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lNntroauction

Fermion-Monopole scattering processes in an SU(5) GUT

Wt e M s dP e+ M

are unsuppressed by the GUT or Monopole scales

the relevant scale is the QCD scale ~1GeV — 15 orders of magnitude lower
than GUT

these are anomalous (B+L)-violating processes

involve light fermions in the J=0 spherical wave which penetrate the 't Hooft-
Polyakov monopole core

Monopole catalysis of proton decay: Rubakov-Callan effect
Rubakov 1981

Callan 1982



Callan 1982

 One can also consider a single fermion, e.g. a massless positron scattering on a GUT
monopole

e + M — %(u1u2d?’é) + M

e Callan’s bosonization formalism for J=0 scattering implies that particles in the final
state carry half-integer fermion numbers

o At first sight appears to be highly counter-intuitive:

 we don’t have such half-fermion states in perturbation theory and one might expect
that asymptotic states (far away from the monopole) should be described by standard
QFT perturbative Fock-space states

 However, it is known that magnetically and electrically charged states are always

entangled; they carry non-vanishing total orbital momentum J even at infinite
separations. Asymptotic states are not described by tensor products of 1-particle ones

In this talk we'll study such processes and construct their scattering amplitudes



Recall:
from Telem (Planck 2021)

Monopole and Charge: Extra Classical Angular Momentum Thomson 1904
monopole M particle f
magnetic charge g electric charge e
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Distance independent!

In the quantum theory J;..;4 quantized eg = + Dirac quantization
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 Non-vanishing Angular Momentum implies: magnetically and electrically charged
states are pairwise entangled. Asymptotic states are not described by tensor

products of 1-particle states.
/Zwanziger 1972

« For each pair of states with a magnetic and an electric charge there is a new :
quan’[um number —a ha|f_integer pairwise he||C|ty ................................................. >

— associated with the pair. | | |
Csaki, Hong, Shirman, Telem, Terning, Waterbury 2009.14213



Intriguing, remarkable & unexpected

1. There is no crossing symmetry

One can neither apply crossing to individual particles in the Rubakov-Callan processes
w4+ ur+ M —>d+e+ M

nor would it be allowed by the multi-particle electric--magnetic entanglement.
2. Forward scattering amplitudes often trivially vanish

3. The optical theorem does not apply

For example the complex conjugate amplitude for the process above is the amplitude for
P +e+M—->u +u+ M
which involves anti-monopoles rather than monopoles while the fermion states are the same

4. No Lagrangian formulation exists that is both local and Lorentz-invariant.



Intriguing, remarkable & unexpected

5. There is no decoupling of heavy mass-scales from low-energy physics:

Low-energy lowest partial-wave fermions penetrate the non-Abelian monopole
core and result in unsuppressed scattering rates.

[ This effect cannot be described by the low-energy U(1) EFT local Lagrangian

formulation of Zwanziger. ]

6. There are fermion number violating anomalous, as well as fermion number
preserving non-anomalous processes on monopoles that are both unsuppressed;

/. Production of fractional fermion numbers is possible for massless fermions
scattered on monopoles thus restructuring the perturbative Fock space.



Fermion-monopole scattering in the
SU(2) Model

an SU(2) gauge theory with the Higgs field in the adjoint representation
supports 't Hooft-Polyakov magnetic monopoles

« add Nf flavours of Left-handed Weyl fermion doublets ~ Mferm < Mx /v,

Meerm = 0 18 a good approximation
| al |
’(ﬂi: bz , ZZl,...Nf
~/ L

corresponding Dirac-conjugate fermions are SU(2) doublets (wz) — 157"3

electric fermion charges: e = £1/2 in the units of the SU(2) gauge coupling g
monopole magnetic charge: gy = —1 in units of 47 /g

q = €a /b "9M = +




Fermion-monopole scattering in the
SU(2) Model

For Left-

handed Weyl fermions in the J = 0 wave only their a4 components exist as incoming waves

while their b_ components give the outgoing states in the fermion—monopole scattering.

the Right-handed spinors, a_ are incoming and b, are outgoing.

Vr, g =-egy in/out
i = (6&) ayr  —1/2 in
L

b_g1 —|—1/2 out

_. X (@)R q=egy in/out
Vh = <+> b4r —1/2 out
! a_—R +1/2 in
Follows from

truncating the theory to J = 0 waves for each fermion, and analysing solutions of the I

equation for massless Weyl fermions in the 't Hooft—Polyakov monopole background.



