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Warm-up: Electro-Weak Instantons

• Yang-Mills vacuum has a nontrivial structure  

• The saddle-point at the top of the barrier       
is the sphaleron. New EW scale ~ 10 TeV  

• Transitions between the vacua change B+L 
(result of the ABJ anomaly):                     
Delta (B+L)= 3 x (1+1) ;  Delta (B-L)=0 

• Instantons are tunnelling solutions between 
the vacua. They mediate B+L violation 

• 3 x (1 lepton + 3 quarks) = 12 fermions      
12 left-handed fermion doublets are 
involved 

• There are EW processes which are not 
described by perturbation theory!

Esph = csph
mW

↵W
⇡ 10TeV

B+L=0 B+L= 6

q + q ! 7q̄ + 3l̄ + nWW + nZZ + nhH
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     Ringwald 1990;  McLerran, Vainshtein, Voloshin 1990; ….  

q + q ! 7q̄ + 3l̄ + nWW + nZZ + nhH

Ainst / e�Sinst

= e�2⇡/↵w�⇡2⇢2v2

, �inst / e�4⇡/↵w ' 5⇥ 10�162
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• All instanton contributions come with an exponential suppression due to the 
instanton action:  

• This is precisely the expected semiclassical price to pay for a quantum 
mechanical tunnelling process.                                                                   

• At leading order, the instanton acts as a point-like vertex with a large number 
n of external legs => n! factors in the amplitude. 

• As the number of W’s, Z’s and H’s produced in the final state at sphaleron-
like energies is allowed to be large, ~ 1/alpha, the instanton cross-section 
receives exponential enhancement with energy                              

Warm-up: Electro-Weak Instantons



QCD Instantons

• Yang-Mills vacuum has a nontrivial 
structure  

• At the classical level there is no barrier 
in QCD. The sphaleron is a quantum 
effect 

• Transitions between the vacua change 
chirality (result of the ABJ anomaly).  

• All light quark-anti-quark pairs must 
participate in the reaction                   

• Instantons are tunnelling solutions 
between the vacua. 

• Not described by perturbation theory.

Esph = csph
mW

↵W
⇡ 10TeV

4

group, while the opposite chirality fermions qL and q̄R belong to the other irrep. Fermion
mass terms are of the form m q̄LqR + h.c.

We will consider the instanton-dominated QCD process with two gluons in the initial
state,

g + g ! ng ⇥ g +

NfX

f=1

(qRf + q̄Lf ) . (2.1)

Note that the number of gluons ng in the final state is not fixed and can become large even
for the leading-order instanton effect, i.e. at the leading order of the instanton perturbation
theory. On the other hand, the fermionic content of the reaction (2.1) is fixed. The process
(2.1) is written for the instanton of topological charge Q = 1, and as the result it contains
precisely one right-handed quark and one anti-particle of the left-handed quark for each
light flavour in the final state. No fermions of opposite chirality, i.e. no left-handed quarks
and anti-right-handed quarks appear on the r.h.s. of (2.1); this being the consequence of
the fact that one-instanton fermion zero modes exist only for q̄L and qR, as dictated by
the Atyiah-Singer index theorem for the Dirac operator in the instanton background. This
fermion counting [11] is also in agreement with the Adler-Bell-Jackiw anomaly.

There are precisely Nf of q̄LqR pairs. We will see that in the kinematic regime relevant
to our applications the condition ⇢�1 & mf restricts the number of flavours that are counted
as light to Nf = 4 and Nf = 5. The analogous to (2.1) process that is induced by an anti-
instanton configuration, is obtained by interchanging the right-handed and the left-handed
chirality labels of the fermions.

We can also have quark-initiated instanton processes; they are obtained from (2.1) by
inverting two of the outgoing fermion legs in the final state into incoming anti-fermions in
the initial state, giving for example,

uL + ūR ! ng ⇥ g +

Nf�1X

f=1

(qRf + q̄Lf ) , (2.2)

uL + dL ! ng ⇥ g + uR + dR +

Nf�2X

f=1

(qRf + q̄Lf ) . (2.3)

Instanton contributions to all such 2 ! many processes (2.1)-(2.3) are computed in the
semiclassical approach by expanding the path integral expression for the corresponbding
scattering amplitude around the instanton and integrating over the instanton collective
coordinates as well as over all field fluctuations around the instanton [10? ].

From now on we will concentrate the process (2.1) with two gluons in the initial

state and will aim to comment on the quark-initiated processes later.

At the leading order in the semiclassical expansion around the instanton, the scattering
amplitude describing the 2 ! ng + 2Nf process (2.1) is obtained by:

1. Plugging the instanton solution,

Aµ = Ainst
µ (x) , q̄Lf =  (0)(x) , qRf =  (0)(x) , (2.4)
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? no classical barrier 



The Optical Theorem approach: to include final state interactions

  VVK & Ringwald 1991

I I

• Crossection is obtained by |squaring| the           
instanton amplitude. 

• Final states have been instrumental in 
combatting the exp. suppression. 

• Now also the interactions between the        
final states (and the improvement on the point-
like I-vertex) are taken into account.  

• Use the Optical Theorem to compute Im part 
of the 2->2 amplitude in around the   
Instanton-Antiinstanton configuration. 

• Higher and higher energies correspond to 
shorter and shorter I-Ibar separations R. At 
R=0 they annihilate to perturbative vacuum. 

• The suppression of the EW instanton cross-
section is gradually reduced with energy.
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G4Eucl ⇠
Z

d4R d⇢Id⇢Ī . . . exp
⇥
i(p1 + p2) ·R� SIĪ(z)� ⇡2v2(⇢2I + ⇢2Ī)

⇤

z ⇠ R2+⇢2
I+⇢2

Ī
⇢I⇢Ī

�B+L ⇠ Im

Z
d4R d⇢Id⇢Ī . . . exp

⇥
ER� SIĪ(R)� ⇡2v2(⇢2I + ⇢2Ī)

⇤
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• Instanton — anti-instanton valley configuration has Q=0; it interpolates between 
infinitely separated instanton—anti-instanton and the perturbative vacuum at z=0 

• Exponential suppression is gradually reduced with energy             
• no radiative corrections from hard initial states included in this approximation

instanton  
separation

instanton  
sizes  

The Optical Theorem approach: to include final state interactions

Higgs vev: 
EW theory — not in QCD! 

Higgs vev cuts-off 
large instantons 



Now: in QCD

into external legs of the corresponding Green’s function, so that it reads,

Gng+2+2Nf (x1, . . . , xng+2, y1, . . . y2Nf ) = (2.5)
Z

DAµ[DqDq̄]Nf Ainst
µ1

(x1) . . . A
inst
µng+2

(xng+2) 
(0)(y1) . . . 

(0)(y2Nf ) e
�SE ,

2. Fourier transforming (2.5) to the momentum space to obtain G̃(p1, p2; k1, . . . , kng+2Nf ),
where pi (kj) are the momenta of the incoming (outgoing) particles,

3. Taking all momenta on-shell and performing the LSZ reduction for all external legs
of the Green’s function G̃.

The outcome of this procedure is that the instanton contribution to the n-point ampli-
tude at the leading order is recast as an effective n-point vertex involving ng+2 gluons and
2Nf quarks. Because of the fully factorised structure of the field insertions in the leading
order instanton expression (2.5), there are no correlations between the kinematics of the ex-
ternal legs, apart from the usual momentum conservation constraint. The instanton vertex
describes the scattering process into a spherically symmetric multi-particle final state.

The instanton production cross section for the process (2.1) can then be obtained in
the usual way by squaring the scattering amplitude and integrating over the (ng + 2Nf )-
particle phase space including the relevant symmetry factors. This program was developed
and implemented in the classic high-energy instanton papers [21–23] (for a review see [24])
in the context of the electroweak theory for (B + L)-violating processes.

