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N=4 superamplitude and R

Colour-ordered n-point amplitudes in planar N = 4 SYM:

n—4
superamplitude > Ap = Z Anpk NFMHV amplitude
—0 of degree (n)8+4k

Factor out tree-level superamplitude and IR divergences from loops:

An — Al:lree MTLBDS Rn

R, is the reduced superamplitude (remainder f-n) R, = Z:(; R,k

R, are finite and dual-conformally invariant

MHV case: R, are functions of conformal cross-ratios w;;.



Multi-collinear limits: (m+1) coll. momenta

Full superamplitude factorises:

[An — Ap_m x Split,, ]

Taylor-expanding in Grassmann n's get for each NEFMHV:

Ank  —  Ap—mip X Splity, o + Ap—mi—1 X Split, 1 + ...
k

= ) Aupp x Splity,

p=0

What about R,”



Multi-collinear limits: (m+1) coll. momenta

Full superamplitude factorises:

[An — Ap_m x Split,, ]

Taylor-expanding in Grassmann n's get for each NEFMHV:

An,k — An—m,k X SD”tm,o -+ An—m,k—l X SD”tm,l + ...
k

= ) Aupp x Splity,

p=0
What about R,,? R, — R,_1 m=1

My fixed Bpx — Rp—2k X SPlitog = R,k X Reo m=2

My fixed Bk — Rp—mik X Rm+44,0 m general

Bern-Dixon-Kosower-Roiban-Spradlin-Vergu-Volovich T
Anastasiou-Brandhuber-Heslop-VVK-Spence-Travaglini; Heslop-VVK



Multi-collinear limits: (m+1) coll. momenta

General multi-collinear limit for super-R, (with no restrictions on
preserving helicity degree of the ampltitude:
Goddard-Heslop-VVK’12

based on d. conf. inv. of R
[ Fn = Bn-m X Rmta ] and m.-coll. factorisation of A

Proof:
1. A, has universal collinear factorisation; so does Mpgpg, hence

R, — R,_., xsplit,,
2. Take maximal multi-coll. limit m = n — 4:
R,.+4 — R4 x split,, = split,,

3. But our (m -+ 1)-coll. limit can also be achieved by a supercon-

formal transformation. Alday-Gaiotto-Maldacena-Sever-Vieira’10

Therefore Ryia — Rpta. Goddard-Heslop-VVK’12 (super-conf.)

4. Hence split,, = Ry+4



Multi-collinear limits: (m+1) coll. momenta

The super-R,, can be expanded in n's :

Rn,k‘ — Rn—m,k X Rm,O + Rn—m,kz—l X Rm,l ‘l‘

k
p=0

From now on use the linear realisation of multi-collinear limits
by taking the logarithm of the super-remainder f-n

R, .= I10gR,

Rn — Rn—m + Rm_|_4




Multi-collinear limits: (m+1) coll. momenta

Rn —7 7zn—m _I_ Rm_|_4

2 2

. TS T , . . .
Conformal cross-ratios wu;; = W connect’' edge i with edge j.
i7" i+ 1,541
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Multi-collinear limits: (m+1) coll. momenta

Rn —7 7zn—m _I_ Rm_|_4
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Multi-collinear limits: (m+1) coll. momenta
Rn —7 7zn—m _I_ Rm_|_4

, 22 a2 o ,
Conformal cross-ratios wu;; = W ‘connect’ edge ¢ with edge j.

u,j it+1,j+1

D D

~—_

These u ‘s - 1

u ‘s are useful at low n but limits become complicated at high n. X's are better!



Multi-collinear limits: (m+1) coll. momenta

Rn —7 7zn—m _I_ Rm_|_4

In the case where the edges 2k + 1 edges n — 2k,...,n become
collinear we have

Ul p—2k—1—0, Upokr1 —1, ... Up-1—1 (2<i<n—-2k-2)
and the remainder function should reduce as
Rin(uij) = Ru—2k(Uij) + Ropya(ug,)

where the cross-ratios of the reduced remainders are related to the
n-point cross-ratios as

Ui p—2k = Ujp—2k - - - Win, Ui = Wi 1<4,7<n-—2k

— ! .o
U; o = Uj2 .. Ujn-—2k—2, U = Uij 0>1,52>—2k

u ‘s are useful at low n but limits become complicated at high n. X's are better!



(1+1)-dimensional external kinematics

Wilson loop has a zig-zag shape.

