CONFRONTING DIFFERENT MASS SCALES FOR DARK MATTER

Michel H.G. Tytgat Université Libre de Bruxelles Belgium

INVISIBLES 2013 - July 15-19 2013 - Lumley Castle (UK)

jeudi 18 juillet 2013

«Would you be willing to give a talk on the possible different mass scales for DM? Tentative/illustrative title: "Confronting different scales for DM"...

I know we are asking something non-trivial, a kind of deep perspective talk.»

WHICH MASS SCALE?

Observations tell us that dark matter is cold, stable $(\tau \gg \tau_U)^*$ and invisible

This leaves some freedom...

* Rem: $\tau_U \sim 10^{18}$ sec; $\tau \gtrsim 10^{26}$ sec from constraints on flux of e+, anti-proton, gamma-ray,...

jeudi 18 juillet 2013

WHICH MASS SCALE?

Observations tell us that dark matter is cold, stable $(\tau \gg \tau_U)^*$ and invisible

This leaves some freedom...

* Rem: $\tau_U \sim 10^{18}$ sec; $\tau \gtrsim 10^{26}$ sec from constraints on flux of e+, anti-proton, gamma-ray,...

jeudi 18 juillet 2013

WHY WIMPs?

Classy theories (SUSY, Xtra DIM's, etc.) «predict» the existence of stable, weakly interacting massive particles.

WHY WIMPs?

Classy theories (SUSY, Xtra DIM's, etc.) «predict» the existence of stable, weakly interacting massive particles.

Stable, weakly interacting massive particles may be searched by:

Direct Detection, Indirect Detection and Collider Experiments

WHY WIMPs?

This experimental program by itself largely motivates (at times much) less classy constructions.

Indeed, it is easy to implement DM.

e.g. add a singlet scalar field S with a parity

$$S \rightarrow -S$$

If $\langle S \rangle = 0$ then S is a DM candidate.

Silveira & Zee; Yndurain & Veltman; McDonald; Burgess, Pospelov & ter Veldhuis;...

THEN THERE IS THE WIMP MIRACLE

x = m/T

$$\frac{\text{RELIC}}{\text{ABUNDANCE}} \qquad \frac{\Omega_{dm}}{\Omega_b} \approx 0.2 \, x^* \left(\frac{\text{pbarn}}{\langle \sigma v \rangle}\right) \approx 5$$

For
$$x^* = \mathcal{O}(25)$$
 Need $\langle \sigma v \rangle \sim 3 \cdot 10^{-26} \mathrm{cm}^3 \cdot \mathrm{s}^{-1}$
(Freeze-out)

SCALAR PHANTOMS

Vanda SILVEIRA^{1,2} and A. ZEE Department of Physics, FM-15, University of Washington, Seattle, WA 98195, USA

Received 17 June 1985

We show that, by a minimal modification of the standard $SU(3) \times SU(2) \times U(1)$ theory, we can account for the dark matter of the universe. With a reasonable choice of an unknown coupling, the galactic mass scale emerges. We comment on the prospects for laboratory detection of the scalar particle involved and the possible production of anti-protons in cosmic rays.

A striking prediction of the inflationary universe [5] is that Ω is equal to 1. The X particle could saturate Ω if $m_X \approx 0.75 m_H$. (Let us first take h to be 1.) Thus for m_H in the range 10-30 GeV, the condition $\Omega_X = 1$ requires that m_X lies in the range 7.5-22 GeV and the freezing temperature T_f is in the 0.3-1 GeV range. The

e.g. A HEAVY NEUTRINO

(Figure by Kimmo Kainulainen)

e.g. THE INERT DOUBLET

(Fig. by Michael Gustafsson)

ONLY EXPERIMENTS CAN TELL

Figure from Andreas, Arina, Hambye, Ling & M.T. arXiv:1003.2595

ONLY EXPERIMENTS CAN TELL

Limits from nearby dwarf spheroidal galaxies (Fermi-LAT)

ONLY EXPERIMENTS CAN TELL

Andreas, Arina, Ling, Hambye, MT (2010)

ONLY EXPERIMENTS CAN TELL

Light Scalar = Very Invisible Higgs Scenario

Andreas, Arina, Ling, Hambye, MT (2010)

SO, WHICH MASS SCALE?

