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Outline
Diffractive Deep-Inelastic Scattering (DDIS) is
characterised by a Large Rapidity Gap (LRG) due to
‘Pomeron’ (vacuum quantum number) exchange.
How do we extract Diffractive Parton Density Functions
(DPDFs) from DDIS data?
How ‘wrong’ are the H1 2006 DPDFs due to the
oversimplified theory used in their fits?

For the impatient, here’s the
answer (right), where:

“Regge fit” ' H1 2006 Fit
A.

“pQCD fit” is the subject of
this talk.
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Diffractive DIS kinematics

γ∗

q

β

xIP

}X

rap. gap

tp p′

q2 ≡ −Q2

W 2 ≡ (q + p)2 = −Q2 + 2 p · q
⇒ xB ≡

Q2

2 p·q = Q2

Q2+W 2 (fraction
of proton’s momentum carried by
struck quark)

t ≡ (p − p′)2 ≈ 0, (p − p′) ≈ xP p

M2
X ≡ (q + p − p′)2 = −Q2 + xP(Q2 + W 2)

⇒ xP =
Q2+M2

X
Q2+W 2

(fraction of proton’s momentum carried by Pomeron)

β ≡
xB
xP

= Q2

Q2+M2
X

(fraction of Pomeron’s momentum carried

by struck quark)
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Diffractive reduced cross section σ
D(3)
r

Diffractive cross section (integrated over t):

d3σD

dxP dβ dQ2 =
2πα2

em

β Q4

[

1 + (1 − y)2
]

σ
D(3)
r (xP, β, Q2),

where y = Q2/(xBs), s = 4EeEp, and

σ
D(3)
r = F D(3)

2 −
y2

1 + (1 − y)2 F D(3)
L ≈ F D(3)

2 (xP, β, Q2),

for small y or assuming that F D(3)
L � F D(3)

2

Measurements of σ
D(3)
r ⇒ diffractive parton density

functions (DPDFs)
aD(xP, z, Q2) = zqD(xP, z, Q2) or zgD(xP, z, Q2),

where β ≤ z ≤ 1, cf. xB ≤ x ≤ 1 in DIS.
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Leading-twist collinear factorisation in DDIS
F D(3)

2 =
∑

a=q,g

C2,a ⊗ aD + O(1/Q), (1)

where C2,a are the same coefficient functions as in inclusive DIS and where the
DPDFs aD = zqD or zgD satisfy DGLAP evolution in Q2:

∂aD

∂ ln Q2
=

∑

a′=q,g

Paa′ ⊗ a′D (2)

“The factorisation theorem applies when Q is made large while xB , xP, and t are held
fixed.” [Collins,’98]

Says nothing about the mechanism for diffraction: information
about the diffractive exchange (‘Pomeron’) needs to be
parameterised at an input scale Q0 and fit to data. Will show
later that assuming a ‘QCD Pomeron’ we need to modify both
(1) and (2).

Factorisation should also hold for final states (jets etc.) in
DDIS, but is broken in hadron–hadron collisions, although hope
that same formalism can be applied with extra suppression
factor calculable from eikonal models.

LO diffractive dijet photoproduction: resolved photon
contribution should be suppressed, but direct photon
contribution unsuppressed. Complications at NLO
[Klasen–Kramer,’05].

γ∗

Q2

p

Q2

0
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H1 2006 extraction of DPDFs
Assume Regge factorisation [Ingelman–Schlein,’85]:

aD(xP, z, Q2) = fP(xP) aP(z, Q2) (3)

Pomeron flux factor from Regge phenomenology:

fP(xP) =

∫ tmin

tcut

dt eBP t x1−2αP(t)
P

(
αP(t) = αP(0) + α′

P
t
)

“Regge factorisation relates the power of xP measured in DDIS to the
power of s measured in hadron–hadron elastic scattering.” [Collins,’98]

Pomeron PDFs aP(z, Q2) = zΣP(z, Q2) or zgP(z, Q2) are DGLAP-evolved from
arbitrary inputs at some scale Q2

