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In the first part of this talk: |'ll outline the main idea of Higgsplosion

 Consider n~150 Higgs bosons produced in a final state at n lambda >> 1.
Kinematically possible for scattering at E ~100 TeV

« HIGGSPLOSION: n-particle rates computed in a weakly-coupled theory
become unsuppressed above certain critical values of n and E = /s = \/p?

mT,(p?) = Im,X(p?) > p*, m?
In the second part of this talk:

« we'll consider an intrinsically Non-perturbative — semiclassical set-up
n o« vs/m o 1/A > 1

e it incorporates correctly the tree-level results and

>

already known

e the leading-order quantum eftects = leading loops v

e compute quantum effects in the large lambda n limit new

Conclusions & summary



Higgsplosion: few particles —> many particles processes

Vs X = nxag,

few many
Scattering process : X(V/s))=12) — |n) = cross section o,(v/s),
Resonance decay : X(Vs))=1]1") — |n) = partial width T',,(s) .

A non-perturbative semiclassical approach can be used to compute such
processes. The semiclassical approach assumes that the initial state X can
be approximated by a point-like injection of energy: via a local operator O(x)

X) = 0(0)]0)

l[deal for 1* —>n  Higgsplosion is when: % Fn(s) Z 1

For for 2 —> n OK for s-channel but not for t-channel where there is an impact parameter
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1)

e.g.:Vector boson fusion in high-energy

1->n processes of interest

pp collisions at ~100 TeV

quark pdfs
9

Vs

9
quark pdfs

ZIW

Z/'W

(

for Higgsplosion

v

this talk: R(1->n)

A d "‘
s =

semiclassical calc.

Im ¥, (5.) ~ Tp(s,)

S« —m? — ReX(s,) + impl'(s.)

VVK & Spannowsky 1704.03447,1707.01531
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n non-relativistic Higgses

Higgsplosion at/S«

Propagator with Higgspersion aty/ S«



2)

Schwinger-propagator and optical theorem

The optical theorem relates the 1* -> n h amplitudes to the imaginary part
of the self-energy (valid to all orders)

— ImYp(p?) = _ Im(pz—a ) = m p—E
where TI'(s) = ifn(s) and T, ( 2m/ 2 IM(1 = n)|?

0
p? —m? — ReXg(p?) + imI'(p?) + ic

and thus ARr(p) =

No non-pert. information ‘ h hh nhy
about the Real part of Sigmag—" Higgsplodes‘ y  Nh hh
but it cannot cancel | > h
Imaginary part wher 5 5 " )
mI',(p°) 2 p h h
hh h



Warm-up: Compute 1 -> n amplitudes@LO with non-relativistic final momenta:

| see classic 1992-1994 papers:
\/\ - | a= | Brown; Voloshin;

- | ] Argyres, Kleiss, Papodopoulos

| B Ph Fea gl Libanov, Rubakov, Son, Troitski

jh OYW}‘ﬁ\L\lﬂ»Q, ' T g
y\'s?}%s pm\r ULM ; | - more recently: VVK 1411.2925
e | | ’ | Wik, nOV\L(éL%,\t "A"‘% ro— l(ﬁuh)z B é(hz _ p?)?
P =18 37 Mag 2 4
| |+ 1.SZ b W‘O*M*«H\ IR K \U\
| b | Eibeod > Beobads i | | prototype of the SM Higgs
4 l | 3*& e ’ o in the unitary gauge

Tree-level 1* — n amplitudes in the limit ¢ — 0 for any n are given by

n—1

A 2 7 I n
—| n! . _pe — 2
An(p1, ... D) = n! (QM,%) (1 51e P 15+(’)(5 ))
v

. 1 11 &
factorial growth amplitude on the n-particle threshold € = 77 E," = " 202 > i

i=1
Kinetic energy per particle per mass

In the large-n-non-relativistic limit the result is

—%ne], n — oo, € — 0, ne = fixed



Square the amplitude & integrate over the n-particle phase-space:

The cross-section and/or the n-particle partial decay I,

1
Fn(s) — d(I)n — |Ah*—>n><h’2
n!

The n-particle Lorentz-invariant phase space volume element

n n d3p
. 4 (4 J
/d(I)n — (27‘-) 5 )(Pln — ij) H/ (27.‘.)3 2]90 ’

in the large-n non-relativistic limit with ne; fixed becomes,

1 [/ M2\" 3
O, ~ ( h) exp [_n (logg—h + 1) + "eh + O(nei)]

2 2 37T 4

/n

Son 1994:
Libanov, Rubakov, Troitskii 1997; more recently: VVK 1411.2925



Can also include loop corrections to amplitudes on thresholds:

The 1-loop corrected threshold amplitude for the pure n Higgs production:

¢t with SSB: AL oo — 1 (2)1 - (1 +n(n - 1)—\/@)

1—n 87T

There are strong indications, based on the analysis of leading singularities of the
multi-loop expansion around singular generating functions in scalar field theory,
that the 1-loop correction exponentiates,

Libanov, Rubakov, Son, Troitsky 199/

Ain = AT, x exp [BAn? + O(An)]

in the limit A\ — 0, n — oo with An fixed. Here B is determined from the

1-loop calculation (as above) — Smith; Voloshin 1992): B— 1 V3
— U 4r
. h
Really need to switch to the regime of lambda n >>1 h h h hh
hh h
For this we need a non-perturbative — h -~ h
semiclassical approach — next slide... }1, y PR yh‘
h
8 hh



Explosive growth of 1->n perturbative process | | h
h h
Rals) = — /dnnw(l L) A h
2M? hh l}?
R(A;n,e) = exp [n (log%n - 1) + 37”’ (log?)% + 1) - %ns] h h
hh h

Extreme energy dependence for 1* -> n cross section

including 1-loop result reduces ‘ignition” scale oo

log oiree log on

40—
1 — n=1500 20
T — n=1400

| — n=1300 B
T —n=1200 p@p |
| — =100 & ¥
| — n=1000

| — n=150
. = n=140
| = n=130
1 = n=120
;. — n=110

log 0,

-40

-60 -

L
500

E(TeV)

|
20 30 50 70 100

E(TeV)
Higgspersion of the propagator due to Im Sigma not yet included here!
We’ll need a non-perturbative semiclassical approach: Part 2 of the talk



Application to gluon fusion:

It was argued that these results can be used to assess what
collider energy needed to test where perturbation theory
becomes strong [in gluon fusion]

Degrande, VVK, Mattelaer ‘16

— r 1 r 1 T T ' ' r T T L R A B
1L+ 14TeV o 26 TeV x 35TeV ]
A 50 TeV m 100 TeV AL
20 A‘AA |
10- AAA .
o X
, xX
% 10—40 Xxxxxx .
: 4
O
T -60 XXX
2 10 gggxxx"xxxxxxxxxxxxxxxx i
o )
6 . OOOO OOOOOOOOOOO 000
1080 | ty, 900000000000,
+, OOO
+, O¢
+
10-100 |- " Boxes, one-loop ]
using the 1-loop improved expression .. o+ o 0 oo F 0
20 40 60 80 100 120 140

10 number of Higgs



Factorial growth of tree-level amplitudes at threshold
IS captured by classical solutions

£(h) = 5

A

(Oh)? = 2 (B2 —0?)"

