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Outline

I Diffractive deep-inelastic scattering (DDIS) is characterised
by a large rapidity gap due to Pomeron (vacuum quantum
number) exchange.

I How do we extract diffractive parton density functions
(DPDFs) from DDIS data?

1. Demise of the ‘Regge factorisation’ approach currently
used by H1/ZEUS, where the exchanged Pomeron is
treated as a hadron-like object.

2. Rise of the ‘perturbative QCD’ approach, where the
exchanged Pomeron is a parton ladder. Treatment of
diffractive PDFs has more in common with photon PDFs
than proton PDFs.
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Diffractive DIS kinematics

γ∗

q

β

xIP

}X

rap. gap

tp p′

I q2 ≡ −Q2

I W 2 ≡ (q + p)2 = −Q2 + 2 p · q
⇒ xB ≡ Q2

2 p·q = Q2

Q2+W 2 (fraction
of proton’s momentum carried by
struck quark)

I t ≡ (p − p′)2 ≈ 0, (p − p′) ≈ xP p

I M2
X ≡ (q + p − p′)2 = −Q2 + xP(Q2 + W 2)

⇒ xP =
Q2+M2

X
Q2+W 2

(fraction of proton’s momentum carried by Pomeron)

I β ≡
xB
xP

= Q2

Q2+M2
X

(fraction of Pomeron’s momentum carried

by struck quark)
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Diffractive structure function F D(3)
2

I Diffractive cross section (integrated over t):

d3σD

dxP dβ dQ2 =
2πα2

em

β Q4

[

1 + (1 − y)2
]

σ
D(3)
r (xP, β, Q2),

where y = Q2/(xBs), s = 4EeEp, and

σ
D(3)
r = F D(3)

2 −
y2

1 + (1 − y)2 F D(3)
L ≈ F D(3)

2 (xP, β, Q2),

for small y or assuming that F D(3)
L � F D(3)

2

I Measurements of F D(3)
2 ⇒ diffractive parton distribution

functions (DPDFs)
aD(xP, z, Q2) = zqD(xP, z, Q2) or zgD(xP, z, Q2),

where β ≤ z ≤ 1, cf. xB ≤ x ≤ 1 in DIS.
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Collinear factorisation in DDIS

F D(3)
2 =

∑

a=q,g

C2,a ⊗ aD + O(1/Q), (1)

where C2,a are the same coefficient functions as in inclusive DIS and where
aD = zqD or zgD satisfy DGLAP evolution in Q2:

∂aD

∂ ln Q2
=

X

a′=q,g

Paa′ ⊗ a′D (2)

“The factorisation theorem applies when Q is made large while xB , xP, and
t are held f ixed.” [Collins,’98]

I Says nothing about the mechanism for diffraction: what is the
colourless exchange (‘Pomeron’) which causes the large rapidity gap.
Assuming a ‘QCD Pomeron’ we need to modify both (1) and (2).

I Factorisation is broken in hadron–hadron collisions, but hope that same
formalism can be applied with extra suppression factor calculable from
eikonal models.

I LO diffractive dijet photoproduction: resolved photon contribution
should be suppressed. Complications at NLO → talk by M. Klasen.
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H1 extraction of DPDFs (ZEUS similar)
I Assume Regge factorisation [Ingelman–Schlein,’85]:

aD(xP, z, Q2) = fP(xP) aP(z, Q2)

I Pomeron flux factor from Regge phenomenology:

fP(xP) =

Z tmin

tcut

dt eBP t x1−2αP(t)
P

`
αP(t) = αP(0) + α′

P
t
´

“Regge factorisation relates the power of xP measured in DDIS to the
power of s measured in hadron–hadron elastic scattering.” [Collins,’98]

I Fit to H1 F D(3)
2 data gives αP(0) = 1.17 > 1.08, the value of the ‘soft Pomeron’

[Donnachie–Landshoff,’92]. By Collins’ definition, Regge factorisation is broken.
H1/ZEUS meaning of ‘Regge factorisation’ is that the xP dependence factorises
as a power law, with the power independent of β and Q2 (also broken, see later).