0 , with the input parameters fitted to data.
Fit to H1 FPS data gives αP(t) = 1.11 + 0.06 t . Fit to H1 LRG data gives
αP(0) = 1.12 if α′

P
= 0.06, or αP(0) = 1.15 if α′

P
= 0.25. So the Pomeron in

DDIS is not the universal ‘soft Pomeron’ [Donnachie–Landshoff,’92] with
αP(t) = 1.08 + 0.25 t . By Collins’ definition, Regge factorisation is broken.
H1/ZEUS assume that the xP dependence factorises as eq.(3) regardless, with
the fitted αP(0) independent of β and Q2 (also broken, see later).
Breaking of Regge factorisation with αP(0) > 1.08 suggests a significant
perturbative QCD (pQCD) contribution to diffractive DIS. In pQCD, Pomeron
exchange can be described by two-gluon exchange.
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How to reconcile two-gluon exchange with DPDFs?

k

γ∗

p

l⊥l⊥ + xIPp

q q − k

k̃

p′

γ∗

p

l⊥l⊥ + xIPp

q

k

p′

q − k

k̃

Two-gluon exchange

calculations are the basis

for the colour dipole

model description of

DDIS.

Right: xPF D(3)
2 for xP = 0.0042 as a

function of β

[Golec-Biernat–Wüsthoff,’99].
dotted lines: γ

∗

T → qq̄g,
dashed lines: γ

∗

T → qq̄,

dot-dashed lines: γ
∗

L → qq̄,

important at low, medium, and high β
respectively.

γ∗

T → qq̄g and γ∗

T → qq̄ are partly
higher-twist, γ∗

L → qq̄ is purely
higher-twist, but H1/ZEUS DPDFs
only include leading-twist
contributions.

ZEUS 1994

F
2D

(2
)

Q2=8 GeV2 Q2=14 GeV2

Q2=27 GeV2

β

Q2=60 GeV2
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Comparison of two approaches
‘Regge factorisation’ approach

P is purely non-perturbative,
i.e. a Regge pole.

Q2 dependence given by DGLAP.

Need to fit β dependence.

xP dependence taken as a power
law, with the power either taken
from soft hadron data or fitted.

Only leading-twist.

Full DGLAP evolution in Pomeron
structure function.

Extract universal DPDFs.

xP dependence factorises.

Only applies to inclusive DDIS.

Two-gluon exch. (e.g. dipole model)

P is purely perturbative,
i.e. a gluon ladder.

Q2 dependence predicted.

β dependence predicted.

xP dependence given by square of
skewed gluon distribution (or dipole
cross section).

Goes beyond leading-twist.

Only qq̄ and qq̄g final states as
products of photon dissociation.

No concept of DPDFs.

xP dependence doesn’t factorise.

Also explains exclusive processes.

In reality, both non-perturbative and perturbative Pomeron contributions
to inclusive DDIS. Want to combine advantages of both approaches
while eliminating the limitations. Improve two-gluon exchange
calculations by introducing DGLAP evolution in ‘Pomeron structure
function’ allowing universal DPDFs to be extracted.

p.8



Combination of two approaches

Inclusive DDIS consists of both non-perturbative and perturbative
Pomeron contributions.

Non-perturbative P contribution

P is purely partly non-perturbative,
i.e. a Regge pole.

Q2 dependence given by DGLAP.

Need to fit β dependence.

xP dependence taken as a power
law, with the power either taken
from soft hadron data or fitted.

Only leading-twist.

Full DGLAP evolution in Pomeron
structure function.

Extract universal DPDFs.

xP dependence factorises.

Only applies to inclusive DDIS.

Perturbative P contribution

P is purely partly perturbative,
i.e. a gluon ladder.

Q2 dependence predicted.

β dependence predicted.

xP dependence given by square of
skewed gluon distribution (or dipole
cross section).

Goes beyond leading-twist.

Full DGLAP evolution in Pomeron
structure function.

Extract universal DPDFs.

xP dependence doesn’t factorise.