4

The classical equation for the spatially uniform field h(t),

d2h = —\h° + \?h,

has a closed-form solution with correct initial conditions hyy = v+ 2+ ...

ho(zo;t) =

o

14 29 €™ /(20)

1 — zge™ /(2v)

), m = V2

ho(z) = v + 2v Z (2—7;)“ ooz =2(t) =z €
n=1

Factorial growth

L. Brown 9209203
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Classical Solutions & singularities in complex time:

t — te=t+ir

1 — e’im(t@—iToo)

ho(t@) = (

1
= Too := — log <@>

1 + eim(t@iToo)>

Our simple example of a classical solution
(corresponding to the tree-level Amplitudes)

Such singular complex-valued solutions will emerge in the semiclassical approach



Part | o | |
Main idea of the semiclassical approach

R, (FE) is the probability rate for a local operator O(0) to create n particles of
total energy F from the vacuum,

1
Ro(E) — / i, (00" 5" Peln){n| P S 00

Pg is the projection operator on states with fixed energy E.
O = MO
and the limit 7 — 0 is taken in the computation of the probability rates,

1 . .
Ro(E) = lim | —d®, (0]e/MOT St Poln)in| P S el ™ |0) .
i—=0 | n!

Note: non-dynamical (non-propagating) initial state O|0).

The semi-classical (steepest descent) limit: _ E-nm
nm

A—0, n—o00, with An =fixed, e = fixed.

Evaluate the path integral in this double-scaling limit.
Rubakov & Tinyakov: DT Son 95 n enters via the coherent state formalism.



Main idea of the semiclassical approach
Note (1):

The initial state is not semiclassical, it contains few
rather than many particles.

Rubakov et al & Son argued that it can be approximated in the semiclassical
method by a certain local operator acting on the vacuum:

X) = 0(0)]0)

O(z) = jLel?@

j is a constant j = ¢/A. Finally one takes the limit ¢ — 0 (or equivalently j — 0)

A refinement: smear O(x) with a wave packet / test function

operator localized in the vicinity of a point x l

Oy(x) = /d4:v'g(zc’—a:)()(x’), | X) = O4(0)|0) = /d4az'g(x’) O(z") |0)



The Semiclassical formalism of Son: results in four steps

1. Solve the classical equation without the source-term:

6.5
oh(x)

= 0

a complex-valued solution h(x) with a point-like singularity at x* = 0.
The singularity is due to O(x = 0).

2. Impose the initial and final-time boundary conditions:

lim h(x) +/ L S
1111 X = U K
t—— 00 (27’(’)3/2 \/2&)1{ k
d>k 1 . .
. L wxT—0 —ik,x" T ikt
tlgrnoo h(z) = v+ / CEENE (bke e + b e )

e Son hep-ph/055338



The Semiclassical formalism of Son: results in four steps

3. Compute E and n of the final state using the ¢t — +o00 asymptotics
E = / Pk we bl b e T=0 n = / A3k bl by ewxT—0

At t — —oo the energy and the particle number are vanishing.
The energy changes discontinuously from 0 to £ at the singularity at ¢ = O.

4. Eliminate the T' and 6 parameters in favour of E and n.
Finally, compute the function W (FE, n)

W(E,n) = ET — nf — 2ImS|h|

on the set {h(x), T, 0} and fine the semiclassical rate R,,(E) = exp [W(E,n)]

e Son hep-ph/055338



Main idea of the semiclassical approach

Note (2): Im X(s)

t — —o0 X t — o0

| | E=0 E=+\s#0
The classical solutions that we use

have a single point-like singularity ® !
In Minkowski space at the point x=0
where the operator O(0) is located.

.
.
e
"
L]
Y
.
.
e
e
a
.
Y
.
taa,
L] -
ta, -
e -
L] -
L] -
L] -
. -
"y - -
e,
e
L]
‘e
a
.

--------------------------

Such configurations contribute to
1Pl matrix elements i.e. precisely to Im >(s)

l.e. multiple energy jumps.

1-particle-reducible contributions to
—QQ‘QQ‘QO_ would require multiple singularities,
E #0 E #0 E #0 t

—



Refining the method in complex time

e In Fuclidean space-time (7, ) the solution is singular on a 3-dimensional
surface 7 = 74(%).

