Decoding the identity of the dark matter from Milky Way data

Carlos S. Frenk Institute for Computational Cosmology, Durham

Non-baryonic dark matter candidates

Туре	example	mass
hot	neutrino	a few eV
warm		keV-MeV
cold	axion neutralino	10 ⁻⁵ eV - 100 GeV

The dark matter power spectrum

Supercomputer simulations are the best technique for calculating how small primordial perturbations grow into galaxies today

t=14.1billion yrs $\delta\rho/\rho \sim 1-10^6$

Non-baryonic dark matter cosmologies

Neutrino DM → unrealistic clust'ing

Neutrinos cannot make appreciable contribution to Ω $\rightarrow m_v << 10 \text{ ev}$

Non-baryonic dark matter cosmologies

Neutrino DM → unrealistic clust'ing

Neutrinos cannot make appreciable contribution to Ω $\rightarrow m_v << 10 \text{ ev}$

Early CDM N-body simulations gave promising results

In CDM structure forms hierarchically

Non-baryonic dark matter candidates

The cosmic power spectrum: from the CMB to the 2dFGRS

⇒ ACDM provides an excellent description of mass power spectrum from 10-1000 Mpc Sanchez et al 06

The cosmic power spectrum: from the CMB to the 2dFGRS

Free streaming \rightarrow

 $\lambda_{cut} \alpha m_x^{-1}$

for thermal relic

 $m_{CDM} \sim 100 \text{GeV}$ $susy; M_{cut} \sim 10^{-6} \text{ M}_{o}$ $m_{WDM} \sim \text{few keV}$ $sterile v; M_{cut} \sim 10^9 \text{ M}_{o}$

Astrophysical key to identity of dark matter:

Subgalactic scales
(strongly non-linear)

z = 48.4

T = 0.05 Gyr

Cold Dark Matter

Warm Dark Matter

13.4 billion years ago

cold dark matter

warm dark matter

Lovell, Eke, Frenk, Gao, Jenkins, Wang, White, Theuns, Boyarski & Ruchayskiy '12

Warm DM: different v mass

Lovell et al '13

Warm DM: different v mass

z=3

Simulations make 2 important predictions on galactic scales:

Cold dark matter

Large number of self-bound substructures (10% of mass) survive

•The main halo and its subhalos have "cuspy" density profiles

Warm dark matter

Far fewer self-bound substructures (5% of mass) survive

 Main halo profile identical to CDM; subhalos still "cuspy" but less concentrated than in CDM

The structure of the Milky Way satellites

GM V_{c}

 $V_{\rm max} = \max V_c$

Strigari, Frenk & White 2010

How can we distinguish between CDM & WDM ?

- The number of satellites (the "satellite problem")
- The structure of satellites (the "too-big-to-fail" problem)

The satellites of the Milky Way

~25 satellites known in the MW

CDM simulations produce >10⁵ subhalos

~25 satellites known in the MW

Making a galaxy in a small halo is hard because:

- Early reionization heats gas above T_{vir}
- Supernovae feedback expels gas

Most subhalos never make a galaxy!

Luminosity Function of Local Group Satellites

- Median model → correct abund. of sats brighter than M_v=-9 and V_{cir} > 12 km/s
- Model predicts many, as yet undiscovered, faint satellites
- LMC/SMC should be rare (~2% of cases)

Benson, Frenk, Lacey, Baugh & Cole '02 (see also Kauffman etal '93, Bullock etal '01)

Luminosity Function of Local Group Satellites

 Median model → correct abund. of sats brighter than M_v=-9 and V_{cir} > 12 km/s

 Model predicts many, as yet undiscovered, faint satellites

 LMC/SMC should be rare (~2% of cases)

Koposov et al 08 2 (SDSS) galaxy central log dN/dMv (per 1 1 0 25-75% LG data 10-90% -95% 0-100% Mateo (1998) -2 -10 -15-20-5 M_v

Benson, Frenk, Lacey, Baugh & Cole '02 (see also Kauffman etal '93, Bullock etal '01)

- The number of satellites (the "satellite problem")
- The structure of satellites (the "too-big-to-fail" problem)

MW has only 3 very massive satellites ($V_{max} > 30$ km/s $\rightarrow M_{sat} > 0.01 M_{MW}$) \rightarrow LMC, SMC, Sag

This CDM example ($M_{halo} = 2 \times 10^{12} M_{o}$) has 10 massive satellites with $V_{max} > 30$ km/s

Rotation curves of Aquarius subhalos

Boylan-Kolchin et al. '11

Number of massive subhalos

Number of massive subhalos increases rapidly with halo mass

Milky Way halo mass cannot be too large if CDM is right!

