate that this is the perturbative

contribution with µ > Q0 ∼ 1 GeV. The notation IP = G, S, GS denotes that the

perturbative Pomeron is represented by two t-channel gluons, two t-channel sea

quarks, or the interference between these, respectively. The perturbative Pomeron

flux factors are

fIP=G(xIP ; µ2) =
1

xIP

[

αS(µ2)

µ2
xIP g(xIP , µ2)

]2

, (5.6)

fIP=S(xIP ; µ2) =
1

xIP

[

αS(µ2)

µ2
xIP S(xIP , µ2)

]2

, (5.7)

fIP=GS(xIP ; µ2) =
1

xIP

[

αS(µ2)

µ2

]2

2 xIPg(xIP , µ2) xIPS(xIP , µ2). (5.8)

The Pomeron structure function, calculated at NLO, is

FIP
2 (β, Q2; µ2) = 〈e2

f 〉βΣIP (β, Q2; µ2) +
αS(Q2)

2π
β

∫ 1

β

dβ ′

β ′

×
[

〈e2
f 〉CNLO

2,q

(

β

β ′

)

ΣIP (β ′, Q2; µ2) + 〈e2
f〉CNLO

2,g

(

β

β ′

)

gIP (β ′, Q2; µ2)

]

, (5.9)

where 〈e2
f 〉 = (1/nf )

∑

f e2
f (with nf = 3), and where the coefficient functions CNLO

2,q

and CNLO
2,g are calculated in the MS scheme [159]. The quark singlet, ΣIP (β, Q2; µ2),

and gluon, gIP (β, Q2; µ2), distributions of the Pomeron are obtained by NLO DGLAP

evolution up to Q2 from input Pomeron PDFs parameterised at a starting scale µ2:

∂

∂ ln Q2

(

ΣIP (β, Q2; µ2)

gIP (β, Q2; µ2)

)

=
αS(Q2)

2π

∫ 1

β

dβ ′

β ′

×





Pqq

(

β
β′ , αS(Q2)

)

2 nf Pqg

(

β
β′ , αS(Q2)

)

Pgq

(

β
β′ , αS(Q2)

)

Pgg

(

β
β′ , αS(Q2)

)





(

ΣIP (β ′, Q2; µ2)

gIP (β ′, Q2; µ2)

)

. (5.10)

The quark singlet distribution is ΣIP ≡ uIP + dIP + sIP + ūIP + d̄IP + s̄IP , with uIP =

dIP = sIP = ūIP = d̄IP = s̄IP , so that the non-singlet distributions are all zero. The
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contributions of the charm and bottom quarks to FIP
2 (β, Q2; µ2) are calculated in

the heavy quark fixed-flavour number scheme from the photon-gluon fusion process

including NLO corrections [160]:

FIP,hh̄
2 (β, Q2; µ2) =

αS(Q2)

2π

[

e2
h CLO

2,g ⊗ gIP +
αS(Q2)

2π

×
(

e2
h CNLO

2,g ⊗ gIP + e2
h CNLO

2,q ⊗ ΣIP + 〈e2
f〉DNLO

2,q ⊗ ΣIP
)

]

, (5.11)

where

C ⊗ aIP ≡
∫ 1

β

„

1+
4m2

h
Q2

«dβ ′ C
(

β

β ′
, Q2, m2

h

)

aIP (β ′, Q2; µ2). (5.12)

The input parameterisations for the Pomeron PDFs are obtained from the lowest-

order Feynman diagrams (see Section 4.7):

βΣIP=G(β, µ2; µ2) = cq/G β3 (1 − β), (5.13)

β ′gIP=G(β ′, µ2; µ2) = cg/G (1 + 2β ′)2 (1 − β ′)2, (5.14)

βΣIP=S(β, µ2; µ2) = cq/S β (1 − β), (5.15)

β ′gIP=S(β ′, µ2; µ2) = cg/S (1 − β ′)2, (5.16)

βΣIP=GS(β, µ2; µ2) = cq/GS β2 (1 − β), (5.17)

β ′gIP=GS(β ′, µ2; µ2) = cg/GS (1 + 2β ′) (1 − β ′)2. (5.18)

Here, the coefficients cLO
a/IP of Section 4.7, where a = q, g and IP = G, S, GS, which

implicitly include all the numerical factors arising from the lowest-order calculations,

have been replaced by parameters ca/IP . We will let these normalisations go free in

fits to the DDIS data to account for higher-order QCD corrections (effective K-

factors). Later on, we will discuss the size of these K-factors obtained from the

fits. The normalisations of the interference terms between the two-gluon and the

two-quark Pomerons is fixed by ca/GS =
√

ca/G ca/S; that is, the K-factor is fixed

for the amplitude rather than for the cross section.

In addition to the leading-twist contribution arising from the quark dipole cal-

culation with a transversely polarised photon, there is an analogous twist-four con-

tribution to F
D(3)
2 arising from a longitudinally polarised photon (see Section 4.7),

F
D(3)
L,P (xIP , β, Q2) =

∑

IP=G,S,GS

(

∫ Q2

Q2

0

dµ2 µ2

Q2
fIP (xIP ; µ2)

)

FIP
L (β). (5.19)

The twist-four nature of this longitudinal contribution is evident from the µ2/Q2
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factor. The β dependences are again obtained from lowest-order perturbative QCD

calculations (see Section 4.7):

FIP=G
L (β) = cL/G β3 (2β − 1)2, (5.20)

FIP=S
L (β) = cL/S β3, (5.21)

FIP=GS
L (β) = cL/GS β3 (2β − 1), (5.22)

where, as before, the parameters cLO
L/IP (IP = G, S, GS), which include all the

numerical factors, have been replaced by free parameters, cL/IP . Again, we fix

cL/GS =
√

cL/G cL/S .

We also include a non-perturbative (NP) Pomeron contribution (from scales

µ < Q0) and a secondary Reggeon (IR) contribution to F
D(3)
2 (xIP , β, Q2), so that

F
D(3)
2 = F

D(3)
2,P + F

D(3)
2,NP + F

D(3)
L,P + F

D(3)
2,IR , (5.23)

with

F
D(3)
2,NP(xIP , β, Q2) = fIP=NP(xIP ) FIP=NP

2 (β, Q2; Q2
0), (5.24)

F
D(3)
2,IR (xIP , β, Q2) = cIR fIR(xIP ) FIR

2 (β, Q2), (5.25)

where cIR is taken to be a free parameter. Here, the non-perturbative Pomeron and

Reggeon flux factors are1

fi(xIP ) =

∫ tmin

tcut

dt
eBi t

x
2αi(t)−1
IP

=
x

1−2αi(0)
IP

(

1 − eBitcutx
−2α′

itcut

IP

)

Bi + 2α′
i ln(1/xIP )

, (5.26)

with i = IP and IR respectively, and αi(t) = αi(0) + α′
i t. The integration limits are

taken to be tcut = −1 GeV2 and tmin ' 0 GeV2. For the non-perturbative Pomeron,

we fix αIP (0) = 1.08 [124], α′
IP = 0.26 GeV−2 and BIP = 4.6 GeV−2 [161], whereas

for the Reggeon we take αIR(0) = 0.50 [162], α′
IR = 0.90 GeV−2 [163] and BIR = 2.0

GeV−2 [164]. Apart from αIP (0), these are the same values used in the preliminary

H1 analysis [148]. The Reggeon structure function, FIR
2 (β, Q2), is calculated at NLO

from the GRV pionic PDFs [165]. For the non-perturbative Pomeron, the input

quark singlet and gluon distributions, βΣIP=NP(β, Q2
0; Q

2
0) and β ′gIP=NP(β ′, Q2

0; Q
2
0),

are taken to have the same β dependence as for the two-quark Pomeron (see (5.15)

and (5.16)), with different normalisations cq/NP and cg/NP. (Taking the same β

dependence as for the two-gluon Pomeron, (5.13) and (5.14), gives a much worse

1The couplings of the Pomeron or Reggeon to the proton are absorbed into the parameters
ca/NP (a = q, g) and cIR.
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description of the data.)

An improvement to the treatment of the secondary Reggeon contribution de-

scribed above might be to introduce a ‘perturbative’ contribution similar to the

two-quark Pomeron, but depending on the valence quark distributions of the proton

rather than the sea quark distributions. However, for the present analyses we adopt

the same treatment of the secondary Reggeon contribution as H1 [148] to avoid in-

troducing further additional parameters, and since there are rather few F
D(3)
2 data

points at large xIP > 0.01 where the secondary Reggeon contribution is important.

5.2 Description of DDIS data

We fit to the preliminary ZEUS [157,158] and H1 [148] DDIS data using (5.23), and

varying the free parameters until an optimum description of the data is obtained.

We impose a cut MX > 2 GeV on the fitted data to exclude large contributions

from vector meson production and other higher-twist effects, and a cut y < 0.45 so

that we can assume that the measured reduced diffractive cross section σ
D(3)
r is ap-

proximately equal to F
D(3)
2 (see (4.17)). The statistical and systematic experimental

errors are added in quadrature.2 The χ2 is then

χ2 =
∑

i

[

(F
D(3)
2 )exp.

i − (F
D(3)
2 )th.

i

]2

(δ2
stat. + δ2

sys.)
exp.
i

, (5.27)

where the sum is over all data points satisfying the cuts y < 0.45 and MX > 2 GeV.

We use the qcdnum program [166] to perform the NLO DGLAP evolution and

the minuit program [167] to find the optimal parameters. The values of αS(M2
Z) and

the charm and bottom quark masses are taken to be the same as in the MRST2001

NLO parton set [127]. Two sets of preliminary ZEUS data are fitted: those obtained

using the leading proton spectrometer (LPS) [157]3, and those obtained using the

so-called MX method [158] which is based on the fact that diffractive and non-

diffractive events have very different ln M 2
X distributions. For the latter data set,

in addition to elastic proton scattering, proton dissociation up to mass MY = 2.3

GeV is included. Clearly the cross section will be larger in this case, so we allow

for the overall normalisation of these data by multiplying (5.23) by a factor NZ. An

analogous normalisation, NH , is applied for the preliminary H1 data [148], where

diffractive events are selected on the basis of a large rapidity gap, and where proton

2In reality the various systematic errors are often strongly correlated; these correlations are
accounted for in the H1 analysis [148] but are not publically available.

