Others

Review of direct dark matter searches

Teresa Marrodán Undagoitia

marrodan@mpi-hd.mpg.de

MPIK

Invisibles Workshop, Durham, July 2013

Introduction

Rate modulation

Bolometers

Others

Dark matter searches

Indirect detection

Direct detection

Production at LHC

 $\chi\chi
ightarrow e^+e^-$, $p\overline{p}$

 $\chi N \rightarrow \chi N$

 $p + p \rightarrow \chi + a lot$

Direct dark matter detection

 $\begin{array}{l} \mbox{Detection via elastic scattering off} \\ \mbox{nuclei} \rightarrow \mbox{nuclear recoils by WIMPs} \\ \mbox{electrons} \rightarrow \mbox{electronic recoils by light particles} \\ \mbox{(axion)} \end{array}$

Detector requirements and signatures

- Requirements for a dark matter detector
 - Large detector mass
 - Low energy threshold \sim few keV's
 - Very low background and/or background discrimination
- Possible signatures of dark matter
- Annual modulated rate
- Directional dependance

 Nuclear recoil with exponential spectral shape

Result of a direct detection experiment

→ Statistical significance of signal over expected background?

- Positive signal
 - Region in σ_{χ} versus m_{χ}
- Zero signal
 - Exclusion of a parameter region
 - o Low WIMP masses: detector threshold matters
 - o Minimum of the curve: depends on target nuclei
 - o High WIMP masses: exposure matters

 $\epsilon = m \times t$

Background sources

- Natural **U**, **Th** chains and ⁴⁰K
 - Electronic recoils: β 's and γ 's
 - α's: high energy but still BG in some experiments
- Neutrons \rightarrow nuclear recoils
 - (α, n) reactions and spontaneous fission
 - From muon showers after a spallation process
- Rn and ⁸⁵Kr
 - Rn emanation from various detector materials
 - Kr from the air (⁸⁵Kr produced at nuclear power plants)

\rightarrow Background suppression/removal

- Material screening and selection
- Removal of Kr or Rn with dedicated devices
- Shielding (underground lab, detector shield, active veto)

Others

Underground laboratories

Rate modulation

Bolometers

Noble gases

Others

Direct detection experiments

Only some of these experiments will be discussed in the next slides!

Introduction

Rate modulation

Bolometers

Noble gases

Others

DAMA annual modulation

- Ultra radio-pure Nal crystals
- Annual modulation of the background rate in the energy region (2 – 5) keV 8.9 σ significance!
- No discrimination of ER from NR

R. Bernabei et al., Eur. Phys. J. C67, 39 (2010)

Others

Tests of annual modulation

- KIMS @ Yangyan Lab in Corea
- Csl crystals to test of annual modulation (scatters off lodine)

DM-Ice @ south Pole with 17 kg Nal running since June 2011

Others

The CoGeNT experiment

- Ge detector with 0.4 keV threshold
- No discrimination ER/NR
- Excess of events at low energies and annual modulation of the rate CoGeNT, Phys. Rev. Lett. 106 131301 (2011)

Tests with Ge detectors: **CDEX** @ China and **TEXONO** @ Taiwan

Working principles of bolometers

 Cryogenic crystals operated at a few mK!

- → Measure full energy in the phonon channel
 - Charge/light and phonon signals are measured

Excellent discrimination on the charge/phonon ratio but surface events reduce acceptance significantly

Noble gases

Others

CDMS and Edelweiss experiments

 Combined analysis by CDMS and Edelweiss

Z. Ahmed et al., Phys. Rev. D. 84, 011102 (2011)

 Low energy threshold analysis 2 keV for CDMS

CDMS, Phys. Rev. Lett. 106, 131302 (2011)

5 keV for Edelweiss

Edelweiss, Phys. Rev. D 86, 051701 (2012)

Others

Recent CDMS Si results

CDMS Si results from April 15th 140 kg-day exposure 3 events detected (0.7 expected) CDMS, arXiv: 1304.4279 Likelihood analysis: 0.19% probability for the knownbackground-only hypothesis Best fit at 1.9×10^{-41} cm² at 8.6 GeV/ c^2 WIMP mass

Super-CDMS: 10 kg @Soudan and plan to have 200 kg @SNOlab Dedicated run @Soudan charge read-out only, $E_{th} \sim 0.1 \text{ keV}$

Noble gases

Others

The CRESST experiment

- Scintillating CaWO₄ crystals
- 730 kg-day exposure
- 67 events detected (25 expected)

Maximum likelihood analysis: 4 σ that BG can not explain the data CRESST, Eur. Phys. J. C 72, 4 (2012)

New run with reduced background started this year

→ **EURECA** at Modane: future ton-scale experiment together with Edelweiss, detector R&D on-going

Advantages of liquid noble gases for DM searches

- Large masses and homogeneous targets (LNe, LAr & LXe)
- 3D vertex reconstruction
 - Using light pattern in the PMTs for single phase (a few cm)
 - Resolution of a few mm in TPC mode
- Discrimination: Charge to light ratio and pulse shape
- Very different singlet and triplet lifetimes in argon & neon
- Relative amplitudes depend on particle type → discrimination
 WARP obtained 3 × 10⁻⁷ discrimination in LAr above 35 PE (70% acceptance)
 - \rightarrow PSD not very powerful in LXe (similar decay constants)

Two phase noble gas TPC

→ Electronic/nuclear recoil discrimination

- Scintillation signal (S1)
- Proportional signal (S2)

Next LAr detectors

Dark Side-50 at LNGS in Italy

- Two phase TPC: 50 kg active mass (33 kg FV)
- Depleted argon to reduce ³⁹Ar background
- Currently commissioning the LAr detector
 - \rightarrow first light and charge signals observed
- Physics run expected for fall 2013

DEAP - Dark matter Experiment with Argon and Pulse shape discrimination

- 3 600 kg LAr in single phase at SNOlab
- Aim to use depleted argon
- Status: in construction
- * Also CLEAN detector (LAr or LNe) at SNOLab

Cross section of the DEAP-3600 detector.