Also explains exclusive processes.

p.9



The QCD Pomeron is a parton ladder
Generalise γ∗ → qq̄ and γ∗ → qq̄g to arbitrary number of parton emissions
[Ryskin,’90; Levin–Wüsthoff,’94].
Work in Leading Logarithmic Approximation (LLA) ⇒ virtualities of t-channel
partons are strongly ordered: µ2

0 � . . . � µ2 � . . . � Q2, i.e. QCD Pomeron is
a DGLAP ladder rather than a BFKL ladder.

���

���

�

� �	��


� ��


�� �

�����

New feature: integral over scale µ2 (starting scale for
DGLAP evolution of Pomeron PDFs).

F D(3)
2 =

∫ Q2

µ
2
0

dµ2

µ2
fP(xP; µ2) F P

2 (β, Q2; µ2)

fP(xP; µ2) =
1

xPBD

[

Rg
αS(µ2)

µ
xPg(xP, µ2)

]2

F P

2 (β, Q2; µ2) =
∑

a=q,g

C2,a ⊗ aP

BD from t-integration, Rg from skewedness [Shuvaev et al.,’99]

Pomeron PDFs aP(z, Q2; µ2) DGLAP-evolved from an
input scale µ2 up to Q2.

For µ2 < µ2
0 ∼ 1 GeV2, replace lower parton ladder

with usual Regge pole contribution. Take
αP(0) ' 1.08 (or fit) and fit Pomeron PDFs
DGLAP-evolved from an input scale µ2

0. p.10



Gluonic and sea-quark Pomeron

10
-4

10
-3

10
-2

10
-1

x
0

1

2

3

4

xg
(x

,Q
2 ) 

  o
r 

  x
S(

x,
Q

2 )

Q
2
 = 2 GeV

2

MRST2004 NLO

CTEQ6.1M

xg

xS

At low scales, sea-quark density of the
proton dominates over gluon density at
small x ⇒ need to account for sea-quark
density in perturbative Pomeron flux
factor.

xIPg(xIP , µ2)xIPg(xIP , µ2)p

γ∗

βΣIP=G(β, Q2; µ2)

xIPS(xIP , µ2)xIPS(xIP , µ2)p

γ∗

βΣIP=S(β, Q2; µ2)

Pomeron structure function F P

2 (β, Q2; µ2) calculated from quark singlet
ΣP(z, Q2; µ2) and gluon gP(z, Q2; µ2) DGLAP-evolved from an input scale µ2 up
to Q2.
Input Pomeron PDFs ΣP(z, µ2; µ2) and gP(z, µ2; µ2) to DGLAP evolution are
Pomeron-to-parton splitting functions. p.11



LO Pomeron-to-parton splitting functions

LO Pomeron-to-parton splitting functions calculated in Eur.
Phys. J. C 44 (2005) 69.

Notation: ‘P = G’ means gluonic Pomeron, ‘P = S’ means
sea-quark Pomeron, ‘P = GS’ means interference between
these.

zΣP=G(z, µ2; µ2) = Pq,P=G(z) = z3 (1 − z),

zgP=G(z, µ2; µ2) = Pg,P=G(z) =
9

16
(1 + z)2 (1 − z)2,

zΣP=S(z, µ2; µ2) = Pq,P=S(z) =
4

81
z (1 − z),

zgP=S(z, µ2; µ2) = Pg,P=S(z) =
1

9
(1 − z)2,

zΣP=GS(z, µ2; µ2) = Pq,P=GS(z) =
2

9
z2 (1 − z),

zgP=GS(z, µ2; µ2) = Pg,P=GS(z) =
1

4
(1 + 2z) (1 − z)2

Evolve these input Pomeron PDFs from µ2 up to Q2 using NLO DGLAP evolution.
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Contribution to F D(3)
2 as a function of µ2

F D(3)
2 =

∫ Q2

µ
2
0

dµ2

µ2
fP(xP; µ

2) F P

2 (β, Q2; µ2)

fP(xP; µ
2) =

1
xPBD

[

Rg
αS(µ2)

µ
xPg(xP, µ

2)

]2

Naïvely, fP(xP; µ2) ∼ 1/µ2, so contributions
from large µ2 are strongly suppressed.