3This data set has since been published in [168].
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dissociation up to mass MY = 1.6 GeV is included. The ZEUS MX data [158] do

not include secondary Reggeon contributions, therefore we omit the fourth term of

(5.23) when fitting to these data. We fit to each data set separately, and then we

perform fits to the three data sets combined.

5.2.1 . . . with a ‘dummy’ gluon distribution

For our first study, we parameterise the perturbative Pomeron flux factor (5.6) using

a simplified form for the gluon distribution of the proton,

xIPg(xIP , µ2) = x−λ
IP , (5.28)

where λ is independent of µ2 and is determined by the fit to data.4 The normalisation

of (5.28) has been absorbed into the free parameters cq/G, cg/G, and cL/G. The two-

quark Pomeron is not included, that is, effectively cq/S = cg/S = cL/S = 0.

Varying the Q0 parameter, we find that the best fit to the combined ZEUS

and H1 data sets is obtained with Q2
0 = 0.8 GeV2, which gives a χ2/d.o.f. = 1.05

with cg/NP going to zero. Later on, we will use the MRST2001 NLO [127] PDFs

of the proton instead of the simplified form (5.28), where the minimum possible

scale is 1 GeV. Using the form (5.28) with Q2
0 = 1 GeV2 gives only a slightly

worse χ2/d.o.f. = 1.07. Furthermore, fixing cg/NP = 0 makes little difference to the

quality of the fit. Therefore, in all fits presented here, we take Q2
0 = 1 GeV2 and fix

cg/NP = 0.

We find that each data set can be well described by this simple, perturbatively-

motivated, approach. However, different values of λ and the other parameters are

obtained from the ZEUS and H1 data, as can be seen from Table 5.1. In particular,

the H1 data seem to have a flatter xIP dependence than the ZEUS data. This should

be regarded as some inconsistency between the data sets, but not as a contradiction,

since it is possible to obtain an adequate description of the combined data sets, as

shown in Fig. 5.2 and by the results in the last column of Table 5.1.

Since the normalisation of the ‘dummy’ gluon distribution has been absorbed into

the ci/G parameters (i = q, g, L) it is difficult to work out the effective ‘K-factors’ in

this case, but we will do this in the next section.

4Strictly speaking, λ should depend on lnµ2. We investigated this effect by taking λ(µ2) =
0.08 + cλ ln(µ2/(0.45 GeV2)) with Q0 = 1 GeV and cg/NP = 0. The combined fit to ZEUS and
H1 DDIS data gave a χ2/d.o.f. = 1.12 with cλ = 0.054± 0.006. This is consistent with the value
found by H1 in a fit to inclusive F2 data [169] of cλ = 0.0481± 0.0013(stat.)± 0.0037(syst.). Since
the χ2/d.o.f. was not improved compared to the corresponding fit which took λ to be independent
of µ2 (χ2/d.o.f. = 1.07), we used the form (5.28) for simplicity.
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Figure 5.2: Fit to combined preliminary ZEUS [157, 158] and H1 [148] F
D(3)
2 data

with a ‘dummy’ gluon distribution of the proton proportional to x−λ
IP (5.28). The

curves show the four contributions to the total, as defined in (5.23). Only data
points included in the fit are plotted.
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Data sets fitted ZEUS LPSa ZEUS MX H1 ZEUS + H1
Number of points 69 121 214 404
χ2/d.o.f. 0.67 0.78 1.08 1.08
cq/G (GeV2) 0.71 ± 0.39 0.48 ± 0.12 2.2 ± 0.4 1.1 ± 0.2
cg/G (GeV2) 0.11 ± 0.05 0.10 ± 0.02 0.26 ± 0.05 0.17 ± 0.02
cL/G (GeV2) 0 0.20 ± 0.08 0.54 ± 0.17 0.36 ± 0.08
cq/NP (GeV−2) 0.87 ± 0.13 1.22 ± 0.04 0.91 ± 0.05 1.09 ± 0.05
cIR (GeV−2) 6.7 ± 0.8 — 7.5 ± 2.0 6.2 ± 0.6
λ 0.23 ± 0.04 0.21 ± 0.02 0.13 ± 0.01 0.17 ± 0.01
NZ — 1.56 (fixed) — 1.56 ± 0.06
NH — — 1.26 (fixed) 1.26 ± 0.05
R(6.5 GeV2), R(90 GeV2) 0.60, 0.60 0.56, 0.57 0.54, 0.55 0.55, 0.56

Table 5.1: The values of the free parameters obtained in the fits to preliminary
ZEUS [157, 158] and H1 [148] F

D(3)
2 data with a ‘dummy’ gluon distribution of the

proton proportional to x−λ
IP (5.28). The last row R(Q2), defined in (5.33), gives

the fraction of the Pomeron’s (plus Reggeon’s) momentum carried by gluons at
xIP = 0.003.

aFitting to the published ZEUS LPS data [168], which is unchanged from the preliminary data
fitted here apart from having smaller systematic errors, gives a χ2/d.o.f. = 0.77.

5.2.2 . . . with MRST gluon and sea quark distributions

These fits to the DDIS data imply that the growth of F
D(3)
2 with decreasing xIP

comes from a gluon distribution which grows as x−λ
IP with λ ' 0.17. On the other

hand, at low scales µ ∼ Q0 ∼ 1 GeV, which are dominant due to the 1/µ4 factor

in the Pomeron flux factor (5.6), the gluon distribution of the proton obtained from

global analyses of DIS and related data is valence-like, or even negative, at small x,

while the sea quark distribution grows as a negative power of x with decreasing x;

see Fig. 5.3. Therefore, in order to describe the DDIS data we are forced to introduce

a Pomeron comprised of two t-channel sea quarks, illustrated in Fig. 5.1(b).

The results of fits with this extended model, using the MRST2001 NLO [127]

gluon and sea quark distributions of the proton, are shown in Table 5.2 and Fig. 5.4.

We set xIP g(xIP , µ2) = 0 if it is negative. Again, good fits are obtained whether

fitting ZEUS and H1 data separately or all together. However, the fit with only

H1 data is dramatically different from the other three fits in Table 5.2, with a

much larger two-gluon Pomeron contribution compared to the other three, which

are dominated by the two-quark Pomeron. This difference can be traced to the

flatter xIP dependence of the H1 data compared to the ZEUS data (see Table 5.1).

Note that some parameters in Table 5.2 are consistent with zero, indicating some

redundancy in this extended model.
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Figure 5.3: Comparison of MRST2001 NLO [127] and CTEQ6M [35] PDFs at their
respective input scales of (a) 1 GeV2 and (b) 1.69 GeV2. The more recent MRST2002
[170] and MRST2004 [34] PDFs are similar to MRST2001. In (a) the CTEQ gluon
distribution is set to zero if it is negative.

Data sets fitted ZEUS LPS ZEUS MX H1 ZEUS + H1
Number of points 69 121 214 404
χ2/d.o.f. 0.79 0.96 0.71 1.14
cq/G (GeV2) 0.001 ± 0.053 0.018 ± 0.023 0.36 ± 0.06 0.18 ± 0.04
cg/G (GeV2) 0 0 0.37 ± 0.02 0
cL/G (GeV2) 0.2 ± 1.5 0.050 ± 0.033 0.14 ± 0.03 0.064 ± 0.024
cq/S (GeV2) 0.97 ± 0.40 0.49 ± 0.10 1.1 ± 0.1 0.58 ± 0.07
cg/S (GeV2) 1.2 ± 0.2 1.23 ± 0.07 0 1.31 ± 0.07
cL/S (GeV2) 0.41 ± 0.28 0.21 ± 0.09 0 0.11 ± 0.05
cq/NP (GeV−2) 0.79 ± 0.22 1.16 ± 0.08 0.09 ± 0.11 0.92 ± 0.07
cIR (GeV−2) 6.6 ± 0.7 — 8.4 ± 1.8 6.4 ± 0.5
NZ — 1.54 (fixed) — 1.54 ± 0.06
NH — — 1.24 (fixed) 1.24 ± 0.04
Kq/G 0.006 ± 0.318 0.11 ± 0.14 2.2 ± 0.4 1.1 ± 0.2
Kg/G 0 0 3.9 ± 0.2 0
KL/G 5 ± 41 1.4 ± 0.9 3.8 ± 0.8 1.7 ± 0.6
Kq/S 7.1 ± 2.9 3.6 ± 0.7 8.0 ± 0.7 4.2 ± 0.5
Kg/S 3.9 ± 0.7 4.0 ± 0.2 0 4.3 ± 0.2
KL/S 3.4 ± 2.3 1.7 ± 0.7 0 0.9 ± 0.4
R(6.5 GeV2), R(90 GeV2) 0.57, 0.58 0.57, 0.59 0.60, 0.66 0.57, 0.57

Table 5.2: The values of the free parameters obtained in the fits to ZEUS [157,

158] and H1 [148] F
D(3)
2 data with MRST2001 NLO [127] gluon and sea quark

distributions of the proton. The K-factors are defined in (5.29). The last row R(Q2),
defined in (5.33), gives the fraction of the Pomeron’s (plus Reggeon’s) momentum
carried by gluons at xIP = 0.003.
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Figure 5.4: Fit to combined preliminary ZEUS [157, 158] and H1 [148] F
D(3)
2 data

with MRST2001 NLO [127] gluon and sea quark distributions of the proton. The
curves show the four contributions to the total, as defined in (5.23). Only data
points included in the fit are plotted.
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The experimental ‘K-factors’ given in Table 5.2 are defined as

Ki/IP ≡ ci/IP

cLO
i/IP

, (5.29)

where i = q, g, L and IP = G, S. The LO coefficients, cLO
i/IP , were derived in Section

4.7 and are collected below for convenience:

cLO
q/G =

R2
g

BD
, cLO

g/G =
9R2

g

16BD
, cLO

L/G =
2R2

g

9BD
, (5.30)

cLO
q/S =

4R2
q

81BD
, cLO

g/S =
R2

q

9BD
, cLO

L/S =
32R2

q

729BD
. (5.31)

In obtaining the numerical values of Ki/IP presented in Table 5.2, we have used

BD = 6 GeV−2, Rg(λ = 0) = 1 as given by (4.50), and Rq(λ = 0.26) = 4.1 as given

by (4.91). These values of λ are obtained from the behaviour of the MRST2001 NLO

PDFs at Q2 = 1 GeV2 as x → 0, bearing in mind that we set the gluon distribution

to zero if it is negative. It is remarkable that the K-factors turn out to be of typical

size 1 to 4 (apart from cg/G = 0) for the combined fit to ZEUS and H1 data; see also

the values obtained later in Tables 6.1 and 6.3.

