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Introduction

H1 extraction of Diffractive Parton Distribution Functions
(DPDFs) from Diffractive Deep-Inelastic Scattering (DDIS)
data uses two levels of factorisation:

Collinear factorisation is proven to hold asymptotically
[Collins,1998]

. . . But needs modification in the sub-asymptotic
HERA regime

Regge factorisation is used in ‘resolved Pomeron’ model
[Ingelman-Schlein,1985]

. . . But should only be used for the ‘soft Pomeron’
contribution to DDIS, not to describe the whole
diffractive structure function. Contribution from ‘QCD
Pomeron’ is calculable using perturbative QCD

H1 Diffraction Physics WG Meeting, 24th May 2005 – p.2/25



H1 2002 (prel.) QCD fit
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H1 αS fixed by ΛQCD = 200 ± 30 MeV

“The strong coupling constant αS was fixed by setting ΛQCD = 0.2 GeV for 4

flavours, using the 1(2) loop expression for αS at LO and NLO respectively”

[H1prelim-03-015]

Tip: always specify αS(MZ) instead of ΛQCD

At NLO, relationship between αS and ΛQCD is not unique. QCDNUM, CTEQ, and

MRST codes all use different definitions. Difference in αS is tiny if same αS(MZ) is

used [hep-ph/0502080, Appendix A]

What αS(MZ) corresponds
to ΛQCD = 200 MeV?

αS(MZ)

LO 0.1282

NLO (QCDNUM) 0.1085

NLO (CTEQ) 0.1091

(mc = 1.43 GeV, mb = 4.3 GeV)

cf. world average [PDG]
αS(MZ) = 0.1187 ± 0.0020

ΛQCD

LO 125 MeV

NLO (QCDNUM) 351 MeV

NLO (CTEQ) 336 MeV

200±30 MeV underestimates error
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World average vs. H1 αS at NLO
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∂F
D(3)
2 /∂ ln Q2 ∼ αS gD

=⇒ low αS means H1 2002 (prel.) NLO gD is artificially large
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ZEUS MX data give smaller gD
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Experimental tests of factorisation

Suppose that the ‘Regge factorisation’ approach is the
correct way to analyse DDIS data a

Premature to make claims about experimental tests of
factorisation using final state observables if only the H1
2002 NLO (prel.) DPDFs are ever used:

World average αS would give much smaller gD

Fitting ZEUS MX data instead of H1 data would give
much smaller gD

In particular, H1 and ZEUS claim that both resolved and
direct photoproduction are suppressed by a factor 0.5

Are these conclusions changed if world average αS is
used, or DPDFs from fit to ZEUS MX data?

aIt’s not! (See later)
H1 Diffraction Physics WG Meeting, 24th May 2005 – p.7/25



Collinear factorisation in DDIS

F
D(3)
2 =

∑

a=q,g

C2,a ⊗ aD + O(1/Q), (1)

where C2,a is the same as in inclusive DIS and where aD = βΣD or

βgD satisfy DGLAP evolution in Q2:

∂aD

∂ ln Q2
=

αS

2π

∑

a′=q,g

Paa′ ⊗ a′
D

(2)

“The factorisation theorem applies when Q is made large while
xB, xIP , and t are held fixed.” [Collins,1998]

Says nothing about the mechanism for diffraction: what is the colourless

exchange (‘Pomeron’) which causes the large rapidity gap. Assuming a

‘QCD Pomeron’ we need to modify both (1) and (2)
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H1 extraction of DPDFs

Assume Regge factorisation [Ingelman-Schlein,1985]:

aD(xIP , β, Q2) = fIP (xIP ) aIP (β, Q2)

Pomeron flux factor from Regge phenomenology:

fIP (xIP ) =

∫ tmin

tcut

dt
eBIP t

x
2αIP (t)−1
IP

(αIP (t) = αIP (0) + α′

IP t)

“Regge factorisation relates the power of xIP measured in DDIS to the power

of s measured in hadron-hadron elastic scattering.” [Collins,1998]

Fit to H1 F
D(3)
2 data gives αIP (0) = 1.17 > 1.08 (‘soft Pomeron’

[Donnachie-Landshoff,1992]) =⇒ Regge factorisation invalid

H1 and ZEUS definition of ‘Regge factorisation’ seems to be that the xIP dependence

of F
D(3)
2 factorises, with any αIP (0), from the β and Q2 dependence: also invalid →

H1 Diffraction Physics WG Meeting, 24th May 2005 – p.9/25



Diffractive αIP (0) depends on Q2

1.08 (soft Pomeron) . αIP (0) . 1.3 (QCD Pomeron)
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The QCD Pomeron is a parton ladder

γ∗

Q2

p

µ2

µ2

0

New feature: integral over scale µ2 (starting scale for
DGLAP evolution of Pomeron PDFs)