I Pomeron PDFs aP(z, Q2) = zΣP(z, Q2) or zgP(z, Q2) are DGLAP-evolved from
inputs at Q2

0 = 3 GeV2:

aP(z, Q2
0) =

h

Aa + Ba(2z − 1) + Ca

“

2(2z − 1)2
− 1

”i2
exp(−0.01/(1 − z))
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Recent measurements of DDIS → talk by L. Favart

1. Detect leading proton. No proton dissociation background, but low
statistics. Both P and R contributions. [ZEUS: Eur. Phys. J. C 38 (2004)
43, H1prelim-01-112]

2. Look for large rapidity gap (LRG). (Non-diffractive contribution is
exponentially suppressed as a function of the gap size.) Proton
dissociation background. Both P and R contributions. [H1prelim-02-012,
H1prelim-02-112, H1prelim-03-011]

3. Use “MX method”. Subtract non-diffractive contribution in each (W , Q2)
bin by fitting:

dN
dln M2

X

= D + c exp(b ln M2
X )

| {z }

non-diffractive

Motivated by Regge theory assuming t = 0, αP(0) ≡ 1, Q2
� M2

X .
(Validity in pQCD?) Proton dissociation background. Only P

contribution. [ZEUS: Nucl. Phys. B 713 (2005) 3]

Are these three methods compatible?

p.7/27



Recent measurements of DDIS → talk by L. Favart

1. Detect leading proton. No proton dissociation background, but low
statistics. Both P and R contributions. [ZEUS: Eur. Phys. J. C 38 (2004)
43, H1prelim-01-112]

2. Look for large rapidity gap (LRG). (Non-diffractive contribution is
exponentially suppressed as a function of the gap size.) Proton
dissociation background. Both P and R contributions. [H1prelim-02-012,
H1prelim-02-112, H1prelim-03-011]

3. Use “MX method”. Subtract non-diffractive contribution in each (W , Q2)
bin by fitting:

dN
dln M2

X

= D + c exp(b ln M2
X )

| {z }

non-diffractive

Motivated by Regge theory assuming t = 0, αP(0) ≡ 1, Q2
� M2

X .
(Validity in pQCD?) Proton dissociation background. Only P

contribution. [ZEUS: Nucl. Phys. B 713 (2005) 3]

Are these three methods compatible?

p.7/27



Recent measurements of DDIS → talk by L. Favart

1. Detect leading proton. No proton dissociation background, but low
statistics. Both P and R contributions. [ZEUS: Eur. Phys. J. C 38 (2004)
43, H1prelim-01-112]

2. Look for large rapidity gap (LRG). (Non-diffractive contribution is
exponentially suppressed as a function of the gap size.) Proton
dissociation background. Both P and R contributions. [H1prelim-02-012,
H1prelim-02-112, H1prelim-03-011]

3. Use “MX method”. Subtract non-diffractive contribution in each (W , Q2)
bin by fitting:

dN
dln M2

X

= D + c exp(b ln M2
X )

| {z }

non-diffractive

Motivated by Regge theory assuming t = 0, αP(0) ≡ 1, Q2
� M2

X .
(Validity in pQCD?) Proton dissociation background. Only P

contribution. [ZEUS: Nucl. Phys. B 713 (2005) 3]

Are these three methods compatible?

p.7/27



Recent measurements of DDIS → talk by L. Favart

1. Detect leading proton. No proton dissociation background, but low
statistics. Both P and R contributions. [ZEUS: Eur. Phys. J. C 38 (2004)
43, H1prelim-01-112]

2. Look for large rapidity gap (LRG). (Non-diffractive contribution is
exponentially suppressed as a function of the gap size.) Proton
dissociation background. Both P and R contributions. [H1prelim-02-012,
H1prelim-02-112, H1prelim-03-011]

3. Use “MX method”. Subtract non-diffractive contribution in each (W , Q2)
bin by fitting:

dN
dln M2

X

= D + c exp(b ln M2
X )

| {z }

non-diffractive

Motivated by Regge theory assuming t = 0, αP(0) ≡ 1, Q2
� M2

X .
(Validity in pQCD?) Proton dissociation background. Only P

contribution. [ZEUS: Nucl. Phys. B 713 (2005) 3]

Are these three methods compatible?

p.7/27



H1 vs. ZEUS MX DPDFs

Fits and plot by F.-P. Schilling (H1)

I Same procedure used to fit
H1 LRG and ZEUS MX
data. (ZEUS MX data scaled by a

constant factor to account for different

amount of proton dissociation.)

