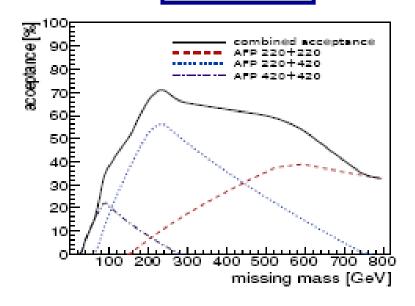
WORKSHOP ON QCD AND DIFFRACTION AT THE LHC:

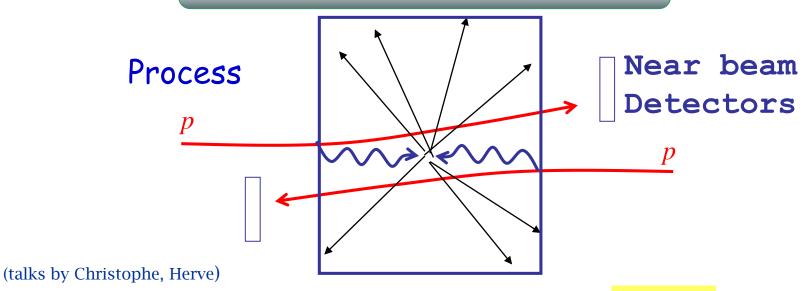
CRACOW POLAND November 28-29-30 2011

QCD issues through the eyes of AFP220 (selected topics)



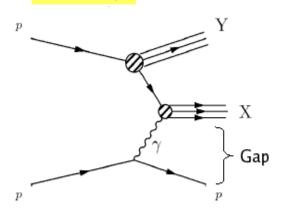
V.A. Khoze (IPPP,Durham)

(special thanks to Misha Ryskin and Andy Pilkington for discussions)


- AFP220: possibility to work with the nominal lumi at 14 TeV as well as in the low-lumi runs. Important advantage- Fast Timing.
- Physics program, in particular for minimum-bias studies can start at 7TeV with ALFA (or Totem+CMS). Importance, especially for normalization purposes.
- Comparison of min-bias events with and without proton detectors on.

(250Hz→1Hz)

1. LHC as a High Energy photon-photon Collider


Extensive Program

- • $\gamma \gamma \rightarrow \mu \mu$, ee QED processes
- • $\gamma \gamma \rightarrow QCD$ (jets..)
- • $\gamma \gamma \rightarrow WW$ anomalous couplings
- • $\gamma \gamma \rightarrow squark$, top... pairs
- • $\gamma \gamma \rightarrow BSM Higgs$
- • $\gamma \gamma \rightarrow Charginos$

(accounting for the LHC exclusion zones)

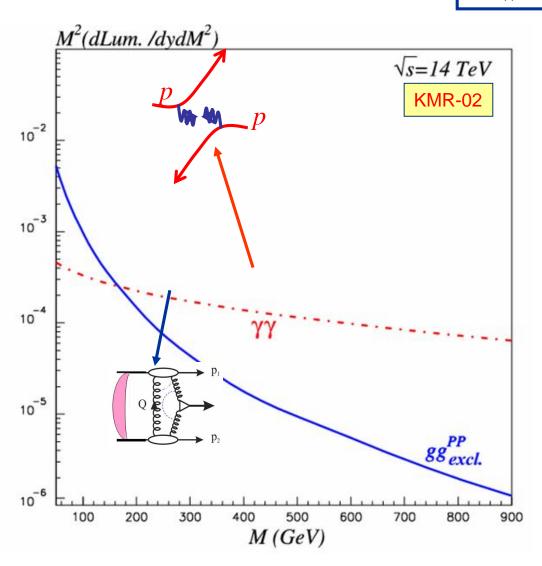
Maybe photon-proton collider @ LHC

LHC as a High Energy $\gamma\gamma$ Collider

$$\sigma = \mathcal{L}(M^2, y) \hat{\sigma}(M^2),$$

$$M^2 \frac{\partial \mathcal{L}^{(i)}}{\partial y \, \partial M^2} = \hat{S}^{2(i)} L^{(i)}$$

