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• Consider n~150 Higgs bosons produced in a final state at n lambda >> 1. 
Kinematically possible for scattering at E ~100 TeV  

• HIGGSPLOSION: n-particle rates computed in a weakly-coupled theory  
become unsuppressed above certain critical values of n and 

• we’ll consider an intrinsically Non-perturbative — semiclassical set-up  

• it incorporates correctly the tree-level results and 

• the leading-order quantum effects = leading loops 

• compute quantum effects in the large lambda n limit
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In the second part of this talk:

already known

new

2 Semiclassical Higgsplosion and the Källén-Lehmann spectral density

A prototype simple model for Higgsplosion is the '4-type real scalar theory in 4 dimensions

with a spontaneously broken Z2 symmetry,
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The microscopic scalar particles, which play the role of the Higgs bosons, correspond to

the excitations of the field �(x) = '(x) � v with the bare mass m0 =
p
2�v, and their

physical pole mass will be referred to as m.

The probability rate of Higgsplosion Rn(
p
s) (cross section in (1.2) or the partial width

in (1.3)) is the integral over the n-particle Lorentz-invariant phase space of the amplitude

squared,

Rn(
p
s) =

Z
d�n

���inhX|ni
outp
s

���
2
, (2.2)

where in
hX| and |ni

out are the initial and final states in the Higgsplosion process (1.1) and

the
p
s subscript notes that the amplitudes are calculated at the centre of mass energy

p
s.

Perturbation theory in the regime of Higgsplosion where n & 1/�, contains uncontrollable

large contributions from powers of �n & 1 and becomes e↵ectively strongly coupled and

cannot be trusted at any fixed order in �. The best currently available non-perturbative

technique to compute Rn(
p
s) is to rely on a semiclassical approximation. The idea of

the semiclassical approach, is that the functional integral representation of the right hand

side in (2.2) can be computed in the steepest descent approximation. The large parameter

appearing in the exponent of the integrals that justifies the steepest descent approach is

n – the particle number in the final state of the Higgsplosion process. All other large

parameters should scale appropriately with n so that [4, 12, 13],

n /
p
s/m / 1/� � 1 . (2.3)

There is one subtle point in the application of the semiclassical approach to (2.2),

which is how to describe the initial state |Xi in the Higgsplosion process. The final state |ni

poses no problem as it contains n ⇠ 1/� � 1 quanta and is amendable to the semiclassical

treatment. The initial state, on the other hand, is not a many-particle state. The resolution

advocated in [4, 14] is to first describe the initial state as a multi-particle state with c/�

particles in |Xi and then take the limit c ! 0.

Technically, this is achieved by assuming that the initial state is prepared by acting

with a certain local operator Ô(x) on the vacuum. Without loss of generality, by translation

invariance one can position this operator at x = 0,

|Xi = O(0) |0i . (2.4)

For carrying out the semiclassical calculation the following choice of the operator is usually

made [4],

O(x) = j
�1

e
j�(x)

, (2.5)
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In the first part of this talk: I’ll outline the main idea of Higgsplosion

m�n(p2) = Imn⌃(p2) > p2 , m2

E =
p
s =

p
p2

Conclusions & summary
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1 Introduction

Higgsplosion [1] is a novel high-energy regime that may be realized in a class of quantum

field theoretical models with microscopic massive scalar fields in (3+1) dimensions [2].

This regime is characterised by large transition rates for few ! many particle production

processes,
p
s : X ! n⇥ � , (1.1)

at ultra-high centre of mass energies
p
s � m. Of particular interest are the 2-particle

initial states in a high-energy scattering processes, and the 1-particle initial states for a

very massive or highly virtual particle or a resonance decaying into n-particle states. These

two types of processes are,

Scattering process : |X(
p
s)i = |2i ! |ni ) cross section �n(

p
s) , (1.2)

Resonance decay : |X(
p
s)i = |1⇤i ! |ni ) partial width �n(s) . (1.3)

For the 2-particle initial state, the n-particle production process (1.2) is characterised by

the cross section �n(
p
s), while for the single-particle state of virtuality p

2 = s in (1.3) the

relevant quantity is the partial decay width �n(s). Final states contain a large number

n & 1/(coupling constant) � 1 of elementary Higgs-like scalar particles � of mass m. In

particular, if the partial width of the resonance |1⇤i to decay into n elementary Higgs-like

scalars becomes exponentially large above a certain energy scale s & E
2
⇤ , the resonance

Higgsplodes; it can be viewed as a composite state of n soft elementary Higgs scalars �.

Strongest evidence in favour of Higgsplosion comes from the semiclassical calculation

in [2, 3] that is justified in a certain large-n scaling limit. This calculation, results of

which we present in section 2, is based on the semiclassical formalism developed earlier

in [4] along with the thin-wall technique of [5]. Following [2–4] we will use a unified

description of the Higgsplosion processes (1.3) and (1.2) in terms of the dimensionless

quantity Rn(
p
s) describing the n-particle production rate in the semiclassical limit for

both processes, neglecting the e↵ect of Higgspersion and the inclusion of appropriate test

functions, as discussed in sections 2 and 3, we find the proportionality relation

Rn(
p
s) / �n(

p
s) / �n(s) , (1.4)

– 1 –

Contents

1 Introduction 1

2 Semiclassical Higgsplosion and the Källén-Lehmann spectral density 3

3 Strictly localizable fields and the self-consistency of Higgsplosion 7

4 Conclusions 12

1 Introduction

Higgsplosion [1] is a novel high-energy regime that may be realized in a class of quantum

field theoretical models with microscopic massive scalar fields in (3+1) dimensions [2].

This regime is characterised by large transition rates for few ! many particle production

processes,
p
s : X ! n⇥ � , (1.1)

at ultra-high centre of mass energies
p
s � m. Of particular interest are the 2-particle

initial states in a high-energy scattering processes, and the 1-particle initial states for a

very massive or highly virtual particle or a resonance decaying into n-particle states. These

two types of processes are,

Scattering process : |X(
p
s)i = |2i ! |ni ) cross section �n(

p
s) , (1.2)

Resonance decay : |X(
p
s)i = |1⇤i ! |ni ) partial width �n(s) . (1.3)

For the 2-particle initial state, the n-particle production process (1.2) is characterised by

the cross section �n(
p
s), while for the single-particle state of virtuality p

2 = s in (1.3) the

relevant quantity is the partial decay width �n(s). Final states contain a large number

n & 1/(coupling constant) � 1 of elementary Higgs-like scalar particles � of mass m. In

particular, if the partial width of the resonance |1⇤i to decay into n elementary Higgs-like

scalars becomes exponentially large above a certain energy scale s & E
2
⇤ , the resonance

Higgsplodes; it can be viewed as a composite state of n soft elementary Higgs scalars �.

Strongest evidence in favour of Higgsplosion comes from the semiclassical calculation

in [2, 3] that is justified in a certain large-n scaling limit. This calculation, results of

which we present in section 2, is based on the semiclassical formalism developed earlier

in [4] along with the thin-wall technique of [5]. Following [2–4] we will use a unified

description of the Higgsplosion processes (1.3) and (1.2) in terms of the dimensionless

quantity Rn(
p
s) describing the n-particle production rate in the semiclassical limit for

both processes, neglecting the e↵ect of Higgspersion and the inclusion of appropriate test

functions, as discussed in sections 2 and 3, we find the proportionality relation

Rn(
p
s) / �n(

p
s) / �n(s) , (1.4)

– 1 –

Higgsplosion: few particles  —>  many particles processes

A non-perturbative semiclassical approach can be used to compute such 
processes. The semiclassical approach assumes that the initial state X can     

be approximated by a point-like injection of energy: via a local operator O(x) 

2 Semiclassical Higgsplosion and the Källén-Lehmann spectral density
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Ideal for 1* —> n 

For for 2 —> n OK for s-channel but not for t-channel where there is an impact parameter  

Higgsplosion is when: m
s �n(s) & 1

few many
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1->n processes of interest
e.g.:Vector boson fusion in high-energy  

pp collisions at ~100 TeV

…

n non-relativistic Higgses 
Higgsplosion at 

Propagator with Higgspersion at 
i

s⇤ �m2
h � Re⌃̃(s⇤) + imh�(s⇤)

p
s⇤

p
s⇤

p
s⇤

p
s0

quark pdfs

quark pdfs

for Higgsplosion

this talk: R(1->n)

semiclassical calc.

• VVK & Spannowsky 1704.03447,1707.01531

Im⌃n(s⇤) ⇠ �n(s⇤)

1)



Schwinger-propagator and optical theorem

The optical theorem relates the 1* -> n h amplitudes to the imaginary part 
of the self-energy (valid to all orders)

5. The Z� constant is used to define the renormalised quantities �R(p) and ⌃R(p2),

�R(p) = Z (�1)
� �(p) , (2.10)

⌃R(p) = Z�

�
⌃(p2) � ⌃(m2) � ⌃0(m2)(p2 � m2)

�
. (2.11)

Hence, the result for the renormalised propagator in terms of all finite quantities is,

�R(p) =
i

p2 � m2 � ⌃R(p2) + i✏
. (2.12)

6. The optical theorem provides the physical interpretation of the imaginary part of the

self-energy in terms of the momentum-scale dependent decay width �(p2),

� Im⌃R(p
2) = m�(p2) , (2.13)

with the decay width being determined by the partial widths of n-particle decays at

energies s � (nm)2,

�(s) =
1X

n=2

�n(s) , �n(s) =
1

2m

Z
d�n

n!
|M(1 ! n)|2 . (2.14)

Here M is the amplitude for the 1⇤ ! n process, the integral is over the n-particle

Lorentz-invariant phase space, and 1/n! is the Bose-Einstein symmetry factor for n

spin-zero particles produced in the final state.

7. The origin of Higgsplosion [1] is that the scattering amplitudes M(1 ! n), and con-

sequentially the decay rates into the n-particle final states, grow factorially with n

in the large-n limit, 1
n! |Mn|2 ⇠ n!�n ⇠ en log(�n). When n scales linearly with the

available energy, n ⇠
p
s/m, this translates into the exponential dependence of the

decay rate �(s) on
p
s. It was further argued in [1, 14] that there is a sharp transi-

tion between the exponential suppression, �n(s < E2
⇤)/m ⌧ 1, and the exponential

growth, �n(s > E2
⇤)/m � 1, for the n-particle rate at a certain characteristic energy

scale E⇤ (and in a large-n limit that is still allowed by kinematics, n . p
s/m). Hence

in a Higgsploding theory, the propagator,

�R(p) =
i

p2 � m2 � Re⌃R(p2) + im�(p2) + i✏
, (2.15)

is e↵ectively cut o↵ at p2 � E2
⇤ by the exploding width �(p2) of the propagating

state into the high-multiplicity final states. The incoming highly energetic state

decays rapidly into the multi-particle state made out of soft quanta with momenta

k2i ⇠ m2 n E2
⇤ . The width of the propagating degree of freedom becomes much

greater than its mass: it is no longer a simple particle state. In this sense, it has

become a composite state made out of the n soft particle quanta of the same field �.

The main purpose of the summary above is to demonstrate that there are no apparent

subtleties that arise when accounting for the UV-renormalisation e↵ects in the expression
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and

No non-pert. information 
about the Real part of Sigma 
but it cannot cancel 
Imaginary part

Higgsplodes 
when
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Warm-up: Compute 1 -> n amplitudes@LO with non-relativistic final momenta:         Off-threshold in phi^4 with SSB (Higgs-like)

19

� (@µ@µ +M2
h)' = 3�v '2 + �'3

This classical equation for '(x) = h(x)� v determines directly the structure of
the recursion relation for tree-level scattering amplitudes:

(P 2
in �M2

h)An(p1 . . . pn) = 3�v
nX

n1,n2

�nn1+n2

X

P
An1(p

(1)
1 , . . . , p(1)n1

)An2(p
(2)
1 . . . p(2)n2

)

+�
nX

n1,n2,n3

�nn1+n2+n3

X

P
An1(p

(1)
1 . . . p(1)n1

)An2(p
(2)
1 . . . p(2)n2

)An3(p
(3)
1 . . . p(3)n2

)

Away from the multi-particle threshold, the external particles 3-momenta ~pi are
non-vanishing. In the non-relativistic limit, the leading momentum-dependent
contribution to the amplitudes is proportional to E kin

n (Galilean Symmetry),

An(p1 . . . pn) = An + Mn E
kin
n := An + Mn n " ,

" =
1

nMh
E kin

n =
1

n

1

2M2
h

nX

i=1

~p 2
i .

In the non-relativistic limit we have " ⌧ 1.

Tree-level 1⇤ ! n amplitudes in the limit " ! 0 for any n are given by

An(p1, . . . pn) = n!

✓
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2M2
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◆n�1
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✓
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In the large-n-non-relativistic limit the result is

An(p1, . . . pn) = n!