Region momenta xz; (vertices of the contour) have the following
form in light-cone coordinates (z4,z_)

o — § Czicn,z) ,  ieven
L (Zi,zi_1> , 1 odd
T /—,].TJ’
28 N
.. L2 =— (21,2’2) ) r1 = (zl,zn)
* | e = (23,24) , x3 = (23,24

24 )
723




Collinear limits in (1+1)-kinematics

In 2d there are no non-trivial cross-ratios at 6-points, Re is a (cou-
pling dependent) constant.

Lowest non-trivial case is Rgp).

const
Define /
~ n—4
2

sO that

ﬁn — ﬁn_z
and

RO — 7'é§f_>m + 7?%14, for m > 4

R, is the natural object to use for collinear uplifts of amplitudes to
higher number of points.



Recall: Momentum supertwistors

It is useful to package the external data {p!,n/} in terms of the
region momenta :cg“d and their fermionic components 97?“4:

o — oo - oo ad L
p’L :)\Z>\Z _— ./I/'Z - Z+17 Oé,O{—].,Q

et = g0 -0, A=1,...,4
where A% and Xf‘ are the 2-component helicity spinors.

The chiral superspace coordinates X; = (xi,ef) define the vertices
of the n-sided null polygon contour for the dual Wilson loop.

Momentum supertwistors transform linearly under SU(2,2|4) dual
superconformal transformations. They are defined via

Zi — (Zzar ) — (Azawaaz ; QA A

v

where Z% denote 4 bosonic, and X are 4 fermionic components.

Drummond-Henn-Korchemsky-Sokatchev;
Hodges; Mason-Skinner



(1+1)-dimensional external kinematics

Momentum twistors in 2d have a checkered pattern:

— (Z})O)Z?)O) — (1,0,2@,0) 1 odd
"7 (0,22,0,2%) =(0,1,0, z) i even |,

which is a manifestation of SU(2,2) — SL(2)4+ x SL(2)_ in 2d.

Lorentz-invariant intervals z;; coincide with SL(2)+-invariant two-
bracket of twistors

Zijl — Z}Zf ¢ and j odd
zij = (ij ) 1= 7} 72 — 7} 77 i and j even
otherwise .

Also (ijkl) = ewcaZ{Z3Zi 7} reduces in 2d (1234 ) = (13)(24).
4 )
Lightcone coordinates are interchangeable with twistors in 2d and

only two-brackets of bosonic twistors (of the same parity) can ap-
pear.
\ J




(1+1)-dimensional external kinematics

For superamplitudes in 2d, it is natural to consider a supersym-
metric reduction, SU(2,2|4) — SL(2|2)4+ x SL(2|2)—-, under which
momentum supertwistors

o (pa. JAY _ (Zl,O Z3Oxz,0x O) i odd

/

Note that the MHV-prefactor §(8) (Z Azm) under this SU(4)
splitting necessarily goes to zero.

See also Caron-Huot & He

But after dividing by this prefactor we can still compute meaningful quantities.

Alternatively, we can avoid using supersymmetric reduction.



Most general cross-ratios in special 2d kinematics are

(il){Jk)
u.-. pr— 3 u.._ p— 1 —_— u . .
17kl <’Ll€><]l> 17kl il kg
: _ 1Ti-1 -1
Can be reduced to fundamental cross-ratios w;;., = rmig1 L ey 1 WIK

2 2 . . . .
I S ¥ (i1—1,j4+1)(i+1,j—-1) Uit i1t a1
'L] - - . . . . - 1— 72 ;_7
22y (i—1j—1)(i+1,j+1) o

For n =8 and n = 10, all non-trivial u;; are of the form w; = w; ;44,
with : = 1,...,4 for the octagon and : = 1,...,10 for the decagon
with the additional constraint:

n =38 . ].—’UJZ':’U,Z’+2, 1 =1,2
n = 10 . l—ui:ui+2ui_2, 1=1,...,10

At n = 8 points there are just four fundamental cross-ratios

Ul =— U15 , U2 = U226 , u3z = 1l—u1 = v , Us = 1—un 1= vo



MHYV amplitudes in special kinematics

The conjecture at the centre of the method (Heslop - VVK)

(the logarithms of) cross-ratios form the basis of the vector space
on which the symbol of the amplitude is defined



The symbol

Goncharov, Goncharov-Spradlin-Vergu-Volovich, ...

The symbol associates to any generalised polylogarithm, a tensor
whose entries are rational functions of the arguments. The rank of
the tensor is equal to the weight of the polylogarithm.

n—1
Symb(log :c) =z, Symb(Lin(a:)) = (1-2)0T®...0x

The symbol has the properties inherited from the logarithm

L RQrR...F QUK.
— ... rR...