5.3 Diffractive parton distributions

From these fits to F
D(3)
2 , we can extract the quark singlet and gluon DPDFs,

aD(xIP , β, Q2) = βΣD(xIP , β, Q2) or βgD(xIP , β, Q2), from the three leading-twist

contributions to (5.23):

aD(xIP , β, Q2) =
∑

IP=G,S,GS

(

∫ Q2

Q2

0

dµ2 fIP (xIP ; µ2) aIP (β, Q2; µ2)

)

+ fIP=NP(xIP ) aIP=NP(β, Q2; Q2
0) + cIR fIR(xIP ) aIR(β, Q2). (5.32)

The DPDFs calculated using (5.32) are plotted for the eight different fits of Tables

5.1 (‘λ’) and 5.2 (‘MRST’) in Fig. 5.5(a) for xIP = 0.003 and Q2 = 6.5, 90 GeV2. The

DPDFs extracted from the fits to the combined ZEUS and H1 data sets are shown as

the solid lines. We also show the Pomeron PDFs from the preliminary H1 analysis

[148] multiplied by fIP (xIP ) (given by (5.26) with αIP (0) = 1.173) and normalised to

the ZEUS LPS data by dividing by a factor 1.26 (from Table 5.1). Notice that the

eight different fits of Tables 5.1 and 5.2 give similar DPDFs, especially at the higher

Q2 value, with the possible exception of the ‘MRST’ fit to only H1 data.

From Fig. 5.5(a), the diffractive quark singlet distribution obtained by H1 [148]
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Figure 5.5: The solid lines labelled ‘λ’ and ‘MRST’ show the DPDFs extracted
from the fits in Tables 5.1 and 5.2 to the combined preliminary ZEUS [157,158] and
H1 [148] data (compared to those obtained by H1 [148]). In (a) we also show the
separate fits to the three different data sets of Tables 5.1 and 5.2. In (b) we also
show fits to the combined ZEUS and H1 data using the same value of αS(M2

Z) as in
the preliminary H1 analysis [148], corresponding to ΛQCD = 0.2 GeV for 4 flavours.
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has a slightly steeper Q2 dependence than the fits presented here, and hence H1 ob-

tain a larger diffractive gluon distribution. In addition, the smaller value of αS(M2
Z)

used by H1 also enlarges their gluon density.5 To demonstrate this, we repeated the

combined fits to ZEUS and H1 data using the same value of αS(M2
Z) as in the pre-

liminary H1 analysis [148]. The resulting DPDFs are shown by the dotted (‘λ’) and

dashed (‘MRST’) lines in Fig. 5.5(b); the diffractive gluon distributions are much

closer to the H1 diffractive gluon distribution, especially for the ‘MRST’ fit, but

there is still some discrepancy. In our analysis, all the input Pomeron PDFs vanish

as either (1 − β) or (1 − β)2 as β → 1. As β → 1, the only non-zero contribution

to F
D(3)
2 comes from a twist-four component arising from longitudinally polarised

photons. This contribution was not included in the H1 analysis [148], and hence

rather large DPDFs were obtained by H1 for β close to 1, with an unphysical ‘bump’

in the diffractive gluon distribution (see Fig. 5.5).

In Fig. 5.6 we show the breakdown of the five separate components of (5.32) for

the ‘λ’ and ‘MRST’ fits to the combined data sets. Note the large contribution from

the two-quark component of the Pomeron for the ‘MRST’ fit.

We define the fraction of the Pomeron’s (plus Reggeon’s) momentum carried by

gluons at xIP = 0.003 as

R(Q2) ≡
∫ 1

0.01
dβ βgD(xIP = 0.003, β, Q2)

∫ 1

0.01
dβ [βΣD(xIP = 0.003, β, Q2) + βgD(xIP = 0.003, β, Q2)]

, (5.33)

which is given for Q2 values of 6.5 and 90 GeV2 in the last rows of Tables 5.1 and

5.2. The gluon momentum fraction, R(Q2), is consistently 55–60% and is almost

independent of Q2. Taking the same αS(M2
Z) as in the preliminary H1 analysis would

increase this value to ≈ 65%, compared to the value found by H1 of 75± 15% [148].

Note, from Fig. 5.4, that the perturbative Pomeron contribution to F
D(3)
2 (from

scales µ > Q0 = 1 GeV) is not small; as a rule it is more than half the total con-

tribution. The comparison of the separate fits to the ZEUS and H1 data presented

in Table 5.2 demonstrates that there is a strong correlation between the pairs of

parameters ci/G and ci/S , where i = q, g, L. That is, with the present accuracy of

the data, it is hard to distinguish between partons which originate from the two-

gluon and two-quark components of the Pomeron.6 Nevertheless, the final DPDFs

are similar for the different fits. This stability increases confidence in these distri-

5In the preliminary H1 analysis [148], ΛQCD = 0.2 GeV for 4 flavours, corresponding to
αS(M2

Z) = 0.1085, whereas we take αS(M2
Z) = 0.1190 from the MRST2001 NLO parton set [127];

cf. the world average, αS(M2
Z) = 0.1187(20), from the PDG [171].

6The combined analysis of DDIS data with a more exclusive diffractive process, such as diffrac-
tive J/ψ production at HERA, which is sensitive to the two-gluon component of the Pomeron,
may help to resolve this problem.
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Figure 5.6: The breakdown of the five separate components of (5.32) for (a) the ‘λ’
fit of Table 5.1 and (b) the ‘MRST’ fit of Table 5.2. In both cases, the fit to the
combined ZEUS and H1 data is shown.
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butions, so that they can be used in the description of other diffractive processes

at HERA and the Tevatron. Of course, we must include the probability that the

rapidity gap survives the soft rescattering of the colliding hadrons or ‘hadron-like’

states [138–142].

It has been demonstrated by H1 that their preliminary DPDFs [148] can be used

to describe final state observables in DDIS, namely dijet and D∗ meson production

cross sections [172]. Before our DPDFs can be taken seriously we need to demon-

strate the same thing. The DPDFs can be then be used to calculate the diffractive

structure function of the antiproton, defined as

F̃ D
jj (β) =

1

ξmax − ξmin

∫ ξmax

ξmin

dξ

[

βgD(ξ, β, Q2) +
4

9
βΣD(ξ, β, Q2)

]

. (5.34)

Comparison to CDF diffractive dijet data measured at the Tevatron [173] will allow

checks to be made of the rapidity gap ‘survival probability’ [138, 139], which is an

important ingredient in calculations of diffractive Higgs production at the LHC [91].



Chapter 6

Absorptive corrections in

deep-inelastic scattering

A long-standing question concerns the treatment of diffractive events in a global

parton analysis of DIS and related hard-scattering data. Are they already included

in the input distributions or must some account be taken of them in the DGLAP

evolution? The present chapter addresses this question. We show that DDIS is

partially included in the starting distributions and partially must be allowed for in

the DGLAP evolution.

The advantage of describing the DDIS data using an approach where the depen-

dence on the Pomeron scale µ is explicit, as in the last chapter, is the possibility to

use the results to evaluate the absorptive corrections ∆F abs
2 to the inclusive structure

function F2. Indeed, as we shall describe below, the application of the Abramovsky-

Gribov-Kancheli (AGK) cutting rules [174, 175] gives1

∆F abs
2 (xB, Q2; µ2) = −F D

2 (xB, Q2; µ2), (6.1)

where F D
2 (xB, Q2; µ2) is the contribution to the diffractive structure function F

D(3)
2

(integrated over xIP ) which originates from a perturbative component of the Pomeron

of size 1/µ. Since the equality (6.1) is valid for each component, µ, of the pertur-

bative Pomeron, we can separate the screening corrections coming from low µ < Q0

(which are included in the input parameterisations) from the absorptive effects at

small distances (µ > Q0) which occur during the DGLAP evolution in the analysis

of DIS data. Clearly, the inclusion of these absorptive effects will modify the par-

ton distributions obtained from the DIS analysis. Not surprisingly, we find that by

1Actually, to extract the ‘data’ appropriate for a pure DGLAP fit of F2(xB , Q
2) we have to

include the absorptive corrections ∆F abs
2 integrated over µ2 in the whole evolution interval from

Q2
0 to Q2.

128
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accounting for these ‘Glauber-type’ shadowing corrections we enhance the small-x

input gluon distribution.

6.1 Gluon recombination at small x

At very small values of x it is expected that the number density of partons within

the proton becomes so large that they begin to recombine with each other. This phe-

nomenon of parton recombination is also referred to in the literature by a plethora

of other names, such as absorptive corrections, non-linear effects, screening, shad-

owing, unitarity corrections, multiple scattering, multiple interactions, or saturation

effects. Here, we will usually refer to ‘absorptive corrections’.