 $(S^2)\gamma\gamma = 0.86$

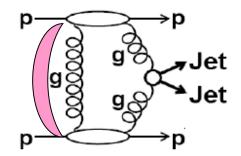

$$\sigma(\gamma\gamma \to SMH) \approx 0.1 fb$$

$$\sigma(PP - > SMH) \approx 3 fb$$

$$\alpha_s^2/8 \rightarrow \alpha^2$$

QCD 'radiation damage' in action

QCD Sudakov Formfactor

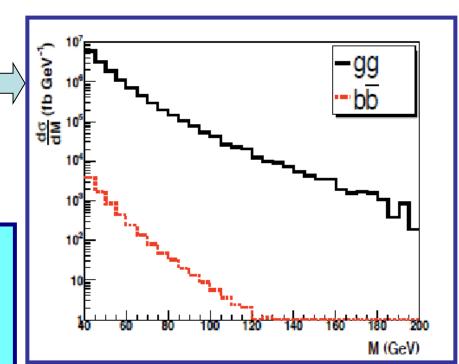


2. High Intensity Gluon Factory

(underrated un-biased gluons)

- (~20 M q-jets vs 417 glue-jets at LEP)
- CDF and DO each have a few exclusive JJ events > 100 GeV
- Strong suppression of b-jet CEP production- confimed by CDF

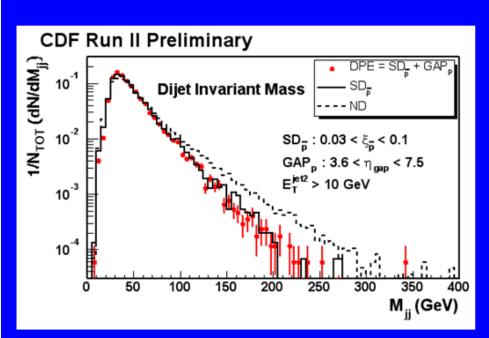
KMR-00, 01

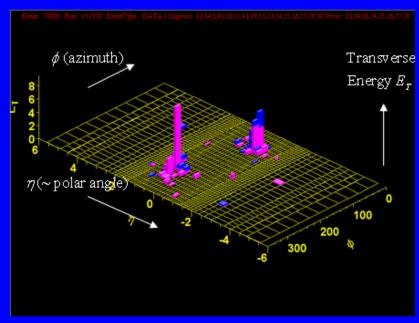


Prediction of ExHuME: 14 TeV, $|\eta| < 3$

For illustrative purposes only, (factor about 8 down)

FPMC


Unique possibility for a comprehensive study of the gluon jet properties in the extremely clean environment (hadron spectra/correlations, particle content, maybe even searches for glueballs...)



Double Pomeron Exchange Di-Jets in CDF

Jet <ET> spectra ~ same in SD and DPE

"Almost" exclusive di-jet,

No pile-up essential; low-L (at LHC if both p detected, some PU allowed)

Today PU is a very serious issue!
Special efforts are needed!

 $M_{\scriptscriptstyle CEN}$

Simplified conservative formula:

$$d\sigma_{jj}/dM \simeq 1.2(300 GeV/M)^6 fb/GeV$$

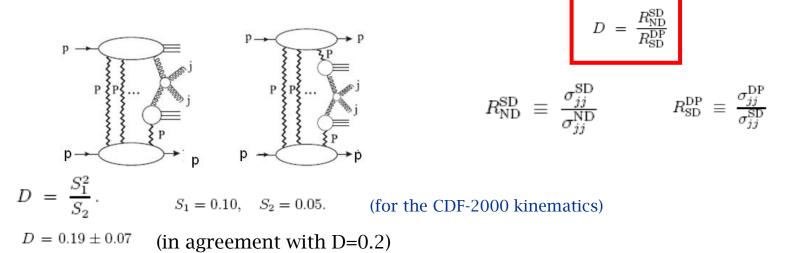
Extra factor of 2 (up)?