LRy ...
L. Rl/z®...

For the product of functions the symbol is given by taking the
shuffle product of the symbol of each function

Symb(fg) = Symb(f) IISymb(g) .



2-loop MHV amplitudes @ 8 points

@ The corresponding weak coupling result was obtained by
Del Duca - Duhr - Smirnov

@ It has the amazingly simple form (simplified from longer
expression than 6-points):

x4

1
Rg"® = — 5 109(U1s) log(uze) log(us7) log(Usg) — 7 -

Heslop — VVK:

Assume the entries of the symbol are all u's

Consistent with all known results so far. Complicated momentum
twistor expressions all reduce to u’s in 2d

-~

With this single simple assumption we can:
@ Derive the 8-point 2-loop result a(log uq log us log uz log us) + b

|




8-point 2-loops derivation Cyclicity and parity

U1 — U2 — U3 — U4 — U]
Collinear limits uy — 1, uz — 0. Ul <> U4, U2 <> U3

Three independent symbols (¢ loops = weight 2/ polylogs)
RY) = aRy) + bRE) + cRy) + 2R
S(R(z))

.a
)
)

8
(2
8:b

S(Rg;g) — U1 @ U3z @ Up @ Usy + 7 terms related by cyclic symmetry .

Ui @ U @ U @ Us + 7 terms related by cyclic symmetry

Ui @ Up @ Ug @ U3 + 7 terms related by cyclic symmetry

V)
7~
&

(Collinear vanishing function needs all four u’s.)

@ Requiring this to be the symbol of a function (integrability
constraint) puts a = b = ¢ giving the two loop result.



2-loop MHV amplitudes @ n points

4

1 T
Rn= ‘5@ 109U ) 109U ) 109 (Uigh ) 109 (Uig) ) — 25 (1 — 4) .

S:{i1,...i8:1§i1<i2<--~<i8§n, ik—ik_1:0dd}

This solution is unique
(with our symbol assumption)

This solution was checked numerically
using our ABHKTS numerics




3-loop MHV amplitudes @ 8 points

Ansatz for symbol at 3-loops

Z const;, i - Uiy ® Uj, ¥ Uj; Q Uj, K Uj, K Uj; .

i ...Ig

@ Symbol must vanish in the collinear limit
@ Symbol should respect cyclic and parity symmetry
@ Leads to 195 free constants!

@ Next impose that the symbol must be the symbol of a function
(integrability constraint)

@ remarkably this fixes 182 of these, leaving only 13
o F|X 6 more US|ng OPE [Alday Gaiotto Maldacena Sever Vieira]



3-loop MHV amplitudes @ 8 points

Cross-ratios at 8 points are

U1 .= U1, U2 .= U2, U3 .= 1 — U, Ug .= 1 — wuo

Require that the 8-point amplitude is cyclically (and parity) sym-
metric, and that it vanishes in the collinear limit zg — zg, i.€.
u1 — 0,u3 — 1 with w2, uq unconstrained.

3-loop remainder function:

728 — Zaon;_(ul)fj—(UQ) ) Qor =— Q710

o,T

where f(;l'(u) IS a generalised polylogarithm and

Ffrwy=+ff1-w), £HO)=0



3-loop MHV amplitudes @ 8 points

ﬁé?)) — Z afana(ul)fT(UQ) ) Aor — Q70

o, T

weight2: f elgm(u)

weight 4 a

weight4 b

weight 3 c :

Symb]| 1
f‘%t :

Symb
Symb]|
Symb]|

Symb'fbi] :

Symb
Symb

Symb[ £
Symb|[f;
Symblf;

+7.

a3- )

:t -

a4

]
f£

25
2

log(u) log(v) f&émﬁz(u)::I_b(u)—ijg(v)

URURURUVETUVRUVRURQU
URURUVRUTVRUVRURQU
URUVRURSUTVvRURVU RV
VRIURURQUTURURVURU

URURUVRUETUvRUVRXUR U
URUVRURUVETVRUR VR U
URUVRUVRUTVRURU RV

| =m=uR@ueuvttrueu
| =u®@uvutvruu
]_u®v®viv®u®u



3-loop MHV amplitudes @ 8 points

Near-collinear OPE limit (Gaiotto-Maldacena-Sever-Vieira) gives

lim Rs(s3)(U1,U2,U3,U4) = log®(u1) 10g(us) - F5(uz,us) + O(l0g(u1))

U1—>O
we find an equivalent form for this so that its arguments are just

the cross-ratios us and wug

Fs(uz,ua) = 2Lis(u2) + (Liz(us) — ) 109(u2) + 3109 (ua) log®(u2)
+  2Lis(ua) + (Liz(u2) — ) 10g(ua) + 3 10g(u2) 10g®(ua) — 2¢3

Now we notice that F3(u,usq) = f;(uQ, U,4)—|—2f:5(u2, U4)+fc—|3:(’11,2, uq)
which is consistent with our symbol construction!