The first perturbative QCD calculations describing the fusion of two Pomeron

ladders into one were made within the DLLA by Gribov-Levin-Ryskin (GLR) [23]

and by Mueller-Qiu (MQ) [176]. The GLRMQ equations add an extra non-linear

term, quadratic in the gluon density, to the usual DGLAP equations for the gluon

and sea quark evolution:

∂xg(x, Q2)

∂ lnQ2
=

∂xg(x, Q2)

∂ ln Q2

∣

∣

∣

∣

DGLAP

− 3
α2

S(Q2)

R2Q2

∫ 1

x

dx′

x′

[

x′g(x′, Q2)
]2

, (6.2)

∂xS(x, Q2)

∂ ln Q2
=

∂xS(x, Q2)

∂ ln Q2

∣

∣

∣

∣

DGLAP

− 1

10

α2
S(Q2)

R2Q2

[

xg(x, Q2)
]2

, (6.3)

where R is of the order of the proton radius. The Balitsky-Kovchegov (BK) [177–179]

equation generalises the non-linear term of the GLRMQ equations to single ln(1/x)

accuracy. It is equivalent to the LL BFKL equation with an additional non-linear

term. However, NLL BFKL contributions are not accounted for, which are known

to have a large numerical effect.

A phenomenological investigation using the GLRMQ equations based on NLO

DGLAP evolution was made in [180], before the advent of the HERA data. The

input gluon and sea quark distributions were assumed to have a small-x behaviour

of the form xg, xS ∼ x−0.5 at an input scale of Q2
0 = 4 GeV2. Since the small-x

gluon distribution is now known to be valence-like at low Q2 from the HERA data,

the shadowing corrections due to gluon recombination are correspondingly reduced,

as found by MRST in [181]. At low Q2 the sea quarks are the dominant partons

at small x, and hence sea quark recombination should be considered in addition to

gluon recombination.

On the other hand, Eskola et al. [182] have found that taking input gluon and

sea quark distributions at Q2 = 1.4 GeV2, then evolving upwards with the GLRMQ
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equation based on LO DGLAP evolution, improves the agreement with F2 data

at small x and low Q2 compared to the standard CTEQ sets. In [182] the input

distributions were obtained by interpolating between three results: CTEQ5L [81]

PDFs at Q2 = 5 GeV2, CTEQ6L [35] PDFs at Q2 = 10 GeV2, and CTEQ6L PDFs

at Q2 = 3 GeV2, each evolved downwards to Q2 = 1.4 GeV2 using the GLRMQ

equation based on LO DGLAP evolution. This procedure of obtaining the input

by averaging over different CTEQ PDFs is clearly strange, but is necessary since

simply obtaining the input distributions by evolving the CTEQ6L PDFs at Q2 = 5

GeV2 downwards to Q2
0 = 1.4 GeV2 gave a worse description of the data at small x

than the CTEQ6L result. This approach assumes that the PDFs evolved with the

GLRMQ equation should be unchanged at large Q2 from the conventional DGLAP-

evolved sets. However, as we will show later, this is not the case, as observed by

MQ [176]:

The correction term to the usual DGLAP equation is of higher twist as

a factor of 1/Q2 explicitly appears. This does not mean that shadowing

effects go away as 1/Q2. On the contrary, in order to determine g(x, Q2)

in terms of, say, g(x′, Q2
0) one must integrate the DGLAP equation be-

tween Q2
0 and Q2. If the correction term is effective anywhere in that

interval shadowing effects will have been included.

Therefore the CTEQ PDFs, with input scale Q2
0 = 1.69 GeV2, will not be free of the

effects of absorptive corrections even at large Q2 and so they should not be taken

as input to GLRMQ evolution. It is necessary to refit the input PDFs in a global

parton analysis, preferably using NLO QCD rather than just LO QCD.

Using the GLRMQ equation to study absorptive corrections has several limita-

tions. The non-linear terms in the evolution equation lead to a violation of momen-

tum conservation. There is some uncertainty in the two-gluon distribution, taken

to be [176]

x2G(2)(x, Q2) =
2

3πR2

[

xg(x, Q2)
]2

(6.4)

in (6.2) and (6.3), and in the value of the R parameter. In the next section, we

show that the absorptive corrections to F2 can be extracted from DDIS data using

the formalism of Chapter 5. We will then perform a NLO QCD parton analysis of

F2 including these absorptive corrections, originating from sea quark recombination

as well as gluon recombination.
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Figure 6.1: The total F2, measured by experiment, can be approximated by the sum
of the one-Pomeron and two-Pomeron exchange contributions.
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Figure 6.2: The two-Pomeron exchange contribution to F2. The equality shows the
application of the AGK cutting rules, and the relative magnitudes of the cut dia-
grams. All the permutations of the two gluon ladders (forming Pomeron exchange)
are implied.

6.2 Absorptive corrections to F2

The total proton structure function, F data
2 (xB, Q2), as measured by experiment, can

be approximately written as a sum of the one-Pomeron2 (DGLAP) contribution and

absorptive corrections due to two-Pomeron exchange. That is,

F data
2 (xB, Q2) ' FDGLAP

2 (xB, Q2) + ∆F abs
2 (xB, Q2), (6.5)

illustrated in Fig. 6.1. A brief insight into the equality (6.1) may be obtained from

Fig. 6.2, which shows the leading absorptive correction (the two-Pomeron exchange

contribution) to F2. For simplicity, the upper parton ladder, shown in the right-hand

diagram of Fig. 6.1, is hidden inside the upper blob in each diagram of Fig. 6.2.

Applying the AGK cutting rules [174] to the IP ⊗ IP contribution, we obtain the

relative contributions of +1, −4, and +2 according to whether neither Pomeron,

one Pomeron, or both Pomerons are cut. The first contribution is just F D
2 , which

2Here, we are interpreting the perturbative Pomeron to be a NLO DGLAP parton ladder, rather
than the more usual interpretation of the QCD Pomeron as being a BFKL gluon ladder.
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enters with the same magnitude, but the opposite sign, in the total ∆F abs
2 . Hence

the equality shown in (6.1). In this way, we are able to estimate the absorptive

corrections, ∆F abs
2 (xB, Q2; µ2), as a function of µ, from the perturbative component

of F
D(3)
2 determined from the fit to the DDIS data. Integrating (6.1) over µ2 from

Q2
0 to Q2 we obtain

∆F abs
2 (xB, Q2) = −

∫ Q2

Q2

0

dµ2 F D
2 (xB, Q2; µ2). (6.6)

That is, the leading absorptive correction is given by minus the diffractive compo-

nent arising from Pomeron scales greater than Q0, where Q0 is the scale that the

input PDFs are parameterised at in a DGLAP fit to DIS data. (Note that the same

negative sign was given in (4.5) for the IP ⊗IP contribution in Regge theory.) The

µ < Q0 contributions to the absorptive corrections are already included in the input

parameterisations. To fit F2 purely using the DGLAP formalism, we first need to

‘correct’ the data for absorptive corrections,

FDGLAP
2 (xB, Q2) ' F data

2 (xB, Q2) − ∆F abs
2 (xB, Q2)

= F data
2 (xB, Q2) + |∆F abs

2 (xB, Q2)|.
(6.7)

Basically, the (negative) screening corrections have to be subtracted from the F2

data, before the DGLAP analysis is performed. At small xB, the effective F2 ‘data’

are therefore appreciably enhanced. Notice that the original fit to the DDIS data in

Chapter 5 required knowledge of the gluon and sea quark distributions, xIP g(xIP , µ2)

and xIP S(xIP , µ2), in the perturbative Pomeron flux factors. Since the new DIS fit

yields modified parton distributions, we therefore have to repeat the fit to the DDIS

data. Fortunately, the successive iterations between the DDIS and DIS fits rapidly

converge, as we shall demonstrate.

6.2.1 Connection to GLRMQ approach

It is illuminating to show how our approach of ‘correcting’ the data then performing

linear DGLAP evolution is related to the GLRMQ approach of including a non-linear

term in the evolution equation.

Assuming that Q2
0, the scale that the input PDFs are taken at, has the same

value as that used in Chapter 5 to separate the perturbative and non-perturbative

contributions to DDIS, then the absorptive corrections are

∆F abs
2 (xB, Q2) = −

∫ 1

xB

dxIP

[

F
D(3)
2,P (xIP , β, Q2) + F

D(3)
L,P (xIP , β, Q2)

]

, (6.8)
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where F
D(3)
2,P is the leading-twist contribution (5.5) and F

D(3)
L,P is the twist-four contri-

bution (5.19). Recall that the notation IP = G, S, GS denotes that the perturbative

Pomeron is represented by two t-channel gluons, two t-channel sea quarks, or the

interference between these, respectively. Considering only the IP = G contribution,

then

F
D(3)
2,P (xIP , β, Q2) =

∫ Q2

Q2

0

dµ2

µ4

1

xIP

[

αS(µ2) xIP g(xIP , µ2)
]2

FIP=G
2 (β, Q2; µ2), (6.9)

F
D(3)
L,P (xIP , β, Q2) =

1

Q2

∫ Q2

Q2

0

dµ2

µ2

1

xIP

[

αS(µ2) xIP g(xIP , µ2)
]2

FIP=G
L (β), (6.10)

where FIP=G
2 (β, Q2; µ2) and FIP=G

L (β) are defined in (5.9) and (5.20) respectively.

Neglecting the logarithmic scaling violations of FIP=G
2 (β, Q2; µ2) and differentiating

(6.5) with respect to ln Q2 we obtain

∂F data
2

∂ ln Q2
' ∂FDGLAP

2

∂ ln Q2
−α2

S(Q2)

Q2

∫ 1

xB

dxIP

xIP

[

xIP g(xIP , Q2)
]2 {

FIP=G
2 (β, Q2; Q2) + FIP=G

L (β)
}

.