2.2 The optical theorem on the instanton–anti-instanton configuration

An equivalent and arguably more direct way to obtain a total instanton production cross
section �insttot for the process gg ! X, is to use the optical theorem, and compute an
imaginary part of the 2 ! 2 forward elastic scattering amplitude, A

IĪ
4 (p1, p2,�p1,�p2),

in the background of an instanton–anti-instanton configuration, following the approach
initiated in [25, 26],

�(cl) insttot =
1

s
ImA

IĪ
4 (p1, p2,�p1,�p2)

'
1

s
Im

Z 1

0
d⇢

Z 1

0
d⇢̄

Z
d4R

Z
d⌦ D(⇢)D(⇢̄) e�SIĪ Kferm ⇥

Ainst
LSZ(p1)A

inst
LSZ(p2)A

inst
LSZ(�p1)A

inst
LSZ(�p2) , (2.6)

We shall now introduce and describe all the ingredients appearing on the r.h.s of this
expression. The integrals are over all collective coordinates of the instanton–anti-instanton
configuration: ⇢ and ⇢̄ are the instanton and anti-instantonsizes; Rµ is the separation
between the I and Ī positions in the Euclidean space and, finally, ⌦ is the 3 ⇥ 3 matrix
that specifies the relative IĪ orientation in the SU(3) colour space.

The instanton density appearing in the integration measure in (2.6) is given by the
1-loop expression [10],

D(⇢, µr) = 
1

⇢5

✓
2⇡

↵s(µr)

◆6

(⇢µr)
b0 (2.7)

– 5 –
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χ

S

where µr is the renormalization scale, b0 = 11 � 2/3Nf , and the constant  (computed in
the MS scheme) is,

 ⇡ 0.025 e0.291746Nf , so that Nf=4 ⇡ 0.008 , Nf=5 ⇡ 0.01 . (2.8)

The exponential factor e�SIĪ in (2.6) is the semiclassical suppression factor of the
process by the action of the instanton–anti-instanton configuration,

SIĪ = SI + SĪ + Uint(⇢, ⇢̄, R,⌦) , (2.9)

where SI = SĪ = 2⇡
↵s(µr)

is the action of a single (anti)-instanton, and Uint(⇢, ⇢̄, R,⌦) is
the interaction potential between the instanton and the anti-instanton. The interaction
potential can be repulsive or attractive, depending on the choice of the relative orientation
⌦. In the steepest-descent approximation, the integrand in (2.6) will be dominated by the
saddle-point solution that extremises the function in the exponent. This corresponds to the
maximally attractive interaction channel, i.e. the value of ⌦ for which �Uint(⇢, ⇢̄, R,⌦) is
maximal, or equivalently, the action SIĪ is minimal (for fixed R and ⇢, ⇢̄).

The general expression for the action as the function of R, ⇢, ⇢̄ was computed in [26]
using the form of the instanton–anti-instanton valley configuration [27–29] dictated by the
conformal invariance of classical Yang-Mills theory. For the maximally attractive relative
orientation, the action takes the form [26],

SIĪ(⇢, ⇢̄, R) =
4⇡

↵s(µr)
Ŝ , (2.10)

Ŝ =
6z2 � 14

(z � 1/z)2
�

17

3
� log(z)

✓
(z � 5/z)(z + 1/z)2

(z � 1/z)3
� 1

◆
, (2.11)

where Ŝ is the so-called normalised action, defined such that Ŝ ! 1 in the limit R/⇢1,2 ! 1,
and z is a conformal ratio of the instanton collective coordinates,

z =
R2 + ⇢2 + ⇢̄2 +

p
(R2 + ⇢2 + ⇢̄2)2 � 4⇢2⇢̄2

2⇢⇢̄
. (2.12)

Since the saddle-point solution respects the symmetry between the instanton and the anti-
instanton, at the saddle-point we have ⇢ = ⇢̄, and the action (2.11) becomes the function
of of a single variable � = R/⇢,
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�2 + 4 + 2
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At large separations, � � 1, the expression (2.11) for the instanton–anti-instanton action
simplifies and reduces to the well-known in the early instanton literature result,

S(�) ' 1 � 6/�4 + 24/�6 + . . . (2.15)
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first term as R
p
s at the saddle-point. Furthermore, the symmetry between the instanton
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↵s(µr)

8⇡
⇢2s log(s/µ2

r) , (2.22)

that appears in the exponent in (2.21).
To emphasise the applicability of the saddle-point approximation to the integral (2.21),

we chose the rescaled dimensionless integration variables,

⇢̃ =
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p
s⇢ , � =

R

⇢
, (2.23)

and write the holy-grail function (2.22) as,

F =
4⇡

↵s(µr)
F (⇢̃,�) , F = ⇢̃ � � S(�) � ⇢̃2 log(

p
s/µr) . (2.24)

Instanton calculations are based on a semi-classical approach that is valid in a weak-coupling
regime, hence the overall factor 4⇡

↵s(µr)
� 1 in front of F justifies the steepest descent

approach where the integrand in (2.21) is dominated by the the saddle-point of F (⇢̃,�) in
(2.24).

Before proceeding to solve the sdalle-point equations that extremise the holy-grail func-
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↵s(1/⇢̄) , (2.25)

where (⇢µr)b0 and (⇢̄µr)b0 come from the instanton and the anti-instanton measure D(⇢)

and D(⇢̄), and the factor e�
4⇡

↵s(µr) accounts for the instanton and the anti-instanton action
contributions in the the dilute limit. The r.h.s. of (2.25) is RG-invariant at one-loop, it
does not depend on the choice of µr, instead the scale of the running coupling constant is
set at the inverse instanton and anti-instanton sizes.

There are two methods for fixing the RG scale that one can follow; they both should give
equivalent results at the level of accuracy our semi-classical instanton approach provides.
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p
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log(⇢µr) . (2.26)

Then after finding the saddle-point solution for � and ⇢̃ we set µr = 1/⇢ at the saddle-
point value. Note that we have added the last term on the r.h.s. of (2.26) to account
for the back reaction of the (⇢µr)b0(⇢̄µr)b0 factor on the saddle-point. Of course, after
setting µr = 1/⇢ in the F computed at the saddle-point, this term disappears.
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where µr is the renormalization scale, b0 = 11 � 2/3Nf , and the constant  (computed in
the MS scheme) is,

 ⇡ 0.025 e0.291746Nf , so that Nf=4 ⇡ 0.008 , Nf=5 ⇡ 0.01 . (2.8)
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using the form of the instanton–anti-instanton valley configuration [27–29] dictated by the
conformal invariance of classical Yang-Mills theory. For the maximally attractive relative
orientation, the action takes the form [26],
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17

3
� log(z)

✓
(z � 5/z)(z + 1/z)2

(z � 1/z)3
� 1

◆
, (2.11)
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S(�) = Ŝ(z(�)) , and z =

1

2

⇣
�2 + �

p
�2 + 4 + 2

⌘
. (2.14)

At large separations, � � 1, the expression (2.11) for the instanton–anti-instanton action
simplifies and reduces to the well-known in the early instanton literature result,

S(�) ' 1 � 6/�4 + 24/�6 + . . . (2.15)

– 6 –

  VVK & Ringwald 1991



Now: in QCD

into external legs of the corresponding Green’s function, so that it reads,

Gng+2+2Nf (x1, . . . , xng+2, y1, . . . y2Nf ) = (2.5)
Z

DAµ[DqDq̄]Nf Ainst
µ1

(x1) . . . A
inst
µng+2

(xng+2) 
(0)(y1) . . . 