✓
�

2M2
h

◆n�1
2

exp


�
7

6
n"

�
, n ! 1, " ! 0, n" = fixed

amplitude on the n-particle threshold

see classic 1992-1994 papers: 
Brown; Voloshin; 
Argyres, Kleiss, Papodopoulos 
Libanov, Rubakov, Son, Troitski 

more recently: VVK 1411.2925 

kinetic energy per particle per mass

L =
1

2
(@µh)

2 � �

4
(h2 � v2)2

prototype of the SM Higgs  
in the unitary gauge 

factorial growth

6
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Square the amplitude & integrate over the n-particle phase-space:

The cross-section and/or the n-particle partial decay �n

�n(s) =

Z
d�n

1

n!
|Ah⇤!n⇥h|

2

The n-particle Lorentz-invariant phase space volume element

Z
d�n = (2⇡)4�(4)(Pin �

nX

j=1

pj)
nY

j=1

Z
d3pj

(2⇡)3 2p0j
,

in the large-n non-relativistic limit with n"h fixed becomes,

�n '
1
p
n

✓
M2

h

2

◆n

exp


3n

2

⇣
log

"h
3⇡

+ 1
⌘
+

n"h
4

+ O(n"2h)

�

We find:

�tree
n (s) ⇠ exp


n

✓
log

�n

4
� 1

◆
+

3n

2

⇣
log

"

3⇡
+ 1

⌘
�

25

12
n" + O(n"2)

�

Son 1994; 
Libanov, Rubakov, Troitskii 1997;     more recently: VVK 1411.2925 
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The 1-loop corrected threshold amplitude for the pure n Higgs production:

�4
with SSB : A

tree+1loop
1!n = n! (2v)1�n

 
1 + n(n� 1)

p
3�

8⇡

!

There are strong indications, based on the analysis of leading singularities of the

multi-loop expansion around singular generating functions in scalar field theory,

that the 1-loop correction exponentiates,

Libanov, Rubakov, Son, Troitsky 1994

A1!n = A
tree
1!n ⇥ exp

⇥
B �n2

+ O(�n)
⇤

in the limit � ! 0, n ! 1 with �n2
fixed. Here B is determined from the

1-loop calculation (as above) – Smith; Voloshin 1992):

�4
with SSB : B = +

p
3

8⇡
,

�4
w. no SSB : B = �

1

64⇡2

⇣
log(7 + 4

p
3)� i⇡

⌘
,

In the Higgs model, 1st equation leads to the exponential enhancement of the

tree-level threshold amplitude at least in the leading order in n2�.

Can also include loop corrections to amplitudes on thresholds:

Really need to switch to the regime of lambda n >>1

For this we need a non-perturbative —  
semiclassical approach — next slide…

B = +
p
3

4⇡
<latexit sha1_base64="3ZuUNAJqwwXdeyIY2l2U6FYK+IM="></latexit><latexit sha1_base64="3ZuUNAJqwwXdeyIY2l2U6FYK+IM="></latexit><latexit sha1_base64="3ZuUNAJqwwXdeyIY2l2U6FYK+IM="></latexit><latexit sha1_base64="3ZuUNAJqwwXdeyIY2l2U6FYK+IM=">AAACB3icdVDLSsNAFJ3UV62vqktBBltBsJQkLW1dCEUXuqxgH9CUMplO2qGThzMToYTs3Pgrblwo4tZfcOffOGkrqOiBC4dz7uXee+yAUSF1/UNLLSwuLa+kVzNr6xubW9ntnZbwQ45JE/vM5x0bCcKoR5qSSkY6ASfItRlp2+PzxG/fEi6o713LSUB6Lhp61KEYSSX1s/v5s1OrcGwVLIcjHFnihsuoFMdR2QponO9nc3rxpFYxyxWoF3W9aphGQsxquVSGhlIS5MAcjX723Rr4OHSJJzFDQnQNPZC9CHFJMSNxxgoFCRAeoyHpKuohl4heNP0jhodKGUDH56o8Cafq94kIuUJMXFt1ukiOxG8vEf/yuqF0ar2IekEoiYdni5yQQenDJBQ4oJxgySaKIMypuhXiEVKBSBVdRoXw9Sn8n7TMoqH4lZmrX8zjSIM9cACOgAGqoA4uQQM0AQZ34AE8gWftXnvUXrTXWWtKm8/sgh/Q3j4B676YwA==</latexit><latexit sha1_base64="3ZuUNAJqwwXdeyIY2l2U6FYK+IM="></latexit>
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Extreme energy dependence for 1  ->  n cross section*

including 1-loop result reduces ‘ignition’ scale
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The first step in our programme is to determine the multi-particle amplitudes describing the
1⇤ ! n transitions of the highly virtual Higgs boson into n non-relativistic Higgses at the
leading order (i.e. tree-level) in perturbation theory. We take the bosons in the final state
to be non-relativistic because we are interested in keeping the number of particles n in the
final state as large as possible, that is, near the maximum number allowed by the phase space,
n . nmax = E/Mh. Such n-point amplitudes were studied in detail in scalar QFT in [5, 7] and
were derived for the theory of Eq. (3.1) with spontaneous symmetry breaking in Ref. [9],

A1⇤!n(p1 . . . pn) = n! (2v)1�n exp


�
7

6
n "

�
, n ! 1 , " ! 0 , n" = fixed . (3.3)

Note that the expression above is for the 1⇤ ! n current, and the conventionally-normalised
amplitude A1⇤!n is obtained from it by the LSZ amputation of the single o↵-shell incoming
line,

M1!n := (s�M2
h) · A1⇤!n(p1 . . . pn) . (3.4)

As indicated, these tree-level amplitudes are computed in the double-scaling limit with large
multiplicities n � 1 and small non-relativistic energies of each individual particle, " ⌧ 1, where

" =

p
s� nMh

nMh
=

1

nMh
E kin

n '
1

n

1

2M2
h

nX

i=1

~p 2
i , (3.5)

so that the total kinetic energy per particle mass n" in the final state is fixed. The first factor
on the right-hand side of Eq. (3.3) corresponds to the tree-level amplitude (or more precisely a
current with one incoming o↵-shell leg) computed on the n-particle threshold,

A
thr.
1!n = n! (2v)1�n = n!

✓
�

M2
h

◆n�1
2

, (3.6)

or, equivalently, after the LSZ reduction of the incoming line,

M
thr.
1!n = n! (n2

� 1)
�

n�1
2

Mn�3
h

, (3.7)

which is an exact expression for tree-level amplitudes valid for any value of n [5]. The kinematic
dependence in Eq. (3.3) then produces in the non-relativistic limit an exponential form-factor
which has an analytic dependence on the kinetic energy of the final state n". But, importantly,
the factorial growth ⇠ �n/2 n! characteristic to the multi-particle amplitude on mass threshold
remains. Its occurrence can be traced back to the factorially growing number of Feynman
diagrams at large n [14, 15, 16] and the lack of destructive interference between the diagrams in
the scalar theory. We refer the reader to Refs. [5, 7, 9] for more detail about these amplitudes.

The next step is to integrate the amplitudes in Eq. (3.3) over the n-particle phase-space at
large n (in the approximation where the outgoing particles are non-relativistic). The relevant
dimensionless quantity describing the multi-particle processes is

Rn(s) :=
1

2M2
h

Z
d⇧n|M(1 ! n)|2 , (3.8)

and the decay rates �n(s) and the cross-sections �n(s) are obtained from Rn(s) after an ap-
propriate overall rescaling with Mh and s. Following in the steps of Refs. [8, 9], we obtain

6

the characteristic exponential expression for the 1 ! n particles rate R in the high-energy,
high-multiplicity limit:

R(�;n, ") = exp


n

✓
log

�n

4
� 1

◆
+

3n

2

⇣
log

"

3⇡
+ 1

⌘
�

25

12
n"

�
, (3.9)

�n(s) / R(�;n, ") , and �n(s) / R(�;n, ") .

In particular, note that the ubiquitous factorial growth of the large-n amplitudes translates into
the 1

n! |Mn|
2
⇠ n!�n

⇠ en log(�n) factor in the rate R above.
To summarise our discussion so far, let us consider the multi-particle limit n � 1 and scale

the center-of-mass energy
p
s = E linearly with n, E / n, keeping the coupling constant small

at the same time, � ⌧ 1. It was pointed out first in Refs. [7, 8], and then argued for extensively
in the literature, that in this limit the multi-particle rates have a characteristic exponential
form,

R = enF (�n, ") , for n ! 1 , � ! 0 , " = fixed , (3.10)

where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),

f0(�n) = log

✓
�n

4

◆
� 1 , (3.12)

f(")|"!0 ! f(")asympt =
3

2

⇣
log

⇣ "

3⇡

⌘
+ 1

⌘
�

25

12
" . (3.13)

One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,

f0(�n)
1�loop = log

✓
�n

4

◆
� 1 +

p
3
�n

4⇡
. (3.14)

7

Explosive growth of 1->n perturbative process

We’ll need a non-perturbative semiclassical approach: Part 2 of the talk
Higgspersion of the propagator due to Im Sigma not yet included here!



It was argued that these results can be used to assess what 
collider energy needed to test where perturbation theory 

becomes strong   [in gluon fusion]

Degrande, VVK, Mattelaer ’16

 10

using the 1-loop improved expression

Application to gluon fusion:
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         L. Brown 9209203

L(h) =
1

2
(@h)2 � �

4

�
h2 � v2

�2
,

The classical equation for the spatially uniform field h(t),

d2th = ��h3 + �v2 h ,

again has a closed-form solution with correct initial conditions hcl = v+ z+ . . .

hcl(t) = v
1 + z(t)

2v

1� z(t)
2v

, where z(t) = z0 e
iMht = z0 e

i
p
2� v t

hcl(t) = 2v
1X

n=0

✓
z(t)

2v

◆n

dn = v + 2v
1X

n=1

✓
z(t)

2v

◆n

,

i.e. with d0 = 1/2 and all dn�1 = 1.

A1!n =

✓
@

@z

◆n

hcl

����
z=0

= n! (2v)1�n Factorial growth!!

2 Simple classical solutions and tree-level amplitudes at threshold

The purpose of this paper is to compute the amplitudes and the corresponding proba-

bilistic rates for processes involving multiparticle final states in the large �n limit non-

perturbatively – i.e. using a semiclassical approach with no reference to perturbation

theory and without artificially separating the result into a tree-level and a ‘quantum cor-

rections’ contributions. Their entire combined contribution should emerge from the unified

semiclassical algorithm. But to first set the scene for such a computation we need to recall

the known properties of the tree-level amplitudes and their relation with certain classical

solutions. This is the aim of this section.

Thus, we start here with tree-level n-point scattering amplitudes computed on the

n-particle mass thresholds. This is the kinematics regime where all n final state particles

are produced at rest. These amplitudes for all n are conveniently assembled into a single

object – the amplitude generating function – which at tree-level is described by a partic-

ular solution of the Euler-Lagrange equations. The classical solution which provides the

generating function of tree-level amplitudes on multi-particle mass thresholds in the model

(1.1) is given by [11],

h0(z0; t) = v

✓
1 + z0 e

imt
/(2v)

1 � z0 eimt/(2v)

◆
, m =

p

2�v , (2.1)

and where z0 is an auxiliary variable. It is easy to check with the direct substitution

that the expression in (2.1) does indeed satisfy the Euler-Lagrange equation resulting from

our theory Lagrangian (1.1) for any value of the z0 parameter. It then follows that all

1⇤
! n tree-level scattering amplitudes on the n-particle mass thresholds are given by the

di↵erentiation of h0(z0; t) with respect to z0,

A1!n = hn|S�(0)|0i =

✓
@

@z0

◆n

h0

����
z0=0

(2.2)

The classical solution in (2.1) is uniquely specified by requiring that it is a holomorphic

function of the complex variable z(t) = z0 e
imt,

h0(z) = v + 2v

1X

n=1

⇣
z

2v

⌘n
, z = z(t) = z0 e

imt
, (2.3)

so that the amplitudes in (2.2) are given by the coe�cients of the Taylor expansion in (2.3)

times n! from di↵erentiating n times over z,

A1!n =

✓
@

@z

◆n

h0(z)

����
z=0

= n!

✓
1

2v

◆n�1

= n!

✓
�

2m2

◆n�1
2

. (2.4)

These formulae and the characteristic factorial growth of n-particle amplitudes, An ⇠

�
n/2

n!, form the essence of the elegant formalism pioneered by Brown in Ref. [11] that is

based on solving classical equations of motion and bypasses the summation over individual

Feynman diagrams. In the following sections we will see how these (and also more general
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Factorial growth of tree-level amplitudes at threshold 

 is captured by classical solutions 



2 Son’s formalism

The classical solution describing the generating function of tree-level amplitudes on multi-
particle mass thresholds is given by

hcl(t) = v

✓
1 + z0 e

iMht
/(2v)

1 � z0 eiMht/(2v)

◆
. (2.1)

We now perform the Wick rotation from the real Minkowski time t to the Euclidean time
tEucl = it. To use the same notation for the imaginary time variable as in [4] we will use the
variable ⌧ defined as

⌧ := � tEucl = � it . (2.2)

The sign convention in (2.2) where ⌧ is identified with the negative of the Euclidean time,
implies that the early time t ! �1 corresponding to the incoming states maps to ⌧ ! +1.
In this limit the classical solution approaches the vacuum hcl ! v with exponential accuracy,
i.e. the corrections are O(e�Mh⌧ ).