(6.11)

This equation could be used to derive a more precise form of the GLRMQ equation,

where the non-linear terms were calculated in the DLLA, that is, assuming that

β � β ′ � 1 where β ≡ xB/xIP → 0. In this limit,

βΣIP=G(β, Q2; Q2) → 0, (6.12)

β ′gIP=G(β ′, Q2; Q2) → cg/G, (6.13)

FIP=G
L (β) → 0, (6.14)

so the Pomeron structure function (5.9) is

FIP
2 (β, Q2; Q2) =

αS

2π
β

∫ 1

β

dβ ′

β ′2
〈e2

f〉CNLO
2,g

(

β

β ′

)

cg/G

=
αS

2π
xB

∫ 1

xB

dx

x2
〈e2

f〉CNLO
2,g

(xB

x

)

cg/G,

(6.15)

since β ′ = x/xIP . A similar equation holds for the proton structure function, as-

suming that gluons give the dominant contribution at small x. Neglecting the scale

dependence of αS(Q2) and differentiating with respect to ln Q2 gives

∂F2

∂ ln Q2
=

αS

2π
xB

∫ 1

xB

dx

x2
〈e2

f〉CNLO
2,g

(xB

x

) ∂ xg(x, Q2)

∂ ln Q2
. (6.16)
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Hence (6.11) becomes

∂xg(x, Q2)

∂ ln Q2
' ∂xg(x, Q2)

∂ ln Q2

∣

∣

∣

∣

DGLAP

− cg/G
α2

S(Q2)

Q2

∫ 1

x

dxIP

xIP

[

xIP g(xIP , Q2)
]2

, (6.17)

which is the GLRMQ equation for the gluon evolution (6.2) with cg/G = 3/R2.

The GLRMQ equation for the sea quark evolution (6.3) can be obtained from

(6.11) by assuming light quark flavour symmetry and neglecting valence quarks

(since we are assuming small xB),

∂F2(xB, Q2)

∂ ln Q2
= 〈e2

f〉
∂xBS(xB, Q2)

∂ lnQ2
, (6.18)

and replacing the Pomeron structure function in (6.11) with3

{

FIP=G
2 (β, Q2; Q2) + FIP=G

L (β)
}

→ 〈e2
f〉 β δ(1 − β)

1

10 R2
, (6.19)

assuming that the struck quark carries all the Pomeron’s momentum. Then (6.11)

becomes

∂xBS(xB, Q2)

∂ ln Q2
' ∂xBS(xB, Q2)

∂ ln Q2

∣

∣

∣

∣

DGLAP

− 1

10

α2
S(Q2)

R2Q2

∫ 1

xB

dβ

β

[

xIPg(xIP , Q2)
]2

β δ(1 − β)

=
∂xBS(xB, Q2)

∂ ln Q2

∣

∣

∣

∣

DGLAP

− 1

10

α2
S(Q2)

R2Q2

[

xBg(xB, Q2)
]2

.

(6.20)

While our approach is qualitatively equivalent to the GLRMQ approach it goes

beyond the DLLA keeping the full β dependence in the Pomeron structure function

and introducing sea quark recombination in addition to gluon recombination.

We repeat that the factor of 1/Q2 in the non-linear term of the evolution equa-

tions does not mean that shadowing effects disappear at large Q2. The absorptive

corrections accumulate evolving from a scale Q2
0 up to Q2; however, the increase in

absorptive corrections does fall off as 1/µ2 as the scale µ increases. Thus, the com-

monly held belief that the PDFs obtained from a parton analysis are independent of

the input scale Q2
0 that they are parameterised at is incorrect for a fit which neglects

absorptive corrections; larger absorptive corrections will be obtained the smaller the

value of Q2
0. This fact might explain why MRST, who take Q2

0 = 1 GeV2, obtain a

smaller gluon distribution at small x than CTEQ, who take Q2
0 = 1.69 GeV2; see,

for example, Fig. 5.3. It is interesting that this hypothesis is further corroborated

3This replacement is needed to reproduce the GLRMQ equation for the sea quark evolution
(6.3). Keeping the exact β dependence would give a more precise version of the GLRMQ equation.
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Figure 6.3: Gluon distribution at Q2 = 100 GeV2 from four different PDF sets. The
size at small x increases with the input scale Q2

0.

by considering the ZEUS2002 PDFs [183] with Q2
0 = 7 GeV2 and the Alekhin02

PDFs [184] with Q2
0 = 9 GeV2. The gluon distributions at Q2 = 100 GeV2 are

compared in Fig. 6.3. It is seen that the ordering of the size of the small-x gluon

distribution,

MRST < CTEQ < ZEUS < Alekhin, (6.21)

reflects the ordering in Q2
0. However, since there are many other differences between

these four parton analyses besides the value of Q2
0 taken, a controlled study of the

effect of absorptive corrections is called for.

6.3 Theoretical calculation of F DGLAP
2

Having explained how the data can be corrected for absorptive effects to extract the

‘experimental’ F DGLAP
2 , we now explain how the theoretical F DGLAP

2 is calculated at

NLO. Heavy quarks are treated in the light quark variable flavour number scheme.

The DGLAP equation for the evolution of the quark singlet and gluon distributions
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of the proton is

∂

∂ ln Q2

(

Σ(x, Q2)

g(x, Q2)

)

=
αS(Q2)

2π

∫ 1

x

dz

z

×
(

Pqq (z, αS(Q2)) 2 nf Pqg (z, αS(Q2))

Pgq (z, αS(Q2)) Pgg (z, αS(Q2))

) (

Σ
(

x
z
, Q2

)

g
(

x
z
, Q2

)

)

, (6.22)

where the quark singlet distribution is

Σ(x, Q2) =
∑

f=u,d,s,c,b

[

q(x, Q2) + q̄(x, Q2)
]

, (6.23)

with s = s̄, c = c̄ and b = b̄. The non-singlet distributions q±(x, Q2) are defined as

qV (x, Q2) ≡ q−(x, Q2) = q(x, Q2) − q̄(x, Q2), (6.24)

q+(x, Q2) = q(x, Q2) + q̄(x, Q2) − 1

nf
Σ(x, Q2). (6.25)

Since q(x, Q2), q̄(x, Q2), and Σ(x, Q2) are continuous functions of Q2, the change in

nf across flavour thresholds must be compensated by a discontinuity in q+(x, Q2).

It follows that

q+(x, m2
c)
∣

∣

nf=4
= q+(x, m2

c)
∣

∣

nf=3
+

1

12
Σ(x, m2

c), (6.26)

q+(x, m2
b)
∣

∣

nf=5
= q+(x, m2

b)
∣

∣

nf=4
+

1

20
Σ(x, m2

b). (6.27)

The heavy quarks do not contribute below the relevant flavour threshold, that is,

c+(x, Q2) =







−1
3
Σ(x, Q2) : Q < mc

−1
4
Σ(x, Q2) : Q = mc

, (6.28)

b+(x, Q2) =







−1
4
Σ(x, Q2) : Q < mb

−1
5
Σ(x, Q2) : Q = mb

. (6.29)

The evolution of the non-singlet distributions does not depend on the gluon distri-

bution:
∂q±(x, Q2)

∂ ln Q2
=

αS(Q2)

2π

∫ 1

x

dz

z
P±

(

z, αS(Q2)
)

q±
(x

z
, Q2

)

. (6.30)

We define

qγ∗p(x, Q2) =
∑

f

e2
f

[

q(x, Q2) + q̄(x, Q2)
]

= 〈e2
f〉Σ(x, Q2) + qγ∗p

ns (x, Q2), (6.31)
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where 〈e2
f 〉 = (1/nf)

∑

f e2
f , and

qγ∗p
ns (x, Q2) =

∑

f

e2
f q+(x, Q2). (6.32)

Again, qγ∗p
ns (x, Q2) is discontinuous across the flavour thresholds:

qγ∗p
ns (x, m2

c)
∣

∣

nf=4
= qγ∗p

ns (x, m2
c)
∣

∣

nf=3
− 1

18
Σ(x, m2

c), (6.33)

qγ∗p
ns (x, m2

b)
∣

∣

nf=5
= qγ∗p

ns (x, m2
b)
∣

∣

nf=4
+

1

30
Σ(x, m2

b). (6.34)

The proton structure function is then

FDGLAP
2 (xB, Q2) = qγ∗p(xB, Q2) +

αS(Q2)

2π
xB

∫ 1

xB

dx

x

×
[

CNLO
2,q

(xB

x

)

qγ∗p
(

x, Q2
)

+ 〈e2
f〉CNLO

2,g

(xB

x

)

g
(

x, Q2
)

]

, (6.35)

where the coefficient functions CNLO
2,q and CNLO

2,g are calculated in the MS scheme

[159], as in (5.9).

Since we are primarily interested in the effect of absorptive corrections, it is

sufficient to consider the description of the small xB data. We therefore fit to

the ZEUS [111, 185] and H1 [186–188] inclusive F2(xB, Q2) data with xB < 0.01,

2 < Q2 < 500 GeV2 and W 2 > 12.5 GeV2. These are the same HERA data

sets fitted in the MRST2001 NLO analysis [127]. We take MRST-like parametric

forms [127] for the starting gluon and sea quark distributions at Q2
0 = 1 GeV2:

xg(x, Q2
0) = Ag x−λg(1 − x)3.70(1 + εg

√
x + γgx) − A− x−δ−(1 − x)10, (6.36)

xS(x, Q2
0) = AS x−λS(1 − x)7.10(1 + εS

√
x + γSx), (6.37)

where the powers of the (1 − x) factors are taken from [127], together with the

valence quark distributions, uV and dV , and ∆ ≡ d̄ − ū:

xuV (x, Q2
0) = 0.157 x0.25 (1 − x)3.33 (1 + 5.61

√
x + 55.49x), (6.38)

xdV (x, Q2
0) = 0.041 x0.27 (1 − x)3.88 (1 + 52.73

√
x + 30.65x), (6.39)

x∆(x, Q2
0) = 1.201 x1.24 (1 − x)9.10 (1 + 14.05x − 45.52x2). (6.40)

The λg, εg, A−, δ−, AS, λS, and εS are taken as free parameters, γg and γS are fixed

at zero since they are unconstrained by the small xB data, and Ag is determined
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from the momentum sum rule,

∫ 1

0

dx
[

xΣ(x, Q2
0) + xg(x, Q2

0)
]

= 1, (6.41)

where Σ = S + uV + dV . The integral (6.41) can be done analytically, with the

solution expressed in terms of gamma functions. At the initial scale Q0, the flavour

structure of the light quark sea is taken to be 2ū = 0.4S − ∆, 2d̄ = 0.4S + ∆ and

2s = 2s̄ = 0.2S. The values of αS(M2
Z) and the charm and bottom quark masses are

taken to be the same as in the MRST2001 NLO parton set [127]. Since we do not

fit to DIS data with xB > 0.01, we constrain the gluon and sea quark distributions

to agree with the MRST2001 NLO parton set [127] at x = 0.2. This is done by

including the value of these parton distributions at x = 0.2 in the DIS fit with an

error of 10%.