I Gluon from ZEUS MX fit ∼
factor two smaller than
gluon from H1 LRG data,
due to different Q2

dependence of the data
sets. H1 2002 fit gives good
agreement with (LRG) DDIS
dijet and D∗ production
data.

I N.B. 2-loop αS fixed by
ΛQCD = 200 MeV for 4
flavours. Gives αS values
much smaller than world
average ⇒ H1 2002 gluon
artificially enhanced. Will be
corrected for H1 publication.
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H1 vs. ZEUS MX vs. ZEUS LPS DPDFs
Diffractive PDFs (xIP=0.01)
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GLP fit

Plot by T. Tawara (ZEUS)

I No correction made for different
amounts of proton dissociation.

I GLP = Groys–Levy–Proskuryakov
(ZEUS) fit to ZEUS MX data, gives
much too low prediction for ZEUS
(LRG) DDIS dijets.

I ZEUS LPS fit describes dijets well,
but:

“The shape of the f itted PDFs changes

signif icantly depending on the functional

form of the initial parameterisation, a

consequence of the relatively large

statistical uncertainties of the present

sample. Therefore, these data cannot

constrain the shapes of the PDFs.”

[ZEUS: Eur. Phys. J. C 38 (2004) 43]
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Q2 dependence of effective Pomeron intercept

I Recall that ‘Regge factorisation’ fits assume that αP(0) is independent of β and
Q2.

I αP(0) clearly rises with Q2, but is smaller than in inclusive DIS, indicating that
the xP dependence is controlled by some scale µ2 < Q2.

I αP(0) > 1.08 [Donnachie–Landshoff,’92] indicating that the Pomeron in DDIS is
not the ‘soft’ Pomeron exchanged in hadron–hadron collisions ⇒ should use
pQCD instead of Regge phenomenology. In pQCD, Pomeron exchange can be
described by two-gluon exchange. p.10/27



How to reconcile two-gluon exchange with DPDFs?

k

γ∗

p

l⊥l⊥ + xIPp

q q − k

k̃

p′

γ∗

p

l⊥l⊥ + xIPp

q

k

p′

q − k

k̃

Two-gluon exchange

calculations are the basis

for the colour dipole

model description of

DDIS (→ talk by

G. Shaw).

I Right: xPF D(3)
2 for xP = 0.0042 as a

function of β

[Golec-Biernat–Wüsthoff,’99].
I dotted lines: γ∗

T → qq̄g,
I dashed lines: γ∗

T → qq̄,

I dot-dashed lines: γ∗

L → qq̄,

important at low, medium, and high β
respectively.

I γ∗

L → qq̄ is higher-twist, but DPDFs
only include leading-twist
contributions, therefore H1/ZEUS
DPDFs are artificially large at high z.

ZEUS 1994

F
2D

(2
)

Q2=8 GeV2 Q2=14 GeV2
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β
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The QCD Pomeron is a parton ladder

I Generalise γ∗ → qq̄ and γ∗ → qq̄g to arbitrary number of parton emissions
[Ryskin,’90; Levin–Wüsthoff,’94].

I Work in Leading Logarithmic Approximation (LLA) ⇒ transverse momenta are
strongly ordered.

γ∗

Q2

p

µ2

µ2

0

I New feature: integral over scale µ2 (starting scale for
DGLAP evolution of Pomeron PDFs).

F D(3)
2 =

Z Q2

µ2
0

dµ2

µ2
fP(xP; µ2) F P

2 (β, Q2; µ2)

fP(xP; µ2) =
1

xPBD

"

Rg
αS(µ2)

µ
xPg(xP, µ2)

#2

F P

2 (β, Q2; µ2) =
X

a=q,g

C2,a ⊗ aP

µ2
0 ∼ 1 GeV2, BD from t-integration, Rg from skewedness [Shuvaev et al.,’99]

I Pomeron PDFs aP(z, Q2; µ2) DGLAP-evolved from an
input scale µ2 up to Q2.
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Gluonic and sea-quark Pomeron

10
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x
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CTEQ6.1M

xg

xS

I At low scales, sea-quark density of the
proton dominates over gluon density at
small x ⇒ need to account for sea-quark
density in perturbative Pomeron flux
factor.

xIPg(xIP , µ2)xIPg(xIP , µ2)p

γ∗

βΣIP=G(β, Q2; µ2)

xIPS(xIP , µ2)xIPS(xIP , µ2)p

γ∗

βΣIP=S(β, Q2; µ2)

I Pomeron structure function F P

2 (β, Q2; µ2) calculated from quark singlet
ΣP(z, Q2; µ2) and gluon gP(z, Q2; µ2) DGLAP-evolved from an input scale µ2 up
to Q2.