SO, WHICH MASS SCALE?

The Baryon-Dark Matter Coincidence

Low Mass WIMP, $M_{DM} \sim \text{ few GeV}$?

Dark Matter and Electroweak Symmetry Breaking

Medium Mass WIMP, $M_{DM} \sim M_{H}$?

Minimal Dark Matter & Siblings

Large Mass WIMP, $M_{DM} \sim \text{few TeV}$?

SO, WHICH MASS SCALE?

Standard~ 100 GeV

Heavy~ TeV

Light ~1-10 GeV

1. BARYON - DARK MATTER COINCIDENCE

1. BARYON - DARK MATTER COINCIDENCE

$$\frac{\Omega_{DM}}{\Omega_B} = \frac{M_{DM}}{M_p} \times \frac{Y_{DM}}{Y_B} = \mathcal{O}(5)$$

1. BARYON - DARK MATTER COINCIDENCE

BARYON ASYMMETRY \longrightarrow ASYMMETRIC DM?

$$\frac{\Omega_{DM}}{\Omega_B} = \frac{M_{DM}}{M_p} \times \frac{Y_{DM}}{V_R} = \mathcal{O}(5)$$

A LIGHT WIMP?

Nussinov (1985); Barr; Kaplan; Gudnasson *et al*; Dodelson *et al*; Kitano *et al*; Farrar & Zaharijas; Lopez Honorez *et al*; Zurek *et al*; etc...

Some recent models: aidogenesis, cogenesis, xogenesis, baryomorphosis, darkogenesis,... (I personally prefer «Matter Genesis»)

jeudi 18 juillet 2013

Figure 1: Steps of Matter Genesis

Figure from Lopez Honorez, Cosme and M.T. (2005)

Figure 1: Steps of Matter Genesis

Figure from Lopez Honorez, Cosme and M.T. (2005)

NEED A REALLY GREAT WATCHMAKER

Figure 1: Steps of Matter Genesis

ANYWAY, ASYMMETRIC DM DOES NOT MEAN LIGHT DM

Nardi, Sannino & Strumia (2008)

ANYWAY, ASYMMETRIC DM DOES NOT MEAN LIGHT DM

 $\mathcal{L}_{SM} \supset \mu^2 \, |H|^2$

Unique!

^{Core} Origin of Electroweak Symmetry Breaking

Portal to renormalizable couplings to New Physics!

$\mathcal{L} \supset S^2 |H|^2$

© Origin of Electroweak Symmetry Breaking

Portal to renormalizable couplings to New Physics!

☞ All of the above?

(Patt & Wilczek; Quiros & Espinosa; Hambye & MT;...)

(Quiros & Espinosa; Hambye & MT)

Scalar DM

ectroweak Symmetry reaking induced by DM e. à la Coleman-Weinberg)

sughly expect $M_{DM} \sim M_{\rm H}$

(Quiros & Espinosa; Hambye & MT)

Scalar DM

Electroweak Symmetry Breaking induced by DM (i.e. à la Coleman-Weinberg)

Roughly expect $M_{DM} \sim M_{\rm H}$

(Quiros & Espinosa; Hambye & MT)

	λ ₁		λ2	À3	λ ₄		$\lambda_5 M_h$		MH	M_{A_0}		$M_{H^{\pm}}$	h _{BR}	W _{BR}	
Ι	-0.11		0	5.4	()	2.8	-2.8	1	120	12	40)5	405	100%	0%
Ι	-0.11		2	5.4	-	2.7	-2.7		20	43	39	5	395	100%	0%
Ι	-0.11		-3	5.4	-2	.6	-2.6	ŀ	120	72	39	DD	390	94%	6%
Ι	-0.30		0	7.6	-4	4.1	-4.1		180	12	49	95	495	100%	0 %
Ι	-0.30	-	2.5	7.6	-3	8.8	-3.8		180	64	47	þ	470	100%	0 %
II	-0.18		-3	-0.003	A	.6	-4.7		20	39	5	0	55	100%	0 %
II	-0.29		-5	-0.07	5	5.5	-5.53	1	150	54	53	35	63	0%	100 %

VANILLA WIMPs, BUT (EMBARRISSINGLY) LARGE COUPLINGS (MAINLY DUE TO $\langle S \rangle = 0$) ers with WMAP DM abundance. bution of Higgs mediated annihi- (W_{BR}) .