As in Chapter 5 we use the qcdnum program [166] to perform the NLO DGLAP

evolution and calculate the structure functions, and the minuit program [167] to

find the optimal parameters.

6.4 Simultaneous QCD analysis of DDIS and DIS

data

The ‘simultaneous’ fit of DDIS and DIS data proceeds as follows:

(i) Start by fitting ZEUS [111, 185] and H1 [186–188] F2 data (279 points) with

no absorptive corrections, similar to the MRST2001 NLO analysis [127].

(ii) Fit ZEUS [157,158] and H1 [148] F
D(3)
2 data (404 points) using g(xIP , µ2) and

S(xIP , µ2) from the previous F2 fit.

(iii) Fit F DGLAP
2 = F data

2 +
∣

∣∆F abs
2

∣

∣, with ∆F abs
2 from the previous F

D(3)
2 fit.

(iv) Go to (ii).

As we will demonstrate, convergence is achieved after only a few iterations. In

practice, we allow four iterations of steps (ii) and (iii) for all the results presented

in this chapter. To allow for the contribution of proton dissociation in (6.6) we take

∆F abs
2 (xB, Q2) = −2

∫ Q2

Q2

0

dµ2 F D
2,el(xB, Q2; µ2) ≡ −2 F D

2,el(xB, Q2), (6.42)

where the factor 2 enhancement of the (elastic) proton contribution was estimated

from the normalisation factors found in fitting to DDIS data in Chapter 5. It
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accounts for absorptive corrections due to diffractive events involving proton disso-

ciation with MY . 6 GeV. Events with a large amount of proton dissociation will

have a small rapidity gap such that IP → IP ⊗ IP contributions could become im-

portant and so our formalism, which only accounts for IP ⊗IP → IP contributions,

would not apply. This factor 2 is justified by a ZEUS comparison [189] of LPS data

with MX data; the MX data allowed proton dissociation with MY < 6 GeV and a

relative normalisation factor of 1.85 ± 0.38(stat.) was found compared to the LPS

data. Of course, there is some uncertainty in this factor 2, but the precise amount

is difficult to justify. The (elastic) proton contribution is obtained by normalising

to the ZEUS LPS data [157], for which there is no proton dissociation.

Since we have taken Q0 = 1 GeV, the same value as used in Chapter 5 to separate

the perturbative and non-perturbative contributions to DDIS, then

F D
2,el(xB, Q2) = Θ(0.1 − xB)

∫ 0.1

xB

dxIP

[

F
D(3)
2,P (xIP , β, Q2) + F

D(3)
L,P (xIP , β, Q2)

]

,

(6.43)

where F
D(3)
2,P is the leading-twist contribution (5.5) and F

D(3)
L,P is the twist-four con-

tribution (5.19). The upper cutoff of xIP = 0.1 is necessary since the simple formula

we have used for the absorptive corrections is invalid for large xIP (small rapidity

gaps) where secondary Reggeon contributions become more important.

In Fig. 6.4 we show a contour plot showing
∣

∣∆F abs
2

∣

∣ /F data
2 as a percentage.

The F2 data points [111, 185–188] have been put in 20 bins along each axis and
∣

∣∆F abs
2

∣

∣ /F data
2 is averaged over each bin. A percentage increase of more than 50%

would violate the unitarity limit, but this does not happen for any of the data

points. By definition |∆F abs
2 | is zero at the input scale of 1 GeV2 and grows to an

approximately constant value at large Q2. Since F data
2 increases at large Q2, this

means that the fractional size of the absorptive corrections relative to the data falls

away at large Q2. This behaviour can be seen more clearly in Fig. 6.5, which shows

the F2 data at the smallest xB values, before and after the absorptive corrections

have been applied. The predictions of the corresponding fits, shown by the solid

and dashed lines, respectively, are also plotted. The data points have been binned

according to the nearest value of xB (in the last bin only data with xB ≤ 3.6× 10−4

are included).

In Fig. 6.6 we illustrate the convergence of the ‘simultaneous’ fit to DDIS and

DIS data by showing the input parton distributions obtained from a fit to F2 with

no absorptive corrections, then after each of 4 iterations with absorptive corrections.

The input gluon and sea quark distributions obtained after the third and after the

fourth iteration are almost identical.
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no absorp. corr. with absorp. corr.
F2 : χ2/d.o.f. 1.15 1.09

Ag 10.6 10.1
λg −0.50 ± 0.17 −0.49 ± 0.10
εg −1.1 ± 0.2 −1.2 ± 0.1
γg 0 (fixed) 0 (fixed)
A− (6 ± 8) × 10−2 (2 ± 6) × 10−3

δ− 0.47 ± 0.15 0.74 ± 0.30
AS 0.10 ± 0.02 0.14 ± 0.03
λS 0.33 ± 0.02 0.30 ± 0.02
εS 10 ± 3 9.0 ± 2.6
γS 0 (fixed) 0 (fixed)

F
D(3)
2 : χ2/d.o.f. 1.14 1.15
cq/G (GeV2) 0.14 ± 0.03 0.18 ± 0.04
cg/G (GeV2) 0 0
cL/G (GeV2) 0.051 ± 0.021 0.074 ± 0.032
cq/S (GeV2) 0.70 ± 0.09 0.37 ± 0.07
cg/S (GeV2) 1.41 ± 0.09 1.14 ± 0.07
cL/S (GeV2) 0.16 ± 0.05 0.027 ± 0.033

cq/NP (GeV−2) 0.87 ± 0.08 1.00 ± 0.07
cIR (GeV−2) 6.8 ± 0.5 6.5 ± 0.5

NZ 1.54 ± 0.07 1.55 ± 0.06
NH 1.24 ± 0.05 1.24 ± 0.04
Kq/G 0.84 ± 0.18 1.08 ± 0.24
Kg/G 0 0
KL/G 1.4 ± 0.6 2.0 ± 0.9
Kq/S 4.3 ± 0.6 2.5 ± 0.5
Kg/S 3.9 ± 0.2 3.4 ± 0.2
KL/S 1.1 ± 0.3 0.2 ± 0.2

R(6.5 GeV2), R(90 GeV2) 0.57,0.58 0.56, 0.57

Table 6.1: The parameter values of the ‘simultaneous’ fits to the inclusive F2 and
F

D(3)
2 data measured by the ZEUS [111, 157, 158, 185] and H1 [148, 186–188] Col-

laborations. The parameters for the F2 fit are defined in (6.36) and (6.37), while

the parameters for the F
D(3)
2 fit are defined in Chapter 5. The K-factors (5.29)

are evaluated using Rg(λ = 0) = 1 as given by (4.50) and Rq(λ = λS) = 4 as
given by (4.91). The last row R(Q2), defined in (5.33), gives the fraction of the
Pomeron’s (plus Reggeon’s) momentum carried by gluons at xIP = 0.003. Sample
parton distributions are shown in Fig. 6.7.
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Figure 6.4: Contour plot of the absorptive corrections as a percentage of F2(xB, Q2)
data [111, 185–188].

The parameter values of this combined description of the DIS and DDIS data are

given in Table 6.1. The thin solid curves in Fig. 6.7 show the parton distributions

obtained from the fit before the absorptive corrections have been included; they

are very similar to those from the MRST2001 NLO parton set [127] shown by the

dotted curves in Fig. 6.7, with the input gluon distribution going negative at small

x . 5×10−3. The small differences between the solid and dotted curves arise due to

the small differences between our analysis of F2 and the MRST2001 global analysis,

such as the treatment of heavy quarks (MRST use the Thorne-Roberts [190] variable

flavour number scheme), the fact that we fit only the small-xB HERA F2 data, the

fact that we fix the parameters γg = γS = 0, and due to the large uncertainty in the

A− parameter, as shown in Table 6.1.4

The dashed curves in Fig. 6.7 show the final input parton distributions obtained

after four iterations between the fits to the DIS and DDIS data, and also the gluon

4After the completion of this work, it was realised that MRST let the normalisation of the ZEUS
F2 data [111, 185] go to its lower limit of 98% in [127], whereas all the fits in this chapter were
obtained assuming that the ZEUS and H1 F2 data have the same normalisation. Repeating the
fits presented in Table 6.1 multiplying the ZEUS F2 data [111,185] by a factor 0.98 gives χ2/d.o.f.
values of 0.92 and 0.88 for the fits to F2 without and with absorptive corrections. The parton
distributions obtained from the F2 fit are practically unchanged.
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Figure 6.6: Convergence of the ‘simultaneous’ fit to DDIS and DIS data.

distribution when evolved up to higher scales. These dashed curves show that the

inclusion of absorptive effects yield an input gluon distribution which is much less

negative, whereas the input sea quark distribution is largely unaffected. Indeed, the

absorptive effects crucially change the input gluon distribution for x . 10−3. They

change the input sea quark distribution much less, due to the smaller colour charge

of the quark and, phenomenologically, due to the fact that the quark distributions

are measured directly by F2, whereas only scaling violations and NLO contributions

constrain the gluon distribution. Thus small changes in the quark distributions can

be accompanied by large changes in the gluon distribution.

In Fig. 6.8 we show the percentage increase in the gluon and sea quark distribu-

tions as a contour plot in the x–Q2 plane. For the gluon distribution, which goes

negative for small x and low Q2, the modulus of the denominator has been taken.

The black region of the upper plot in Fig. 6.8, indicating an increase of more than

50% in the gluon distribution, is where the gluon changes sign from negative to

positive. Even for quite moderate x and Q2 the inclusion of absorptive corrections

has a significant effect on the PDFs obtained.