Scattering in the SU(2) theory with N = 2 flavours

In a scattering process in a gauge theory, electric charge must be conserved.

the energy carried by

fermions is (much) lower than the monopole-dyon mass splitting (~W-boson mass in GUT) =>

charge cannot be deposited on the monopole core by turning it to a dyon.

Starting with a single fermion aiLL in the initial state, the J = 0 state

the in/out selection rules

and the electric charge conservation, allows for the process,
al; + M — bip + M + (bb) pairs

an anomalous process as the chirality is not conserved.

use a simple selection rule

AR'— AL*=n, for each flavour i = 1,..., Ny
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Scattering in the SU(2) theory with N = 2 flavours

Combining al; + M — b%p + M + (bb) pairs
with a similar process where flavours1&2 interchanged:

a; + M — by + M + (bb) pairs

We now get the scattering process with two incident fermions:
ptaln+ M= blp+bip+ M+ (bb)pal
App = Q4L +R +R pairs

there are also anomalous processes with n = —1 and n = —2

a'p + M — b2, + M + (bb)pairs,
C_Ll_R + C_LQ_R + M — bl_L + b2—L + M + (Eb) pairs

and non-anomalous processes with n = 0
C_Ll_R + &iL + M — B}FR + b2—L + M + (Eb) pairs
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Scattering in the N = 4 model

The similar (allowed by symmetries) scattering process with two incident fermions here is :

alp; +ai;, + M — b3+ bip + M + (bb) pairs

But the more elementary constituent process with a single fermion in the initial state
must involve final state particles with half-integer fermion numbers — '

1 . _
al; + M — 5 (bL b3 Rb3pbiR) + M + (bb) pairs

Final states with half-integer fermion numbers are solitons that appear in the J=0 reduced
(effectively 1+1 dimensional (r+t) model) after bosonization —
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Scattering in the N = 4 model

1 . _
al; + M — 5 (bL 03RS RbLR) + M + (bb)pairs

Csaki etal (PRL 2022) rejected this process altogether based on the argument that if such massless

half-fermion states existed, they would have to be true asymptotic states far from the

monopole perturbation theory can be reliable applied. They have proposed instead

CL}I_L—|—M%63_R‘|—E?|_R—|‘C_LZ£R—|—M

A

cannot be. in the J=0 state
(it must be incoming rather than outgoing)

It is hard to understand how the outgoing a* r fermion could be produced ¢nside the monopole
core, since it is not in a J = 0 single particle state and would experience a very strong

Coulomb repulsion from the core. This must be suppressed

by powers of E/Mx < 1 where E is the energy
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Our 2nd objection against disallowing the Callan-type single-fermion processes is that they can again be
combined to correctly reproduce the standard Rubakov-Callan process with two incident fermions
(while Csaki et al process cannot).

b, 4+ M o S (L5250 Bt ) + M,

Indeed, combining:

N |~ DN

we obtain,
1 L
a}l—L + (aiL -+ M) — a’}I—L + M + 5 (bQ—Lb}kainiR)

_ _ 1 - L7
< big 4 bip + M+ o (bipblp) + o5 (03RV2L),

which reproduces correctly

al; +ai;, + M — b3p + bip + M + (bb) pairs
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Scattering amplitudes with pairwise helicities

Lorentz transformation of the out state with electric and magnetic dofs
Inlcudes a little group phase with pairwise helicities q:

U (M) |pi, pars sis sars Ging) = | €M |Apg, Apars 5, 843 @ing) Do, Dyt sy

Then the scattering amplitude transforms as: following the formalism in Csaki etal 2020:

A(pla .. 7pn7pM’ kla IR kma kM) —
ei 2i=1 GiM DM 67; 21=1 QZM(blMA(Apla IR 7Apn7 ApM‘ Akl) SR 7Akm7 AkM)

Use pairwise helicity spinors for each fermion-monopole pair which transforms as:

A\pb..i> — o T39Pips,A) \Ap2f>
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Pairwise spinors

First the momentum pair is Lorentz boosted into the CoM frame

ki — (Eiaoaoapc)a k] — (Ej70707 _pC)