With $\Delta M = 20(50) \text{GeV}$ for M=300 GeV at $100 fb^{-1}$ we expect: About 2500 (5000) events.

Tests of various basic ingredients: Sudakov effects, pdfs, absorption, enhanced screenning....

Experimental issues

Fast Timing Detectors (FTD) could allow to diminish PUs.: 'Exclusive trigger' + kinematic matching similar to that discussed by A. Pilkington et al ATLAS_DAQ_PUB-2009-006 and in JHEP 0905:011,2009.


In principle, protons can be used at the level 1 trigger (now it is 220m not 420m!).

3. Dijet production in the events with one and two gaps

Is suppression universal?

Detailed probe of factorization breaking in diffractive processes.

(Within the multi-Pomeron exchange approach the suppression factors are not universal in different diffractive processes- KKMR, Phys.Lett.B559:235-238,2003)

■ In the low-lumi runs for moderate jet E_T (up to~ 50GeV) we can hope to measure jets in the central detector and to have timing with both protons.

4. Proton momentum-correlations: opacity scanner

- High sensitivity to the parameters of the soft model.
- Low sensitivity to the pdfs and Sudakov effects. We do not need very high p_T jets.
- Sufficient to measure a signal from proton detectors +jets (or leptons from W/Z, charm, b..)
- Signal (jet, muon...) in the central detector + timing with both protons.

Rich diffractive structure of the cross sections as a function of proton momenta

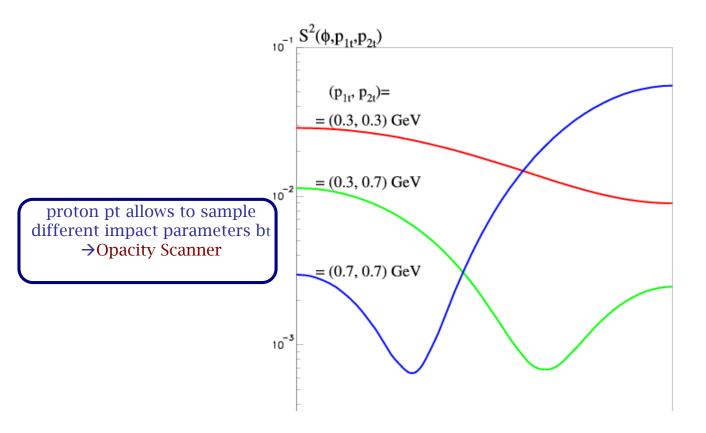


Figure 3: The dependence of the survival probability, S^2 , of the rapidity gaps on the azimuthal between the transverse momenta \vec{p}_{it} of the forward going protons in the process $pp \to p + M + p$, for typical values of p_{1t} and p_{2t} .

5. SOFT QCD (MIN MIAS) STUDIES

Main aim: to illuminate our understanding of of multiparticle production.

(Alan's talk)

- Detailed comparison of the event structure/correlations... in the Pomeron-Pomeron and Pomeron-proton and pp-collisions.
- Probes of the Pomeron (transverse) size and of the size of the triple (multi)-Pomeron vertex.
- Special (low –lumi) runs with a standard min-bias trigger +2 protons on level 1. (Recall: event rate is high!)
 Use of MCS tuned to the LHC min-bias date. if no data available?
 Smooth variation of the effective energy $s_{pp} = M^2_{pp}$

KMR studies: Acta Phys. Polon. B40, 1841 (2009), Eur.Phys.J.C71:1617,2011

Particle distributions, content, correlations (at the same effective energy)

$$dN_{ch}/d\eta$$
, $dNi/d\eta$, dN_{ch}/dp_t , dNi/dp_t ($i = \pi, K, p, \eta, \phi...$)

In the PP collisions we expect: •possible higher yield of η , η' ,....glueballs;

- larger p_T of secondaries near the edge of a LRG)
- smaller (by a factor of~ 2) radius of BEC.

Probability of double (multi) parton interactions in PP as compared to pp collisions.