A study of the uncertainties due to PDFs on the NLO cross section for SM Higgs

boson production at the LHC has been made in [191]. For Higgs boson production
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Figure 6.7: The gluon and sea quark distributions obtained from a NLO DGLAP
fit to F2, before and after absorptive corrections have been included. The input
at Q2

0 = 1 GeV2 has been chosen to have ‘MRST-like’ parametric forms, with an
explicit term included in the gluon distribution to allow it to go negative, see (6.36).
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PDF set σ(gg → H) (pb)
MRST2001 NLO 33.48
no absorptive corrections 37.11
with absorptive corrections 37.09

Table 6.2: NLO cross section for SM Higgs boson production (MH = 125 GeV) at
the LHC via gluon fusion. The results were obtained using the higlu [192] program
with different PDFs.

via gluon fusion, uncertainties of O(5%) were found for MH . 300 GeV. To study

the effect of absorptive corrections on final state observables we used the higlu

program [192] to compute the NLO total cross section at the LHC for SM Higgs

bosons (MH = 125 GeV) produced via gluon fusion. This program includes the

full dependence of the top and bottom quark masses of the NLO cross section, not

only the result in the infinite top quark mass limit. The code was run first with

the standard MRST2001 NLO PDFs, then with the PDFs obtained from the two

fits of Table 6.1 (without and with absorptive corrections). The results are shown

in Table 6.2. The MRST2001 NLO result of 33.5 pb is slightly higher than the

MC@NLO [193] result of 32.4 pb given in Fig. 3.11, since the latter was obtained

in the infinite top quark mass limit. The results using the two PDF sets of Table

6.2 are almost identical (37.1 pb). This particular observable is mainly driven by

the gluon distribution at moderate x ∼ MH/
√

s ∼ 0.01, where the effect of the

absorptive corrections is small, and where our PDF sets are relatively unconstrained

since we only fit the F2 data at small xB < 0.01. Therefore, the absolute value of

the cross section obtained with our PDFs is not as reliable as with the MRST2001

PDFs. An accurately known experimental observable which is sensitive to the small-

x PDFs would play an important rôle in testing the PDFs obtained with absorptive

corrections. One possibility is the production of Drell-Yan pairs at large rapidity.

For further study, it would also be better to incorporate the absorptive corrections

into a global parton analysis rather than the restricted analysis we have performed

here.

6.5 Diversion: Multi-Pomeron exchange

It is tempting to investigate the effect of absorptive corrections due to more than two

Pomerons being exchanged. Unfortunately, the application of the AGK cutting rules

is not as simple in this case. A speculative estimate of the size of multi-Pomeron

contributions is given here using an eikonal formula.

At high energies, the s-channel unitarity relation is diagonal in the impact pa-
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rameter (bt) basis, such that

2 ImTel(s, bt) = |Tel(s, bt)|2 + Ginel(s, bt), (6.44)

with σtot = 2
∫

d2bt Im Tel(s, bt), σel =
∫

d2bt |Tel(s, bt)|2. Neglecting the real part

of the elastic scattering amplitude, then

Tel(s, bt) = i [1 − exp (−Ω(s, bt)/2)] , (6.45)

Ginel(s, bt) = 1 − exp (−Ω(s, bt)) , (6.46)

where Ω ≥ 0 is the opacity (optical density) or eikonal. For some average value of

the impact parameter 〈bt〉5, the ratio of the diffractive component of F2 to the total

F2 is given by

F D
2

F data
2

=
|Tel(s, 〈bt〉)|2

2 ImTel(s, 〈bt〉)
=

1

2
[1 − exp (−Ω(s, 〈bt〉)/2)] , (6.47)

where F D
2 = |∆F abs

2 | with ∆F abs
2 given by (6.42). Solving for Ω/2 gives

Ω/2 = − ln

(

1 − 2 F D
2

F data
2

)

. (6.48)

The requirement 2 F D
2 /F data

2 < 1 is the unitarity limit. The one-Pomeron (DGLAP)

contribution to F2 divided by the multi-Pomeron contribution is given by

FDGLAP
2

F data
2

=
Ω/2

1 − exp(−Ω/2)
, (6.49)

so that

FDGLAP
2 = F data

2

Ω/2

1 − exp(−Ω/2)
, (6.50)

with Ω/2 given by (6.48). It is a useful check to take the limit of small absorptive

corrections 2 F D
2 /F data

2 � 1 ⇐⇒ Ω/2 � 1, then

Ω/2

1 − exp(−Ω/2)
=

Ω/2

Ω/2 − 1
2!

(Ω/2)2 + . . .
≈ 1 +

1

2
(Ω/2), (6.51)

and from (6.48):

Ω/2 = − ln

(

1 − 2 F D
2

F data
2

)

≈ 2 F D
2

F data
2

, (6.52)

5An alternative approach would be to assume some functional form for Ω(s, bt), such as a
Gaussian distribution in bt.
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Figure 6.9: The gluon and sea quark distributions obtained from a NLO DGLAP
fit to F2, before and after two-Pomeron and multi-Pomeron absorptive corrections
have been included.

so (6.50) becomes

FDGLAP
2 ≈ F data

2

(

1 +
F D

2

F data
2

)

= F data
2 + F D

2 , (6.53)

that is, we recover the two-Pomeron exchange formula (6.7).

Repeating the ‘simultaneous’ fit to DDIS and DIS data with the absorptive

corrections given by (6.50) instead of (6.7), we obtain the input PDFs shown by the

dotted curves in Fig. 6.9. The A− parameter controlling the negative term in the

input gluon distribution has gone to zero, resulting in a positive small-x input gluon

distribution. The final χ2/d.o.f. for the F2 fit is 0.86 and for the F
D(3)
2 fit is 1.15;

cf. the values 1.09 and 1.15 given in Table 6.1. Since the two-Pomeron exchange

absorptive corrections, computed using the AGK cutting rules, are on a sounder

theoretical footing, we return to using (6.7) for the remainder of this chapter.
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Figure 6.10: The input gluon and sea quark distributions obtained from a NLO
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6.6 Positive input gluons at 1 GeV2

We now return to using the two-Pomeron exchange formula for the absorptive cor-

rections (6.7). Note, from Table 6.1, that the parameter A− is consistent with zero.

Indeed, repeating the fits with a fixed A− = 0 gives a description of the F2 data

which is almost as good (χ2/d.o.f. = 1.11, compared to 1.09 for a negative input

gluon). By contrast, without any absorptive corrections, the fit to F2 is much worse

with a fixed A− = 0 (χ2/d.o.f. = 1.57, compared to 1.15 for a negative input gluon).

We conclude that absorptive corrections remove the need for a negative gluon dis-

tribution at Q2 = 1 GeV2. The fit parameters are shown in Table 6.3 and the input

PDFs are plotted in Fig. 6.10.
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no absorp. corr. with absorp. corr.
F2 : χ2/d.o.f. 1.57 1.11

Ag 38 16
λg −1.06 ± 0.09 −0.63 ± 0.07
εg −1.39 ± 0.04 −1.33 ± 0.06
γg 0 (fixed) 0 (fixed)
A− 0 (fixed) 0 (fixed)
δ− — —
AS 0.16 ± 0.05 0.15 ± 0.03
λS 0.27 ± 0.03 0.29 ± 0.02
εS 12 ± 4 8.7 ± 2.3
γS 0 (fixed) 0 (fixed)

F
D(3)
2 : χ2/d.o.f. 1.17 1.14
cq/G (GeV2) 0.45 ± 0.12 0.25 ± 0.07
cg/G (GeV2) 0 0
cL/G (GeV2) 0.15 ± 0.03 0.11 ± 0.05
cq/S (GeV2) 0.25 ± 0.12 0.28 ± 0.08
cg/S (GeV2) 1.04 ± 0.06 1.14 ± 0.07
cL/S (GeV2) (3 ± 8) × 10−5 (1 ± 20) × 10−3

cq/NP (GeV−2) 1.11 ± 0.12 1.06 ± 0.07
cIR (GeV−2) 5.2 ± 0.6 6.2 ± 0.5

NZ 1.54 ± 0.06 1.55 ± 0.06
NH 1.23 ± 0.04 1.24 ± 0.04
Kq/G 2.7 ± 0.7 1.5 ± 0.4
Kg/G 0 0
KL/G 4.1 ± 0.8 3.0 ± 1.4
Kq/S 1.8 ± 0.9 1.9 ± 0.5
Kg/S 3.3 ± 0.2 3.5 ± 0.2
KL/S (2 ± 6) × 10−4 (1 ± 15) × 10−2

R(6.5 GeV2), R(90 GeV2) 0.53, 0.53 0.56, 0.56

Table 6.3: The parameter values of the ‘simultaneous’ fits to the inclusive F2 and
F

D(3)
2 data taking a positive input gluon parameterisation in the F2 fit. The K-

factors (5.29) are evaluated using Rg(λ = 0) = 1 as given by (4.50) and Rq(λ =
λS) = 4 as given by (4.91). The last row R(Q2), defined in (5.33), gives the fraction
of the Pomeron’s (plus Reggeon’s) momentum carried by gluons at xIP = 0.003.
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6.7 Pomeron-like sea quarks but valence-like glu-

ons?

The inclusion of absorptive corrections have enabled the DGLAP-based description

of F2 to give a more physical small-x gluon distribution. That is, there is now

no need for a negative input gluon distribution at 1 GeV2. However, absorptive

corrections have not removed a long-standing puzzle of the behaviour of parton

distributions at small x and low scales. That is, we still have a valence-like gluon

distribution, whereas the sea quark distribution increases with decreasing x. That

is, since the HERA F2 data have become available, we have had a ‘Pomeron-like’ sea

quark distribution. Indeed, this feature has been present in all the parton analyses

from GRV94 [194] and MRS(A) [195] in 1994, up to the present MRST [34] and

CTEQ [35] global fits. On the other hand, as described in Section 4.1, according

to Regge theory the high energy (small x) behaviour of both gluons and sea quarks

is controlled by the same rightmost singularity in the complex angular momentum

plane, and so we would expect

λg = λS, (6.54)

where the λi are defined in (6.36) and (6.37). If we impose such an equality on the

λi values, we obtain a very poor description of the F2 data. We have studied several

possibilities of obtaining a satisfactory fit with this equality imposed, including

saturation-motivated parameterisations or including inverse transverse momentum

ordering (which appears at NNLO) using the calculations of Section 2.3.3, but none

overcame the problem. The only modification which appears consistent with the

data (and with the λg = λS equality) is the inclusion of power-like corrections.