In terms of the Wick rotated time variable tau, the classical solution (2.1) corresponds to a
singular domain wall,

hcl(⌧) = v

 
e
Mh(⌧�⌧1)/2 + e

�Mh(⌧�⌧1)/2

eMh(⌧�⌧1)/2 � e�Mh(⌧�⌧1)/2

!
= v cotanh

✓
Mh

2
(⌧ � ⌧1)

◆
. (2.3)

3 Thin wall critical bubbles
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Figure 1: Time evolution contour on the complex time plane tC. Plot (a) shows the contour
obtained after deforming the the evolution along the real time axis �1 < t < +1 where the
early-time ray �1 < t < 0 is rotated by ⇡/2 into the ray along vertical axis, 1 > ⌧ > ⌧0(~x) and
ending at the singularity surface of the solution ⌧0(~x). Plot (b) shows a refinement of this contour:
(1) rather than touching the singularity, the contour surrounds it; (2) at the late time boundary
condition, the contour approaches t ! +1 along the ray with an infinitesimally small positive
angle � to the real time axis.

solutions describing full quantum processes) emerge from the semiclassical approach of [1]

which we shall follow.

We note that the classical solution (2.3) is complex-valued. This is in spite the fact

that we are working with the real-valued scalar field theory model (1.1). The classical

solution h0 that generates tree-level amplitudes via (2.4) does not have to be real, in fact it

is manifestly complex (in real time) and this is a consequence of the fact that this solution

will emerge as an extremum of the action in the path integral using the steepest descend

method. In this case the integration contours in path integrals are deformed to enable them

to pass through extrema (or encircle singularities) that are generically complex-valued.

We will be working with classical solutions and other field configurations that depend

on the complexified time tC. Hence we promote the real time variable t into the variable

tC that takes values on the complex time plane,

t �! tC = t + i⌧ , (2.5)

where t and ⌧ are real valued. We will use the deformation the time-evolution contour

from the real time axis �1 < t < +1 to the contour in the complex tC plane depicted in

Fig. 1 in such a way that the initial time t = �1 maps on the Euclidean time ⌧ = +1.

This corresponds to the t ⇥ e
i⇡ = �⌧ rotation, i.e. t = i⌧ so that ⌧ has the definition of

minus the Euclidean time tEucl. For future reference we write these analytic continuation

conventions explicitly, as are relevant for determining the correct sign prescription for the
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Figure 2: Singular classical solution (2.11) uniform in space: flat domain wall located at ⌧1 in
the imaginary time.

imaginary part of the action integrals computed on complex-time contours,

at early (negative) times : t ! i⌧ (2.6)

standard Wick rotation : t ! �itEucl (2.7)

⌧ = Im tC = �tEucl (2.8)

Expressed as the function of the complexified time variable tC, the classical solution

(2.1) reads,

h0(tC) = v

 
1 + e

im(tC�i⌧1)

1 � eim(tC�i⌧1)

!
, (2.9)

where ⌧1 a constant,

⌧1 :=
1

m
log
⇣

z0

2v

⌘
(2.10)

it parameterises the location (or the centre) of the solution in imaginary time. If the time-

evolution contour of the solution in the tC plane is along the the imaginary time with the

real time t = 0, the field configuration (2.9) becomes real-valued,

h0(⌧) = v

 
1 + e

�m(⌧�⌧1)

1 � e�m(⌧�⌧1)

!
, (2.11)

and singular at ⌧ = ⌧1.

Having already noted that the solution is complex-valued we note another important

feature of the solution (2.3) that is for the forthcoming semiclassical analysis, namely that

the configuration h0 is singular in imaginary time, in particular at ⌧ = ⌧1 when t = 0.

The expression on the right hand side of (2.11) has an obvious interpretation in terms

of a singular domain wall located at ⌧ = ⌧1 that separates two domains of the field h(⌧, ~x)

as shown in Fig. 2 The domain on the right of the wall ⌧ � ⌧1 has h = +v, and the

domain on the left of the wall, ⌧ ⌧ ⌧1, is characterised by h = �v. The field configuration

is singular at the position of the wall, ⌧ = ⌧1, for all values of ~x, i.e. the singularity

surface is flat (or uniform in space). The thickness of the wall is set by the inverse mass
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h0(⌧) = v

 
1 + e

�m(⌧�⌧1)

1 � e�m(⌧�⌧1)

!
, (2.11)

and singular at ⌧ = ⌧1.

Having already noted that the solution is complex-valued we note another important

feature of the solution (2.3) that is for the forthcoming semiclassical analysis, namely that

the configuration h0 is singular in imaginary time, in particular at ⌧ = ⌧1 when t = 0.

The expression on the right hand side of (2.11) has an obvious interpretation in terms

of a singular domain wall located at ⌧ = ⌧1 that separates two domains of the field h(⌧, ~x)

as shown in Fig. 2 The domain on the right of the wall ⌧ � ⌧1 has h = +v, and the

domain on the left of the wall, ⌧ ⌧ ⌧1, is characterised by h = �v. The field configuration

is singular at the position of the wall, ⌧ = ⌧1, for all values of ~x, i.e. the singularity

surface is flat (or uniform in space). The thickness of the wall is set by the inverse mass
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Classical Solutions & singularities in complex time:

Our simple example of a classical solution 

    (corresponding to the tree-level Amplitudes) 


Such singular complex-valued solutions will emerge in the semiclassical approach



Rn(E) is the probability rate for a local operator O(0) to create n particles of
total energy E from the vacuum,

Rn(E) =

Z
1

n!
d�n h0| O

† S† PE |nihn|PE SO |0i

PE is the projection operator on states with fixed energy E.

O = ej h(0) ,

and the limit j ! 0 is taken in the computation of the probability rates,

Rn(E) = lim
j!0

Z
1

n!
d�n h0| e

j h(0)† S† PE |nihn|PE S ej h(0) |0i .

Note: non-dynamical (non-propagating) initial state O|0i.
The semi-classical (steepest descent) limit:

� ! 0 , n ! 1 , with �n = fixed , " = fixed .

Evaluate the path integral in this double-scaling limit.  
n enters via the coherent state formalism.

Main idea of the semiclassical approach

• Rubakov & Tinyakov;  DT Son ’95

" = E�nm
nm

Part II



Main idea of the semiclassical approach

The initial state is not semiclassical, it contains few 
 rather than many particles. 

Rubakov et al & Son argued that it can be approximated in the semiclassical     
method by a certain local operator acting on the vacuum:

2 Semiclassical Higgsplosion and the Källén-Lehmann spectral density

A prototype simple model for Higgsplosion is the '4-type real scalar theory in 4 dimensions

with a spontaneously broken Z2 symmetry,

L =
1

2
@
µ
'@µ' �

�

4

�
'
2
� v

2
�2

. (2.1)

The microscopic scalar particles, which play the role of the Higgs bosons, correspond to

the excitations of the field �(x) = '(x) � v with the bare mass m0 =
p
2�v, and their

physical pole mass will be referred to as m.

The probability rate of Higgsplosion Rn(
p
s) (cross section in (1.2) or the partial width

in (1.3)) is the integral over the n-particle Lorentz-invariant phase space of the amplitude

squared,

Rn(
p
s) =

Z
d�n

���inhX|ni
outp
s

���
2
, (2.2)

where in
hX| and |ni

out are the initial and final states in the Higgsplosion process (1.1) and

the
p
s subscript notes that the amplitudes are calculated at the centre of mass energy

p
s.

Perturbation theory in the regime of Higgsplosion where n & 1/�, contains uncontrollable

large contributions from powers of �n & 1 and becomes e↵ectively strongly coupled and

cannot be trusted at any fixed order in �. The best currently available non-perturbative

technique to compute Rn(
p
s) is to rely on a semiclassical approximation. The idea of

the semiclassical approach, is that the functional integral representation of the right hand

side in (2.2) can be computed in the steepest descent approximation. The large parameter

appearing in the exponent of the integrals that justifies the steepest descent approach is

n – the particle number in the final state of the Higgsplosion process. All other large

parameters should scale appropriately with n so that [4, 12, 13],

n /
p
s/m / 1/� � 1 . (2.3)

There is one subtle point in the application of the semiclassical approach to (2.2),

which is how to describe the initial state |Xi in the Higgsplosion process. The final state |ni

poses no problem as it contains n ⇠ 1/� � 1 quanta and is amendable to the semiclassical

treatment. The initial state, on the other hand, is not a many-particle state. The resolution

advocated in [4, 14] is to first describe the initial state as a multi-particle state with c/�

particles in |Xi and then take the limit c ! 0.

Technically, this is achieved by assuming that the initial state is prepared by acting

with a certain local operator Ô(x) on the vacuum. Without loss of generality, by translation

invariance one can position this operator at x = 0,

|Xi = O(0) |0i . (2.4)

For carrying out the semiclassical calculation the following choice of the operator is usually

made [4],

O(x) = j
�1

e
j�(x)

, (2.5)
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where j is a constant j = c/�. Finally one takes the limit c ! 0 (or equivalently j ! 0)

in the computation of the probability rate to restrict the initial state |Xi in (2.4) to the

state with the low particle occupation number, as required.

We will assume the operational validity of the prescription in (2.4)-(2.5) and treat it

as a part of the definition of the semiclassical approach of Son [4], on which the calculation

in [2, 3] was based. It is expected that the dependence of the final result for the Higgsplosion

rate on the specific form of the operator O(x) a↵ects only the pre-exponential factor and

not the semiclassical exponent of Rn(
p
s) in (2.2). The semiclassical exponent itself should

not depend on the precise nature of the initial state X as far as it is not a multi-particle

state.

It then follows that the expression in (2.2) can be written as,

Rn(
p
s) =

Z
d�n(s) h0|O

†(0)S†
|ni hn|S O(0)|0i . (2.6)

The phase space volume element d�n(s) in (2.6) is the standard n-particle bosonic Lorentz-

invariant phase space,

Z
d�n(p

2) =
1

n!

nY

j=1

Z
d
3
kj

(2⇡)3 2k0j
(2⇡)4�(4)(p�

nX

j=1

kj) , (2.7)

computed at k2 = s, where kµ is the total momentum in the reaction. The matrix elements

include the S-matrix S, and its Hermitian conjugate S
†, so that it is no longer necessary

to distinguish between the in- and out-states in (2.6).

Anticipating the discussion of admissibility of Higgsplosion in the formal local QFT

framework in the next section, it is worthwhile to note here that quantum fields are not

operators acting on the Hilbert space of states, but operator-valued distributions [6, 7, 15].

This leads to a straightforward modification of the semiclassical prescription (2.4)-(2.5) for

the definition of the initial state |Xi, which proceeds as follows. Since any field that is

sharply defined at a point x, is a distribution, to define an operator one has to smear the

field with a test function that belongs to an appropriate set of well-behaved smooth and

rapidly decreasing functions. This implies that O(x) in (2.5) should be averaged with a

test function g(x). The operator localized in the vicinity of a point x is then,

Og(x) =

Z
d
4
x
0
g(x0 � x)O(x0) , (2.8)

and the prescription (2.4) for defining the initial state is refined using,

|Xi = Og(0) |0i =

Z
d
4
x
0
g(x0)O(x0) |0i . (2.9)

This gives a well-defined state in the Hilbert space. For the rest of this section we will

temporarily ignore the averaging of the operators with the test functions. Their e↵ect is

easily recovered from the distribution-valued rate Rn(
p
s) that we will now compute.
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Note (1):

A refinement:

where j is a constant j = c/�. Finally one takes the limit c ! 0 (or equivalently j ! 0)

in the computation of the probability rate to restrict the initial state |Xi in (2.4) to the

state with the low particle occupation number, as required.

We will assume the operational validity of the prescription in (2.4)-(2.5) and treat it

as a part of the definition of the semiclassical approach of Son [4], on which the calculation
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include the S-matrix S, and its Hermitian conjugate S
†, so that it is no longer necessary

to distinguish between the in- and out-states in (2.6).

Anticipating the discussion of admissibility of Higgsplosion in the formal local QFT

framework in the next section, it is worthwhile to note here that quantum fields are not
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This leads to a straightforward modification of the semiclassical prescription (2.4)-(2.5) for

the definition of the initial state |Xi, which proceeds as follows. Since any field that is

sharply defined at a point x, is a distribution, to define an operator one has to smear the

field with a test function that belongs to an appropriate set of well-behaved smooth and

rapidly decreasing functions. This implies that O(x) in (2.5) should be averaged with a

test function g(x). The operator localized in the vicinity of a point x is then,
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temporarily ignore the averaging of the operators with the test functions. Their e↵ect is
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s) that we will now compute.
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smear O(x) with a wave packet / test function



1. Solve the classical equation without the source-term:

�S

�h(x)
= 0

a complex-valued solution h(x) with a point-like singularity at xµ = 0.
The singularity is due to O(x = 0).

2. Impose the initial and final-time boundary conditions:

lim
t!�1

h(x) = v +

Z
d3k

(2⇡)3/2
1

p
2!k

a†k e
ikµx

µ

lim
t!+1

h(x) = v +

Z
d3k

(2⇡)3/2
1

p
2!k

⇣
bk e

!kT�✓ e�ikµx
µ

+ b†k e
ikµx

µ
⌘

The Semiclassical formalism of Son: results in four steps  

• Son hep-ph/055338



1.

2.

3. Compute E and n of the final state using the t ! +1 asymptotics

E =

Z
d3k !k b

†
k bk e

!kT�✓ , n =

Z
d3k b†k bk e

!kT�✓

At t ! �1 the energy and the particle number are vanishing.
The energy changes discontinuously from 0 to E at the singularity at t = 0.