-
T A
t — —
Singularity hi(70(T)) = ha(70(7))
hi(z) | ha(x) surface
0 >
time evolution U ¢
contour 70(%)

e Find a classical trajectory hy (7, ¥) satisfying initial time boundary cond-s.
e Find another classical trajectory ho(7,Z) satisfying final time conditions.
e hy and ho are singular on 7¢(Z) and hq(79(Z), &) = ha(70(Z), ¥)

e Extremize the action S over all singularity surfaces 7o(Z) .



e For the combined configuration h(z) to solve classical equations every-
where, including the 7 surface:

need to extremize the action integral over all singularity surfaces 7 = 74(Z)

containing the point t =0 = .
L / dtﬁ(h2)>
0

To(f)
iS[h] = /de (/ d7 Lxuc(h1)

+ o0
A

0
/ 07 Liser (o)

0 ()

ha(10(Z)) = ha(10(Z)) N

Extremize the action S over
all such singularity surfaces:




Computing the semiclassical rate

Classical solution singular on generic tau_0(x) surfaces:

1 + eim(tCiToo)> B

1 — gim(tc—iteo) + ¢ltc, 7)

h(tc,Z) = v (

Find that:

W(E,n) = ET — nf — 2ReSgucl|h]

A 3 3
= n log—n v 2 <log§ + 1> — 2nMm Too — 2ReSEyc P

4 2
< > < >
W (E, n)tee AT} Quant
agrees with the known result need to compute by extremizing

of tree-level contributions ' w.r.t tau_0(x)



Computing the semiclassical rate

AWt — - 9nm 1. — 2Re S]glugl)
+00 0
— 2nm\7'00| + 2/61332‘[/ dr LEucl(hl) — / dr LEucl(h2)]
70 (%) A T0 A
Use thin wall approximation: :
Force x height E=0 configuration
R E=mn configuration
1 uant Ot — Am 3
» | —AW4 = NM |Too| — At Lguci(ho; 10(%)) + — puR
2 A-+ie 3
. ~ ~~ d
: : = SEuct[70(T)]
................ v................ A
Surface-energy :
Force x height Surface-energy

Mechanical analogy: surface at equilibrium of forces.

* Gorsky & Voloshin hep-ph/9305219  + VVK 1806.05648




Computing the semiclassical rate for A\n > 1

Use thin wall approximation:

0 0
Stallro(r)] = / dr 4’1+ 72 = / dr L(r, #)

A
. +oo0—1€ 1 dh 2 )\ ) ) 5 m3
Surface tension no= /Ook dr (2 (E) + 1 (R* —v)" | = o5

Conjugate momentum Hamiltonian => Energy

= OL(r,7) = 4r P H I(r 7 :

b= or B M1/1_|_722 (pvr) — (T,T) — pr
1 t 0 4 3

— AWM = (F —nm)1 — / p(E)dr + — uR

2 R 3

Quantum rate on the stationary trajectory:
L Appavant _ [ umar s T ur. EB-
5 stationary — 5 p( ) ot ? 1% 9 — nm

* Gorsky & Voloshin hep-ph/9305219 ¢ VVK 1806.05643



Computing the semiclassical rate

Use thin wall approximation:

1 quant | A 3
§AW stationary — p(E) dr + ?MR 7 L =nm
R
final result 3/2
E°7< 21(5/4 1 2 I'(5/4
AWy auant — (5/4) —()\n)?’/2 (5/4) ~ 0.854nV An

Vi 3T(3/4) — X V3 [(3/4)

%(7— — Too)

Classical trajectory tau(r):

Justifies the thin wall approximation:

g7\ 2 \E 12
Terom:m( ) oc(—) = Van > 1. r(%:i

A7 m



Computing the semiclassical rate

Use thin wall approximation:

1 quant | A 3
§AW stationary — /R p(E) dr + ?/’LR ; E =nm
final result 3/2
E°r= 2 1(5/4 1 2 I'(5/4
AWyauant — 2T(5/4) _ ~ (An)3/? (5/4) ~ 0.854nVAn
Vi 3T(3/4) ~ V3 T(3/4)
E‘Too‘ R E‘TOO‘