(0)(y2Nf ) e
�SE ,

2. Fourier transforming (2.5) to the momentum space to obtain G̃(p1, p2; k1, . . . , kng+2Nf ),
where pi (kj) are the momenta of the incoming (outgoing) particles,

3. Taking all momenta on-shell and performing the LSZ reduction for all external legs
of the Green’s function G̃.

The outcome of this procedure is that the instanton contribution to the n-point ampli-
tude at the leading order is recast as an effective n-point vertex involving ng+2 gluons and
2Nf quarks. Because of the fully factorised structure of the field insertions in the leading
order instanton expression (2.5), there are no correlations between the kinematics of the ex-
ternal legs, apart from the usual momentum conservation constraint. The instanton vertex
describes the scattering process into a spherically symmetric multi-particle final state.

The instanton production cross section for the process (2.1) can then be obtained in
the usual way by squaring the scattering amplitude and integrating over the (ng + 2Nf )-
particle phase space including the relevant symmetry factors. This program was developed
and implemented in the classic high-energy instanton papers [21–23] (for a review see [24])
in the context of the electroweak theory for (B + L)-violating processes.

2.2 The optical theorem on the instanton–anti-instanton configuration

An equivalent and arguably more direct way to obtain a total instanton production cross
section �insttot for the process gg ! X, is to use the optical theorem, and compute an
imaginary part of the 2 ! 2 forward elastic scattering amplitude, A

IĪ
4 (p1, p2,�p1,�p2),

in the background of an instanton–anti-instanton configuration, following the approach
initiated in [25, 26],

�(cl) insttot =
1

s
ImA

IĪ
4 (p1, p2,�p1,�p2)

'
1

s
Im

Z 1

0
d⇢

Z 1

0
d⇢̄

Z
d4R

Z
d⌦ D(⇢)D(⇢̄) e�SIĪ Kferm ⇥

Ainst
LSZ(p1)A

inst
LSZ(p2)A

inst
LSZ(�p1)A

inst
LSZ(�p2) , (2.6)

We shall now introduce and describe all the ingredients appearing on the r.h.s of this
expression. The integrals are over all collective coordinates of the instanton–anti-instanton
configuration: ⇢ and ⇢̄ are the instanton and anti-instantonsizes; Rµ is the separation
between the I and Ī positions in the Euclidean space and, finally, ⌦ is the 3 ⇥ 3 matrix
that specifies the relative IĪ orientation in the SU(3) colour space.

The instanton density appearing in the integration measure in (2.6) is given by the
1-loop expression [10],

D(⇢, µr) = 
1

⇢5

✓
2⇡

↵s(µr)

◆6

(⇢µr)
b0 (2.7)
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Figure 2. The plot on the left shows the contribution arising from fermion zero modes ! ferm for
a single light flavour (solid line). The dashed line is the large separation approximation

p
2

(1+�2/2)3/2
.

The plot on the right shows the corresponding contributions to the fermion prefactor Kferm in (2.16)
for Nf = 5.

from the instanton solution in the coordinate space and Fourier-transforming it, we get
after taking the on-shell limit p2 ! 0,

Aa inst
µ (x) =

2⇢2

g

⌘̄aµ⌫(x� x0)⌫
(x� x0)2((x� x0)2 + ⇢2)

�!
4i⇡2⇢2

g

⌘̄aµ⌫p⌫
p2

eipi·x0 . (2.18)

Here x0 is the instanton centre and ⌘̄aµ⌫ is the ’t Hooft symbol [10]. The LSZ reduction of
the expression on the r.h.s. of (2.18) amounts to initial state prefactor of the form,

Ainst
LSZ(p1)A

inst
LSZ(p2)A

inst
LSZ(�p1)A

inst
LSZ(�p2) '

✓
2⇡2

g
⇢2
p
s

◆4

eiR·(p1+p2) . (2.19)

The contribution eiR·(p1+p2) arises from the exponential factors eipi·x0 from the two instanton
and two anti-instanton legs, which upon the Wick rotation to the Minkwoski space becomes
eR0

p
s. This concludes our overview of of the ingredients appearing on the r.h.s. of (2.6).
Combining all these contributions allows us to express (2.6) in the form,

�(cl) inst
tot '

1

s
Im

2⇡4

4

Z
d⇢

⇢5

Z
d⇢̄

⇢̄5

Z
d4R

Z
d⌦

✓
2⇡

↵s(µr)

◆14

(⇢2
p
s)2(⇢̄2

p
s)2Kferm

(⇢µr)
b0(⇢̄µr)

b0 exp

✓
R0

p
s �

4⇡

↵s(µr)
Ŝ(z)

◆
, (2.20)

where Kferm was defined in (2.16)-(2.17) and Ŝ(z) in (2.11).
We note that the expression on the r.h.s of (2.20) is of correct dimensionality ensured

by the factor of 1/s, with the remaining integral being dimensionless. The integrations over
the collective coordinate Rµ, ⇢, ⇢̄ and ⌦ of the instanton–anti-instanton configuration are
to be carried in the steepest descent approach, i.e. by finding the saddle-point extremum
of the expression in the exponent. It is easy to see that the relative IĪ separation R is a
single negative mode2 – by reducing the value of R, the IĪ action decreases as the instanton

2
In fact, thanks to the eR0

p
s

factor in (2.20), the saddle-point solution is along the R0 direction with

R1,2,3 = 0. Hence at the saddle-point R = R0.
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where R = x0 � x̄0 is the separation between the instanton–anti-instanton centres, and the
factors 1/3 and 1/2 arise from averaging over the three3 SU(2) isospin components and two
polarisations �.

This reasoning leads to the following expression for the four external gluons appearing
on the r.h.s. of (2.18),
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The contribution eiR·(p1+p2) arises from the exponential factors eipi·x0 and e�ipi·x̄0 from the
two instanton and two anti-instanton legs, which upon the Wick rotation to the Minkowski
space becomes eR0

p
s0 . This concludes our overview of of the ingredients appearing on the

r.h.s. of (2.6).
Combining all these contributions allows us to express (2.6) in the form,
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b0 exp

✓
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where Kferm was defined in (2.16)-(2.17) and Ŝ(z) in (2.11).
We note that the expression on the r.h.s of (2.23) is of correct dimensionality ensured

by the factor of 1/s, with the remaining integral being dimensionless. The integrations over
the collective coordinate Rµ, ⇢, ⇢̄ and ⌦ of the instanton–anti-instanton configuration are
to be carried in the steepest descent approach, i.e. by finding the saddle-point extremum
of the expression in the exponent. It is easy to see that the relative IĪ separation R is a
single negative mode4 – by reducing the value of R, the IĪ action decreases as the instanton
and anti-instanton attract one another. Carrying out the Gaussian integrations over the
fluctuations around the saddle-point at R⇤ will result in an imaginary-valued expression,
thus furnishing the required imaginary part of the integral in (2.23) as required by the
optical theorem [25].

It is well-known, however, that the expression for the cross-section in (2.23) suffers from
a severe infrared problem arising from instantons of large size, ⇢ ! 1. In QCD, unlike the
electroweak theory, there are no scalar fields whose VEVs would cut off integrations over
large ⇢ in (2.23). The expression in (2.23) was obtained using the leading-order semiclas-
sical expansion around the instanton–anti-instanton configuration. At the classical level,
QCD is of course scale-invariant, so there is no surprise that the leading-order semiclassi-
cal expression does not fix the instanton size. To break classical scale-invariance we need
to include quantum corrections that describe interactions of the initial state gluons. This
corresponds to allowing for fluctuations around the four (anti)-instanton fields appearing in

3The instanton and anti-instanton configurations we are suing live in the same SU(2) subgroup of the
colour SU(3), hence we are summing the ’t Hooft eta symbols over a = 1, 2, 3 rather than a = 1, . . . , 8.