4. Eliminate the T and ✓ parameters in favour of E and n.
Finally, compute the function W (E, n)

W (E, n) = ET � n✓ � 2ImS[h]

on the set {h(x), T, ✓} and fine the semiclassical rateRn(E) = exp [W (E, n)]

The Semiclassical formalism of Son: results in four steps  

• Son hep-ph/055338



Main idea of the semiclassical approach

The classical solutions that we use  
have a single point-like singularity 
in Minkowski space at the point x=0  
where the operator O(0) is located.

Note (2):
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Such configurations contribute to  
1PI matrix elements i.e. precisely to Im⌃(s)
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1-particle-reducible contributions to  
would require multiple singularities,  
i.e. multiple energy jumps.
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(a) (b)

Figure 3: Plot (a) shows the shape of the singularity surface ⌧0(~x) of the field configuration h(x)
on the imaginary time hyperplane (⌧, ~x). Plot (b) shows the time evolution contour of Fig. 1 (a)
in the coordinate system (t, ⌧ ; ~x).

We now describe the extremization procedure for finding the solution to the boundary

value problem in complexified time tC = t + i⌧ , following [1]:

1. Select a trial singularity surface located at ⌧ = ⌧0(~x). The surface profile ⌧0(~x) is an

O(3) symmetric function of ~x and is given by a local deformation of the flat singularity

domain wall at ⌧1 with the single maximum touching the origin (⌧, ~x) = 0 as shown

in Fig. 3 (a). In Minkowski space the singularity is point-like at t = 0 = ⌧ and ~x = 0

as required.

2. Deform the time evolution contour specifying the paths in the Feynman path integral

to follow the contour on the complex plane (t, ⌧),

[(0, 1) ! (0, ⌧0(~x))] � [(0, ⌧0(~x)) ! (0, 0)] � [(0, 0) ! (1, 0)] , (4.2)

as shown in Figs. 3 (b) and 1 (a). More precisely, in order to be able to linearise

the late time asymptotics of the solution, as in (4.5) below, we should make the final

third segment of the contour in (4.2) to have an infinitesimal positive angle w.r.t. the

real time axis, i.e. t(1 + �) for 0  t < +1 with � = 0+.

3. Find a classical trajectory h1(⌧, ~x) on the first segment, +1 > ⌧ > ⌧0(~x), of the

contour (4.2) that satisfies the initial time (vanishing) boundary condition (3.8),

lim
⌧!+1

h1(⌧, ~x) � v ! 0 , (4.3)

and becomes singular as ⌧ ! ⌧0(~x) so that2 h1(⌧, ~x)|⌧!⌧0(~x) ⌘ �0(~x) ! 1.

4. Find another classical solution h2(⌧, ~x) on the remaining part of the contour (3.8),

that at ⌧ ! ⌧0(~x) is singular and matches with h1,

h2(⌧0, ~x) = h1(⌧0, ~x) = �0(~x) ! 1 , (4.4)

2One can always assume a regularisation procedure that keeps �0 finite at intermediate stages of the

calculation, i.e. before taking the limit of the operator source j ! 0.
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time evolution  
          contour

Singularity  
surfaceh1(x)

h2(x)

• Find a classical trajectory h1(⌧, ~x) satisfying initial time boundary cond-s.

• Find another classical trajectory h2(⌧, ~x) satisfying final time conditions.

• h1 and h2 are singular on ⌧0(~x) and h1(⌧0(~x), ~x) = h2(⌧0(~x), ~x)

• Extremize the action S over all singularity surfaces ⌧0(~x) .
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• In Euclidean space-time (⌧, ~x) the solution is singular on a 3-dimensional
surface ⌧ = ⌧0(~x).
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h1(⌧0(~x)) = h2(⌧0(~x))



• For the combined configuration h(x) to solve classical equations every-
where, including the ⌧0 surface:

need to extremize the action integral over all singularity surfaces ⌧ = ⌧0(~x)
containing the point t = 0 = ~x.

iS[h] =

Z
d3x

 ����
Z ⌧0(~x)

+1
d⌧ LEucl(h1)

���� �
����
Z 0

⌧0(~x)
d⌧ LEucl(h2)

���� + i

Z 1

0
dtL(h2)

!
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Figure 3: Plot (a) shows the shape of the singularity surface ⌧0(~x) of the field configuration h(x)
on the imaginary time hyperplane (⌧, ~x). Plot (b) shows the time evolution contour of Fig. 1 (a)
in the coordinate system (t, ⌧ ; ~x).

We now describe the extremization procedure for finding the solution to the boundary

value problem in complexified time tC = t + i⌧ , following [1]:

1. Select a trial singularity surface located at ⌧ = ⌧0(~x). The surface profile ⌧0(~x) is an

O(3) symmetric function of ~x and is given by a local deformation of the flat singularity

domain wall at ⌧1 with the single maximum touching the origin (⌧, ~x) = 0 as shown

in Fig. 3 (a). In Minkowski space the singularity is point-like at t = 0 = ⌧ and ~x = 0

as required.

2. Deform the time evolution contour specifying the paths in the Feynman path integral

to follow the contour on the complex plane (t, ⌧),

[(0, 1) ! (0, ⌧0(~x))] � [(0, ⌧0(~x)) ! (0, 0)] � [(0, 0) ! (1, 0)] , (4.2)

as shown in Figs. 3 (b) and 1 (a). More precisely, in order to be able to linearise

the late time asymptotics of the solution, as in (4.5) below, we should make the final

third segment of the contour in (4.2) to have an infinitesimal positive angle w.r.t. the

real time axis, i.e. t(1 + �) for 0  t < +1 with � = 0+.

3. Find a classical trajectory h1(⌧, ~x) on the first segment, +1 > ⌧ > ⌧0(~x), of the

contour (4.2) that satisfies the initial time (vanishing) boundary condition (3.8),

lim
⌧!+1

h1(⌧, ~x) � v ! 0 , (4.3)

and becomes singular as ⌧ ! ⌧0(~x) so that2 h1(⌧, ~x)|⌧!⌧0(~x) ⌘ �0(~x) ! 1.

4. Find another classical solution h2(⌧, ~x) on the remaining part of the contour (3.8),

that at ⌧ ! ⌧0(~x) is singular and matches with h1,

h2(⌧0, ~x) = h1(⌧0, ~x) = �0(~x) ! 1 , (4.4)

2One can always assume a regularisation procedure that keeps �0 finite at intermediate stages of the

calculation, i.e. before taking the limit of the operator source j ! 0.
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h1(⌧0(~x)) = h2(⌧0(~x))

Extremize the action S over  
all such singularity surfaces: 



Computing the semiclassical rate 

will be described in section 6 and will allow us to address the previously unexplored in [1]

regime at large values of �n where quantum non-perturbative e↵ects are large.

We proceed with the practical implementation of the steps 1.-6. for the model (1.1) in

the following two sections.

5 Computing the rate: setting the scene

In this section we will specify and solve the boundary conditions at the initial and final

times deriving the coe�cient functions in (4.3), (4.5), will determine the T and ✓ parameters

and compute the general expression for the exponent of the rate W (E, n) in (3.11). This

is the last section where we are still following Son (specifically section 4 of Ref. [1]) before

we move on to the thin-wall bubble analysis of the expression for W (E, n) in section 6.

In the limit " = 0, the scattering amplitude is on the multiparticle threshold, the

final state momenta are vanishing and one would naively assume that the classical solution

describing this limit is uniform in space. This is correct for the tree-level solution but not

for the solution incorporating quantum e↵ects. In the latter case, the correct is the less

restrictive assumption that the presence of the singularity at x = 0 deforms the flat surface

of singularities near its location, as shown in Fig. 3. From now on we will concentrate on

the physical case where " is non-vanishing and non-relativistic, 0 < " ⌧ 1. At the same

time, the parameter �n is held fixed and arbitrary. It will ultimately be taken to be large.

The initial-time boundary condition (4.3) dictates that the solution h(tC = i⌧, ~x) � v

must vanish with exponential accuracy as e
�m⌧ in the limit ⌧ ! 1.

Next we investigate the final-time boundary condition (4.5) of the configuration (5.1).

Following Son, we will search for the classical solution near the final-time asymptotics in

the form,

h(tC, ~x) = v

 
1 + e

im(tC�i⌧1)

1 � eim(tC�i⌧1)

!
+ �̃(tC, ~x) . (5.1)

The first term on the right hand side is the ~x-independent field configuration. It is an exact

classical solution (2.9) with the surface of singularities at ⌧ = ⌧1 which is a plane. The

second term, �̃(tC, ~x), describes the deviation of the singular surface from the ⌧1-plane. It

is non-trivial locally around ~x = 0 and vanishes at ~x ! 1.

On the final segment of the time evolution contour t(1+ i�) as t ! +1, the first term

in (5.1) can be Taylor-expanded in powers of e
imt(1+i�) and linearised thanks to � being

positive, giving,

lim
t!+1

h0(x) � v = 2v e
m⌧1 e

imt
, (5.2)

while for the second term in (5.1) we will write the general expression involving the positive-

frequency and the negative frequency components. Taking the 3-dimensional Fourier trans-

form, �̃(t,k) =
R

d3k
(2⇡)3/2 �̃(t,x) e

�ikx, we have,

lim
t!+1

�̃(t,k) =
1

p
2!k

�
fk e

�i!kt + g�k e
i!kt
�

. (5.3)
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Classical solution singular on generic tau_0(x) surfaces:

Find that:

We can now compute the particle number n and the energy E in the final state using

equations (3.10) and the now known coe�cient functions (5.9) along with (5.10). We find,

n =

Z
d

3
k b

†
k bk e

!kT�✓ =
8v

2

m2
(2⇡mT )3/2

e
mT�✓+2m⌧1 (5.11)

mn" = E � mn =

Z
d

3
k
k2

2
b
†
k bk e

!kT�✓ =
8v

2

m2
(2⇡mT )3/2

e
mT�✓+2m⌧1 3

2T

(5.12)

Dividing the second expression by the first we find,

T =
1

m

3

2

1

"
, (5.13)

and the second parameter ✓ is found to be,

✓ = � log
�n

4
+

3

2

✓
log

3⇡

"
� 1

◆
+ 2m⌧1 +

3

2

1

"
. (5.14)

We now finally substitute these parameters into the equation (4.7) for the ‘holy grail’

function W (E, n), and find,

W (E, n) = ET � n✓ � 2ReSEucl[h]

= n log
�n

4
+

3n

2

✓
log

3⇡

"
+ 1

◆
� 2nm ⌧1 � 2ReSEucl[h] . (5.15)

Before interpreting this expression, we would like to separate the terms appearing on the

right hand side into those that depend on the location and shape of the singularity surface

⌧0(~x), and those that do not. The first two terms in (5.15) have no dependence on the

singularity surface; the third term, 2nm ⌧1 depends on its location at ⌧1. The final term,

2ReSEucl, is obtained by taking the real part of the three integrals appearing in (4.6).

The first two integrals are along the Euclidean time ⌧ segments of the contour and are

manifestly real4

2Re S
(1,2)
Eucl = 2

Z
d

3
x

"
�

Z +1

⌧0(~x)
d⌧ LEucl(h1) +

Z 0

⌧0(~x)
d⌧ LEucl(h2)

#
, (5.16)

while the remaining integral along the third segment of the contour appears to be purely

imaginary. This last statement is almost correct, as it applies to the bulk contribution of

the Minkowski-time integral
R 1
0 dt L(h2), but not to the boundary contribution at t ! 1.

The full contribution from the third segment of the contour is,5

2Re S
(3)
Eucl = 2

Z
d

3
x


� i

Z 1

0
dt L(h2)

�
= �

Z
d

3
k b

†
k bk e

!kT�✓ = � n . (5.17)

4In the notation of Appendix B, each of the individual integrals in (5.16),
R
d
3
x
R +1

⌧0(~x)
d⌧ LEucl(h1) = |SA|

and
R
d
3
x
R 0

⌧0(~x)
d⌧ LEucl(h1) = |SB |, is positive-valued.

5The expression (5.17) for the boundary contribution to the Minkowski action is also in agreement with

the construction in [1] and [16].
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Accounting for the e↵ect of the boundary contribution (5.17) we can write the expres-

sion for the rate (5.15) in the form:

W (E, n) = n

✓
log

�n

4
� 1

◆
+

3n

2

✓
log

3⇡

"
+ 1

◆
� 2nm ⌧1 � 2Re S

(1,2)
Eucl (⌧0) . (5.18)

This is a remarkable formula in the following sense. The expression on the right hand

side of (5.18) cleanly separates into two parts: the first two terms do not depend on the

shape of the singularity surface ⌧0(~x) and in fact they reproduce the known tree-level result

for the scattering rate in the non-relativistic limit 0 < " ⌧ 1, as we will demonstrate below.

The entire dependence of W (E, n) on ⌧0(~x) is contained in the last two terms in (5.18)

which correspond to the purely quantum contribution in the " ! 0 limit.