3-loop MHV amplitudes @ 8 points

The result is:

R = loguilog(l — u1) a1 f5(u2) + oo £ (u2) + o3 £ (u2) + 0 £} (u2) |
tas £ (u1) fo(u2) + asfh (u1) £ (u2) + az fE (u1) f5 (u2)
+£F (u1) [%f;(w) + 2fF (u2) + fQ;(UQ)]

+(u1 <> u2)



3-loop MHV amplitudes @ 8 points

All the functions appearing at 3-loops at 8-points (eaily recon-
structed from their symbols):

£ (u,v)
£t (u,v)

o (1, v)

o (u,0)

£t (u,v)

£ib (u,v)

£t (u,v)

7T4

3Li4(u) — Li3(u) Iog(u) + 3Li4(v) — Li3(v) Iog(v) — %,
—Li4(u) — Li4(’0) —|— %
(Liz(u) — ¢3) log(v) — Liz(u)Liz(v) 4 log?(u) log®(v) 4 (Liz(v) — ¢3) log(u)

— (Lis(uw) — ¢3) log(v) 4 Lis(uw)Liz(v) — % log?(w) log?(v) — (Liz(v) — ¢3) log(w)

2
CLis(u) — (Lig(v) _ %) log (1) — % l0g(v) 1092 ()

2
—Liz(v) — (Liz(u) - %) log(v) — % log(u) 109 (v) + (3

2

2Li3(u) + (Liz(v) — %) log(u) + log(v) 10g® ()

2

+2Li3(v) + (Liz(u) — %) log(v) + log(w) 10g?(v) — 2¢3

—Liz(v) — Liz(u) + (3



General formula for the n-point uplift

The n-point MHV amplitude for £ > 1, at any loop order which is
a general solution to all multi-collinear limits is given by

(5)
+ Zlgi1<...<i5<n (x117 Loy« -

+...+

\_

(£)
+ Zl§i1<...<i6<n S (33117 Lijny ooy

g
+ Zl§21<<12g<n (567/17 x’LQa e ey

> (¢ / . .
R% )(21’ 22,00 %0) = Z1§i1<752<z'3<7l4§n SE(3 )(xilv Lisy Liz, xi4)(_1)z1+...u +

i) (—1)Fte

zig) (—~1)i+eio 4

mi%) (_ 1)i1+"'i2€

/

more precisely, 11 +1 <, 0+ 1<23,13+1<14q,...



Recall: (1+1)-external kinematics

We can specify the zig-zag shape of the 2d contour by specifying
every second vertex in x variables.

E.g. at 8-points Sg(x2, x4, 26, xg) Or Ss(x1, 3,5, 27)

- (zi—1,2i) , ©even
v (Zi,zi_1> , ¢ odd

I_[_’

o
<8

2 = (21,22) , x1 = (21,2n)
rs = (23,24) , x3 = (23,24)

L4 — (Z37Z4) ) Iy = (25724)

<6

-
24
y
/ g s
y 23
y




General formula for the n-point uplift

Minimal case: 8-point amplitude

[ﬁg(zl,zg,...,zg) = Sg(x2,x4,x6,28) + 58(331733373357557)]

8-pt amplitude additional contr.
Divide Ss into two parts, so that, p/ P )
4 1 / 4 )
Sg(x2, x4, x6, T8) §R8(217227---728) + Tg(w2, x4, %6, x3)

1
§R8(21,22,~-,Z8) + Tg(x1,z3, 25, 27)

S8($1, L3, T5, 567)

Ts is not determined by the amplitude Rg. It follows that
Te(x2, x4, x6,x8) + Ts(x1,23,25,27) = O

This condition is guaranteed by the flip symmetry of Tg together
with the anti-symmetry under z; — z;41,

Ts(x1, 23,25, 27) = Tg(xl,x3,a:5, ) —Tg(x2, x4, T6,T8) .

where flipped variables are =/ = (z_,z4) for every z = (zy,2_)



General formula for the n-point uplift

[ﬁg(zl,zg,...,zg) = Sg(x2,x4,x6,28) + 58(3317333733575’77)]