But xPg(xP, µ2) ∼ (µ2)γ , where γ is the
anomalous dimension. In BFKL limit γ ' 0.5,
so fP(xP; µ2) ∼ constant.

HERA domain is in an intermediate region: γ
is not small, but is less than 0.5.

Upper plot: µ2xPfP(xP; µ2) is not flat for small
xP. Lower plot: integrand as a function of µ2

(using MRST2004F3 NLO PDFs) ⇒ large
contribution from large µ2.

Recall that fits using ‘Regge factorisation’
include contributions from µ2 ≤ Q2

0 in the
input distributions, but neglect all
contributions from µ2 > Q2

0 .

10 100

µ2
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2
)
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3

µ2  x
IP

 f
IP

=
G

(x
IP
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2 ) x

IP
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x
IP

 = 0.003
x

IP
 = 0.01

10 100
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2
)

0

0.5

1

f IP
(x

IP
; µ

2 ) 
 F

2IP
(β

, Q
2 ; µ

2 ) Total contribution
Gluonic IP
Sea-quark IP
Interference

x
IP

 = 0.003, β = 0.65, Q
2
 = 90 GeV

2
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Inhomogeneous evolution of DPDFs

F D(3)
2 =

∑

a=q,g

C2,a ⊗ aD,

where aD(xP, z, Q2) =

∫ Q2

µ
2
0

dµ2

µ2 fP(xP;µ2) aP(z, Q2;µ2)

=⇒
∂aD

∂ ln Q2
=

∫ Q2

µ
2
0

dµ2

µ2
fP(xP; µ2)

∂aP

∂ ln Q2
+ fP(xP; µ2) aP(z, Q2; µ2)

∣
∣
∣
µ2=Q2

=

∫ Q2

µ
2
0

dµ2

µ2
fP(xP; µ2)

∑

a′=q,g

Paa′ ⊗ a′P + fP(xP; Q2) aP(z, Q2; Q2)

=
∑

a′=q,g

Paa′ ⊗ a′D

︸ ︷︷ ︸

DGLAP term

+ fP(xP; Q2) PaP(z)
︸ ︷︷ ︸

Extra inhomogeneous term

Inhomogeneous evolution of DPDFs is not a new idea:

“We introduce a diffractive dissociation structure function and show that it
obeys the DGLAP evolution equation, but, with an additional
inhomogeneous term.” [Levin–Wüsthoff,’94]
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Pomeron structure is analogous to photon structure
Photon structure function

F γ

2 (xB, Q2) =
∑

a=q,g

C2,a ⊗ aγ

︸ ︷︷ ︸

Resolved photon

+ C2,γ

︸︷︷︸

Direct photon

where
∂aγ(x , Q2)

∂ ln Q2
=

∑

a′=q,g

Paa′ ⊗ a′γ

︸ ︷︷ ︸

DGLAP term

+ Paγ(x)
︸ ︷︷ ︸

Inhomogeneous term

Diffractive structure function

F D(3)
2 (xP, β, Q2) =

∑

a=q,g

C2,a ⊗ aD

︸ ︷︷ ︸

Resolved Pomeron

+ C2,P

︸︷︷︸

Direct Pomeron

where
∂aD(xP, z, Q2)

∂ ln Q2
=

∑

a′=q,g

Paa′ ⊗ a′D

︸ ︷︷ ︸

DGLAP term

+ PaP(z) fP(xP; Q2)
︸ ︷︷ ︸

Inhomogeneous term
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Dijets in diffractive photoproduction
Resolved photon Direct photon

(xγ < 1) (xγ = 1)

Resolved Pomeron
(zP < 1)

p

zIP

xIP

jet

jet

γ

xγ

p

zIP

xIP

jet

jet

γ

Direct Pomeron
(zP = 1) jet

jet

γ

xγ

p

xIP

jet

jet

γ

p

xIP

Direct Pomeron contributions (zP = 1) are neglected in ‘Regge

factorisation’ analyses.
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Need for NLO calculations
NLO analysis of DDIS data is not yet possible.