I Input Pomeron PDFs ΣP(z, µ2; µ2) and gP(z, µ2; µ2) are Pomeron-to-parton
splitting functions. p.13/27



LO Pomeron-to-parton splitting functions

I LO Pomeron-to-parton splitting functions calculated in Eur.
Phys. J. C 44 (2005) 69.

I Notation: ‘P = G’ means gluonic Pomeron, ‘P = S’ means
sea-quark Pomeron, ‘P = GS’ means interference between
these.

zΣP=G(z, µ2; µ2) = Pq,P=G(z) = z3 (1 − z),

zgP=G(z, µ2; µ2) = Pg,P=G(z) =
9

16
(1 + z)2 (1 − z)2,

zΣP=S(z, µ2; µ2) = Pq,P=S(z) =
4

81
z (1 − z),

zgP=S(z, µ2; µ2) = Pg,P=S(z) =
1

9
(1 − z)2,

zΣP=GS(z, µ2; µ2) = Pq,P=GS(z) =
2

9
z2 (1 − z),

zgP=GS(z, µ2; µ2) = Pg,P=GS(z) =
1

4
(1 + 2z) (1 − z)2

Evolve these input Pomeron PDFs from µ2 up to Q2 using NLO DGLAP evolution.
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Contribution to F D(3)
2 as a function of µ

2

F D(3)
2 =

Z Q2

µ2
0

dµ2

µ2
fP(xP; µ

2) F P

2 (β, Q2; µ2)

fP(xP; µ
2) =

1
xPBD

»

Rg
αS(µ2)

µ
xPg(xP, µ

2)

–2

I Naïvely, fP(xP; µ2) ∼ 1/µ2, so contributions
from large µ2 are strongly suppressed.

I But xPg(xP, µ2) ∼ (µ2)γ , where γ is the
anomalous dimension. In BFKL limit γ ' 0.5,
so fP(xP; µ2) ∼ constant.

I HERA domain is in an intermediate region: γ
is not small, but is less than 0.5.

I Plot integrand as a function of µ2 (using
MRST2001 NLO PDFs) ⇒ large contribution
from large µ2.

I H1 (ZEUS) fits assume that µ2 < Q2
0 , where

Q2
0 = 3 (2) GeV2 for H1 (ZEUS) fits.

1 10 100

µ2
  (GeV

2
)

0

5

f IP
(x

IP
; µ

2 ) 
 F

2IP
(β

, Q
2 ; µ

2 )

Total contribution
Gluonic Pomeron
Sea-quark Pomeron
Interference

0

0.5

1
Total contribution
Gluonic IP
Sea-quark IP
Interference

x
IP

 = 0.003, β = 0.65, Q
2
 = 90 GeV

2

x
IP

 = 0.001, β = 0.1, Q
2
 = 12 GeV

2
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Inhomogeneous evolution of DPDFs

F D(3)
2 =

∑

a=q,g

C2,a ⊗ aD,

where aD(xP, z, Q2) =

∫ Q2

µ
2
0

dµ2

µ2 fP(xP;µ2) aP(z, Q2;µ2)

=⇒
∂aD

∂ ln Q2
=

Z Q2

µ2
0

dµ2

µ2
fP(xP; µ2)

∂aP

∂ ln Q2
+ fP(xP; µ2) aP(z, Q2; µ2)

˛
˛
˛
µ2=Q2

=

Z Q2

µ2
0

dµ2

µ2
fP(xP; µ2)

X

a′=q,g

Paa′ ⊗ a′P + fP(xP; Q2) aP(z, Q2; Q2)

=
X

a′=q,g

Paa′ ⊗ a′D

| {z }

DGLAP term

+ fP(xP; Q2) PaP(z)
| {z }

Extra inhomogeneous term

Inhomogeneous evolution of DPDFs is not a new idea:

“We introduce a diffractive dissociation structure function and show that it
obeys the DGLAP evolution equation, but, with an additional
inhomogeneous term.” [Levin–Wüsthoff,’94]
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Pomeron structure is analogous to photon structure
Diffractive structure function

F D(3)
2 (xP, β, Q2) =

X

a=q,g

C2,a ⊗ aD

| {z }

Resolved Pomeron

+ C2,P
|{z}

Direct Pomeron

∂aD(xP, z, Q2)

∂ ln Q2
=

X

a′=q,g

Paa′ ⊗ a′D

| {z }

DGLAP

+ PaP(z) fP(xP; Q2)
| {z }

Inhomogeneous

Photon structure function

F γ

2 (xB, Q2) =
X

a=q,g

C2,a ⊗ aγ

| {z }

Resolved photon

+ C2,γ
|{z}

Direct photon

where
∂aγ(x , Q2)

∂ ln Q2
=

X

a′=q,g

Paa′ ⊗ a′γ

| {z }

DGLAP

+ Paγ(x)
| {z }

Inhomogeneous
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Dijets in diffractive photoproduction
Resolved photon Direct photon

(xγ < 1) (xγ = 1)

Resolved Pomeron
(zP < 1)

p

zIP

xIP

jet

jet

γ

xγ

p

zIP

xIP

jet

jet

γ

Direct Pomeron
(zP = 1) jet

jet

γ

xγ

p

xIP

jet

jet

γ

p

xIP

I Effect of direct Pomeron coupling was considered by Kniehl–Kohrs–Kramer [Z. Phys. C 65 (1995) 657],

but with Pomeron coupling to quarks like a photon: Lint = c q̄(x)γµq(x)φµ(x).
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Need for NLO calculations
I NLO analysis of DDIS data is not yet possible.
I Need C2,P and PaP at NLO (help wanted!). Calculable with usual

methods, e.g. LO diagrams are:

k

q − k

l⊥

γ∗

q q − k

l⊥

γ∗

q

k

q − k

l⊥

γ∗

qq − k

l⊥

γ∗

q

l⊥l⊥ l⊥ l⊥
kk

k + l⊥k k − l⊥q − k

Dimensional regularisation: work in 4 − 2ε dimensions, collinear singularity
appears as 1/ε pole multiplied by PqP, subtract in e.g. MS factorisation scheme
to leave finite remainder C2,P.

I Simplified analysis: take NLO C2,a and Paa′ (a, a′ = q, g), but LO C2,P

and PaP.
I Work in Fixed Flavour Number Scheme (no charm DPDF),

with charm production via NLO γ∗gP → cc̄ [Riemersma et
al.,’95] and LO γ∗P → cc̄
[Levin–Martin–Ryskin–Teubner,’97].

I For light quarks, include LO γ∗L P → qq̄ (higher-twist), but
not γ∗T P → qq̄ (leading-twist).
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Description of DDIS data
I Take input quark singlet and gluon densities at Q2

0 = 3 GeV2 in
the form:

zΣD(xP, z, Q2
0) = fP(xP) Cq zAq (1 − z)Bq ,

zgD(xP, z, Q2
0) = fP(xP) Cg zAg (1 − z)Bg ,

I Take fP(xP) as in the H1 2002 fit with αP(0), Ca, Aa, and Ba

(a = q, g) as free parameters.

I Treatment of secondary Reggeon as in H1 2002 fit.

I Fit H1 LRG and ZEUS MX data separately with cuts MX > 2
GeV and Q2 > 3 GeV2. Allow overall normalisation factors of
1.10 and 1.43 respectively to account for proton dissociation.

I Statistical and systematic experimental errors added in
quadrature.

I Two types of fits:
I “Regge” = ‘Regge factorisation’ approach (i.e. no C2,P or

PaP) as H1/ZEUS do.
I “pQCD” = ‘perturbative QCD’ approach with LO C2,P and

PaP.
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“pQCD” fits to H1 and ZEUS MX data

 = 0.01β  = 0.04β  = 0.10β  = 0.20β  = 0.40β  = 0.65β  = 0.90β
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1997 H1 data (prel.)
‘‘pQCD’’ fit (all contributions)

Resolved IP contrib.
 contrib.c c→*IPγ
 contrib.q q→IPL*γ

Reggeon contrib.