For instance, 2 pairs of dijets with moderate PT (could expect to be higher?).

$$\int d\sigma_{DPE} / d\xi_1 d\xi_2 \sim (10 - 30) \mu b$$

$$0.02 < \xi_{12} < 0.2$$

First encouraging results from TOTEM:

- •Central mass distribution: (2010, RPs+T2) with 3.m optics
- Double arm coincidence data (Oct. 2011) 90m optics.

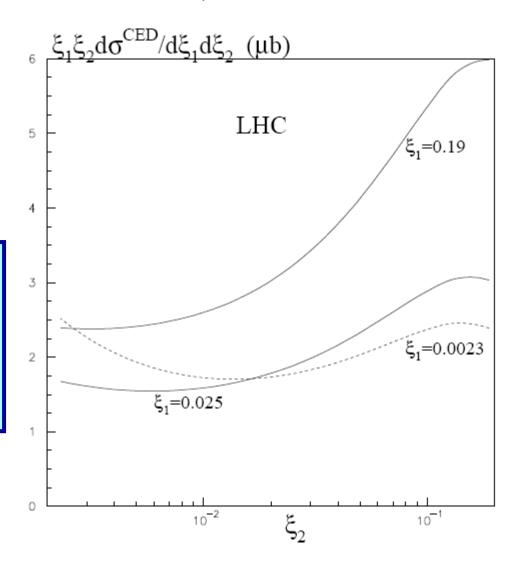


Figure 12: Sample predictions for Central Exclusive Diffractive production at the LHC. The ξ_i 's are the momentum fractions of the incoming protons transferred across the rapidity gaps on either side of the centrally produced system of mass $M = \sqrt{\xi_1 \xi_2 s}$.

AFD220 Physics Program

A lot of further theoretical & experimental studies needed

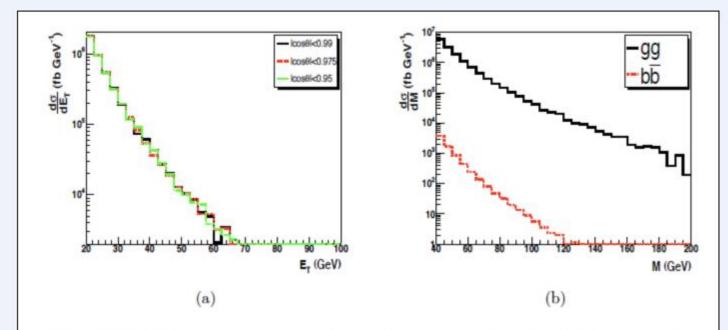
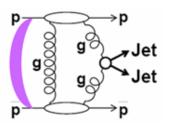



Figure 4.10: The transverse energy distribution dependence of the gg final state on the $\cos\theta$ (CM) cut for central exclusive masses in the range $40 \le M \le 400$ (a). Figure (b) shows the mass distribution for both the gg and $b\bar{b}$ subprocesses with a $|\cos\theta| < 0.95$ cut imposed for comparative purposes.

Exclusive dijet Monitor & Interferometer

- CEP of diphotons (rate permitting) would provide an excellent combined test at M>10-20 GeV (better accuracy!)
- Dijet rate- combined effect of all basic ingredients (Surviv, Sudakov, pdfs, Enhanc. Absp) (Eτ > 10 GeV)
- ET-dependence -dominantly Sudakov (+anom dimens), weaker dependence on S². At low ET- higher sensitivity to the Enhanced Absorption
- When having the proton detectors operational Correlations between proton transverse momenta, azimuthal distribts Practically insensitive to pdfs and Sudakov effects. High sensitivity to soft model parameters. Proton opacity scanner (KMR-02, also Kupco et al-05, Petrov et al -05)
- Comparing dijet signals in different rapidity intervals & pt → study of Sudakov suppression

Advantages

• Comparatively high rate (3) orders of magnitude higher than for the Higgs at the same Et).

$$\sigma_{ii}^{DPE}(E_T > 20 GeV) \sim 10 nb, \quad \sigma(DPE) \sim 1 - 10 \mu b$$

 Possibility to separate different effects and to restrict different uncertainties by studying the same process