4In fact, thanks to the eR0
p

s0 factor in (2.23), the saddle-point solution is along the R0 direction with
R1,2,3 = 0. Hence at the saddle-point R = R0.
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into external legs of the corresponding Green’s function, so that it reads,

Gng+2+2Nf (x1, . . . , xng+2, y1, . . . y2Nf ) = (2.5)
Z

DAµ[DqDq̄]Nf Ainst
µ1

(x1) . . . A
inst
µng+2

(xng+2) 
(0)(y1) . . . 

(0)(y2Nf ) e
�SE ,

2. Fourier transforming (2.5) to the momentum space to obtain G̃(p1, p2; k1, . . . , kng+2Nf ),
where pi (kj) are the momenta of the incoming (outgoing) particles,

3. Taking all momenta on-shell and performing the LSZ reduction for all external legs
of the Green’s function G̃.

The outcome of this procedure is that the instanton contribution to the n-point ampli-
tude at the leading order is recast as an effective n-point vertex involving ng+2 gluons and
2Nf quarks. Because of the fully factorised structure of the field insertions in the leading
order instanton expression (2.5), there are no correlations between the kinematics of the ex-
ternal legs, apart from the usual momentum conservation constraint. The instanton vertex
describes the scattering process into a spherically symmetric multi-particle final state.

The instanton production cross section for the process (2.1) can then be obtained in
the usual way by squaring the scattering amplitude and integrating over the (ng + 2Nf )-
particle phase space including the relevant symmetry factors. This program was developed
and implemented in the classic high-energy instanton papers [21–23] (for a review see [24])
in the context of the electroweak theory for (B + L)-violating processes.

2.2 The optical theorem on the instanton–anti-instanton configuration

An equivalent and arguably more direct way to obtain a total instanton production cross
section �insttot for the process gg ! X, is to use the optical theorem, and compute an
imaginary part of the 2 ! 2 forward elastic scattering amplitude, A

IĪ
4 (p1, p2,�p1,�p2),

in the background of an instanton–anti-instanton configuration, following the approach
initiated in [25, 26],

�(cl) insttot =
1

s
ImA

IĪ
4 (p1, p2,�p1,�p2)

'
1

s
Im

Z 1

0
d⇢

Z 1
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d⇢̄

Z
d4R

Z
d⌦ D(⇢)D(⇢̄) e�SIĪ Kferm ⇥

Ainst
LSZ(p1)A

inst
LSZ(p2)A

inst
LSZ(�p1)A

inst
LSZ(�p2) , (2.6)

We shall now introduce and describe all the ingredients appearing on the r.h.s of this
expression. The integrals are over all collective coordinates of the instanton–anti-instanton
configuration: ⇢ and ⇢̄ are the instanton and anti-instantonsizes; Rµ is the separation
between the I and Ī positions in the Euclidean space and, finally, ⌦ is the 3 ⇥ 3 matrix
that specifies the relative IĪ orientation in the SU(3) colour space.

The instanton density appearing in the integration measure in (2.6) is given by the
1-loop expression [10],

D(⇢, µr) = 
1

⇢5

✓
2⇡

↵s(µr)

◆6

(⇢µr)
b0 (2.7)
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Figure 2. The plot on the left shows the contribution arising from fermion zero modes ! ferm for
a single light flavour (solid line). The dashed line is the large separation approximation

p
2

(1+�2/2)3/2
.

The plot on the right shows the corresponding contributions to the fermion prefactor Kferm in (2.16)
for Nf = 5.

from the instanton solution in the coordinate space and Fourier-transforming it, we get
after taking the on-shell limit p2 ! 0,

Aa inst
µ (x) =

2⇢2

g

⌘̄aµ⌫(x� x0)⌫
(x� x0)2((x� x0)2 + ⇢2)

�!
4i⇡2⇢2

g

⌘̄aµ⌫p⌫
p2

eipi·x0 . (2.18)

Here x0 is the instanton centre and ⌘̄aµ⌫ is the ’t Hooft symbol [10]. The LSZ reduction of
the expression on the r.h.s. of (2.18) amounts to initial state prefactor of the form,

Ainst
LSZ(p1)A

inst
LSZ(p2)A

inst
LSZ(�p1)A

inst
LSZ(�p2) '

✓
2⇡2

g
⇢2
p
s

◆4

eiR·(p1+p2) . (2.19)

The contribution eiR·(p1+p2) arises from the exponential factors eipi·x0 from the two instanton
and two anti-instanton legs, which upon the Wick rotation to the Minkwoski space becomes
eR0

p
s. This concludes our overview of of the ingredients appearing on the r.h.s. of (2.6).
Combining all these contributions allows us to express (2.6) in the form,

�(cl) inst
tot '

1

s
Im

2⇡4

4

Z
d⇢

⇢5

Z
d⇢̄

⇢̄5

Z
d4R

Z
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✓
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↵s(µr)

◆14

(⇢2
p
s)2(⇢̄2

p
s)2Kferm

(⇢µr)
b0(⇢̄µr)

b0 exp

✓
R0

p
s �

4⇡

↵s(µr)
Ŝ(z)

◆
, (2.20)

where Kferm was defined in (2.16)-(2.17) and Ŝ(z) in (2.11).
We note that the expression on the r.h.s of (2.20) is of correct dimensionality ensured

by the factor of 1/s, with the remaining integral being dimensionless. The integrations over
the collective coordinate Rµ, ⇢, ⇢̄ and ⌦ of the instanton–anti-instanton configuration are
to be carried in the steepest descent approach, i.e. by finding the saddle-point extremum
of the expression in the exponent. It is easy to see that the relative IĪ separation R is a
single negative mode2 – by reducing the value of R, the IĪ action decreases as the instanton

2
In fact, thanks to the eR0

p
s

factor in (2.20), the saddle-point solution is along the R0 direction with

R1,2,3 = 0. Hence at the saddle-point R = R0.
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fermion prefactor  
from Nf qq-bar pairs 

where R = x0 � x̄0 is the separation between the instanton–anti-instanton centres, and the
factors 1/3 and 1/2 arise from averaging over the three3 SU(2) isospin components and two
polarisations �.

This reasoning leads to the following expression for the four external gluons appearing
on the r.h.s. of (2.18),

Ainst
LSZ(p1)A

inst
LSZ(p2)A

inst
LSZ(�p1)A

inst
LSZ(�p2) =

1

36

✓
2⇡2

g
⇢2
p

s0
◆4

eiR·(p1+p2) . (2.22)

The contribution eiR·(p1+p2) arises from the exponential factors eipi·x0 and e�ipi·x̄0 from the
two instanton and two anti-instanton legs, which upon the Wick rotation to the Minkowski
space becomes eR0

p
s0 . This concludes our overview of of the ingredients appearing on the

r.h.s. of (2.6).
Combining all these contributions allows us to express (2.6) in the form,

�̂(cl) inst
tot '

1

s0
Im

2⇡4

36 · 4

Z
d⇢

⇢5

Z
d⇢̄

⇢̄5

Z
d4R

Z
d⌦

✓
2⇡

↵s(µr)

◆14

(⇢2
p

s0)2(⇢̄2
p

s0)2Kferm

(⇢µr)
b0(⇢̄µr)

b0 exp

✓
R0

p

s0 �
4⇡

↵s(µr)
Ŝ(z)

◆
, (2.23)

where Kferm was defined in (2.16)-(2.17) and Ŝ(z) in (2.11).
We note that the expression on the r.h.s of (2.23) is of correct dimensionality ensured

by the factor of 1/s, with the remaining integral being dimensionless. The integrations over
the collective coordinate Rµ, ⇢, ⇢̄ and ⌦ of the instanton–anti-instanton configuration are
to be carried in the steepest descent approach, i.e. by finding the saddle-point extremum
of the expression in the exponent. It is easy to see that the relative IĪ separation R is a
single negative mode4 – by reducing the value of R, the IĪ action decreases as the instanton
and anti-instanton attract one another. Carrying out the Gaussian integrations over the
fluctuations around the saddle-point at R⇤ will result in an imaginary-valued expression,
thus furnishing the required imaginary part of the integral in (2.23) as required by the
optical theorem [25].