Hambye & M.T. (2007);...

custodial SO(3) symmetry)

IF NO FURTHER ASSUMPTION, $\,M_{DM}\sim 1$ MeV to 120 TeV

Hambye (2009); Hambye, M.T. (2009)

DM = Hidden Gauge Bosons (Stability from a global custodial SO(3) symmetry)

$$\lambda_{HS}|S|^2|H|^2 \to \lambda_{HS}\Lambda_{HS}^2|H|^2$$

Coleman-Weinberg SU(2)' in confined phase

 $M_{DM} \sim {\rm FEW} \ TeV$

Hambye, M.T. (2009)

$$V = \lambda_H |H|^4 - \lambda_{HS} |SH|^2 + \lambda_S |S|^4$$

Hambye, Strumia (2013)

4 parameters = 4 couplings

3 fixed by M_h, *vev* and relic abundance

Only 1 free parameter e.g. M_{DM}

Figure 1: Predicted cross sections for the extra scalar boson (left) and for DM direct detection (right) as function of the only free parameter of the model λ_{HS} , varied as shown in the colour legend.

Hambye, Strumia (2013)

3. MINIMAL DARK MATTER & SIBLINGS

(Cirreli, Fornengo & Strumia)

3. MINIMAL DARK MATTER & SIBLINGS

DM IN THE TEV RANGE

(Cirreli, Fornengo & Strumia)

N	1	ATC.		1
	17	2 3		
	1	and a	E.	_
	A. S.	-		Q۱
	1000	Sector of	61/ L	TT.

	18 C							
į	Quantu	ım num	bers	DM can	DM mass	$m_{ m DM^{\pm}}-m_{ m DM}$	Events at LHC	$\sigma_{ m SI}$ in
ĺ	${ m SU}(2)_{ m L}$	$U(1)_Y$	Spin	decay into	in TeV	in MeV	$\int \mathcal{L} dt = 100/\text{fb}$	$10^{-45}{ m cm}^2$
ſ	2	1/2	0	EL	0.54 ± 0.01	350	$320 \div 510$	0.2
	2	1/2	1/2	EH	1.1 ± 0.03	341	$160 \div 330$	0.2
	3	0	0	HH^*	2.0 ± 0.05	166	$0.2 \div 1.0$	1.3
	3	0	1/2	LH	2.4 ± 0.06	166	$0.8 \div 4.0$	1.3
	3	1	0	HH, LL	1.6 ± 0.04	540	$3.0 \div 10$	1.7
	3	1	1/2	LH	1.8 ± 0.05	525	$27 \div 90$	1.7
ſ	4	1/2	0	HHH^*	2.4 ± 0.06	353	$0.10 \div 0.6$	1.6
	4	1/2	1/2	(LHH^*)	2.4 ± 0.06	347	$5.3 \div 25$	1.6
	4	3/2	0	HHH	2.9 ± 0.07	729	$0.01 \div 0.10$	7.5
	4	3/2	1/2	(LHH)	2.6 ± 0.07	712	$1.7 \div 9.5$	7.5
	5	0	0	$(HHH^*H^*$	5.0 ± 0.1	166	$\ll 1$	12
	5	0	1/2	—	4.4 ± 0.1	166	$\ll 1$	12
	7	0	0	-	8.5 ± 0.2	166	≪1	46

Table 1: Summary of the main properties of Minimal DM candidates. Quantum numbers are listed in the first 3 columns; candidates with $Y \neq 0$ are allowed by direct DM searches only if appropriate non-minimalities are introduced. The 4th column indicates dangerous decay modes, that need to be suppressed (see sec. 2 for discussion). The 5th column gives the DM mass such that the thermal relic abundance equals the observed DM abundance (section 4). The 6th column gives the loop-induced mass splitting between neutral and charged DM components (section 3); for scalar candidates a coupling with the Higgs can give a small extra contribution, that we neglect. The 7th column gives the 3σ range for the number of events expected at LHC (section 6). The last column gives the spin-independent cross section, assuming a sample vale f = 1/3 for the uncertain nuclear matrix elements (section 5).

hat	
	D
	Ν.