Summary of the semiclassical result

VVK 1705.04365 A—0, n—=oo, with An=fixed>1, e=fixed K1
1806.05648

A 4 2 37 12

A A 2
Ro(E) = W EN — exp [—” (log—n +0.85VAn — 1+ §(1<>gi + 1) _ —55>]
A A '

1010? ‘ ‘ ‘ ‘ ‘ ‘ ‘ E E
| E/M=205 | . E/m = (1+¢)n
106?* . .
E/M=200 positive negative
- o * (quantum effects) (phase space)
E/M=195
0.01? / ?
0 E/M=190
Can always make this term win =>

0 e 1w w1 unsuppressed R at high Energies

n n < Nmax = E/Mj,

Higher order corrections are suppressed by extra powers of
VVK & Spannowsky 1704.0344 A — 0 and 1/n — 0 and by O(1/v/An) as well as by O(e).
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Thus we have computed the rate R in the large lambda n limit:

using the semi-classical approach and the thin-wall approximation

VVK 1705.04365 R = exp [)\n <log)\n +13.02 An — 1+ §(logi—|—1> — 6)]

A 4 ' 41 2 3
VVK 1806.05648

An > 1 small €

101 : | | | | | N | | | {
| E/M=205
10° r E
E/M=200
100 ¢ |
y - Higgsplosion realised
E/M=195 at large lambda n
0.01 ¢ ;
106 - E/M=190 |
10710 1 1 1 A /\ | | B W
100 120 140 160 180

VVK & Spannowsky 1704.0344 n n < Nmax = E/Mj,



Applications:
Vector boson fusion at high-energy pp colliders (FCC)

energy excess over+/Sx carried away by jets

quark pdfs v

A/
X ] ZIW ',":':,'v
\/? i - n non-relativistic Higgses
2w - Higgsplosion at y/Sx«
; ) ) e
quark pdfs —
Ln/M :1) E/M=195
: 1 E/M=190
5. —mZ — ReS(s.) + imT(s.) w4

Propagator with Higgspersion at 1/ Sx

27



Vector boson fusion at high-energy pp colliders (FCC)

Higgsplosion at pp colliders

Higgsplosion at 100TeV Collider

1mo . : . . . . : l l 6 : 1 N N N 1 1 1 Ll :
100 | E -
. 10F 4 E B " _
D — - .
E‘ n 3 .
- 1F = N B i
I & 3f ’ ;
&5 0.100 | = . :
= : . :
0 2 - .
0.010} - :
0.001 | T :
s 100 150 200 w0 12 Tq44 148 Tiae
s1i2 [TeV] Number of Higgses in the final state
Higgsplosion at pp Colliders
using pyjer > 40 GeV ool - 1 1 f
: « ° * o 4 : s"?= 200 TeV
VVK holtz, M Spannowsk ® S .
,J Scholtz, M Sp y o Lle ° . . ] 1« §"2=150 TeVv
N o o * * . 5
s ¢ Y S g s"%= 120 TeV
o : A A A
. . i & 1L 4 . . s - 12
Srellmlngry. glc\>/| d|ggfs 3 I I A 2 §"“= 100 TeV
ecays Into .0. v Y
| y Y s"%= 80 TeV
included; 0.10 | | - -
: g s 1
& no vector bosons in ' 6 © 9 ¢ ] o s =60TeV
final states [ s"2= 40 TeV
001 1 M 1 " 1 " M " 1 " M " 1 M M 1 M
140 142 144 146 148

Number of Higgses in the final state



—ffects of Higgsplosion on Precision Observables

* VVK, J Reiness, M Spannowsky, P Waite 1709.08655
Here focus on a class of observables which have no tree-level contributions

g 8
14 t
h h
9 v/Z
g W y
W
h h
______________ 7
v/ Z v/

At LHC energies effects of Higgsplosion are small (next slide).