It is well-known, however, that the expression for the cross-section in (2.23) suffers from
a severe infrared problem arising from instantons of large size, ⇢ ! 1. In QCD, unlike the
electroweak theory, there are no scalar fields whose VEVs would cut off integrations over
large ⇢ in (2.23). The expression in (2.23) was obtained using the leading-order semiclas-
sical expansion around the instanton–anti-instanton configuration. At the classical level,
QCD is of course scale-invariant, so there is no surprise that the leading-order semiclassi-
cal expression does not fix the instanton size. To break classical scale-invariance we need
to include quantum corrections that describe interactions of the initial state gluons. This
corresponds to allowing for fluctuations around the four (anti)-instanton fields appearing in

3The instanton and anti-instanton configurations we are suing live in the same SU(2) subgroup of the
colour SU(3), hence we are summing the ’t Hooft eta symbols over a = 1, 2, 3 rather than a = 1, . . . , 8.

4In fact, thanks to the eR0
p

s0 factor in (2.23), the saddle-point solution is along the R0 direction with
R1,2,3 = 0. Hence at the saddle-point R = R0.
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But the instanton size has not been stabilised. 
In QCD - rho is a classically flat direction — 

 need to include and re-sum quantum corrections!



Cartoon of quantum effects
due to Initial state interactions

Initial state interactions in the instanton approach
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Final states and their re-scattering
already included in the optical theorem

Gluon propagator in the 
instanton background.

Re-sum all in-in quantum corrections
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Mueller’s result for 
quantum corrections  

due to in-in states 
interactions

Instanton size is cut-off by  
this is what sets the  

effective QCD sphlarenon scale

⇠
p
s
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Basically, in QCD one can never reach the effective 
sphaleron barrier — it’s hight grows with the energy.  

=> Among other things, no problems with unitarity. 

front of the exponent in (2.6). This amounts to inserting propagators in the instanton back-
ground between pairs of gluon fields in the pre-exponential factor in (2.6) and re-summing
the resulting perturbation theory. This programme has been carried out by Mueller in
[26, 35]. It was shown that the quantum corrections due to interactions of the initial states
exponentiate and the resulting expression for the resummed quantum corrections gives the
factor e�↵s ⇢2s0 log s0 for the instanton, and the analogous factor for the anti-instanton in the
optical theorem expressions (2.6) and (2.23).

We thus obtain the quantum-corrected expression for the instanton production cross-
section,

�̂inst
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Im
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36 · 4

Z
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Z
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Z
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◆14
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16⇡
(⇢2 + ⇢̄2) s0 log

✓
s0

µ2
r

◆◆
.

(2.24)

The expression (2.24) is the key technical input on which the results this paper are
based. It combines the semi-classical instanton contribution to the total cross-section in-
cluding the effects of final state interactions derived in Ref. [25], with the resummed quan-
tum corrections in the initial state that were computed by Mueller in Ref. [35]. It is easily
verified that the initial state interactions quantum effect provides an exponential cut-off
of the large instanton/anti-instanton sizes; the cut-off scale is set by the (partonic) energy
scale s0 log s0 of the scattering process, and further it contains a factor of ↵s, as it should
in the radiative corrections.

2.3 The saddle-point solution and the instanton cross-section

Now we can search for the saddle-point in Rµ, ⇢ and ⇢̄ that extremises the function in the
exponent in (2.24). The instanton–anti-instanton separation coordinate is stabilised along
the R0 direction due to the interplay between the R0

p
s0 and �

4⇡
↵s(µr)

Ŝ(z) factors in the
exponent. The saddle-point is at R = R0, and to simplify our notation we will re-write the
first term as R

p
s0 at the saddle-point. Furthermore, the symmetry between the instanton

and anti-instanton configuration in the forward elastic scattering amplitude dictates that
the saddle-point value of ⇢ will be equal to ⇢̄. So, in obtaining the saddle-point solution,
we can set ⇢̄ = ⇢ and search for the extremum of the ‘holy-grail’ function,

F = R
p

s0 �
4⇡

↵s(µr)
S(R/⇢) �

↵s(µr)

8⇡
⇢2s0 log(s0/µ2

r) , (2.25)

that appears in the exponent in (2.24).
To emphasise the applicability of the saddle-point approximation to the integral (2.24),

we chose the rescaled dimensionless integration variables,

⇢̃ =
↵s(µr)

4⇡

p

s0⇢ , � =
R

⇢
, (2.26)
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2. The alternative approach is set µr = 1/⇢ from the beginning. The function in the
exponent is (2.21) (note that we do not pull out the 4⇡/↵s(⇢) factor),
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s⇢) . (2.27)

We look for the saddle-point solutions of the equations @�F = 0 and @⇢F = 0 for the
variables � and ⇢.

We have computed the instanton production cross-sections following both of these methods
and have found that the numerical results for �inst

tot as the function of
p
s are in good

agreement with each other. This demonstrates that our approach is stable against such
variations in the RG scale selection procedure.

In what follows we will concentrate on the second method where all the couplings are
from the beginning taken at the scale set by the characteristic instanton size. We now solve
the saddle-point equations @�F = 0 and @⇢F = 0 for (2.27) and find,

⇢
p
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dS(�)
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, (2.28)

and
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where we made use of the one-loop RG relation for the derivative of the running coupling,
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Our procedure for solving the saddle-point equations (2.28)-(2.29) is as follows. We in-
troduce the already familiar rescaled variable ⇢̃ = ↵s(⇢)

4⇡

p
s⇢, along with the new scaling

parameter,
u =

p
s⇢ , (2.31)

and write (2.28)-(2.29) as,

⇢̃ = S
0(�) , (2.32)

� = ⇢̃ (2 log u+ 1) + 2b0 ⇢̃
2 log u

u
�

2b0
u

S(�). (2.33)

There are two saddle-point equations (2.28)-(2.29) to solve, to determine the two variables,

⇢̃ =
↵s(⇢)

4⇡

p
s⇢ , � =

R

⇢
. (2.34)

Their values as well as the final result for the instanton cross-section of course depend on
the energy

p
s, which plays the role of the external input parameter. In practice, instead

of
p
s it is more convenient to characterise the process by the dimensionless input variable

u defined in (2.31).
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We look for the saddle-point solutions of the equations @�F = 0 and @⇢F = 0 for the
variables � and ⇢.

We have computed the instanton production cross-sections following both of these methods
and have found that the numerical results for �inst

tot as the function of
p
s are in good

agreement with each other. This demonstrates that our approach is stable against such
variations in the RG scale selection procedure.