(B)

21	1								
-y	Quanti	ım num	bers	DM can	DM mass	n	$m_{ m DM^{\pm}}-m_{ m DM}$	Events at LHC	$\sigma_{ m SI}$ in
A.	${ m SU}(2)_{ m L}$	$U(1)_Y$	Spin	decay into	in TeV	//	in MeV	$\int \mathcal{L} dt = 100/\text{fb}$	$10^{-45}{ m cm}^2$
	2	1/2	0	EL	0.54 ± 0.01	Ì	350	$320 \div 510$	0.2
	2	1/2	1/2	EH	1.1 ± 0.03		341	$160 \div 330$	0.2
	3	0	0	HH^*	2.0 ± 0.05		166	$0.2 \div 1.0$	1.3
	3	0	1/2	LH	2.4 ± 0.06		166	$0.8 \div 4.0$	1.3
	3	1	0	HH, LL	1.6 ± 0.04		540	$3.0 \div 10$	1.7
	3	1	1/2	LH	1.8 ± 0.05		525	$27 \div 90$	1.7
	4	1/2	0	HHH^*	2.4 ± 0.06		353	$0.10 \div 0.6$	1.6
	4	1/2	1/2	(LHH^*)	2.4 ± 0.06		347	$5.3 \div 25$	1.6
	4	3/2	0	HHH	2.9 ± 0.07		729	$0.01 \div 0.10$	7.5
	4	3/2	1/2	(LHH)	2.6 ± 0.07		712	$1.7 \div 9.5$	7.5
	5	0	0	(HHH^*H^*)	5.0 ± 0.1		166	$\ll 1$	12
	5	0	1/2	—	4.4 ± 0.1		166	$\ll 1$	12
	7	0	0	—	8.5 ± 0.2		166	≪1	46

STABILITY IS AUTOMATIC (NO NEED FOR AD HOC PARITY) candidates of Minimal DM candidates. Quantum numonly if appropriate non-minimalities are introduced. The 4th column indicates dangerous decay modes, that need to be suppressed (see sec. 2 for discussion). The 5th column gives the DM mass such that the thermal relic abundance equals the observed DM abundance (section 4). The 6th column gives the loop-induced mass splitting between neutral and charged DM components (section 3); for scalar candidates a coupling with the Higgs can give a small extra contribution, that we neglect. The 7th column gives the 3σ range for the number of events expected at LHC (section 6). The last column gives the spin-independent cross section, assuming a sample vale f = 1/3 for the uncertain nuclear matrix elements (section 5).

(Cirreli, Fornengo & Strumia)

3. MINIMAL DARK MATTER & SIBLINGS

Figure 3: Contours of λ for the WMAP value $\Omega_{\rm DM}h^2 = 0.1131 \pm 0.0034$ for $m_{H_0} = 600$ (interior), 1000, 3000 (exterior) GeV, with $m_{A_0} = m_{H_0}$ (left panel) and $m_{H_c} = (m_{H_0} + m_{A_0})/2$ (right panel). Dashed curve corresponds to the approximate ellipsoid.

(Hambye, Ling, Lopez Honorez & Rocher)

3. MINIMAL DARK MATTER & SIBLINGS

TOO HEAVY FOR LHC BUT WITHIN REACH OF FUTURE DIRECT DETECTION EXPERIMENTS

(Klasen, Yaguna & Ruiz-Alvarez: arXiv:1302.1657)

TENTATIVE CONCLUSION

DIFFICULT TO MAKE DEFINITIVE STATEMENTS REGARDING DM MASS SCALE. (IE COULD BE ANYTHING...)

YET, SIMPLE MODELS POINT TO THE TEV SCALE (NO SURPRISE HERE)

PERHAPS BAD FOR LHC, BUT NOT DESPERATE FOR DIRECT DETECTION.

 $\tau_p \sim \frac{M_{\rm GUT}^4}{m_p^5} \sim 10^{41} \, {\rm sec} \qquad p \to \pi^0 e^+$

$$\tau_p \sim \frac{M_{\rm GUT}^4}{m_p^5} \sim 10^{41} \, {\rm sec} \qquad p \to \pi^0 e^+$$

$$\tau_p \sim \frac{M_{\rm GUT}^4}{M_{\rm DM}^5} \sim 10^{26} \, {\rm sec}$$

IN THE BALL PARK OF INDIRECT SEARCHES (antimatter, gamma rays, ...)

