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Collinear factorisation in DDIS
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• Pomeron structure is analogous

to photon structure: both

resolved and direct contributions.

• Q2 � . . . � µ
2 � . . . � µ

2
0 ∼ 1 GeV2

• Direct Pomeron contribution

responsible for exclusive diffractive

processes, but also contributes to

inclusive diffraction.

DDIS structure function: F D(3)
2 (xP, β, Q2) =

X

a=q,g

C2,a ⊗ aD

| {z }

Resolved Pomeron

+ C2,P

|{z}

Direct Pomeron

DPDF evolution:
∂aD(xP, z, Q2)

∂ ln Q2
=

X

a′=q,g

Paa′ ⊗ a′D

| {z }

DGLAP term

+ PaP(z) fP(xP; Q2)
| {z }

Inhomogeneous term

pQCD Pomeron flux factor: fP(xP; Q2) =
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Motivation for an improved “MX method”
• Diffractive gluon distribution sensitive to Q2 dependence of DDIS data:
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• See HERA-LHC proceedings.

• H1 LRG and ZEUS MX data give very
different DPDFs due to different Q2

dependence of data sets.

• From results shown at last collaboration

meeting:
• New ZEUS LRG data also seem to have

different Q2 dependence than published ZEUS
MX data.

• New ZEUS MX (high Q2) data seem to be

compatible with published ZEUS MX data.

Possible (tentative) explanations:

1 Amount of proton dissociation is Q2 dependent?
But would be difficult to explain theoretically.

2 Significant non-diffractive contribution to LRG events (even at small xP)?
But should be exponentially suppressed compared to diffractive contribution.

3 Unjustified approximations made in “MX method” used to subtract
non-diffractive events?
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Reminder of the “MX method”
• Used in three ZEUS papers [Z. Phys. C 70 (1996) 391; Eur. Phys. J. C 6

(1999) 43; Nucl. Phys. B 713 (2005) 3] + analysis in progress.
• Subtract non-diffractive events in each (W ,Q2) bin by fitting (in a limited

range of ln M2
X ):

dN
d ln M2

X

= D + c exp(b ln M2
X )

| {z }
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Regge theory of DDIS
• Replace pQCD ladders by “effective” Regge trajectories, e.g.

γ
∗

p

γ
∗

p

=⇒

γ∗

p

γ∗

p

IP IP

IP

• But don’t expect the “effective” trajectories to be universal, e.g. “effective” αP(0)

greater than value for “soft” Pomeron and depends on Q2 [NPB 713 (2005) 3].

• For W 2 � M2
X and Q2 � t , consider triple Regge diagrams

[see Barone & Predazzi, High-energy particle diffraction, Chap. 10.5]:

IP IP

IR

IR IR

IP

IR IR

IR

IP IP

IP

Diffractive Non-diffractive

dσγ∗p

d ln xP

=

˛

˛gP (̄t)
˛

˛

2

16π2
x2−2αP (̄t)

P

h

APPP(Q2)β1−αP(0) + APPR(Q2)β1−αR(0)
i

+

˛

˛gR (̄t)
˛

˛

2

16π2
x2−2αR (̄t)

P

h

ARRP(Q2)β1−αP(0) + ARRR(Q2)β1−αR(0)
i

,

where αP(0) ≈ 1.1–1.2, αR(0) . 0.5, and t̄ is some average value of t .



The “(M2
X + Q2) method”

• Since xP = (M2
X + Q2)/(W 2 + Q2) and β = Q2/(M2

X + Q2), rewrite as

dσγ∗p

d ln(M2
X + Q2)

=APPP(̄t)(W
2)2αP (̄t)−2(M2

X + Q2)1+αP(0)−2αP (̄t)

+APPR(̄t)(W 2)2αP (̄t)−2(M2
X + Q2)1+αR(0)−2αP (̄t)

+ARRP(̄t)(W
2)2αR (̄t)−2(M2

X + Q2)1+αP(0)−2αR (̄t)

+ARRR(̄t)(W 2)2αR (̄t)−2(M2
X + Q2)1+αR(0)−2αR (̄t).

• The “MX method” assumes that M2
X � Q2 (⇒ β � 1, so PPR and RRR

contributions are negligible), and αP(0) ≈ αP(̄t) ≈ 1. Then

dσγ∗p

d ln M2
X

= D + c(M2
X )b = D + c exp(b ln M2

X ),

where b = 1 + αP(0) − 2αR(̄t).
• More generally, look at (M2

X + Q2) distribution:

dσγ∗p

d ln(M2
X + Q2)

= cP(M
2
X + Q2)−bP

| {z }

diffractive

+ cR(M2
X + Q2)bR

| {z }

non-diffractive

,

where −bP ≤ 1 + αP(0) − 2αP(̄t) ≈ −(0.1–0.2) and
bR ≥ 1 + αR(0) − 2αR(̄t) & 0.5.