In what follows we will concentrate on the second method where all the couplings are
from the beginning taken at the scale set by the characteristic instanton size. We now solve
the saddle-point equations @�F = 0 and @⇢F = 0 for (2.27) and find,
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where we made use of the one-loop RG relation for the derivative of the running coupling,
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Our procedure for solving the saddle-point equations (2.28)-(2.29) is as follows. We in-
troduce the already familiar rescaled variable ⇢̃ = ↵s(⇢)

4⇡

p
s⇢, along with the new scaling

parameter,
u =

p
s⇢ , (2.31)

and write (2.28)-(2.29) as,

⇢̃ = S
0(�) , (2.32)

� = ⇢̃ (2 log u+ 1) + 2b0 ⇢̃
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There are two saddle-point equations (2.28)-(2.29) to solve, to determine the two variables,

⇢̃ =
↵s(⇢)
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⇢
. (2.34)

Their values as well as the final result for the instanton cross-section of course depend on
the energy

p
s, which plays the role of the external input parameter. In practice, instead

of
p
s it is more convenient to characterise the process by the dimensionless input variable

u defined in (2.31).
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front of the exponent in (2.6). This amounts to inserting propagators in the instanton back-
ground between pairs of gluon fields in the pre-exponential factor in (2.6) and re-summing
the resulting perturbation theory. This programme has been carried out by Mueller in
[26, 35]. It was shown that the quantum corrections due to interactions of the initial states
exponentiate and the resulting expression for the resummed quantum corrections gives the
factor e�↵s ⇢2s0 log s0 for the instanton, and the analogous factor for the anti-instanton in the
optical theorem expressions (2.6) and (2.23).

We thus obtain the quantum-corrected expression for the instanton production cross-
section,
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(2.24)

The expression (2.24) is the key technical input on which the results this paper are
based. It combines the semi-classical instanton contribution to the total cross-section in-
cluding the effects of final state interactions derived in Ref. [25], with the resummed quan-
tum corrections in the initial state that were computed by Mueller in Ref. [35]. It is easily
verified that the initial state interactions quantum effect provides an exponential cut-off
of the large instanton/anti-instanton sizes; the cut-off scale is set by the (partonic) energy
scale s0 log s0 of the scattering process, and further it contains a factor of ↵s, as it should
in the radiative corrections.

2.3 The saddle-point solution and the instanton cross-section

Now we can search for the saddle-point in Rµ, ⇢ and ⇢̄ that extremises the function in the
exponent in (2.24). The instanton–anti-instanton separation coordinate is stabilised along
the R0 direction due to the interplay between the R0

p
s0 and �

4⇡
↵s(µr)

Ŝ(z) factors in the
exponent. The saddle-point is at R = R0, and to simplify our notation we will re-write the
first term as R

p
s0 at the saddle-point. Furthermore, the symmetry between the instanton

and anti-instanton configuration in the forward elastic scattering amplitude dictates that
the saddle-point value of ⇢ will be equal to ⇢̄. So, in obtaining the saddle-point solution,
we can set ⇢̄ = ⇢ and search for the extremum of the ‘holy-grail’ function,

F = R
p

s0 �
4⇡

↵s(µr)
S(R/⇢) �

↵s(µr)

8⇡
⇢2s0 log(s0/µ2

r) , (2.25)

that appears in the exponent in (2.24).
To emphasise the applicability of the saddle-point approximation to the integral (2.24),

we chose the rescaled dimensionless integration variables,

⇢̃ =
↵s(µr)
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⇢
, (2.26)
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2. The alternative approach is set µr = 1/⇢ from the beginning. The function in the
exponent is (2.21) (note that we do not pull out the 4⇡/↵s(⇢) factor),
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p
s⇢) . (2.27)

We look for the saddle-point solutions of the equations @�F = 0 and @⇢F = 0 for the
variables � and ⇢.

We have computed the instanton production cross-sections following both of these methods
and have found that the numerical results for �inst

tot as the function of
p
s are in good

agreement with each other. This demonstrates that our approach is stable against such
variations in the RG scale selection procedure.

In what follows we will concentrate on the second method where all the couplings are
from the beginning taken at the scale set by the characteristic instanton size. We now solve
the saddle-point equations @�F = 0 and @⇢F = 0 for (2.27) and find,

⇢
p
s =
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, (2.28)
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where we made use of the one-loop RG relation for the derivative of the running coupling,
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Our procedure for solving the saddle-point equations (2.28)-(2.29) is as follows. We in-
troduce the already familiar rescaled variable ⇢̃ = ↵s(⇢)

4⇡

p
s⇢, along with the new scaling

parameter,
u =

p
s⇢ , (2.31)

and write (2.28)-(2.29) as,

⇢̃ = S
0(�) , (2.32)

� = ⇢̃ (2 log u+ 1) + 2b0 ⇢̃
2 log u

u
�

2b0
u

S(�). (2.33)

There are two saddle-point equations (2.28)-(2.29) to solve, to determine the two variables,

⇢̃ =
↵s(⇢)

4⇡

p
s⇢ , � =

R

⇢
. (2.34)

Their values as well as the final result for the instanton cross-section of course depend on
the energy

p
s, which plays the role of the external input parameter. In practice, instead

of
p
s it is more convenient to characterise the process by the dimensionless input variable

u defined in (2.31).
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We look for the saddle-point solutions of the equations @�F = 0 and @⇢F = 0 for the
variables � and ⇢.

We have computed the instanton production cross-sections following both of these methods
and have found that the numerical results for �inst

tot as the function of
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agreement with each other. This demonstrates that our approach is stable against such
variations in the RG scale selection procedure.

In what follows we will concentrate on the second method where all the couplings are
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Our procedure for solving the saddle-point equations (2.28)-(2.29) is as follows. We in-
troduce the already familiar rescaled variable ⇢̃ = ↵s(⇢)

4⇡

p
s⇢, along with the new scaling

parameter,
u =

p
s⇢ , (2.31)

and write (2.28)-(2.29) as,

⇢̃ = S
0(�) , (2.32)

� = ⇢̃ (2 log u+ 1) + 2b0 ⇢̃
2 log u

u
�

2b0
u

S(�). (2.33)

There are two saddle-point equations (2.28)-(2.29) to solve, to determine the two variables,
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Their values as well as the final result for the instanton cross-section of course depend on
the energy

p
s, which plays the role of the external input parameter. In practice, instead

of
p
s it is more convenient to characterise the process by the dimensionless input variable

u defined in (2.31).
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front of the exponent in (2.6). This amounts to inserting propagators in the instanton back-
ground between pairs of gluon fields in the pre-exponential factor in (2.6) and re-summing
the resulting perturbation theory. This programme has been carried out by Mueller in
[26, 35]. It was shown that the quantum corrections due to interactions of the initial states
exponentiate and the resulting expression for the resummed quantum corrections gives the
factor e�↵s ⇢2s0 log s0 for the instanton, and the analogous factor for the anti-instanton in the
optical theorem expressions (2.6) and (2.23).

We thus obtain the quantum-corrected expression for the instanton production cross-
section,
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(2.24)

The expression (2.24) is the key technical input on which the results this paper are
based. It combines the semi-classical instanton contribution to the total cross-section in-
cluding the effects of final state interactions derived in Ref. [25], with the resummed quan-
tum corrections in the initial state that were computed by Mueller in Ref. [35]. It is easily
verified that the initial state interactions quantum effect provides an exponential cut-off
of the large instanton/anti-instanton sizes; the cut-off scale is set by the (partonic) energy
scale s0 log s0 of the scattering process, and further it contains a factor of ↵s, as it should
in the radiative corrections.

2.3 The saddle-point solution and the instanton cross-section

Now we can search for the saddle-point in Rµ, ⇢ and ⇢̄ that extremises the function in the
exponent in (2.24). The instanton–anti-instanton separation coordinate is stabilised along
the R0 direction due to the interplay between the R0

p
s0 and �

4⇡
↵s(µr)

Ŝ(z) factors in the
exponent. The saddle-point is at R = R0, and to simplify our notation we will re-write the
first term as R

p
s0 at the saddle-point. Furthermore, the symmetry between the instanton

and anti-instanton configuration in the forward elastic scattering amplitude dictates that
the saddle-point value of ⇢ will be equal to ⇢̄. So, in obtaining the saddle-point solution,
we can set ⇢̄ = ⇢ and search for the extremum of the ‘holy-grail’ function,
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that appears in the exponent in (2.24).
To emphasise the applicability of the saddle-point approximation to the integral (2.24),

we chose the rescaled dimensionless integration variables,
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2. The alternative approach is set µr = 1/⇢ from the beginning. The function in the
exponent is (2.21) (note that we do not pull out the 4⇡/↵s(⇢) factor),
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We look for the saddle-point solutions of the equations @�F = 0 and @⇢F = 0 for the
variables � and ⇢.