BACKUP SLIDES

MORE ON HIDDEN SECTORS

The hypothesis of thermal equilibrium basically fixes the moment (time/temperature) of decoupling

$$x = x^*$$

A WIMP-like behaviour may occur in more generic scenarios*

$$Y_{\infty}|_{\text{non-thermal}} = \frac{x_i}{x^*} Y_{\infty}|_{\text{thermal}} \propto \frac{x_i}{\langle \sigma v \rangle}$$

in which x_i is the characteristic time of DM release/production

* T. Moroi and L. Randall; B.S. Acharya, G. Kane, S. Watson, P. Kumar;...

For instance $x_i > x^*$ requires $\langle \sigma v \rangle$ to be larger than 1 pbarn to reach the same relic abundance

e.g. Production of DM (e.g. scattering $SM + \Sigma \rightarrow X + SM'$)

followed by annihilation $X + X \rightarrow SM + SM$

This is called a re-annihilation regime.*

* Cheung, Elor, Hall and Kumar

Now, if
$$Y(x_i) \lesssim Y_{\infty}|_{\text{thermal freeze-out}}$$

there is no re-annihilation. Instead $Y_{\infty} = Y(x_i)$.

This is called freeze-in *

* Mc Donald (02); Hall, Jedamzik, March-Russell and West (09)

Typically freeze-in leads to

$$Y_{FI} \sim \kappa^2 \times M \times t_U$$

Some small coupling (the time scale t_U depends on process)

To be compared to

$$Y_{F0} \sim \frac{1}{\kappa^2 \times M \times t_U}$$

 κ

A VERY SIMPLE HIDDEN SECTOR

$$\mathcal{L}_{HS} = i\bar{\chi}\mathcal{D}'\chi - m_{\chi}\bar{\chi}\chi + \dots$$

 χ is a Dirac fermion, charged under a massless U(1)' gauge field B'_{μ}

Stable simply because it is assumed to be the lightest charged particle in the HS *

*Feldman, Kors, Nath (06); Pospelov, Ritz, Voloshin (08) Mambrini (10);... Rem: for a massive Z'.

Interaction with the Visible Sector is through the Kinetic Portal *

$$\mathcal{L} \supset -\frac{\epsilon}{2} B^{\mu\nu} B'_{\mu\nu}$$

* Bob Holdom (86)

MOTIVATION?

Among the simplest models for DM.

Only 3 parameters (4 if A' is made massive, say, à la Stueckelberg).

$$(m_{\chi}, e', \epsilon \to \kappa = \epsilon e'/e)$$

Some very natural features (stability from charge conservation, tiny mixing). Visible Sector = Standard Model Only !

Yet very rich phenomenology (both for cosmology and particle physics).

New long range interactions and dark radiation *

Broad range of DM candidates (from sub-MeV to TeV)

Archetype for many VS-HS structures : 4 regimes for DM creation.

jeudi 18 juillet 2013

^{*} Dark Radiation studied in details, <u>but with no mediator</u>, by Ackerman, Buckley, Carroll, Kamionkovski (08); Feng, Kaplinghat, Tu, Yu (09); Feng, Tu, Yu (08); see also Foot *et al* (06-10)

RELIC DENSITY IN κ - α ' PLANE

This structure is generic (Here shown for Higgs portal)

More about Direct Detection (kinetic portal)

For
$$\langle \sigma v \rangle \sim 3 \cdot 10^{-26} \mathrm{cm}^3 \cdot \mathrm{s}^{-1}$$

Let
$$\langle \sigma v \rangle \sim \frac{\alpha^2}{M_{DM}^2}$$
 then $M_{DM} \sim \text{TeV}$

GRIEST-KAMIONKOWSKI UNITARITY BOUND:

$$\langle \sigma_{\max} v \rangle \approx \frac{4\pi (2J+1)}{M_{DM}^2 v} \longrightarrow M_{DM} \lesssim 340 \text{ TeV}$$

jeudi 18 juillet 2013