XMASS experiment

- \rightarrow Search for dark matter
- → Solar neutrinos
- \rightarrow Double beta decay of ¹³⁶Xe

- 800 kg of LXe in single phase (self-shielding)
- 1st DM run \rightarrow unexpected BG from PMTs found
- Detector refurbished, resume data-taking this summer

Run with high light yield of 14.7 PE/keVee $E_{th} = 0.3 \text{ keV}_{ee}$

Search for solar axions published recently arXiv:1212.6153

The XENON100 experiment

At LNGS lab (Italy) Instrument paper: Astropart. Phys. 35 (2012) 573

- 30 cm drift length and 30 cm \varnothing
- 161 kg total (30-50 kg fiducial volume)
- Material screening and selection
- Active liquid xenon veto
- $\sim 100x$ less background than XENON10
- Bottom PMTs: high quantum efficiency

Bottom PMT array

Top PMT array

Results from 225 live days data (2012)

- Background expectation in the benchmark region: (1.0±0.2) events
- Exclusion limit derived using profile likelihood method

XENON100, Phys. Rev. Lett. 109 (2012) 181301

Others

How would CDMS signal look in XENON100?

MC simulation of neutron source

XENON100, arXiv:1304.1427

- Good overall agreement!. Best fit L_{eff} matches previous measurements
- Poor agreement below 2 PE: unknown efficiencies below E_{th}
- Best fit of source strength: 159 n/s
- Source strength measurement (PTB): $(160 \pm 4) \text{ n/s}$
- → Results of XENON100 remain unchanged using this L_{eff}

Spin-dependent XENON100 results

- Spin-dependent best sensitivity for neutron coupling: 3.5×10^{-40} cm² at 45 GeV/ c^2 WIMP mass
- Isotopes with a non zero nuclear spin (¹²⁹Xe & ¹³¹Xe)
- State of the art calculations of form factors used (Menendez *et al.*) XENON100, Phys. Rev. Lett. 111, 021301 (2013)

Rate modulation in XENON100

XENON100: lowest background level of all DM detectors Knowledge on the ER energy scale and detector threshold required

- Light yield decreases at 0-field below 50 keV
- Field quenching ~ 75% at low energies
- Derived XENON100 threshold: 2.3 keV → sensitive to DAMA signal! Aprile *et al.*, Phys. Rev. D 86, 112004 (2012) and Baudis *et al.*, Phys. Rev. D 87, 115015 (2013)

Noble gases

Others

The XENON1T experiment

- More than 3 ton total mass (> 1 ton fiducial mass)
- 1 m drift length TPC
- 100× less background than XENON100
- Sensitivity at $\sigma \sim 10^{-47} \, \mathrm{cm}^2$

XENON1T construction @LNGS (Italy)

• Construction started June 2013!

Commissioning by end 2014

LUX experiment

LUX - Large Underground Xenon detector

- $\sim 100 \, \text{kg}$ fiducial mass (350 kg total)
- Two arrays of 61 PMTs
- First calibration above ground:

8 PE/keV at 0-field LUX, Astrop. Phys, 45, 34 (2013)

- Status 2013: running underground
 - Detector full, purifying LXe and calibrating
 - Science run 300 d, goal $2\times 10^{-46}\,\text{cm}^2$

July 2012+

Rate modulation

Bolometers

ZEPLIN and the planned LZ experiment

- Until 2011 at Boulbi mine
- 12 kg target mass (\sim 30 cm \varnothing)
- 3.5 cm drift depth
 - \rightarrow high E-field 3.9 kV per cm

ZEPLIN-III, Phys. Lett. B 709: 14 (2012)

- LZ: LUX ZEPLIN collaboration
- Current design: 7 tonnes LXe
- 480 PMTs (3 inch)

Rate modulation

Bolometers

Superheated droplet detectors

COUPP experiment

- A bubble chamber filled with superheated fluid (CF₄I) in meta-stable state
- Energy depositions > E_{th} → expanding bubble detected with cameras + piezo-acoustic sensors

Best proton-coupling SD sensitivity above 20 GeV/c² WIMP mass

Also PICASSO and SIMPLE experiments competitive in SD searches

Directional searches

- Most projects use low pressure TPCs with CF₄ (¹⁹F) as target
- Key parameter angular resolution: Tracking ionisation detectors

 \rightarrow Not competitive with liquids or solids but important confirmation in case of a WIMP detection

DRIFT - m³ experiment

Also DMTPC, NEWAGE and emulsion detectors

MIMAC - 51 chamber

Summary

- Few possible indications for DM in some experiments
 - Scattering of WIMPs off nuclei / light dark matter particles off electrons
- Strong limits from some experiments
- More results coming soon!

L_{eff} direct measurements

Nuclear recoil energy (*E*_{nr}):

 $E_{nr} = rac{S1}{L_y L_{eff}} imes rac{S_e}{S_r}$

S1: measured signal in p.e.

 L_y : LY for 122 keV γ in PE/keV

 S_e/S_r : quenching for 122 keV γ /NR due to drift field

 $L_{\textit{eff}} = q_{\textit{nucl}} imes q_{\textit{el}} imes q_{\textit{esc}}$

Noble gas scintillation process