The tree-level contribution to W is well-known, it was computed using the resum-

mation of Feynman diagrams by solving solving the tree-level recursion relations [15] and

integrating over the phase-space. In the model (1.1) the tree-level result to the order "
1

was derived in [18] and reads,

W (E, n; �)tree = n (f1(�n) + f2(")) , (5.19)

where

f1(�n) = log

✓
�n

4

◆
� 1 , (5.20)

f2(")|"!0 ! f2(")
asympt =

3

2

⇣
log

⇣
"

3⇡

⌘
+ 1

⌘
�

25

12
" . (5.21)

First ignoring the order-"1 terms in the tree-level contribution, we see that the perturbative

result is correctly reproduced by the first two terms in the semiclassical expression on the

right hand side of (5.18),

W (E, n)tree = n

✓
log

�n

4
� 1

◆
+

3n

2

✓
log

3⇡

"
+ 1

◆
. (5.22)

This agreement with the result of an independent tree-level perturbative calculation in

(5.19)-(5.21) provides a non-trivial consistency check on the semiclassical formalism that

led us to (5.18) .

Furthermore, it was shown in [1] that the tree-level results are correctly reproduced by

the semiclassical result also including the order-"1 terms. It would be interesting to pursue

such terms also at the quantum level, but this is beyond the scope of this paper and we

will neglect all O(") terms as they are vanishing in the " ! 0 limit.

We can finally re-write the expression (5.18) for the rate W (E, n) in the form [1],

W (E, n) = W (E, n; �)tree + �W (E, n; �)quant
, (5.23)

where the quantum contribution is given by

�W
quant = � 2nm ⌧1 � 2Re S

(1,2)
Eucl

= 2nm |⌧1| + 2

Z
d

3
x

 Z +1

⌧0(~x)
d⌧ LEucl(h1) �

Z 0

⌧0(~x)
d⌧ LEucl(h2)

�
(5.24)
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agrees with the known result 
of tree-level contributions
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The entire dependence of W (E, n) on ⌧0(~x) is contained in the last two terms in (5.18)

which correspond to the purely quantum contribution in the " ! 0 limit.

The tree-level contribution to W is well-known, it was computed using the resum-

mation of Feynman diagrams by solving solving the tree-level recursion relations [15] and

integrating over the phase-space. In the model (1.1) the tree-level result to the order "
1

was derived in [18] and reads,

W (E, n; �)tree = n (f1(�n) + f2(")) , (5.19)

where
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First ignoring the order-"1 terms in the tree-level contribution, we see that the perturbative

result is correctly reproduced by the first two terms in the semiclassical expression on the

right hand side of (5.18),
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This agreement with the result of an independent tree-level perturbative calculation in

(5.19)-(5.21) provides a non-trivial consistency check on the semiclassical formalism that

led us to (5.18) .

Furthermore, it was shown in [1] that the tree-level results are correctly reproduced by

the semiclassical result also including the order-"1 terms. It would be interesting to pursue

such terms also at the quantum level, but this is beyond the scope of this paper and we

will neglect all O(") terms as they are vanishing in the " ! 0 limit.

We can finally re-write the expression (5.18) for the rate W (E, n) in the form [1],

W (E, n) = W (E, n; �)tree + �W (E, n; �)quant
, (5.23)

where the quantum contribution is given by

�W
quant = � 2nm ⌧1 � 2Re S

(1,2)
Eucl

= 2nm |⌧1| + 2

Z
d

3
x

 Z +1

⌧0(~x)
d⌧ LEucl(h1) �

Z 0

⌧0(~x)
d⌧ LEucl(h2)

�
(5.24)
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E=0 configuration
E=mn configuration

fixed,

E[h1] = 0 , E[h2] = nm . (6.10)

The fact that h1(x) is a classical solution with the vanishing energy is su�cient to uniquely

determine the field configuration h1(x) itself as well as its action
R +1�i✏
�A�i✏ d⌧ L(h1). The

exact solution for h1(x) is given by the expression (6.3) with the intermediate surface ⌧1(~x)

set to be equal to ⌧0(~x) (or more precisely ⌧1(~x) ! ⌧0(~x) from the right) at every point ~x.

The solution for the ⌧ -variable being strictly real is still formally singular at the surface

⌧0(~x). However, along the contour with ⌧ shifted by �i✏ the configuration in (6.3) becomes,

h1(⌧ � i✏) = v

 
1 + e

�m(⌧�⌧1�i✏)

1 � e�m(⌧�⌧1�i✏)

!
. (6.11)

This is a unique classical solution with the singularity surface at ~x ! 1 approaching ⌧1
and having the energy E = 0. Indeed, the Euclidean space energy functional

E =

Z
d

3
x
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vanishes identically on the space-uniform configuration (6.11) since (d⌧h1)
2 = �

4

�
h

2
1 � v

2
�2

.

The action integral S[h1] on the solution h1 can also be calculated exactly, giving

Z +1+i✏

�1�i✏
d⌧

Z
d

3
xLEucl(h1) = µ

Z R

0
4⇡r

2
dr = µ

4⇡

3
R

3
, (6.13)

where R is the spacial radius; the limit R ! 1 will be taken in the infinite volume limit at

the end of the calculation, after combining the two action integrals in (6.8). The parameter

µ appearing on the right hand side in (6.13) is the surface tension on the bubble solution

(6.11)

µ =

Z +1�i✏

�1�i✏
d⌧

 
1

2

✓
dh

d⌧

◆2

+
�

4

�
h

2
� v

2
�2
!

=
m

3

3�
, (6.14)

and it is easily checked (e.g. by using the residue theorem) that the value of µ does not

depend on the numerical value of i✏ in the shift of the integration contour, any value of i✏

that shifts the contour that it does not pass directly through the singularity at ⌧1 is fine.

Summarising our construction up to this point: we have derived the expression for the

contribution of quantum e↵ects (5.24) to the semiclassical rate W (5.23) in the form,

1

2
�W

quant = nm |⌧1| �

Z 0+i✏

A+i✏
d⌧ LEucl(h2; ⌧0(~x))

| {z }
⌘ SEucl[⌧0(~x)]

+
4⇡

3
µR

3
. (6.15)

We note that no extremization of the rate with respect to the surface ⌧ = ⌧0(~x) has been

carried so far. The expression in (6.15) is the general (and exact) formula equivalent to

the expression in (5.24). It will be now extremized with respect to ⌧0(~x) on the classical

solution h2[x] carrying the energy E = nm. The action of the zero-energy h1 branch
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and it is easily checked (e.g. by using the residue theorem) that the value of µ does not

depend on the numerical value of i✏ in the shift of the integration contour, any value of i✏

that shifts the contour that it does not pass directly through the singularity at ⌧1 is fine.
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We note that no extremization of the rate with respect to the surface ⌧ = ⌧0(~x) has been

carried so far. The expression in (6.15) is the general (and exact) formula equivalent to

the expression in (5.24). It will be now extremized with respect to ⌧0(~x) on the classical

solution h2[x] carrying the energy E = nm. The action of the zero-energy h1 branch
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solution of the solution, does not depend on ⌧0(~x), it is a constant, that will be cancelled

with its counterpart arising from the h2 action integral in (6.15) when the infinite volume

limit is taken.

The field configuration h2(x) with energy E = nm is determined by the configuration

in (6.3) where now the intermediate surface ⌧1(~x) is sent to coincide with ⌧1. On the

time-evolution contour with ⌧ shifted by i✏ we get,

h2(⌧ + i✏) = v

 
1 + e

�m(⌧�⌧0(~x)+i✏)

1 � e�m(⌧�⌧0(~x)+i✏)

!
. (6.16)

This expression is an approximate solution of the classical equations due to the fact that

surface is ⌧0 is space-dependent. Hence to have an exact solution we imagine adding an

appropriate correction �� on the right hand side of (6.16); this correction is negligible when

the bubble wall separating the two phase h ' +v and h ' �v is relatively flat.

The action SEucl[⌧0(~x)] computed on the field h2(x) can now be written as an integral

on the singularity surface in the thin-wall approximation. This is equivalent to stating that

the action is equal to the surface tension of the domain wall µ already computed in (6.14)

times the area. The infinitesimal element of the 3-dimensional area of a surface curved in

3+1 dimensions is 4⇡µ r
2
p

(d⌧)2 + (dr)2. Hence the action reads,

SEucl[⌧0(r)] =

Z 0

⌧1

d⌧ 4⇡µ r
2
p

1 + ṙ2 ⌘

Z 0

⌧1

d⌧ L(r, ṙ) , (6.17)

where r = |~x| and ṙ = dr/d⌧ . The integral depends on the choice of the domain wall

surface ⌧0(~x) implicitly via dependence on ⌧ of r(⌧) and ṙ(⌧) which are computed on the

domain wall.

Since L(r, ṙ) has the meaning of the Lagrangian, we can introduce the Hamiltonian

function defined in the standard way7 as the Legendre transformation,

H(p, r) = L(r, ṙ) � p ṙ , (6.18)

where the momentum p, conjugate to the coordinate r, is

p =
@L(r, ṙ)

@ṙ
= 4⇡ µ

r
2
ṙ

p
1 + ṙ2

(6.19)

On a classical trajectory r = r(⌧) that satisfies the Euler-Lagrange equations corresponding

to L(r, ṙ), the Hamiltonian is time-independent, dH/d⌧ = 0, and is given by the energy E

of the classical solution. Hence, on a stationary point of SEucl[⌧0(r)] that has the energy E

we can rewrite the action as

SEucl[⌧0(r)]stationary = �⌧1 E +

Z 0

⌧1

d⌧ (L � H) = � E⌧1 +

Z 0

R
p(E) dr . (6.20)

7In Euclidean space L = K + P and H = P �K where K and P are the kinetic and potential energies

respectively.
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to L(r, ṙ), the Hamiltonian is time-independent, dH/d⌧ = 0, and is given by the energy E

of the classical solution. Hence, on a stationary point of SEucl[⌧0(r)] that has the energy E

we can rewrite the action as
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Here we added and subtracted the constant energy of the solution E = H in the integral,

used the fact that L � H = pṙ and have set the lower and upper integration limits at

r(⌧1) = R and r(0) = 0. The expression above gives us SEucl[⌧0(r)] on a trajectory r(⌧),

or equivalently ⌧ = ⌧0(r) which is a classical trajectory i.e. an extremum of the action for

a fixed energy E. Equivalently, for the stationary point of the expression in (6.15) we have,

1

2
�W

quant = (E � nm)⌧1 �

Z 0

R
p(E) dr +

4⇡

3
µR

3
. (6.21)

Extremization of this expression with respect to the parameter ⌧1 gives E = nm thus

selecting the energy of the classical trajectory to be set at nm as required,

1

2
�W

quant
stationary = �

Z 0

R
p(E) dr +

4⇡

3
µR

3
, E = nm . (6.22)

To evaluate (6.22) we need to determine the dependence of the momentum of the

classical trajectory on its energy. To find p(E), we start by writing the expression for the

energy, E = L � pṙ, in the form

E = 4⇡µ r
2
p

1 + ṙ2 � 4⇡ µ
r
2
ṙ

p
1 + ṙ2

= 4⇡ µ
r
2

p
1 + ṙ2

, (6.23)

and then compute the combination E
2 + p

2 using the above expression and (6.19),

E
2 + p

2 =
�
4⇡µ r

2
�2

✓
1

1 + ṙ2
+

ṙ
2

1 + ṙ2

◆
=

�
4⇡µ r

2
�2

. (6.24)

This gives the desired expression for the momentum p = p(E),

p(E, r) = � 4⇡ µ

s

r4 �

✓
E

4⇡µ

◆2

, (6.25)

where have selected in (6.25) the negative root for the momentum in accordance with the

fact that p(⌧) / ṙ (as follows from (6.19)) and that r(⌧) is a monotonically decreasing

function.

Substituting this into the expression (6.22) we have,

1

2
�W

quant = �

Z r0

R
p(E) dr +

4⇡

3
µR

3 = �

Z R

r0

4⇡ µ

q
r4 � r

4
0 dr +

4⇡

3
µR

3
. (6.26)

The minimal value of the momentum (and the lower bound of the integral in (6.26)) is

cut-o↵ at the critical radius r0,

r
2
0 =

E

4⇡µ
, (6.27)

Below we will also consider the contribution to the integral (6.26) on the interval 0  r  r0

but for now we will temporarily ignore it.

The integral on the right hand side of (6.26) is evaluated as follows,

Z R/r0

1

p
x4 � 1 dx =


1

3
x

p
x4 � 1 �

2

3
i EllipticF[ArcSin(x), �1]

�x=R/r0

x=1

– 20 –

Here we added and subtracted the constant energy of the solution E = H in the integral,
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quant = (E � nm)⌧1 �

Z 0

R
p(E) dr +

4⇡

3
µR

3
. (6.21)

Extremization of this expression with respect to the parameter ⌧1 gives E = nm thus

selecting the energy of the classical trajectory to be set at nm as required,

1

2
�W

quant
stationary = �

Z 0

R
p(E) dr +

4⇡

3
µR

3
, E = nm . (6.22)

To evaluate (6.22) we need to determine the dependence of the momentum of the

classical trajectory on its energy. To find p(E), we start by writing the expression for the

energy, E = L � pṙ, in the form

E = 4⇡µ r
2
p

1 + ṙ2 � 4⇡ µ
r
2
ṙ

p
1 + ṙ2

= 4⇡ µ
r
2

p
1 + ṙ2

, (6.23)

and then compute the combination E
2 + p

2 using the above expression and (6.19),

E
2 + p

2 =
�
4⇡µ r

2
�2

✓
1

1 + ṙ2
+

ṙ
2

1 + ṙ2

◆
=

�
4⇡µ r

2
�2

. (6.24)

This gives the desired expression for the momentum p = p(E),

p(E, r) = � 4⇡ µ

s

r4 �

✓
E

4⇡µ

◆2

, (6.25)

where have selected in (6.25) the negative root for the momentum in accordance with the

fact that p(⌧) / ṙ (as follows from (6.19)) and that r(⌧) is a monotonically decreasing

function.