I χ2/d.o.f. = 0.71 (0.75 for “Regge” fit)

 = 0.004β  = 0.010β  = 0.032β  = 0.100β  = 0.308β

 = 0.007β  = 0.015β  = 0.047β  = 0.143β  = 0.400β
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Resolved IP contrib.

 contrib.c c→*IPγ

 contrib.q q→IPL*γ

I χ2/d.o.f. = 0.84 (0.76 for “Regge” fit)
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DPDFs from fits to H1 and ZEUS MX data

0
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(x
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H1 data, "Regge" fit
H1 data, "pQCD" fit
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X
 data, "Regge" fit

M
X
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Diffractive quark singlet distribution
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500

z 
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Diffractive gluon distribution
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2
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I “pQCD” DPDFs are smaller at large z due to inclusion of the higher-twist γ∗

L P → qq̄.

I “pQCD” DPDFs have slightly more rapid evolution due to the inhomogeneous term.

I Difference between H1 and ZEUS MX fits remains.
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Q2 slope of H1 vs. ZEUS MX data

At LO,
∂F D(3)

2

∂ ln Q2
=

X

q

e2
q

0

@
X

a′=q,g

Pqa′ ⊗ a′D
+ PaPfP

1

A+(γ∗
P → cc̄)+(γ∗

L P → qq̄)+R.
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 = 0.003, Q
2
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2

I Peak due to threshold for γ∗
P → cc̄ at β = Q2/(Q2 + 4m2

c ).
I Additional contributions to scaling violations apart from DGLAP contribution.
I All free parameters in ‘DGLAP’ part: ZEUS MX data have smaller scaling

violations.
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xP dependence of H1 vs. ZEUS MX data
I Fit σ

D(3)
r ∝ fP(xP) in each (β, Q2) bin with ≥ 4 data points and y < 0.45

(additional cut xP < 0.01 for H1 data):
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‘‘pQCD’’ fit to H1 data
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1.35

 dataX‘‘pQCD’’ fit to ZEUS M

 = 11 GeVXM

 =  6 GeVXM
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 dataX‘‘pQCD’’ fit to ZEUS M

I Inhomogeneous evolution can account for rise of αP(0) with Q2.

I Inhomogeneous evolution breaks Regge factorisation.
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Predictions for diffractive charm production

1998-2000 ZEUS data

‘‘pQCD’’ fit to H1 data

 contrib.c c→IP
*gγ

 contrib.c c→*IPγ

β β
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 contrib.c c→IP
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2

 = 0.004, QIPx 2 = 25 GeV
2

 = 0.004, QIPx

0
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I Data measured using LRG method.

I H1 DPDFs give good description, ZEUS MX DPDFs too small at
low β.

I Direct Pomeron contribution significant at moderate β. These
charm data points are included in the ZEUS LPS fit, but only
γ∗gP → cc̄ contribution is included and not the γ∗P → cc̄
contribution. Therefore, diffractive gluon from ZEUS LPS fit
needs to be artificially large to fit the charm data.
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Non-linear evolution of inclusive PDFs

∂a(x , Q2)

∂ ln Q2
=

X

a′=q,g

Paa′ ⊗ a′
−

Z 1

x
dxP PaP(x/xP) fP(xP; Q2).

F2 FDGLAP
2 ∆F abs
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2

I Interesting application of DDIS
formalism to calculate shadowing
corrections to inclusive DIS via
AGK cutting rules.

I Inhomogeneous evolution of
DPDFs ⇒ non-linear evolution of
inclusive PDFs.

I More precise version of GLRMQ
equation derived.

I Fit HERA F2 data similar to
MRST2001 NLO fit. Small-x
gluon enhanced at low scales.

For more details see Phys. Lett. B 627 (2005) 97.
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Summary
I Diffractive DIS is more complicated than inclusive DIS.
I Collinear factorisation holds, but need to account for direct

Pomeron coupling:

F D(3)
2 =

∑

a=q,g

C2,a ⊗ aD + C2,P

∂aD

∂ ln Q2 =
∑

a′=q,g

Paa′ ⊗ a′D + PaP(z) fP(xP; Q2)

Analogous to the photon case.

I Outlook
I Are the LRG and MX methods compatible?

(If so, is the amount of proton dissociation Q2 dependent?)
I Need C2,P and PaP (a = q, g) at NLO.
I Study sensitivity to form of input parameterisation and

starting scale Q2
0 .
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