Need C2,P and PaP at NLO. Should be calculable with usual methods,
e.g. LO diagrams are:

k

q − k

l⊥

γ∗

q q − k

l⊥

γ∗

q

k

q − k

l⊥

γ∗

qq − k

l⊥

γ∗

q

l⊥l⊥ l⊥ l⊥
kk

k + l⊥k k − l⊥q − k

Dimensional regularisation: work in 4 − 2ε dimensions, collinear singularity
appears as 1/ε pole multiplied by PqP, subtract in e.g. MS factorisation scheme
to leave finite remainder C2,P.

Here, take NLO C2,a and Paa′ (a, a′ = q, g), but LO C2,P and PaP.
Work in Fixed Flavour Number Scheme (no charm DPDF), with
charm production via NLO γ∗gP

→ cc̄ [Riemersma et al.,’95] and
LO γ∗

P → cc̄ [Levin–Martin–Ryskin–Teubner,’97].
For light quarks, include LO γ∗

L P → qq̄ (higher-twist), with LO

γ∗

T P → qq̄ contribution given by CT ,P = F D(3)
T ,qq̄ − F D(3)

T ,qq̄

∣
∣
∣
µ2�Q2

. This

subtraction defines a choice of factorisation scheme.
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Analysis of H1 LRG data (hep-ex/0606004)
Take input quark singlet and gluon densities at Q2

0 = 2 GeV2 in the form:

zΣD(xP, z, Q2
0) = fP(xP) Aq zBq (1 − z)Cq ,

zgD(xP, z, Q2
0) = fP(xP) Ag zBg (1 − z)Cg .

Take fP(xP) as in the H1 2006 fit with αP(0), Aa, Ba, and Ca (a = q, g) as
free parameters.
Treatment of secondary Reggeon as in H1 2006 fit, i.e. using pion
PDFs, but using GRV NLO instead of Owens LO. (N.B. No good reason
that the R PDFs should be same as pion PDFs.)

Fit H1 LRG data binned at fixed xP values with cut MX ≥ 2 GeV. Will
study effect of cut Q2

≥ Q2
min on fitted data.

Statistical and systematic experimental errors added in quadrature.
(Caveat: underestimates numerical values of χ2, but central DPDFs
obtained should be very close to those obtained treating correlated
systematic errors separately.)

Two types of fits:
“Regge” = ‘Regge factorisation’ approach (i.e. no C2,P or PaP) '
H1 2006 Fit A.
“pQCD” = ‘perturbative QCD’ approach with LO C2,P and PaP.

Use MRST2004F3 NLO PDFs with Λ
(nf =3)
QCD = 407 MeV.
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Stability with respect to Q2
min variation

Stability analysis following MRST [EPJC 35 (2004) 325].

Q2
min (GeV2) 3.5 5.0 6.5 8.5 12 15

Number of data points 266 239 214 190 164 141
χ2(Q2

≥ 3.5 GeV2) 272
264

χ2(Q2
≥ 5 GeV2) 233 222

227 223
χ2(Q2

≥ 6.5 GeV2) 208 186 174
208 201 186

χ2(Q2
≥ 8.5 GeV2) 178 155 144 142

182 172 153 150
χ2(Q2

≥ 12 GeV2) 156 136 124 123 122
162 153 135 132 131

χ2(Q2
≥ 15 GeV2) 133 111 100 98 97 96

138 128 109 104 102 101
Stability measure ∆i+1

i 0.41 0.48 0.08 0.04 0.04
0.15 0.60 0.13 0.04 0.04

Both Regge and pQCD fits stable for Q2
min & 6.5 GeV2. To compare

directly with H1 2006 fits, take Q2
min = 8.5 GeV2 for default fits

(conservative choice).
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DPDF and αP(0) dependence on Q2
min
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Again, stability for Q2
min & 6.5 GeV2.

Required αP(0) at Q2
0 = 2 GeV2 for

pQCD fits is lower than for Regge fits.
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xP dependence of H1 LRG data
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Fit σ
D(3)
r ∝ fP(xP) in each (β, Q2) bin

containing four or more data points
with xP ≤ 0.01, y ≤ 0.45 and
MX ≥ 2 GeV.