Substituting this into the expression (6.22) we have,

1

2
�W

quant = �

Z r0

R
p(E) dr +

4⇡

3
µR

3 = �

Z R

r0

4⇡ µ

q
r4 � r

4
0 dr +

4⇡

3
µR

3
. (6.26)

The minimal value of the momentum (and the lower bound of the integral in (6.26)) is

cut-o↵ at the critical radius r0,

r
2
0 =

E

4⇡µ
, (6.27)

Below we will also consider the contribution to the integral (6.26) on the interval 0  r  r0

but for now we will temporarily ignore it.

The integral on the right hand side of (6.26) is evaluated as follows,

Z R/r0

1

p
x4 � 1 dx =


1

3
x

p
x4 � 1 �

2

3
i EllipticF[ArcSin(x), �1]

�x=R/r0

x=1
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Conjugate momentum Hamiltonian => Energy

Quantum rate on the stationary trajectory:

Surface tension

• Gorsky & Voloshin hep-ph/9305219 • VVK 1806.05648

Computing the semiclassical rate for �n � 1
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Computing the semiclassical rate 
Use thin wall approximation:

Here we added and subtracted the constant energy of the solution E = H in the integral,

used the fact that L � H = pṙ and have set the lower and upper integration limits at

r(⌧1) = R and r(0) = 0. The expression above gives us SEucl[⌧0(r)] on a trajectory r(⌧),

or equivalently ⌧ = ⌧0(r) which is a classical trajectory i.e. an extremum of the action for

a fixed energy E. Equivalently, for the stationary point of the expression in (6.15) we have,

1

2
�W

quant = (E � nm)⌧1 �

Z 0

R
p(E) dr +

4⇡

3
µR

3
. (6.21)

Extremization of this expression with respect to the parameter ⌧1 gives E = nm thus

selecting the energy of the classical trajectory to be set at nm as required,

1

2
�W

quant
stationary = �

Z 0

R
p(E) dr +

4⇡

3
µR

3
, E = nm . (6.22)

To evaluate (6.22) we need to determine the dependence of the momentum of the

classical trajectory on its energy. To find p(E), we start by writing the expression for the

energy, E = L � pṙ, in the form

E = 4⇡µ r
2
p

1 + ṙ2 � 4⇡ µ
r
2
ṙ

p
1 + ṙ2

= 4⇡ µ
r
2

p
1 + ṙ2

, (6.23)

and then compute the combination E
2 + p

2 using the above expression and (6.19),

E
2 + p

2 =
�
4⇡µ r

2
�2

✓
1

1 + ṙ2
+

ṙ
2

1 + ṙ2

◆
=

�
4⇡µ r

2
�2

. (6.24)

This gives the desired expression for the momentum p = p(E),

p(E, r) = � 4⇡ µ

s

r4 �

✓
E

4⇡µ

◆2

, (6.25)

where have selected in (6.25) the negative root for the momentum in accordance with the

fact that p(⌧) / ṙ (as follows from (6.19)) and that r(⌧) is a monotonically decreasing

function.

Substituting this into the expression (6.22) we have,

1

2
�W

quant = �

Z r0

R
p(E) dr +

4⇡

3
µR

3 = �

Z R

r0

4⇡ µ

q
r4 � r

4
0 dr +

4⇡

3
µR

3
. (6.26)

The minimal value of the momentum (and the lower bound of the integral in (6.26)) is

cut-o↵ at the critical radius r0,

r
2
0 =

E

4⇡µ
, (6.27)

Below we will also consider the contribution to the integral (6.26) on the interval 0  r  r0

but for now we will temporarily ignore it.

The integral on the right hand side of (6.26) is evaluated as follows,

Z R/r0

1

p
x4 � 1 dx =


1

3
x

p
x4 � 1 �

2

3
i EllipticF[ArcSin(x), �1]

�x=R/r0

x=1
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where the Mathematica function EllipticF[z, m] is also known as the elliptic integral of the

first kind F (z|m). The integral simplified in the R/r0 ! 1 limit giving,

(�4⇡µr
3
0)

Z R/r0

1

p
x4 � 1 dx ! �

4⇡

3
µR

3 + 4⇡µr
3
0

p
4⇡

1

3

�(5/4)

�(3/4)

= �
4⇡

3
µR

3 +
E

3/2

p
µ

1

3

�(5/4)

�(3/4)
. (6.28)

We see that the large volume constant term 4⇡
3 µR

3 cancels between the expressions in

(6.28) and (6.26), as expected. The final result for the thin-wall trajectory contribution to

the quantum rate is given by,

�W
quant =

E
3/2

p
µ

2

3

�(5/4)

�(3/4)
=

1

�
(�n)3/2 2

p
3

�(5/4)

�(3/4)
' 0.854 n

p

�n . (6.29)

We note that this expression is positive-valued, that it grows in the limit of �n ! 1, and

that it has the correct scaling properties for the semiclassical result, i.e. it is of the form

1/� times a function of �n.

Our result (6.29) reproduces the expression derived in our earlier paper [2] and is also

in agreement with the expression derived even earlier in Ref. [8].

It also follows that the thin-wall approximation is fully justified in the �n � 1 limit

as originally noted in [2, 8]. The thin-wall regime corresponds to the radius of the bubble

being much greater than the thickness of the wall, r � 1/m. In our case the radius is

always greater than the critical radius,

rm � r0m = m

✓
E

4⇡µ

◆1/2

/

✓
� E

m

◆1/2

=
p

�n � 1 , (6.30)

where we have used the value for the energy E = nm on our solution.

One can ask what is the actual classical trajectory r(⌧) or equivalently the wall profile

⌧ = ⌧0(r) of the classical bubble on which the rate W was computed in (6.29). To find it

we can integrate the equation for the conserved energy (6.23) on our classical solution,

E = 4⇡ µ
r
2

p
1 + ṙ2

, (6.31)

or, equivalently, the expression (r/r0)4 = 1 + ṙ
2. One finds,

Z ⌧

⌧1

d⌧ = �

Z r

R

drr⇣
r
r0

⌘4
� 1

, (6.32)

which after integration can be expressed in the form,

⌧(r) = ⌧1 + r0

✓
�2(1/4)

4
p

2⇡
+ Im (EllipticF[ArcSin(r/r0), �1])

◆
. (6.33)
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Figure 5: Extremal surface ⌧ = ⌧0(r) of the thin wall bubble solution (6.33). Solid line denotes the
bubble wall profile of the bubble radius r above the critical radius r0. The dashed line corresponds
to the branch of the classical trajectory beyond the turning point at r0.

This classical trajectory gives the thin-wall bubble classical profile for r0 < r(⌧) < 1

which the result (6.29) for the quantum contribution to the rate �W
quant. This trajectory

is plotted in Fig. 5.

What happens when the radius of the bubble r(⌧) approaches the critical radius r0

(6.27) where the momentum (6.25) vanishes? Recall that in the language of a mechanical

analogy we are searching for an equilibrium (i.e. the stationary point solution) where the

surface ⌧0(r) located at ⌧1 at large values of r is pulled upwards (in the direction of ⌧) by

a constant force E = nm acting at the point r = 0. This is what corresponds to finding an

extremum – in our case the true minimum – of the expression in (6.15), which we rewrite

now in the form,
1

2
�W

quant = E |⌧1|| {z }
Force⇥height

� µ

Z
d

2+1Area
| {z }

surface Energy

. (6.34)

Su�ciently far away from the point at the origin where the force acts, the surface is nearly

flat and does not extend in the ⌧ direction. As the distance in the r-direction closer to the

point where the force is applied, the surface is getting more and more stretched in the ⌧

direction, until the critical radius r0 is reached where the the surface approaches the shape

of a cylinder R
1
⇥ S

2 with R
1 along the ⌧ direction.

Up to the critical point ⌧c where r = r0, the force and the surface tension have to

balance each other in the expression,

E |⌧1 � ⌧c| �

✓Z ⌧c

⌧1

d⌧ 4⇡µ r
2
p

1 + ṙ2 �
4⇡

3
µR

3

◆
, (6.35)

and this is what we have calculated in Eqs. (6.26) and (6.29). But when the critical point

r0 is reached at a certain ⌧c the balance of forces becomes trivial,

E |⌧c| � µ 4⇡ r
2
0 |⌧c| = 0 . (6.36)
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Here we added and subtracted the constant energy of the solution E = H in the integral,

used the fact that L � H = pṙ and have set the lower and upper integration limits at

r(⌧1) = R and r(0) = 0. The expression above gives us SEucl[⌧0(r)] on a trajectory r(⌧),

or equivalently ⌧ = ⌧0(r) which is a classical trajectory i.e. an extremum of the action for

a fixed energy E. Equivalently, for the stationary point of the expression in (6.15) we have,

1

2
�W

quant = (E � nm)⌧1 �

Z 0

R
p(E) dr +

4⇡

3
µR

3
. (6.21)

Extremization of this expression with respect to the parameter ⌧1 gives E = nm thus

selecting the energy of the classical trajectory to be set at nm as required,

1

2
�W

quant
stationary = �

Z 0

R
p(E) dr +

4⇡

3
µR

3
, E = nm . (6.22)

To evaluate (6.22) we need to determine the dependence of the momentum of the

classical trajectory on its energy. To find p(E), we start by writing the expression for the

energy, E = L � pṙ, in the form

E = 4⇡µ r
2
p

1 + ṙ2 � 4⇡ µ
r
2
ṙ

p
1 + ṙ2

= 4⇡ µ
r
2

p
1 + ṙ2

, (6.23)

and then compute the combination E
2 + p

2 using the above expression and (6.19),

E
2 + p

2 =
�
4⇡µ r

2
�2

✓
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1 + ṙ2
+

ṙ
2

1 + ṙ2

◆
=
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4⇡µ r

2
�2

. (6.24)

This gives the desired expression for the momentum p = p(E),

p(E, r) = � 4⇡ µ

s

r4 �

✓
E

4⇡µ

◆2

, (6.25)

where have selected in (6.25) the negative root for the momentum in accordance with the

fact that p(⌧) / ṙ (as follows from (6.19)) and that r(⌧) is a monotonically decreasing

function.

Substituting this into the expression (6.22) we have,

1

2
�W

quant = �

Z r0

R
p(E) dr +

4⇡

3
µR

3 = �

Z R
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4
0 dr +
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3
. (6.26)

The minimal value of the momentum (and the lower bound of the integral in (6.26)) is

cut-o↵ at the critical radius r0,

r
2
0 =

E

4⇡µ
, (6.27)

Below we will also consider the contribution to the integral (6.26) on the interval 0  r  r0

but for now we will temporarily ignore it.

The integral on the right hand side of (6.26) is evaluated as follows,

Z R/r0

1

p
x4 � 1 dx =


1

3
x

p
x4 � 1 �

2

3
i EllipticF[ArcSin(x), �1]

�x=R/r0

x=1
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where the Mathematica function EllipticF[z, m] is also known as the elliptic integral of the

first kind F (z|m). The integral simplified in the R/r0 ! 1 limit giving,

(�4⇡µr
3
0)
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1
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x4 � 1 dx ! �
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3/2
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. (6.28)

We see that the large volume constant term 4⇡
3 µR

3 cancels between the expressions in

(6.28) and (6.26), as expected. The final result for the thin-wall trajectory contribution to

the quantum rate is given by,

�W
quant =

E
3/2

p
µ

2

3

�(5/4)

�(3/4)
=

1

�
(�n)3/2 2
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' 0.854 n
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�n . (6.29)

We note that this expression is positive-valued, that it grows in the limit of �n ! 1, and

that it has the correct scaling properties for the semiclassical result, i.e. it is of the form

1/� times a function of �n.

Our result (6.29) reproduces the expression derived in our earlier paper [2] and is also

in agreement with the expression derived even earlier in Ref. [8].

It also follows that the thin-wall approximation is fully justified in the �n � 1 limit

as originally noted in [2, 8]. The thin-wall regime corresponds to the radius of the bubble

being much greater than the thickness of the wall, r � 1/m. In our case the radius is

always greater than the critical radius,

rm � r0m = m

✓
E

4⇡µ

◆1/2

/

✓
� E

m

◆1/2

=
p

�n � 1 , (6.30)

where we have used the value for the energy E = nm on our solution.