There may be higher-twist corrections due to the exchange of four gluons in colour

antisymmetric states, which are not connected to F D
2 by the AGK cutting rules, and

also more complicated higher-twist corrections caused by renormalons etc. Here

we exploit the fact that such power-like corrections may slow down the DGLAP

evolution at low Q2. Indeed, it has been argued [196–199] that such corrections

must inhibit the growth of αS and slow down the speed of evolution as Q2 decreases

below about 1 or 2 GeV2. At present, there is no precise formula to implement

this effect. As noted in Section 3.4, Guffanti and Smye [107] observed that part of

the non-perturbative power corrections to the W and Z PT distributions, calculated

using the dispersive approach [200], could be interpreted as a shift in the scale at

which the parton distributions are evaluated. We therefore mimic the effect of a

flatter behaviour of αS at low scales by shifting the scale in F2(xB, Q2) from Q2 to
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Q2 + m2, where m2 = 1 GeV2.6 To be consistent we must make the same shift in

the F
D(3)
2 fit, so that (5.5), (5.19), (5.24), and (5.25) become

F
D(3)
2,P (xIP , β, Q2) =

∑

IP=G,S,GS

∫ Q2

Q2

0

dµ2 fIP (xIP ; µ2 + m2) FIP
2 (β, Q2 + m2; µ2 + m2),

F
D(3)
L,P (xIP , β, Q2) =

∑

IP=G,S,GS

(

∫ Q2

Q2

0

dµ2 µ2 + m2

Q2 + m2
fIP (xIP ; µ2 + m2)

)

FIP
L (β),

F
D(3)
2,NP (xIP , β, Q2) = fIP=NP(xIP ) FIP=NP

2 (β, Q2 + m2; Q2
0 + m2),

F
D(3)
2,IR (xIP , β, Q2) = cIR fIR(xIP ) FIR

2 (β, Q2 + m2).

(6.55)

This simplified prescription enables us to obtain a satisfactory simultaneous descrip-

tion of the DIS and DDIS data, with the same asymptotic behaviour, λg = λS (= 0),

of the input gluon and sea quark distributions at a ‘physical’ Q2 = 0 GeV2 corre-

sponding to a ‘shifted’ Q2 = (0 + 1) GeV2, as shown in Fig. 6.11; the corresponding

parameter values are listed in Table 6.4. However, we do not have a solid theoretical

justification for fixing λg = λS = 0 or for the value of m2 = 1 GeV2 that we shift

the scales by. A more detailed, and more theoretically-motivated, investigation of

the effect of power corrections in DIS is called for.

6.8 Back to diffractive PDFs

Since the PDFs are modified after including absorptive corrections then so are the

DPDFs, which depend on the square of the PDFs. In Fig. 6.12(a) we show the final

DPDFs obtained from the three fits in Tables 6.1 (‘Negative gluon’), 6.3 (‘Positive

gluon’), and 6.4 (‘Shift scale’), compared to the ‘MRST’ fit of Chapter 5 and the

DPDFs from the preliminary H1 analysis [148]. The DPDFS from the ‘Negative

gluon’ and ‘Positive gluon’ fits are almost unchanged from those obtained from the

‘MRST’ fit, because the fit to DDIS data is driven by the sea quark distribution

at low scales µ2 ∼ Q2
0 ∼ 1 GeV2, and this is almost unchanged after including

absorptive corrections. The DPDFs labelled ‘Shift scale’ are defined as

aD(xIP , β, Q2) =
∑

IP=G,S,GS

(

∫ Q2

Q2

0

dµ2 fIP (xIP ; µ2 + m2) aIP (β, Q2 + m2; µ2 + m2)

)

+ fIP=NP(xIP ) aIP=NP(β, Q2 + m2; Q2
0 + m2) + cIR fIR(xIP ) aIR(β, Q2 + m2). (6.56)

6Taking moments involves a factor (Q2 + m2)γ = (Q2)γ(1 + γm2/Q2 + . . .), where γ is the
anomalous dimension, and so we see the power corrections suppressed by 1/Q2.
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no absorp. corr. with absorp. corr.
F2 : χ2/d.o.f. 1.45 1.15

Ag 3.4 × 10−6 0.82
λg 0 (fixed) 0 (fixed)
εg (2.7 ± 1.2) × 106 10 ± 1
γg (−3.2 ± 1.4) × 106 −15 ± 2
A− 0 (fixed) 0 (fixed)
δ− — —
AS 0.82 ± 0.03 0.56 ± 0.04
λS 0 (fixed) 0 (fixed)
εS 0.72 ± 0.46 4.0 ± 1.2
γS 2.8 ± 1.5 −0.04 ± 2.42

F
D(3)
2 : χ2/d.o.f. 1.30 1.29
cq/G (GeV2) 0.57 ± 0.15 0.37 ± 0.03
cg/G (GeV2) (1 ± 31) × 10−4 (3 ± 5) × 10−3

cL/G (GeV2) 0.099 ± 0.026 0.072 ± 0.017
cq/S (GeV2) 0.028 ± 0.064 0.032 ± 0.007
cg/S (GeV2) 4.6 ± 0.8 3.9 ± 0.7
cL/S (GeV2) 0 0

cq/NP (GeV−2) 1.40 ± 0.07 1.38 ± 0.05
cIR (GeV−2) 5.6 ± 0.5 5.7 ± 0.5

NZ 1.52 ± 0.06 1.53 ± 0.06
NH 1.20 ± 0.04 1.20 ± 0.04

R(6.5 GeV2), R(90 GeV2) 0.62, 0.65 0.63, 0.67

Table 6.4: The parameter values of the ‘simultaneous’ fits to the inclusive F2 and
F

D(3)
2 data with λg = λS = 0 imposed and shifting the scale by 1 GeV2 to simulate

the effect of power corrections. The last row R(Q2), defined in (5.33), gives the
fraction of the Pomeron’s (plus Reggeon’s) momentum carried by gluons at xIP =
0.003.
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It is interesting that the DPDFs obtained from this fit are closer to the H1 DPDFs,

especially at the higher Q2 value shown in Fig. 6.12(a); however, the reader should

bear in mind the effect of taking the same value of αS(M2
Z) as H1, as shown in

Fig. 5.5(b). In Fig. 6.12(b) we show the breakdown of the DPDFs from the ‘Shift

scale’ fit. Notice that the two-quark Pomeron contribution is still the dominant one,

although the two-gluon Pomeron contribution is non-negligible, cf. Fig. 5.6(b). As

discussed at the end of Section 5.3, the description of final state observables in DDIS

will help to discriminate between the various DPDFs.

6.9 Discussion and summary

A reasonably satisfactory simultaneous description of DDIS and DIS data was orig-

inally obtained using the dipole saturation model [155, 201, 202]. However, the de-

scription of the new more precise DDIS data using the BGK model [202] is less

good, with the model predictions tending to lie slightly below the data, especially

at low β [157, 168]. Moreover, the DGLAP evolution of the Pomeron parton distri-

butions is not accounted for. In the dipole approach, the best fit to DIS data also

has a valence-like input gluon distribution [202,203]. This indicates that we need to

account for the sea quark contribution to the perturbative Pomeron flux factor in

DDIS; indeed, this was one of the new ingredients of the analysis made in Chapter

5. Note that within dipole saturation models the sea quarks are generated solely

from the gluon and therefore both have the same high-energy behaviour. In order

to obtain a good fit to DIS data, the authors of [202, 203] were forced to shift the

scale of the gluon distribution by µ2
0 ' 1 GeV2, the same value we used in (6.55).

Finally, a comment on why we consider partons at low scales. It might be argued

that Q2 ∼ 1 GeV2 is too low a scale to work in terms of quarks and gluons. (Recall

that we only fit F2 data with Q2 > 2 GeV2.) However, we emphasise that Q2 ∼ 1

GeV2 is the region where the description in terms of hadronic and quark–gluon

degrees of freedom should be matched to each other. Therefore, we would like to

obtain input parton distributions at Q2
0 = 1 GeV2 which are consistent with Regge

theory. An alternative approach is to adopt a hadronic description for Q2 ∼ 1 GeV2

(see, for example, [204]); however, this does not confront the issue. Note that within

the OPE, the leading-twist parton distributions are well-defined quantities even at

low scales. Of course, at such low Q2, higher-order αS corrections, power corrections

and other non-perturbative effects are not negligible and need to be accounted for.

Indeed, it was one of the goals of this chapter to see if absorptive (and power)

corrections could cure the anomalous behaviour of the gluon at low Q2 and small x.
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Figure 6.12: (a) DPDFs obtained from the three ‘simultaneous’ fits in Tables 6.1
(‘Negative gluon’), 6.3 (‘Positive gluon’), and 6.4 (‘Shift scale’), compared to the
‘MRST’ fit of Chapter 5 and the DPDFs from the preliminary H1 analysis [148].
(b) Breakdown of the five separate components of (6.56) for the ‘Shift scale’ fit.
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Note that the characteristic size of instantons, which are a typical example of the

non-perturbative contribution, is about 0.4 GeV2 (see, for example, [205]), and down

to this scale it looks reasonable to work with quark and gluon degrees of freedom.

The relevant hadronic (confinement) scale µh is smaller. It is driven by ΛQCD and

the constituent quark mass, that is, µ2
h ∼ 0.1 GeV2.

In summary, we have achieved a good simultaneous description of all the DDIS

and small-xB inclusive DIS data, in which the absorptive corrections in the descrip-

tion of the latter data have been identified and incorporated. In this way a more

physical input gluon distribution at Q2
0 = 1 GeV2 has been obtained, which no longer

needs to be negative at small x. However, there remains an outstanding dilemma in

small-x DIS. Either, contrary to expectations, the non-perturbative Pomeron does

not couple to gluons, or DGLAP evolution is frozen at low Q2, perhaps by power

corrections. Note, however, that in both scenarios we still have the puzzle that the

secondary Reggeon couples more to gluons than to sea quarks.
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