F
D(3)
2,pert. =

∫ Q2

µ2

0

dµ2

µ2
fIP (xIP ; µ2) FIP

2 (β, Q2; µ2)

fIP (xIP ; µ2) =
1

xIP BD

[

Rg

αS(µ2)

µ
xIP g(xIP , µ2)

]2

(BD from t-integration, Rg from skewedness)
γ∗

Q2

p

µ2

0

F
D(3)
2,non−pert. = fIP (xIP ) FIP

2 (β, Q2; µ2
0)

fIP (xIP ) = same as in H1 fit, but with αIP (0) = 1.08

Separation between QCD Pomeron and soft Pomeron
provided by scale µ0 ∼ 1 GeV
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fIP (xIP ; µ2) does not behave as 1/µ2

1 10 100

µ2
  (GeV

2
)

0

2

4

6

8
µ2  x

IP
 f

IP
(x

IP
; µ

2 )

x
IP

 = 0.001
x

IP
 = 0.003

x
IP

 = 0.01

Using MRST2001 NLO gluon distribution (and temporarily setting R2
g/BD = 1 GeV2)
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Gluonic and sea-quark Pomeron

xIPg(xIP , µ2)xIPg(xIP , µ2)p

γ∗

βΣIP=G(β, Q2; µ2)

xIPS(xIP , µ2)xIPS(xIP , µ2)p

γ∗

βΣIP=S(β, Q2; µ2)

Pomeron structure function FIP
2 (β, Q2; µ2) calculated from

quark singlet ΣIP (β, Q2; µ2) and gluon gIP (β, Q2; µ2)

DGLAP-evolved from an input scale µ2 up to Q2

Input Pomeron PDFs ΣIP (β, µ2; µ2) and gIP (β, µ2; µ2) are

Pomeron-to-parton splitting functions [e.g. Wüsthoff,1997]
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Pomeron-to-parton splitting functions

Notation: ‘IP = G’ means gluonic Pomeron, ‘IP = S’ means
sea-quark Pomeron, ‘IP = GS’ means interference between these

Ka/IP parameters account for higher-order corrections to the LO
splitting functions. Allow these to go free in fit to data (typically,
Ka/IP ∼ 1)

βΣIP=G(β, µ2; µ2) = Pq,IP=G(β) = Kq/G β3 (1 − β),

βgIP=G(β, µ2; µ2) = Pg,IP=G(β) = Kg/G
9

16
(1 + 2β)2 (1 − β)2,

βΣIP=S(β, µ2; µ2) = Pq,IP=S(β) = Kq/S
4

81
β (1 − β),

βgIP=S(β, µ2; µ2) = Pg,IP=S(β) = Kg/S
1

9
(1 − β)2,

βΣIP=GS(β, µ2; µ2) = Pq,IP=GS(β) =
√

Kq/GKq/S
2

9
β2 (1 − β),

βgIP=GS(β, µ2; µ2) = Pg,IP=GS(β) =
√

Kg/GKg/S
1

4
(1 + 2β) (1 − β)2

Evolve these input Pomeron PDFs from µ2 up to Q2 using NLO DGLAP evolution
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Inhomogeneous evolution of DPDFs

aD
pert.(xIP , β, Q2) =

∫ Q2

µ2
0

dµ2

µ2
fIP (xIP ; µ2) aIP (β, Q2; µ2).

Differentiate with respect to ln Q2:

∂aD
pert.

∂ ln Q2
=

αS

2π

∑

a′=q,g

Paa′ ⊗ a′Dpert. + fIP (xIP ; Q2) PaIP (β)
︸ ︷︷ ︸

Extra inhomogeneous term

Analogous to inhomogeneous evolution of photon PDFs [Witten,1977]
Inhomogeneous evolution of DPDFs is not a new idea:

“We introduce a diffractive dissociation structure function and
show that it obeys the DGLAP evolution equation, but, with an
additional inhomogeneous term.” [Levin-Wüsthoff,1994]
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Non-factorisable contributions

i.e. contributions to DDIS that can’t be written as:

∑

a=q,g

C2,a ⊗ aD

QCD Pomeron couples
directly to qq̄ pair:

µ2

γ∗

p

Q2

µ2

0

Longitudinally polarised photon gives
twist-four contribution important at
large β: F

D(3)
L,tw.4

[e.g. Golec-Biernat–Wüsthoff,2001]

In FFNS (no charm Pomeron PDF),
need to add this ‘direct’ contribution for
charm quarks for both T and L

polarised photons: F
D(3),cc̄

2,direct

Dijets: also need to add this contribu-
tion (both T and L polarised photons)
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What are the free parameters?

F
D(3)
2 = F

D(3)
2,pert. + F

D(3)
L,tw.4 + F

D(3),cc̄
2,direct

︸ ︷︷ ︸

QCD Pomeron

+ F
D(3)
2,non−pert.

︸ ︷︷ ︸

soft Pomeron

+ F
D(3)
2,IR

︸ ︷︷ ︸

secondary Reggeon

.