Probability of massive subhalos

Probability of having no more than 3 subhalos with V_{max}> 30 km/s

Depends strongly on M_{200} (and V_{cut})

If mass of MW halo >2x10¹²M_o pure CDM is ruled out CDM requires M_{halo}< 1.5x10¹²M_o (95% confidence)

Wang, Frenk, Navarro, Gao '12

The number of satellites (the "satellite problem")

The structure of satellites (the "too-big-to-fail" problem)

How about WDM?

The number of satellites (the "satellite problem")

The structure of satellites (the "too-big-to-fail" problem)

How about WDM?

Tests of the nature of the DM

cold dark matter

warm dark matter

Lovell, Eke, Frenk, Gao, Jenkins, Wang, White, Theuns, Boyarski & Ruchayskiy '12

Luminosity Function of Local Group Satellites in WDM

No of sats **7** with:

- host halo mass
- WDM particle mass

Kennedy, Cole & Frenk '13

Luminosity Function of Local Group Satellites in WDM

No of sats **7** with:

- host halo mass
- WDM particle mass

Kennedy, Cole & Frenk '13

Limits on WDM particle mass

For given m_{wdm} model must predict at least observed no of sats

Iower limit on m_{wdm}

Limits on WDM particle mass

Minimum halo mass consistent (95%) with observed no. of sats for given m_{WDM}

For standard galaxy formation model, WDM ruled out if M_{halo}<1.1x10¹² M_o

Kennedy, Cole & Frenk '13

- − Li & White → $M_{200} = 2.4 \times 10^{12} M_o$; $M_{200} > 8 \times 10^{11} M_o$ at 95% CL
- − Guo et al → $8 \times 10^{11} M_0 < M_{200} < 4.7 \times 10^{12} M_0$
- Deason et al \rightarrow 5×10¹¹ M_o < M_{150kpc} < 1×10¹² M_o
- Xue et al \rightarrow 8×10¹¹ M_o < M₁₀₀ < 1.3×10¹² M_o
- Battaglia et al \rightarrow 6×10¹¹ M_o < M₁₀₀ < 3×10¹² M_o

Constraints on CDM & WDM from the Milky Way satellites

With our standard assumptions: at 95% confidence

Cold dark matter :

Unless baryon effects are important

Ruled out unless $M_{halo} < 1.5 \times 10^{12} M_{o}$

(from abundance of massive satellites)

Warm dark matter :

Ruled out unless $M_{halo} > 1.2 \times 10^{12} M_{o}$

(from abundance of satellites)

From X-ray decay limit, for resonantly produced sterile vs \rightarrow need m_{WDM} < 5keV and M_{halo} > 1.4 x 10¹²M_o

The cores of dwarf galaxy haloes

Julio F. Navarro,^{1,2*} Vincent R. Eke² and Carlos S. Frenk²

¹Steward Observatory, The University of Arizona, Tucson, AZ 85721, USA ²Physics Department, University of Durham, South Road, Durham DH1 3LE

Accepted 1996 September 2. Received 1996 August 28; in original form 1996 June 26

ABSTRACT

We use N-body simulations to examine the effects of mass outflows on the density profiles of cold dark matter (CDM) haloes surrounding dwarf galaxies. In particular, we investigate the consequences of supernova-driven winds that expel a large fraction of the baryonic component from a dwarf galaxy disc after a vigorous episode of star formation. We show that this sudden loss of mass leads to the formation of a core in the dark matter density profile, although the original halo is modelled by a coreless (Hernquist) profile. The core radius thus created is a sensitive function of the mass and radius of the baryonic disc being blown up. The loss of a disc with mass and size consistent with primordial nucleosynthesis constraints and angular momentum considerations imprints a core radius that is only a small fraction of the original scalelength of the halo. These small perturbations are, however, enough to reconcile the rotation curves of dwarf irregulars with the density profiles of haloes formed in the standard CDM scenario.

Baryon effects in the MW satellites

University of Durham

Let baryons cool and condense to the galactic centre

Rapid ejection of large fraction of gas during starburst can lead to a core in the halo dark matter density profile

Navarro, Eke, Frenk '96

Governato et al. '12 Pontzen & Governato '12 Brooks et al. '12

Abundance and kinematics of MW sats set strong constraints on nature of dark matter

Key properties of sat system: - Abundance of most massive sats

Model	Sat Lum Fn	Massive sats	Comments
CDM	OK	M _{halo} <1.5x10 ¹² M _o	Unless baryon effects reduce central density
WDM	M _{halo} > 1.2x10 ¹² M _o	OK	+ X-ray constraint M _{halo} > 1.5x10 ¹² M _o m _x < 5keV