We have computed the instanton production cross-sections following both of these methods
and have found that the numerical results for �inst

tot as the function of
p
s are in good

agreement with each other. This demonstrates that our approach is stable against such
variations in the RG scale selection procedure.

In what follows we will concentrate on the second method where all the couplings are
from the beginning taken at the scale set by the characteristic instanton size. We now solve
the saddle-point equations @�F = 0 and @⇢F = 0 for (2.27) and find,
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where we made use of the one-loop RG relation for the derivative of the running coupling,
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Our procedure for solving the saddle-point equations (2.28)-(2.29) is as follows. We in-
troduce the already familiar rescaled variable ⇢̃ = ↵s(⇢)
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There are two saddle-point equations (2.28)-(2.29) to solve, to determine the two variables,

⇢̃ =
↵s(⇢)

4⇡

p
s⇢ , � =

R

⇢
. (2.34)

Their values as well as the final result for the instanton cross-section of course depend on
the energy

p
s, which plays the role of the external input parameter. In practice, instead

of
p
s it is more convenient to characterise the process by the dimensionless input variable

u defined in (2.31).
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1. Extermise the holy-grail function 
  in the exponent by finding a 

saddle-point in variables:

2. The alternative approach is set µr = 1/⇢ from the beginning. The function in the
exponent is (2.21) (note that we do not pull out the 4⇡/↵s(⇢) factor),

F = ⇢�
p
s �

4⇡

↵s(⇢)
S(�) �

↵s(⇢)

4⇡
⇢2s log(

p
s⇢) . (2.27)

We look for the saddle-point solutions of the equations @�F = 0 and @⇢F = 0 for the
variables � and ⇢.

We have computed the instanton production cross-sections following both of these methods
and have found that the numerical results for �inst

tot as the function of
p
s are in good

agreement with each other. This demonstrates that our approach is stable against such
variations in the RG scale selection procedure.

In what follows we will concentrate on the second method where all the couplings are
from the beginning taken at the scale set by the characteristic instanton size. We now solve
the saddle-point equations @�F = 0 and @⇢F = 0 for (2.27) and find,

⇢
p
s =

4⇡

↵s(⇢)

dS(�)

d�
, (2.28)

and

� =
↵s(⇢)

4⇡
⇢
p
s
�
2 log(⇢

p
s) + 1

�
+ 2b0

✓
↵s(⇢)

4⇡

◆2

⇢
p
s log(⇢

p
s) �

2b0
⇢
p
s
S(�), (2.29)

where we made use of the one-loop RG relation for the derivative of the running coupling,

@⇢

✓
4⇡

↵s(⇢)

◆
= �

2b0
⇢

, @⇢

✓
↵s(⇢)

4⇡

◆
=

✓
↵s(⇢)

4⇡

◆2 2b0
⇢

. (2.30)

Our procedure for solving the saddle-point equations (2.28)-(2.29) is as follows. We in-
troduce the already familiar rescaled variable ⇢̃ = ↵s(⇢)

4⇡

p
s⇢, along with the new scaling

parameter,
u =

p
s⇢ , (2.31)

and write (2.28)-(2.29) as,

⇢̃ = S
0(�) , (2.32)

� = ⇢̃ (2 log u+ 1) + 2b0 ⇢̃
2 log u

u
�

2b0
u

S(�). (2.33)

There are two saddle-point equations (2.28)-(2.29) to solve, to determine the two variables,

⇢̃ =
↵s(⇢)

4⇡

p
s⇢ , � =

R

⇢
. (2.34)

Their values as well as the final result for the instanton cross-section of course depend on
the energy

p
s, which plays the role of the external input parameter. In practice, instead

of
p
s it is more convenient to characterise the process by the dimensionless input variable

u defined in (2.31).
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2. Carry out all integrations using the steepest descent method evaluating the determinants 
of quadratic fluctuations around the saddle-point solution

 3. Pre-factors are very large — they compete with the semiclassical exponent which is very small!

front of the exponent in (2.6). This amounts to inserting propagators in the instanton back-
ground between pairs of gluon fields in the pre-exponential factor in (2.6) and re-summing
the resulting perturbation theory. This programme has been carried out by Mueller in
[26, 35]. It was shown that the quantum corrections due to interactions of the initial states
exponentiate and the resulting expression for the resummed quantum corrections gives the
factor e�↵s ⇢2s0 log s0 for the instanton, and the analogous factor for the anti-instanton in the
optical theorem expressions (2.6) and (2.23).

We thus obtain the quantum-corrected expression for the instanton production cross-
section,

�̂inst
tot '

1

s0
Im

2⇡4

36 · 4

Z
d⇢

⇢5

Z
d⇢̄

⇢̄5

Z
d4R

Z
d⌦

✓
2⇡

↵s(µr)

◆14

(⇢2
p

s0)2(⇢̄2
p

s0)2Kferm

(⇢µr)
b0(⇢̄µr)

b0 exp

✓
R0

p

s0 �
4⇡

↵s(µr)
Ŝ(z) �

↵s(µr)

16⇡
(⇢2 + ⇢̄2) s0 log

✓
s0

µ2
r

◆◆
.

(2.24)

The expression (2.24) is the key technical input on which the results this paper are
based. It combines the semi-classical instanton contribution to the total cross-section in-
cluding the effects of final state interactions derived in Ref. [25], with the resummed quan-
tum corrections in the initial state that were computed by Mueller in Ref. [35]. It is easily
verified that the initial state interactions quantum effect provides an exponential cut-off
of the large instanton/anti-instanton sizes; the cut-off scale is set by the (partonic) energy
scale s0 log s0 of the scattering process, and further it contains a factor of ↵s, as it should
in the radiative corrections.

2.3 The saddle-point solution and the instanton cross-section

Now we can search for the saddle-point in Rµ, ⇢ and ⇢̄ that extremises the function in the
exponent in (2.24). The instanton–anti-instanton separation coordinate is stabilised along
the R0 direction due to the interplay between the R0

p
s0 and �

4⇡
↵s(µr)

Ŝ(z) factors in the
exponent. The saddle-point is at R = R0, and to simplify our notation we will re-write the
first term as R

p
s0 at the saddle-point. Furthermore, the symmetry between the instanton

and anti-instanton configuration in the forward elastic scattering amplitude dictates that
the saddle-point value of ⇢ will be equal to ⇢̄. So, in obtaining the saddle-point solution,
we can set ⇢̄ = ⇢ and search for the extremum of the ‘holy-grail’ function,

F = R
p

s0 �
4⇡

↵s(µr)
S(R/⇢) �

↵s(µr)

8⇡
⇢2s0 log(s0/µ2

r) , (2.25)

that appears in the exponent in (2.24).
To emphasise the applicability of the saddle-point approximation to the integral (2.24),

we chose the rescaled dimensionless integration variables,

⇢̃ =
↵s(µr)

4⇡

p

s0⇢ , � =
R

⇢
, (2.26)
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     Criticism of EW sphaleron production in high-E collisions

The sphaleron is a semiclassical configuration with

Sizesph ⇠ m�1
W , Esph = few ⇥mW /↵W ' 10TeV.

It is ‘made out’ of ⇠ 1/↵W particles (i.e. it decays into ⇠ 1/↵W W’s, Z’s, H’s).

2initial hard partons ! Sphaleron ! (⇠ 1/↵W )soft final quanta

The sphaleron production out of 2 hard partons is unlikely.