F
D(3)
2,pert. : 4 parameters (‘K-factors’ for Pomeron-to-parton splitting functions)

F
D(3)
L,tw.4 : 2 parameters (again, ‘K-factors’ to account for unknown higher-order corrections)

F
D(3)
2,non−pert. : 2 parameters. Input Pomeron PDFs unknown (as in H1 fit). Assume same β

dependence as for sea-quark QCD Pomeron, with different normalisations

F
D(3)
2,IR : 1 parameter (as in H1 fit). Use GRV pion PDFs

µ0 ∼ 1 GeV : the scale separating the soft Pomeron and the QCD Pomeron. Take µ0 = 1

GeV. Larger µ0 gives worse χ2, don’t know proton PDFs at smaller µ0. If replace
proton gluon distribution by power law (with zero sea quark distribution), and vary µ0,
best fit is obtained with µ2

0 = 0.8 GeV2

Allow overall normalisation factors for ZEUS MX and H1 data to account for proton dissoc.
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DPDFs compared to H1 fit
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Why is MRW gD smaller than H1 ?

F
D(3)
2,pert.(xIP , β, Q2) =

∫ Q2

µ2

0

dµ2

µ2
fIP (xIP ; µ2) FIP

2 (β, Q2; µ2)

∂F
D(3)
2,pert.

∂ ln Q2
=

∫ Q2

µ2

0

dµ2

µ2
fIP (xIP ; µ2)

∂FIP
2 (β, Q2; µ2)

∂ ln Q2
+ fIP (xIP ; Q2)FIP

2 (β, Q2; Q2)

∂F
D(3)
2

∂ ln Q2
∼ αS gD + Extra inhomogeneous term

H1 2002 (prel.) NLO QCD fit uses a low αS and neglects the

inhomogeneous term

=⇒ H1 fit needs a larger gD to reproduce the Q2 slope of data
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gD from fits to H1 vs. ZEUS data

Q. Why is MRW gD from fit to only H1 data smaller (at low β)
than gD from fit to only ZEUS MX data?
(‘Regge factorisation’ fits find that the opposite is true, due to the larger scaling

violations seen in the H1 data)

A. Because of the stronger inhomogeneous term in the fit to
only H1 data

Inhomogeneous term is stronger for gluonic Pomeron than sea-quark Pomeron
(because gluon distribution increases more rapidly with scale than sea quarks)

Free parameters turn out very different for fits to only H1 data and only ZEUS data
[EPJC 37 (2004) 285, Table 2]

Parameters for gluonic Pomeron (IP = G) consistent with zero for both ZEUS
LPS and MX data, but not for H1 data

Hence a smaller gD is required for the fit to only H1 data, which has a large
gluonic Pomeron component, even though the H1 data has larger scaling
violations than the ZEUS data

Demonstrate by plotting contribution of inhomogeneous term to ∂F
D(3)
2 /∂ ln Q2 →
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Q2 slope of ZEUS vs. H1 data
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ZEUS (H1) data: positive scaling violations for β . 0.4 (0.75)

Difference between ZEUS and H1 scaling violations is an
experimental issue: needs further investigation

Which data sets are ‘correct’? Without this knowledge, should fit all
sets together (philosophy of ‘global’ analysis) → get some ‘average’
result (?)
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Fit to ZEUS + H1 F
D(3)
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Fit to ZEUS + H1 F
D(3)
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MRW 2004 DPDFs

Available from
http://www.desy.de/∼watt/mrw2004dpdfs.tar.gz

Fits are exactly those published in EPJC 37 (2004) 285

Large 3-D grid for aD(xIP , β, Q2) with Fortran code to interpolate
(User doesn’t need to perform inhomogeneous evolution themselves)

Can be used for final state predictions in DDIS, e.g. dijet and D∗

meson production cross sections, using standard NLO QCD codes

. . . But need to add non-factorisable contributions separately

Update in progress (MRW 2005):

Account for shadowing corrections in proton PDFs as in
Phys. Rev. D 70 (2004) 091502 [hep-ph/0406225]

Include F
D(3),cc̄

2,direct (not in MRW 2004) and use more precise F
D(3)
L,tw.4

Fit H1 FPS and LRG (low and high Q2) data when published
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Conclusions

Diffractive DIS is more complicated than inclusive DIS: can’t
blindly apply collinear factorisation with DGLAP-evolved DPDFs

Regge factorisation should only be used for soft Pomeron

Significant contribution to DDIS from QCD Pomeron

QCD Pomeron modifies DDIS factorisation:

Inhomogeneous evolution of DPDFs

Need to add non-factorisable contributions separately

This approach leads to quite different DPDFs than those

obtained using naïve ‘Regge factorisation’ approach of H1

ZEUS and H1 DDIS data give different DPDFs due to their

different Q2 dependence: should be investigated further
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