One can ask what is the actual classical trajectory r(⌧) or equivalently the wall profile

⌧ = ⌧0(r) of the classical bubble on which the rate W was computed in (6.29). To find it

we can integrate the equation for the conserved energy (6.23) on our classical solution,

E = 4⇡ µ
r
2

p
1 + ṙ2

, (6.31)

or, equivalently, the expression (r/r0)4 = 1 + ṙ
2. One finds,
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⌘4
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, (6.32)

which after integration can be expressed in the form,

⌧(r) = ⌧1 + r0

✓
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4
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2⇡
+ Im (EllipticF[ArcSin(r/r0), �1])

◆
. (6.33)
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Justifies the thin wall approximation:

Classical trajectory tau(r):

final result



Computing the semiclassical rate 
Use thin wall approximation:

Here we added and subtracted the constant energy of the solution E = H in the integral,

used the fact that L � H = pṙ and have set the lower and upper integration limits at

r(⌧1) = R and r(0) = 0. The expression above gives us SEucl[⌧0(r)] on a trajectory r(⌧),

or equivalently ⌧ = ⌧0(r) which is a classical trajectory i.e. an extremum of the action for

a fixed energy E. Equivalently, for the stationary point of the expression in (6.15) we have,

1

2
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quant = (E � nm)⌧1 �

Z 0

R
p(E) dr +

4⇡

3
µR

3
. (6.21)

Extremization of this expression with respect to the parameter ⌧1 gives E = nm thus

selecting the energy of the classical trajectory to be set at nm as required,

1

2
�W

quant
stationary = �

Z 0

R
p(E) dr +

4⇡

3
µR

3
, E = nm . (6.22)

To evaluate (6.22) we need to determine the dependence of the momentum of the

classical trajectory on its energy. To find p(E), we start by writing the expression for the

energy, E = L � pṙ, in the form

E = 4⇡µ r
2
p

1 + ṙ2 � 4⇡ µ
r
2
ṙ

p
1 + ṙ2

= 4⇡ µ
r
2

p
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, (6.23)

and then compute the combination E
2 + p

2 using the above expression and (6.19),

E
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�
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2
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This gives the desired expression for the momentum p = p(E),

p(E, r) = � 4⇡ µ

s

r4 �

✓
E

4⇡µ

◆2
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where have selected in (6.25) the negative root for the momentum in accordance with the
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The minimal value of the momentum (and the lower bound of the integral in (6.26)) is

cut-o↵ at the critical radius r0,
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, (6.27)

Below we will also consider the contribution to the integral (6.26) on the interval 0  r  r0

but for now we will temporarily ignore it.

The integral on the right hand side of (6.26) is evaluated as follows,
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where the Mathematica function EllipticF[z, m] is also known as the elliptic integral of the

first kind F (z|m). The integral simplified in the R/r0 ! 1 limit giving,
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We see that the large volume constant term 4⇡
3 µR

3 cancels between the expressions in

(6.28) and (6.26), as expected. The final result for the thin-wall trajectory contribution to

the quantum rate is given by,
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We note that this expression is positive-valued, that it grows in the limit of �n ! 1, and

that it has the correct scaling properties for the semiclassical result, i.e. it is of the form

1/� times a function of �n.

Our result (6.29) reproduces the expression derived in our earlier paper [2] and is also

in agreement with the expression derived even earlier in Ref. [8].

It also follows that the thin-wall approximation is fully justified in the �n � 1 limit

as originally noted in [2, 8]. The thin-wall regime corresponds to the radius of the bubble

being much greater than the thickness of the wall, r � 1/m. In our case the radius is

always greater than the critical radius,
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where we have used the value for the energy E = nm on our solution.

One can ask what is the actual classical trajectory r(⌧) or equivalently the wall profile

⌧ = ⌧0(r) of the classical bubble on which the rate W was computed in (6.29). To find it

we can integrate the equation for the conserved energy (6.23) on our classical solution,
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or, equivalently, the expression (r/r0)4 = 1 + ṙ
2. One finds,
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which after integration can be expressed in the form,
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Figure 6: Stationary surface configuration obtained by gluing two branches. Plot (a) shows
the surface in the thin-wall approximation which glues the original solution (6.33) to the infinitely
stretchable cylinder solution of (6.35). Plot (b) depicts its more realistic implementation where the
infinite cylinder is replaced by a cone as a consequence of allowing the surface tension µ to increase
with |⌧ | in the regime where the highly stretched surface becomes e↵ectively a 1-dimensional spring.

Clearly, the branch of the classical trajectory shown as the dashed line in Fig. 5 is unphysical

in the sense that it does not describe the membrane pulled upwards with the force E = mn.

The vanishing of the expression (6.36) is the consequence of the definition of the critical

radius in (6.27). As soon as the radius r(⌧) approaches the critical radius r0, the radius

freezes at this value (since p / d⌧r = 0), the two terms in (6.36) become equal, E = µ 4⇡ r
2
0,

and remain so at all times above the critical time ⌧c. The thin-wall profile becomes an

infinitely stretchable cylinder, as shown in Fig. 6 (a), giving no additional contribution to

�W
quant on top of (6.35).

The stationary solution in the form where it becomes at r ! r0 a cylinder that can

be freely stretched in the vertical (i.e. ⌧) direction is an idealised approximation to the

more realistic configuration that would be realised in our mechanical analogy of the surface

stretched by the force in practice. It is easy to see how this realistic mechanical solution

looks like. For the coordinate along the vertical axis,8 d := ⌧ + ⌧1 ' 0, the bubble profile

is nearly flat in the ⌧ direction. As d increases from 0, the radius r(⌧) grows smaller,

following the profile of the thin-wall solution contour in the lower part of Fig. 6. As r

approaches the critical radius r0, the surface becomes almost entirely along the d (or ⌧)

direction. Such a surface looks more like a spring along the ⌧ coordinate. For the strict

thin-wall approximation, the surface tension µ is assumed to be a constant. But in the

case of the spring, it should be the Young’s elastic modulus kYoung that takes a constant

value. Hence for a highly stretched surface in the ⌧ direction we should introduce some

dependence on d = ⌧ + ⌧1 into the surface tension,

µ = µ0 (1 + k̂ (⌧ + ⌧1)) , (6.37)

8Recall that the tip of the surface is at ⌧ = 0 where d = |⌧1|, and that the surface’s base is at a negative

⌧ = ⌧1 = �|⌧1| which corresponds to d = 0.
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Summary of the semiclassical result 

In the case of a much simpler model – the quantum mechanical anharmonic oscillator in

the unbroken phase – it was recently shown in Ref. [22] that the rates remain exponentially

suppressed in accordance with what would be expected from unitarity in QM.

8 Conclusions

In this paper, following the idea outlined in our earlier work [2] we computed the semiclas-

sical exponent of the multi-particle production rate in the high-particle-number �n ! 1

limit in the kinematical regime where the final state particles are produced near their mass

thresholds. This corresponds to the limit

� ! 0 , n ! 1 , with �n = fixed � 1 , " = fixed ⌧ 1 . (8.1)

Combining the tree-level (5.22) and the quantum e↵ects (6.39) contributions,

W (E, n) = W (E, n; �)tree + �W (E, n; �)quant
, (8.2)

we can write down the full semiclassical rate,

Rn(E) = e
W (E,n) = exp
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4
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25
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(8.3)

computed in the high-multiplicity non-relativistic limit (8.1). This expression for the multi-

particle rates was first written down in the precursor of this work [2], and was used in

Refs. [3, 4] and subsequent papers to introduce and motivate the Higgsplosion mechanism.

The energy in the initial state and the final state multiplicity are related linearly via

E/m = (1 + ") n , (8.4)

and thus for any fixed non-vanishing value of ", one can raise the energy to achieve any

desired large value of n and consequentially a large
p

�n. Clearly, at the strictly vanishing

value of ", the phase-space volume is zero and the entire rate (8.3) vanishes. Then by

increasing " to a positive but still small values, the rate increases. The competition is

between the negative log " term and the positive
p

�n term in (8.3), and there is always a

range of su�ciently high multiplicities where
p

�n overtakes the logarithmic term log " for

any fixed (however small) value of ". This leads to the exponentially growing multi-particle

rates above a certain critical energy, which in the case described by the expression in (8.3)

is in the regime of Ec ⇠ 200m. We refer the reader to Fig. 7 and to section 5 of Ref. [2] for

a detailed discussion of the exponential rate (8.3) and its relevance for Higgsplosion [3].

Our discussion concentrated entirely on a simple scalar QFT model. If more degrees

of freedom were included, for example the W and Z vector bosons and the SM fermions,

new coupling parameters (such as the gauge coupling and the Yukawas) would appear

in the expression for the rate along with the final state particle multiplicities. As there
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Figure 1: Partial decay widths (in units of mass Mh) of a highly-energetic single-particle state
into n Higgs bosons h plotted as function of n. The four lines correspond to the energies of the
initial state equal 190Mh, 195Mh, 200Mh and 205Mh, as indicated. There is a sharp exponential
dependence of the peak rate on the energy varying from R . 10�6 at E = 190Mh (red line) to
R & 107 at E = 205Mh (black line). The peak multiplicities n? ⇠ 150 in these examples are
not far from the maximally allowed values at the edge of the phase space nmax ⇠ E/Mh.

Of phenomenological interest is whether the multi-particle rates can become observable
at certain energy scales and, at even higher energies, exponentially large – in the limit of
near maximal kinematically allowed multiplicities. To answer this, it is required to resum
the perturbation theory and address the large �n limit. Very recently, we have computed
the exponential rate in the �n � 1 limit using the Landau WKB-based formalism, following
the approach of Ref. [8]. These results will be reported in a forthcoming publication [19].
The correction to the tree-level rate in the non-relativistic regime is found to be of the form

⇡ +3.02n
q

�n
4⇡ .

As a result, the non-perturbatively corrected multi-particle rate in Eq. (3.9) becomes [19]
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This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
expression in Eq. (3.15). The growth of the exponent in R with increasing �n is counteracted
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This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
expression in Eq. (3.15). The growth of the exponent in R with increasing �n is counteracted
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This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
expression in Eq. (3.15). The growth of the exponent in R with increasing �n is counteracted
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Vector boson fusion at high-energy pp colliders (FCC)
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Figure 1: Partial decay widths (in units of mass Mh) of a highly-energetic single-particle state
into n Higgs bosons h plotted as function of n. The four lines correspond to the energies of the
initial state equal 190Mh, 195Mh, 200Mh and 205Mh, as indicated. There is a sharp exponential
dependence of the peak rate on the energy varying from R . 10�6 at E = 190Mh (red line) to
R & 107 at E = 205Mh (black line). The peak multiplicities n? ⇠ 150 in these examples are
not far from the maximally allowed values at the edge of the phase space nmax ⇠ E/Mh.

Of phenomenological interest is whether the multi-particle rates can become observable
at certain energy scales and, at even higher energies, exponentially large – in the limit of
near maximal kinematically allowed multiplicities. To answer this, it is required to resum
the perturbation theory and address the large �n limit. Very recently, we have computed
the exponential rate in the �n � 1 limit using the Landau WKB-based formalism, following
the approach of Ref. [8]. These results will be reported in a forthcoming publication [19].
The correction to the tree-level rate in the non-relativistic regime is found to be of the form

⇡ +3.02n
q

�n
4⇡ .

As a result, the non-perturbatively corrected multi-particle rate in Eq. (3.9) becomes [19]
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This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
expression in Eq. (3.15). The growth of the exponent in R with increasing �n is counteracted
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• preliminary: no Higgs 
decays into SM d.o.f 
included;                         
& no vector bosons in 
final states

Vector boson fusion at high-energy pp colliders (FCC)

using pt jet > 40 GeV



 Effects of Higgsplosion on Precision Observables
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Here focus on a class of observables which have no tree-level contributions

At LHC energies effects of Higgsplosion are small (next slide). 

However O(1) effects can be achieved for these loop-induced  
processes if the interactions are probed close to ~ 2E*.

• VVK, J Reiness, M Spannowsky, P Waite 1709.08655
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Loop integrals are e↵ectively cut o↵ at E⇤ by the exploding width �(p2) of the
propagating state into the high-multiplicity final states.

The incoming highly energetic state decays rapidly into the multi-particle state
made out of soft quanta with momenta k2i ⇠ m2 n E2

⇤ .

The width of the propagating degree of freedom becomes much greater than its
mass: it is no longer a simple particle state.

In this sense, it has become a composite state made out of the n soft particle
quanta of the same field �.

• VVK & Spannowsky 1704.03447, 1707.01531

Higgsplosion

5. The Z� constant is used to define the renormalised quantities �R(p) and ⌃R(p2),

�R(p) = Z (�1)
� �(p) , (2.10)

⌃R(p) = Z�

�
⌃(p2) � ⌃(m2) � ⌃0(m2)(p2 � m2)

�
. (2.11)

Hence, the result for the renormalised propagator in terms of all finite quantities is,

�R(p) =
i

p2 � m2 � ⌃R(p2) + i✏
. (2.12)

6. The optical theorem provides the physical interpretation of the imaginary part of the

self-energy in terms of the momentum-scale dependent decay width �(p2),

� Im⌃R(p
2) = m�(p2) , (2.13)

with the decay width being determined by the partial widths of n-particle decays at

energies s � (nm)2,

�(s) =
1X

n=2

�n(s) , �n(s) =
1

2m

Z
d�n

n!
|M(1 ! n)|2 . (2.14)

Here M is the amplitude for the 1⇤ ! n process, the integral is over the n-particle

Lorentz-invariant phase space, and 1/n! is the Bose-Einstein symmetry factor for n

spin-zero particles produced in the final state.