However O(1) effects can be achieved for these loop-induced
processes If the interactions are probed close to ~ 2E”*.
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VVK, J Reiness, M Spannowsky, P Waite 1709.08655

—ffects of Higgsplosion on Precision Observables

1072}
|
25
% 10~
N
j\%g
20 30 40 50 60 70 80 90 20 30 40 50 60 70 80 90
Higgsplosion Scale , E, [TeV] Higgsplosion Scale , E, [TeV]
s Sel p'e heor —
LT ] A = a® — affe ~2.90-1077
""""""" 10~ 12| -----....."""------.
_______________ -~
“““““““““““ | m@w 10—137
,,,,, ~
“““““ *§é 2 - €
e ~— —147 -
: T - 10 9 y
“\“‘\‘ E* == 20 Tev | — 10—15 |
& . s B =50 TeV a®*P = 11596521807.3(2.8) - 10~ 13
DS E, =100 TeV 1019} |
10—4 :: ‘ ‘ ‘ ‘ 10—17 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
20 40 60 80 20 30 40 50 60 70 80 90

V3 TeV] 30 Higgsplosion Scale , E, [TeV]



Conclusions:

1
p? —m? — ReXgr(p?) + imI(p?) + ic

Agr(p) =

R <n Higgsplosion

Loop integrals are effectively cut off at E, by the exploding width I'(p?) of the
propagating state into the high-multiplicity final states.

The incoming highly energetic state decays rapidly into the multi-particle state
made out of soft quanta with momenta k¥ ~ m? << EZ.

The width of the propagating degree of freedom becomes much greater than its
mass: it is no longer a simple particle state.

In this sense, it has become a composite state made out of the n soft particle

quanta of the same field ¢.
e VVK & Spannowsky 1704.03447, 1707.01531
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Consequences of Higgsplosion

® All particles Higgsplode if virtual enough

-------------------------------------------------------------------------------------------------------

L I
S Higgsploded..--......
e.q. fop quark, Z boson and even graviton I mometuen
Hi995PlOdeS T
n
h l /
---------- h ) M
It . “h Light cone
t(p) et Tl
I;I

e As all virtual particles Higgsplode, virtual corrections are regulated by
higgspersing propagators



Consequences of Higgsplosion

¢ As all loop-diagrams are regulated, i.e. quantum fluctuations are exponentially
suppressed, the Standard Model develops an asymptotic fixed point.

Classical/Deterministic theory

Any highly virtual or a very heavy particle
rapidly decays into a large number of
relatively soft Higgs bosons. A composite state.

Above higgsplosion scale, quantum fluctuations
are damped

® SM is embedded info asymptotically safe theory

coupling constants stop running above the
higgsplosion scale



Consequences of Higgsplosion

® SM has new physical scale
(close analogy to Sphaleron)

mp .
E* = CT with (' = const. Msph — COHSt?Z_W

w

Scaling behaviour of propagator:

’

m? e~ ™=l for |z| > 1/m
A(@) == (OIT (o) 6O)I0) ~ { /22 + for 1/E. < Jz] < 1/m |
\ E? . for |x| < 1/FE,

A

for : |z| S 1/E. one enters the Higgsplosion regime

1
s, —m2 — ReX(s,) +imyT'(s,)  Propagator with Higgspersion
34




Extra slides

* The n! growth of perturbative amplitudes is not entirely surprising: the number of
contributing Feynman diagrams is known to grow factorially with n. [In scalar QFT
there are no partial cancellations between individual diagrams (unlike QCD).]

* Important to distinguish between the two types of large-n corrections:

(a) present case where the leading-order tree-level contribution to the 1*->n Amplitude
grows factorially with the particle multiplicity n of the final state.

* (b) higher-order perturbative corrections to some leading-order quantities

35



Contrast asymptotic growth of higher-order corrections in
perturbation theory with the ~n! contributions to Gamma_n(s)

Not the same types of beasts

It is the decay width Gamma_n(S) which is the central object of interest

and the driving force of Higgsplosion.
36