For β = 0.40 and β = 0.65, clear
rise with Q2 of effective αP(0) ⇒
xP-factorisation broken.

Inhomogeneous term depends on xP

and therefore xP-factorisation is
broken when evolving upwards from
Q2

0 to Q2 (but seems small effect).
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Evolution of diffractive gluon distribution

0.01 0.1 1
z

0.1

1

x IP
 z

 g
D

(x
IP

 =
 0

.0
03

, z
, Q

2 )

Regge fit with Q
2

min
 = 8.5 GeV

2

pQCD fit with Q
2

min
 = 8.5 GeV

2

Evolution of diffractive gluon distribution

Q
2
 = 2 GeV

2

Q
2
 = 8.5 GeV

2

Q
2
 = 20 GeV

2

Q
2
 = 90 GeV

2

Q
2
 = 800 GeV

2

0 0.2 0.4 0.6 0.8 1
z

0

0.2

0.4

0.6

0.8

1

x IP
 z

 g
D

(x
IP

 =
 0

.0
03

, z
, Q

2 )

Regge fit with Q
2

min
 = 8.5 GeV

2

pQCD fit with Q
2

min
 = 8.5 GeV

2

Evolution of diffractive gluon distribution

Q
2
 = 2 GeV

2

Q
2
 = 8.5 GeV

2

Q
2
 = 20 GeV

2

Q
2
 = 90 GeV

2

Q
2
 = 800 GeV

2

Extra inhomogeneous term in evolution equation means gluon from
pQCD fit needs to be smaller at input scale.
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Evolution of diffractive quark singlet distribution
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Quark singlet distribution at input scale is larger at low z in pQCD fit and
smaller at large z.
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β dependence of F D(3)
2
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Total
Resolved Pomeron contrib.
Direct Pomeron contrib.
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x
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 = 0.003, Q
2
 = 8.5 GeV

2

Direct Pomeron contribution only important for β & 0.9.
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β dependence of ∂F D(3)
2 /∂ ln Q2

At LO,
∂F D(3)

2

∂ ln Q2
=

∑

q

e2
q




∑

a′=q,g

Pqa′ ⊗ a′D
+ PaPfP



 + (Direct P) + R.
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Total
DGLAP contrib.
Inhomogeneous contrib.
Direct Pomeron contrib.
Secondary Reggeon contrib.

x
IP

 = 0.003, Q
2
 = 8.5 GeV

2

Peak due to threshold for γ∗
P → cc̄ at β = Q2/(Q2 + 4m2

c ).

Additional contributions to scaling violations apart from DGLAP contribution,
important for β & 0.3.
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Predictions for diffractive charm production

1998-2000 ZEUS data
pQCD fit to H1 LRG data
Resolved IP contrib.
Direct IP contrib.
Reggeon contrib.
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Direct Pomeron contribution, i.e. γ∗
P → cc̄ (zP = 1), is significant at

moderate/high β.

These charm data points are included in the ZEUS LPS fit [ZEUS: Eur.
Phys. J. C 38 (2004) 43], but only the γ∗gP

→ cc̄ contribution was
included and not the γ∗

P → cc̄ contribution. Therefore, diffractive gluon
from ZEUS LPS fit needed to be artificially large to fit the charm data.

H1 also neglect the γ∗
P → cc̄ contribution (see talk by R. Wolf).
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Summary of the Diffractive Working Group at DIS98
(hep-ph/9806485)

“From the theoretical point of view one also should take into
account that the presently available Monte Carlo models
are assuming an illegitimate Regge factorisation, in
which hard scale dependencies on xP and β as found in
theoretical QCD analyses, and which characterise the final
state, are neglected. For instance, one treats the charm
production as entirely due to the familiar photon–gluon
fusion, neglecting the direct charm–anticharm
excitation which some theorists claim to be substantial. In
this approximation, in order to reproduce the diffractive
charm signal one needs a hard glue in the Pomeron fits.
Therefore the conclusions drawn from these Monte Carlo
studies as to the physical picture underlying the diffractive
final states should be handled with care.”