The “(M2
X + Q2) method”

• Since xP = (M2
X + Q2)/(W 2 + Q2) and β = Q2/(M2

X + Q2), rewrite as

dσγ∗p

d ln(M2
X + Q2)

=APPP(̄t)(W
2)2αP (̄t)−2(M2

X + Q2)1+αP(0)−2αP (̄t)

+APPR(̄t)(W 2)2αP (̄t)−2(M2
X + Q2)1+αR(0)−2αP (̄t)

+ARRP(̄t)(W
2)2αR (̄t)−2(M2

X + Q2)1+αP(0)−2αR (̄t)

+ARRR(̄t)(W 2)2αR (̄t)−2(M2
X + Q2)1+αR(0)−2αR (̄t).

• The “MX method” assumes that M2
X � Q2 (⇒ β � 1, so PPR and RRR

contributions are negligible), and αP(0) ≈ αP(̄t) ≈ 1. Then

dσγ∗p

d ln M2
X

= D + c(M2
X )b = D + c exp(b ln M2

X ),

where b = 1 + αP(0) − 2αR(̄t).
• More generally, look at (M2

X + Q2) distribution:

dσγ∗p

d ln(M2
X + Q2)

= cP(M
2
X + Q2)−bP

| {z }

diffractive

+ cR(M2
X + Q2)bR

| {z }

non-diffractive

,

where −bP ≤ 1 + αP(0) − 2αP(̄t) ≈ −(0.1–0.2) and
bR ≥ 1 + αR(0) − 2αR(̄t) & 0.5.



The “(M2
X + Q2) method”

• Since xP = (M2
X + Q2)/(W 2 + Q2) and β = Q2/(M2

X + Q2), rewrite as

dσγ∗p

d ln(M2
X + Q2)

=APPP(̄t)(W
2)2αP (̄t)−2(M2

X + Q2)1+αP(0)−2αP (̄t)

+APPR(̄t)(W 2)2αP (̄t)−2(M2
X + Q2)1+αR(0)−2αP (̄t)

+ARRP(̄t)(W
2)2αR (̄t)−2(M2

X + Q2)1+αP(0)−2αR (̄t)

+ARRR(̄t)(W 2)2αR (̄t)−2(M2
X + Q2)1+αR(0)−2αR (̄t).

• The “MX method” assumes that M2
X � Q2 (⇒ β � 1, so PPR and RRR

contributions are negligible), and αP(0) ≈ αP(̄t) ≈ 1. Then

dσγ∗p

d ln M2
X

= D + c(M2
X )b = D + c exp(b ln M2

X ),

where b = 1 + αP(0) − 2αR(̄t).
• More generally, look at (M2

X + Q2) distribution:

dσγ∗p

d ln(M2
X + Q2)

= cP(M
2
X + Q2)−bP

| {z }

diffractive

+ cR(M2
X + Q2)bR

| {z }

non-diffractive

,

where −bP ≤ 1 + αP(0) − 2αP(̄t) ≈ −(0.1–0.2) and
bR ≥ 1 + αR(0) − 2αR(̄t) & 0.5.



The “xP method”

• The “(M2
X + Q2) method” is better than the “MX method”, but it uses a

combination of two powers of (M2
X + Q2) to approximate a combination

of four powers.

• Much more direct way of subtracting the non-diffractive contribution is to
look at the xP distribution:

dσγ∗p

d ln xP

=

˛
˛gP(̄t)

˛
˛2

16π2
x2−2αP (̄t)

P

h

APPP(Q
2)β1−αP(0) + APPR(Q2)β1−αR(0)

i

+

˛
˛gR(̄t)

˛
˛2

16π2
x2−2αR (̄t)

P

h

ARRP(Q
2)β1−αP(0) + ARRR(Q2)β1−αR(0)

i

⇒
dσγ∗p

d ln xP

= cP(xP)
−bP

| {z }

diffractive

+ cR(xP)
bR

| {z }

non-diffractive

,

where −bP = 2 − 2αP(̄t) ≈ −(0.2–0.4) and bR = 2 − 2αR(̄t) & 1.

• In most general case, fit four parameters c{P,R} ≥ 0 and b{P,R} ≥ 0
separately in each (β, Q2) bin, in some limited range of xP.



Summary

• “MX method” justified if M2
X � Q2 and αP(0) = 1:

dN
d ln M2

X

= D
︸︷︷︸

diffractive

+ c(M2
X )b

︸ ︷︷ ︸

non-diffractive

• “(M2
X + Q2) method” more general:

dN
d ln(M2

X + Q2)
= cP(M2

X + Q2)−bP

︸ ︷︷ ︸

diffractive

+ cR(M2
X + Q2)bR

︸ ︷︷ ︸

non-diffractive

• “xP method” even better:

dN
d ln xP

= cP(xP)−bP

︸ ︷︷ ︸

diffractive

+ cR(xP)bR

︸ ︷︷ ︸

non-diffractive

• More details given in write-up uploaded to ZEMS.
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