Divide Ss into two parts, so that,

4 1 )
Sg(x2,x4,26,T8) = §R8(217227---7Z8> + Tg(w2, x4, %6, x3)
1
Sg(x1,x3,x5,27) = §R8(21,22,---,2’8) + Ts(z1, 23,25, 27)
N

5

these are obtained from f * functions
as explained before

these are obtained from f - functions
-- same symbolic construction



General formula for the n-point uplift

Next is the 10-point amplitude:
4 )

7%10(217 22, .« e e ,Zn) pm— Zl§21<22<z3<z4§10 ‘5’8 ($i17 x’l.Q) a’:i37 xz4)(_1)zl+Z4

+S10(x2, x4, 6, 8, x10) — S10(x1, 23, T5, T7,29)

For 510(5132,334,3:6,.’138,3310) - Slo($1,$3,$5,$7,$9) to be Cycnca”y Ssym-
metric in z-variables,S1gp has to be anti-symmetric under the flip

symmetry.

Together with Tg's these contributions from Sig’'s give precisely the
collinear-vanishing part of the 10-point amplitude



Properties of S,

S,, are conformally invariant functions of m z-variables or
equivalently m/2 z-variables Sy, (z1,...2m) = Sm(x2,T4,...,2Tm)

They are symmetric under cyclic symmetry and parity up to
a minus sign in z-variables (but not necessarily in z),

Sm(x2,24,...2m) = Sm(xa,xe,...,22) = (—1)m/25m(xm,xm_2,...

S required to satisfy flip (anti)-symmetry

Sm(Tiy, Tin, .- Ti,n) = (—1)™/? Sm(xzfl,xf ).

,L‘2 , * o o ’L’m/z

Sm must vanish in the collinear limit z,, = zm—2 i€ Ty — Tm_1

lim  Sn(xo,...,Zm_2,2m) =0 (collinear limits)

More geometrical way of saying this

Sm(ziy...,xj,x,) =0 if x;, x, becomelightlike separated .



Again: our general MHV formula

The n-point MHV amplitude for £ > 1, at any loop order which is
a general solution to all multi-collinear limits is given by

(5)
+ Zlgi1<...<i5<n (x117 Loy« -

+...+

\_

(£)
+ Zl§i1<...<i6<n S (33117 Lijny ooy

g
+ Zl§21<<12g<n (567/17 x’LQa e ey

~ , | |
R%E)(Zl’ %250 ’Zn) - Z1§i1<i2<z'3<754§n SE(3 )(wilv Liny Lizy xi4)(_1)zl+'"z4 +

 Tig) (= 1)t 4

zig) (—~1)i+eio 4

mi%) (_ 1)i1+"'i2€

/

more precisely, 11 +1 <, 0+ 1<23,13+1<14q,...



Collinear limit

Consider the simplest collinear limit, z, — z,—2 i€ £, = z,—1. USIing

My o Sm(i,j... k) = Sm(s,j,...k) for 4,5,...k#*n—1n

limg, —z, , [Sm(4,7...k,n—1) — Sn(4,7,...k,n)] =0
one can see that

lim ﬁn(zl, ce Zn) = ﬁ,n_g(zl, ceey Zn_Q)

as required under collinear limits.



General formula for the n-point uplift

« Multi-collinear limits also work out correctly:

use the structure of the sum and conformal properties.

« There is only a finite number of functions S,
at each fixed loop order , m < 4 (number of loops) +1

<= S,, has to vanish in all multi-collinear limits, and combined
with weight =2 (number of loops) and

our symbols-of-u’s-only assumption, this is possible only for
m< 4 (number of loops) +1



Summary + more

Multi-collinear limits for super-amplitudes R
(1+1)-dimensional external kinematics

Central assumption for the symbol of the amplitude being made
out of fundamental u’s in this kinematics

Reproduced 2-loop 8-point MHV
General n-point uplift of 2-loop MHV — logs only — very compact result!

Obtained 3-loop 8-point MHV in terms of 7 explicitly reconstructed
functions

General S-formula for MHV n-point amplitudes (any n, any loop-order)
in terms of S_m functions which are constructible with the
e.g. symbol-of-u’'s assumption.



+ more

« Same general S-formula holds for loop-level non-MHV amplitudes
S(x) -> S(X=x,0)

* Tree-level NMHV amplitudes derived in this kinematics separately
(very compact expressions)

 NMHYV amplitudes can be obtained from the (known) MHV
expressions with a certain manipulation of the MHV symbol
-- to appear soon

Consistency and connections with the Q-bar formula of
Caron-Huot & He.