7. The origin of Higgsplosion [1] is that the scattering amplitudes M(1 ! n), and con-

sequentially the decay rates into the n-particle final states, grow factorially with n

in the large-n limit, 1
n! |Mn|2 ⇠ n!�n ⇠ en log(�n). When n scales linearly with the

available energy, n ⇠
p
s/m, this translates into the exponential dependence of the

decay rate �(s) on
p
s. It was further argued in [1, 14] that there is a sharp transi-

tion between the exponential suppression, �n(s < E2
⇤)/m ⌧ 1, and the exponential

growth, �n(s > E2
⇤)/m � 1, for the n-particle rate at a certain characteristic energy

scale E⇤ (and in a large-n limit that is still allowed by kinematics, n . p
s/m). Hence

in a Higgsploding theory, the propagator,

�R(p) =
i

p2 � m2 � Re⌃R(p2) + im�(p2) + i✏
, (2.15)

is e↵ectively cut o↵ at p2 � E2
⇤ by the exploding width �(p2) of the propagating

state into the high-multiplicity final states. The incoming highly energetic state

decays rapidly into the multi-particle state made out of soft quanta with momenta

k2i ⇠ m2 n E2
⇤ . The width of the propagating degree of freedom becomes much

greater than its mass: it is no longer a simple particle state. In this sense, it has

become a composite state made out of the n soft particle quanta of the same field �.

The main purpose of the summary above is to demonstrate that there are no apparent

subtleties that arise when accounting for the UV-renormalisation e↵ects in the expression

– 4 –
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Figure 3: Contributions to ⌃t(p2) from mutually independent dressed propagators in the loop.
These sub-processes do not contribute to Higgsplosion and correspond to 2-particle reducible dia-
grams in the ‘t-channel’. On the right, dominant contributions to the self-energy of the top quark
come from the interference terms between the sub-amplitudes. Such diagrams contain only multi-
particle cuts in the ‘t-channel’.

interacts with the Higgs sector. Does the imaginary part of ⌃X(p2) become large and

higgsplodes at some high critical energy scale E⇤?
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Figure 4: Not much di↵erence pictorially between emitting multiple Higgses from the top or from
the Higgs internal line

For concreteness we first consider here the case of the top quark, X = t, but the same

qualitative conclusion can immediately be drawn for all Standard Model particle (such as

the electro-weak vector bosons, gluons and fermions) as well as other not-too-heavy BSM

degrees of freedom coupled to the Higgs.

Higgsplosion in the self-energy of the top

For the case of the t quark we concentrate on its self-energy ⌃t(p2) and consider

the Yukawa interactions, yt t̄th as well as the Higgs self-interactions. A priory it may be

tempting to organise perturbative contributions to ⌃t(p2) in terms of a loop assembled two

or more mutually independent dressed propagators of the Higgs field and of the top quark,

– 10 –

Consequences of Higgsplosion

• All particles Higgsplode if virtual enough

e.q. top quark, Z boson and even graviton 
Higgsplodes

• As all virtual particles Higgsplode, virtual corrections are regulated by 
higgspersing propagators

depend on the RG scale µ are then obtained in the standard way from computing the

n-point one-particle irreducible LSZ-amputated Green functions Gn. These computations

are performed order by order in the loop expansion, with the only di↵erence from the usual

approach that one is required to use the dressed propagators (2.6) on all internal lines. The

leading order one-loop contributions to the 3-point and the n-point vertices are shown in

Fig. 5.

... ...
Figure 5: One loop contributions to the three-point (left) and n-point (right) Green functions.
The grey blobs represent dressed propagators and the black dots are the microscopic 3- and 4-point
interaction vertices.

This way of computing quantum e↵ects in a Higgsploding QFT leads to a powerful

conclusion that all momenta of virtual particles propagating in the loops are e↵ectively

cut o↵ at the Higgsplosion scale E⇤. Integrations over the loop momenta are convergent,

all the contributions to the n-point functions are UV finite and quantum fluctuations are

damped above E⇤.

There is an interesting parallel between this approach and Polchinski’s implementation

of the Wilson approach to renormalization [19, 20] presented in Ref. [21] for a massive �
4

theory. In the construction of [21] the UV cut-o↵ is implemented by multiplying the

propagators by a formfactor K(p2/⇤2
0) which is equal to 1 for momenta p

2  ⇤2
0 and

rapidly vanishes for p2 > ⇤2
0. What defines the theory with the (large) UV cut o↵ ⇤0 is the

Lagrangian with the modified propagator and bare vertices. When the cut o↵ is lowered

from ⇤0 to ⇤R, one is required to integrate out the high momentum components of the

field. This is implemented by changing the formfactor in the propagator to K(p2/⇤2
R) and

integrating out the modes with p
2
> ⇤2

R. This generates new e↵ective interactions and

expresses them in terms of the couplings at the scale ⇤R. The analogy of our method

for computing the n-point functions with the approach of [21] is that the theory with a

large UV cut o↵ is defined by the modified propagators and bare vertices. The momentum

modes above the cut-o↵ are switched o↵ in both cases simply by the fact that the modified

propagators vanish. In the case of Higgsplosion, what we referred to as the large UV cut

o↵ is the dynamically generated Higgsplosion scale E⇤, and the original propagators are

modified by the self-energy ⌃(p2) contributions (2.3). The theory with momenta above the

Higgsplosion scale is the theory above the UV cut-o↵; its propagators vanish so it has has

no propagating degrees of freedom left, but its vertices are the usual bare vertices fixed at

the scale E⇤. There are no quantum fluctuations and no running above the scale E⇤.

– 19 –



• As all loop-diagrams are regulated, i.e. quantum fluctuations are exponentially 
suppressed, the Standard Model develops an asymptotic fixed point. 

• SM is embedded into asymptotically safe theory

Classical/Deterministic theory 

Any highly virtual or a very heavy particle 
rapidly decays into a large number of 
relatively soft Higgs bosons. A composite state.

Consequences of Higgsplosion

Above higgsplosion scale, quantum fluctuations 
are damped

coupling constants stop running above the 
higgsplosion scale



Consequences of Higgsplosion

• SM has new physical scale
(close analogy to Sphaleron)

Now, assuming that the coe�cient in front of the logarithmic term in " in (2.46) is

positive, i.e. 0 < p < 2/3, the exponent is negative at small ñ, positive at large ñ and

crosses zero at some value ñ⇤. For example, for p = 1/2 and a = 1, which corresponds to

the NLO correction � a " ñ p = � "
p
ñ, the value of ñ⇤ ' 5.55.

In the alternative scenario, where the coe�cient in front of the logarithm is negative,

for example at p = 1, the function in the exponent of (2.46) has a more complicated

behaviour with a local minimum at intermediate values of ñ. Nevertheless at larger ñ, the

function is again monotonic and crosses over from negative to positive values at ñ⇤ ' 7.2.

It then follows that the value of Ẽ⇤ = (1 + "?)n⇤ ' ñ⇤ := C = const. As a result,

we can write the Higgsplosion scale E⇤ as,

E⇤ = C
mh

�
. (2.48)

It is also easy to verify that this conclusion is consistent within the validity of the non-

relativistic limit.

The parametric dependence of the Higgsplosion energy E⇤ on the particle mass and

the inverse coupling constant is reminiscent of another famous dynamically induced scale

in the electroweak theory – the mass of the sphaleron solution [3, 4], Msph = const mW
↵w

.

Both scales are non-perturbative and semi-classical in nature. They do not appear in the

Lagrangian of the theory, but rather characterise the energy scale where the transition to

novel dynamics involving multi-particle states occurs.4 The sphaleron, however, does not

occur in the pure scalar sector of the theory and requires the SU(2) gauge theory in the

Higgs phase.

3 Systematics of loops with Higgsplosion

3.1 Computing a loop with the propagator in the classical background

We will start by considering the scalar field theory (2.1) with unbroken Z2 symmetry, and

postpone the discussion of the broken theory (2.2) to Section 3.3. As we have already

explained, the generating functional for all tree-level amplitudes on n-particle thresholds

is given in this model by the classical solution (2.26).

The aim of this section is to compute the leading-order quantum corrections to these

amplitudes in the case where a non-trivial finite Higgsplosion scale E⇤ is present. The

leading order calculation (in the absence of Higgsplosion) was performed in [9], extended

to the spontaneously broken theory in [10], and generalised in [8] to include all higher-loop

e↵ects by exponentiation to the leading order in �n.

We begin by following closely the original leading-loop calculation of Voloshin in [9],

and then explain how it should be modified to reflect the appearance of the Higgsplosion

4In the case of sphalerons, the new dynamics is that of the non-perturbative (B+L)-violating transitions

between multi-particle initial and final states.
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we can write the Higgsplosion scale E⇤ as,

E⇤ = C
mh

�
. (2.48)

It is also easy to verify that this conclusion is consistent within the validity of the non-

relativistic limit.

The parametric dependence of the Higgsplosion energy E⇤ on the particle mass and

the inverse coupling constant is reminiscent of another famous dynamically induced scale

in the electroweak theory – the mass of the sphaleron solution [3, 4], Msph = const mW
↵w

.

Both scales are non-perturbative and semi-classical in nature. They do not appear in the

Lagrangian of the theory, but rather characterise the energy scale where the transition to

novel dynamics involving multi-particle states occurs.4 The sphaleron, however, does not

occur in the pure scalar sector of the theory and requires the SU(2) gauge theory in the

Higgs phase.

3 Systematics of loops with Higgsplosion

3.1 Computing a loop with the propagator in the classical background

We will start by considering the scalar field theory (2.1) with unbroken Z2 symmetry, and
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We begin by following closely the original leading-loop calculation of Voloshin in [9],

and then explain how it should be modified to reflect the appearance of the Higgsplosion

4In the case of sphalerons, the new dynamics is that of the non-perturbative (B+L)-violating transitions

between multi-particle initial and final states.
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�(x) := h0|T (�(x)�(0))|0i ⇠

8
>><

>>:

m2 e�m|x| : for |x| � 1/m

1/|x|2 : for 1/E⇤ ⌧ |x| ⌧ 1/m

E2
⇤ : for |x| . 1/E⇤

, (1.1)

where for |x| . 1/E⇤ one enters the Higgsplosion regime.

In the simplest settings described by a quantum field theory of a massive scalar field

� with mass m and coupling �, we show in Section 2 how Eq. 1.1 is linked to the growing

multi-particle decay rates. Furthermore, we show that the Higgsplosion energy scale is set

by E⇤ = C m
� , where C is a model-dependent constant of O(100). This expression holds

in the weak-coupling limit � ! 0. In this respect, it resembles the SU(2) sphaleron, which

has a mass scale of Msph = const mW
↵w

[3, 4]. However, while the sphaleron is a phenomenon

of the non-Abelian gauge-Higgs sector of the Standard Model, Higgsplosion arises due to

its scalar sector only.

The fundamental ingredient for the theory is the value of the Higgsplosion scale E⇤. It

is the scale where the rate for the process 1⇤ ! n⇥h grows exponentially for large enough n.

The factorial growth of the rate has been calculated before at leading order [5–8], one-loop

resummed [8–11], or using a semiclassical approach [12–14]. However, Higgsplosion itself

has not been taken into account in those calculations. Thus, in Section 3, we extend their

approach by including Higgsplosion, and, for the first time, calculate the loop-corrected

rates in a self-consistent way.

After the Higgsplosion scale E⇤ is established we can evaluate its phenomenological

impact on precision observables, such as gg ! h(⇤), h ! ��, h ! Z�, B ! Xs� or

g � 2. We calculate these precision observables explicitly in Section 4, and conclude with

a discussion of our findings in Section 5.

2 The propagator and Higgsplosion basics

2.1 The Dyson propagator

In the introduction we pointed out that the central object in a theory with Higgsplosion is

the propagator (1.1), and that Higgsplosion manifests itself in resolving the short-distance

singularity at x2  1/E2
⇤ , where E⇤ is the characteristic (high-)energy scale of Higgsplosion.

To explain what we mean by this and how the e↵ect of Higgsplosion modifies the familiar

structure of the propagator, it is worthwhile first to summarise the basic elements and the

interplay between the propagator for a massive scalar field �, its self-energy ⌃(p2), and the

partial width �n(p2). This is the aim of this section.

Our technical discussion in this and the following section will be for a quantum field

theory of a single massive scalar degree of freedom. The specific models we consider are

the �4 theory with the unbroken Z2 symmetry,

L =
1

2
@µ�@µ� � 1

2
m2

0 �
2 � �

4
�4 , (2.1)
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for one enters the Higgsplosion regime 

Scaling behaviour of propagator: 

Propagator with Higgspersion 
i

s⇤ �m2
h � Re⌃̃(s⇤) + imh�(s⇤)



• The n! growth of perturbative amplitudes is not entirely surprising: the number of 
contributing Feynman diagrams is known to grow factorially with n. [In scalar QFT 
there are no partial cancellations between individual diagrams (unlike QCD).] 

• Important to distinguish between the two types of large-n corrections: 

• (a) present case where the leading-order tree-level contribution to the 1*->n Amplitude 
grows factorially with the particle multiplicity n of the final state.  

• (b) higher-order perturbative corrections to some leading-order quantities
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Extra slides 
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Contrast asymptotic growth of higher-order corrections in  
perturbation theory with the ~n! contributions to Gamma_n(s)

Not the same types of beasts

It is the decay width Gamma_n(s) which is the central object of interest 
and the driving force of Higgsplosion.