No progress in theory used by H1/ZEUS in 8 years?
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Direct Pomeron contribution to dijet production
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contrib.
Direct IP

Direct Pomeron contribution (zP = 1) [EPJC
44 (2005) 69] calculated with ZEUS (prel.)
kinematic cuts (see talk by A. Bonato): 31%
of data in largest β bin.

Alternative calculations for exclusive dijets by
Braun and Ivanov [PRD 72 (2005) 034016].

H1 combined fit is to dijet data with zP < 0.9
integrated over β. Therefore, can neglect
direct Pomeron contribution and include only
the resolved Pomeron contribution using
NLOJET++.

Aside: inconsistency in heavy quark
treatment. H1 2006 fit is done in FFNS with
massive heavy quark contributions, but jet
coefficient functions used in programs like
NLOJET++ and DISENTa are computed for
massless partons.

a
Note that DISENT is known to have a small bug at the 1–2%

level [Z. Trócsányi, hep-ph/0512004].
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DPDFs with Q2
min = 8.5 GeV2 compared to H1 DPDFs
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Regge fit ' H1 2006 Fit A. pQCD fit closer to H1 combined fit than H1 2006 Fit A
without including jet data ⇒ will describe dijet data better than H1 2006 Fit A.
H1 combined fit determines gluon directly from dijet data, whereas fits only to
inclusive DDIS data determine gluon only indirectly so more sensitive to details
of evolution, i.e. better test of theory used. Including dijet data in the fit is not
necessarily a good thing if the theory is unreliable.
H1 χ2 for 190 inclusive DDIS points is 158 (H1 Fit A), 164 (H1 Fit B), 169 (H1
combined fit), so some tension between inclusive DDIS and jet data which is
alleviated by inclusion of inhomogeneous term in evolution equation. p.29



Further corrections to DPDF evolution

NNLO parton-to-parton splitting functions (known).

NLO Pomeron-to-parton splitting functions (unknown).

Absorptive corrections. Schematically,

∂gD

∂ ln Q2 = Pgg ⊗ gD + PgP ⊗ g2
− 4PgP ⊗ ggD + . . . .

���

�

� �
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���

�
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���

	

� �

	

Possible that further corrections will stabilise the results of the
fit with respect to the Q2

min cut.
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Conclusions
Collinear factorisation holds, but we need to account for the direct
Pomeron coupling:

F D(3)
2 =

∑

a=q,g

C2,a ⊗ aD + C2,P

∂aD

∂ ln Q2
=

∑

a′=q,g

Paa′ ⊗ a′D
+ PaP(z) fP(xP; Q2)

Direct coupling and inhomogeneous evolution analogous to the photon
case. Direct Pomeron contribution should also be included when
calculating jet or heavy quark production.

New analyses from H1 are a dramatic improvement on previous
attempts, but still do not include the direct Pomeron contributions.

Evidence of instability in the fits for Q2
min . 6.5 GeV2: further theoretical

corrections such as NLO PaP or absorptive corrections may help.

Claims about factorisation breaking based on previous diffractive PDFs

will need to be re-examined. Need to have good understanding of γ∗p

(HERA) before extending, in turn, to γp (HERA), pp̄ (Tevatron) and pp

(LHC). Recent H1 and ZEUS data are a large step towards this goal.
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Appendix: Non-linear evolution of inclusive PDFs

∂a(x , Q2)

∂ ln Q2
=

∑

a′=q,g

Paa′ ⊗ a′
−

∫ 1

x
dxP PaP(x/xP) fP(xP; Q2).
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2

Interesting application of DDIS
formalism to calculate shadowing
corrections to inclusive DIS via
Abramovsky–Gribov–Kancheli
(AGK) cutting rules.

Inhomogeneous evolution of
DPDFs ⇒ non-linear evolution of
inclusive PDFs.

More precise version of Gribov–
Levin–Ryskin–Mueller–Qiu
(GLRMQ) equation derived.

Fit HERA F2 data similar to
MRST2001 NLO fit. Small-x
gluon enhanced at low scales.

For more details see Phys. Lett. B 627 (2005) 97 (hep-ph/0508093).
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