Define pairwise momentum variable(s) for the pair:

b+
ki = pe(1,0,0,+1)

introduce the pairwise helicity spinors in the CoM frame

b Ly pbt
ki Y Opae = |kij >a [kij &

Finally, boost to a general Lorentz frame

b b h- 4 KL
‘pz‘j >a — Aaﬁ ‘kij ) [pij & [kij B.Aﬁd

B )
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Scattering amplitudes with pairwise helicities

Using the standard all-outgoing conventions for amplitude momenta, the contribution

to the amplitude A from the incoming state a}r ; + M 1s given by,

b
(Q}FL + M)in = [a}FL‘ palM]

uniquely determined by the requirements that: its helicity
spinors can involve only the initial states; all (Lorentz) spinor indices must be contracted as
this is a J = 0 state; Lorentz transformations of the pairwise helicity spinor \pZIM] should

give the phase factor e*daln ¢

The outgoing states contribute to the amplitude:

1 _
(§b1—L + M)out = \/<b1—L leM> ;
1o L b— -
(5 +R—|_M)0Ut = \/[ +R pgzM]a 1 =2,3,4.

It is easy to verify each of these factors transforms with the correct pairwise little group

hase €9 as required
b
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Scattering amplitudes with pairwise helicities

Thus the amplitude for the elementary Callan’s process

1 I
al; + M — 5 (bl b2 Rpbipbin) + M
IS given by

Ao [0 g pmag) (009000 B2l P ) B2l ) Bl )

The amplitude for the companion process is obtained by interchanging 1 and 2

1 .
2 2 1 3 4
a,_|_L —|— M — 5 (b—Lb—I—Rb+Rb—|—R) —|— M
~ 5 o 5 1/2
A oc a2 P2y (02 1Py B Rl Py ) 02 2l Py ] B2 Rl Py ))
Taking the product, gives the correct result for the process with 2 incident fermions (omitting bbar pairs):

al; +a’, + M — b3p +bigp + M,

A [a+L|pb1M] [a+L|psz] [ R‘pbsM] [ R|pb4M]



Scattering of fermions with SU(5) GUT monopoles

In the minimal GUT theory the ’t Hooft—Polyakov monopole lives in the SU(2); subgroup
of the SU(5)qur. We consider a single generation of massless fermions in this model.

Left-handed Weyl fermions transform in the 5 and 10 representations of SU(5)qur are
represented by Ny = 4 of SU(2)ys doublets

wi-: a_'? N ﬂi —a% d% eL
bt . u% ui e —d%

i % % % qg=eygym in/out
ayrr: ur ut di er —1/2 in
b_r : u% ulL er J% +1/2 out

W)r Wi @)% Wr q=emgu injout
u ip  eR d, —1/2 out
_R: up u% d, €R +1/2 in



Scattering amplitudes with pairwise helicities
Scattering amplitudes for elementary J=0 Callan’s processes in SU(5) GUT are as follows

~ B B B B B B B 1/2
A oc [} phmy) (1P, (841 Py ) el 2] [dh] P )

1
ep + M — i(d%u%uiéL) + M,

B B B B B 1/2
(12 o) (| g (Wbl Py (Exl ping))

~~—

A o (er| Pl



Scattering amplitudes with pairwise helicities

And the J=0 scattering amplitudes for Rubakov-Callan 2-fermion processes are

ar + a2 + M — d + e + M,

ool b 11-2 [ b h— h—
A oc [y plr ) | P ) [dR] D) [er] D]

up + ub + M — di +éep + M,

7 h— b= N T b= A\ s | b
Ao (up| P2y ) (Wrl 02y (A7 P75, ,) (€Ll ),

which describe the monopole catalysis of anti-proton and proton decays



Conclusions

We re-examined scattering processes involving massless fermions and
magnetic monopoles:

1) in the minimal SU(2) model that supports 't Hooft-Polyakov monopoles and al
2) in the SU(5) GUT theory with a single family of massless fermions

Derived helicity amplitudes for termion-monopole scattering in events with a
single fermion in the initial state and fractional fermion numbers in the final state

and provided non-trivial tests on such processes by combining them to
reproduce the amplitudes for processes with 2 fermions in the initial- and integer
fermion numbers in the final state.

These processes are unsuppressed, they do not depend on the monopole or the

GUT mass scales scale even at low energies; they are instrumental for the
monopole catalysis of proton decay and interesting on their own right
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