Assumptions:

(1) the intermediate state had to be the sphaleron;

(2) the initial state was a 2-particle state;

(3) that one cannot create (⇠ 1/↵W )soft final quanta from 2initial hard partons.
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the usual Euclidean instanton. While these objects have no evident topological meaning, working
directly with Minkowski-continued instantons is a convenient shorthand for working in Euclidean space
with ordinary instantons, then rotating the amplitudes back to Minkowski space where the LSZ
amputation procedure is defined. We will see later (section 3.7) that the reason Minkowski-continued
instantons have mass-shell poles is due to their structural similarity with Feynman propagators
GF(x, ~),~ being the instanton’s position.
How to explain the rapid initial growth in the B-violating cross section? Mathematically, the reason

is easy to discern [25]. Look again at the form of the Higgs component of the instanton in momentum
space, eq. (2.11). Upon LSZ amputation, each Higgs contributes a momentum-independent constant,
namely 2ir2p2V, to the amplitude. (The phases exp(ik,. ~)just enforce overall momentum conservationwhen ~ is integrated over, so forget about them.) Therefore, on shell, the instanton acts like an
elementary multiparticle vertex at which n~,Higgs lines meet. The absence of momentum dependence
means that this vertex is pointlike, with no form factors to suppress high momentum transfer. A
pointlike nh-point vertex with ~h —~1 Icc is highly nonrenormalizable, and like the old nonrenormaliz-
able four-Fermi theory of the weak interactions, leads to a rapid growth in the cross section which
violates the bounds imposed by unitarity if extrapolated to sufficiently high energies. We have made this
argument only for Higgs production but a similar albeit more complicated argument is available for
gauge particles as well; at any rate the “Higgs-only” cross section is a lower bound on the total
B-violating cross section.
The pointlike on-shell behavior of amplitudes is an inevitable consequence of the 0(4) symmetry of

the instanton [27]. And so it was originally believed that if a distorted instanton were used instead, one
with lower symmetry, the growth of would be sharply curtailed, and o-,~.would remain exponentially
tiny. Yet that is not necessarily true! Indeed, a particular class of distorted instantons, where the
distortion is due to the back-reaction of only the final-state particles on the instanton, will be discussed
in sections 3.4—3.6 below [28—30].It will be seen that despite the lower symmetry, 0(3) instead of
0(4), o~in this approximation still grows observably large at energies ~45 TeV [30],out of reach of the
SSC but nevertheless formally of order ESPh

5I.
Thus, in the event that B violation turns out to be exponentially suppressed even at several times the

sphaleron energy, the initial-state quanta must play an essential damping role. What does physical
intuition suggest in this regard? The answer is, it depends on one’s physical picture of what are the
essential configurations that dominate o~.We outline two contrasting physical pictures below:

The pessimistic picture. As the old saying goes, “You can’t make a fish in a p~collider” (fig. 3). The
basic reason is that a fish is a heavy extended object whose spatial extent is much greater than its
Compton wavelength. It therefore consists of a very large number of soft quanta, each one of which
should cost roughly a factor of a to produce. Now suppose that one conceives of high-energy B
violation as happening primarily via sphaleron production,

2 hard initial quanta—~sphaleron—÷7rIa~soft final quanta. (2.21)

Fig. 3. “You can’t make a fish in a p~collider.”

  from Mattis PRpts 1991

But in QCD instantons are small
[A `small fish’ compared to the EW case] 

This criticism does not apply 
to our QCD calculation 



0 1000 2000 3000 4000
0

20

40

60

80

100

120

140

s′ (GeV)

1/
ρ

ρinverse( s′ )

u =
p
s⇢

<latexit sha1_base64="5shRRFPuykuiY7afmdfOYeTuceQ=">AAAB/nicbVBNS8NAEN3Urxq/ouLJy2IreJCS1INehIIHPVawH9CEstlu26WbbNydCCUU/CtePCji1d/hzX/jts1Bqw8GHu/NMDMvTATX4LpfVmFpeWV1rbhub2xube84u3tNLVNFWYNKIVU7JJoJHrMGcBCsnShGolCwVji6mvqtB6Y0l/EdjBMWRGQQ8z6nBIzUdQ7K6aV/in19ryDTE+yrobTLXafkVtwZ8F/i5aSEctS7zqffkzSNWAxUEK07nptAkBEFnAo2sf1Us4TQERmwjqExiZgOstn5E3xslB7uS2UqBjxTf05kJNJ6HIWmMyIw1IveVPzP66TQvwgyHicpsJjOF/VTgUHiaRa4xxWjIMaGEKq4uRXTIVGEgknMNiF4iy//Jc1qxTurVG+rpdp1HkcRHaIjdII8dI5q6AbVUQNRlKEn9IJerUfr2Xqz3uetBSuf2Ue/YH18A3QFlIY=</latexit>

Results a) Instanton size

1
⇢

<latexit sha1_base64="qshQjYi46hv1BYBt73qB1lgT/vo=">AAAB+XicbVBNT8JAEJ3iF+JX1aOXjWDiibR40COJBz1iIkhCG7JdtrBhu9vsbklIwz/x4kFjvPpPvPlvXKAHBV8yyct7M5mZF6WcaeN5305pY3Nre6e8W9nbPzg8co9POlpmitA2kVyqboQ15UzQtmGG026qKE4iTp+i8e3cf5pQpZkUj2aa0jDBQ8FiRrCxUt91a0GsMMn9WR6okZzV+m7Vq3sLoHXiF6QKBVp99ysYSJIlVBjCsdY930tNmGNlGOF0VgkyTVNMxnhIe5YKnFAd5ovLZ+jCKgMUS2VLGLRQf0/kONF6mkS2M8FmpFe9ufif18tMfBPmTKSZoYIsF8UZR0aieQxowBQlhk8twUQxeysiI2yTMDasig3BX315nXQadf+q3nhoVJt3RRxlOINzuAQfrqEJ99CCNhCYwDO8wpuTOy/Ou/OxbC05xcwp/IHz+QMiWJNY</latexit>

(GeV)
<latexit sha1_base64="+OwUGRkkxlUOzUoqJpSTmpqMqL8=">AAAB+3icbVBNT8JAEN3iF+JXxaOXjWCCCSEtHvRI4gGPmAiS0IZsly1s2N02u1sjafpXvHjQGK/+EW/+GxfoQcGXTPLy3kxm5gUxo0o7zrdV2Njc2t4p7pb29g8Oj+zjck9FicSkiyMWyX6AFGFUkK6mmpF+LAniASMPwfRm7j88EqloJO71LCY+R2NBQ4qRNtLQLle9ulevwdSTHLZJL7uoDu2K03AWgOvEzUkF5OgM7S9vFOGEE6ExQ0oNXCfWfoqkppiRrOQlisQIT9GYDAwViBPlp4vbM3hulBEMI2lKaLhQf0+kiCs144Hp5EhP1Ko3F//zBokOr/2UijjRRODlojBhUEdwHgQcUUmwZjNDEJbU3ArxBEmEtYmrZEJwV19eJ71mw71sNO+alVY7j6MITsEZqAEXXIEWuAUd0AUYPIFn8ArerMx6sd6tj2VrwcpnTsAfWJ8/CpiShA==</latexit>

0 1000 2000 3000 4000
10

15

20

25

30

s′ (GeV)
u

s′ (u)



Results b) <number of gluons>

0 1000 2000 3000 4000
0.0

0.1

0.2

0.3

0.4

s′ (GeV)

α s
(ρ
)

αs[ρ] ( s′ )

0 1000 2000 3000 4000
0

2

4

6

8

10

12

s′ (GeV)

n g ng( s′ )



Results c) partonic cross-section
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