Status of neutrino mass models

G. Ross, Invisibles 13, Lumley Castle, July 2013



#### Neutrino mixing

Symmetry or anarchy?

$$U_{\Theta} = \begin{pmatrix} \cos\Theta & \sin\Theta & 0\\ \frac{-\sin\Theta}{\sqrt{2}} & \frac{\cos\Theta}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{\sin\Theta}{\sqrt{2}} & \frac{-\cos\Theta}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} P$$





Tri-bi-maximal mixing: $\tan \Theta = 1/\sqrt{2}$ Harrison, Perkins, ScottGolden ratio mixing: $\tan \Theta = 2/(1 + \sqrt{5}) \equiv 1/\phi$ Datta et al; Kajyama et alBi<sup>2</sup>-maximal mixing: $\tan \Theta = 1$ Barger et al; Fukugita et al<br/>Davidson, King

### Neutrino mixing



$$U_{\Theta} = \begin{pmatrix} \cos\Theta & \sin\Theta & 0\\ \frac{-\sin\Theta}{\sqrt{2}} & \frac{\cos\Theta}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{\sin\Theta}{\sqrt{2}} & \frac{-\cos\Theta}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} P$$

| Parameter                         | Best fit | $1\sigma$ range | $3\sigma$ range |   |
|-----------------------------------|----------|-----------------|-----------------|---|
| $\sin^2 	heta_{12}/10^{-1}$       | 3.0      | 2.87-3.13       | 2.7 - 3.4       |   |
| $\sin^2 	heta_{13}/10^{-2}$       | 2.3      | 2.07 - 2.53     | 1.6 - 3.0       | 1 |
| $\sin^2 \theta_{23}/10^{-1}$ (NH) | 4.1      | 4.075 - 4.137   | 3.4 - 6.7       |   |
| $\sin^2 \theta_{23}/10^{-1}$ (IH) | 5.9      | 5.68-6.11       | 3.35 - 6.63     |   |
| $\delta/\pi$                      | 1.67     | 0.9 - 2.03      | 0–2             |   |

Gonzalez-Garcia, Maltoni, Salvado, Schwetz see also: Forero, Tortola, Valle Fogli, Lisi, Marrone, Montanino, Palazzo, Rotuno  $M_l = Diag(m_e, m_\mu, m_\tau)$ 

$$M_{l} = h^{T} M_{l} h^{*}$$
 e.g.  $Z_{3}, h = Diag(1, e^{2i\pi/3}, e^{4i\pi/3})$ 

 $M_{v} = U_{PMNS} Diag(m_{\perp}, m_{\odot}, m_{@}) U_{PMNS}^{T}$ 

$$Z_2 \times Z_2$$
 Klein symmetry  $M_v = S^T M_v S$ 

$$S = U_{PMNS}^* Diag(\pm 1, \pm 1, \pm 1)U_{PMNS}, \text{ det } S = 1$$

$$M_{l} = Diag(m_{e}, m_{\mu}, m_{\tau}) \qquad M_{l} = h^{T} M_{l} h^{*} \quad e.g. \mathbb{Z}_{3}, h = Diag(1, e^{2i\pi/3}, e^{4i\pi/3})$$

 $M_{v} = U_{PMNS} Diag(m_{\perp}, m_{\odot}, m_{@}) U_{PMNS}^{T}$ 

$$Z_2 \times Z_2$$
 Klein symmetry  $M_v = S^T M_v S$   
 $S = U_{PMNS}^* Diag(\pm 1, \pm 1, \pm 1) U_{PMNS}$ , det  $S = 1$ 

Choice of  $Z_2 \times Z_2$  symmetry  $\Rightarrow$  mass matrix structure

e.g.

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \mu \leftrightarrow \tau \qquad \left\{ \begin{array}{l} v_{@} = (v_{\mu} - v_{\tau})/\sqrt{2} & (-,-) \\ \theta_{13} = 0 \end{array} \right. \qquad \text{Bi-maximal}$$
  
$$S_{TBM} = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix} \qquad \qquad \left\{ \begin{array}{l} v_{\odot} = (v_{e} + v_{\mu} + v_{\tau})/\sqrt{3} & (+,+) \\ v_{\bot} = (2v_{e} - (v_{\mu} + v_{\tau})/\sqrt{2}) & (+,-) \end{array} \right. \qquad \text{Tri-maxima}$$

Origin of symmetries

Direct:  $G_{family} \xrightarrow{\langle \phi_v \rangle} Z_2 \times Z_2$  $\xrightarrow{\langle \phi_l \rangle} Z_3^l$ 

*e.g.*  $U, S_{TBM}, Z_3^l \subset S_4 \cong (Z_2 \times Z_2) \rtimes S_3 \subset SU(3), \quad U \subset A_4 (S_{TBM} \text{ "accidental"})$ 

Emergent:
$$Z_2 \times Z_2 \not\subset G_{family}$$
e.g. $G_{family} = \Delta(27) \subset SU(3)$  $L_{eff}^v = a \psi_i \phi_{123}^i \psi_j \phi_{123}^j + b \psi_i \phi_{23}^i \psi_j \phi_{23}^j$  $\{ \begin{array}{c} \text{Symmetric under} \\ \Psi_{123} \propto (1,1,1), \quad \phi_2 \propto (1,0,0), \quad \phi_3 \propto (0,0,1) \end{array}$  $\Psi_{123} \propto (1,1,1), \quad \phi_2 \propto (1,0,0), \quad \phi_3 \propto (0,0,1) \end{array}$  $\{ \begin{array}{c} \text{Symmetric under} \\ T,S_{TBM} \end{array} \}$ Vacuum alignment

Symmetries  $\implies$  Tr-Bi-Maximal, Golden Ratio, ...

$$U_{\Theta} = \begin{pmatrix} \cos\Theta & \sin\Theta & 0\\ \frac{-\sin\Theta}{\sqrt{2}} & \frac{\cos\Theta}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{\sin\Theta}{\sqrt{2}} & \frac{-\cos\Theta}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} P$$

 $\theta_{13} \neq 0$  ???



Symmetry breaking perturbations

$$L_{m}^{v} = m_{@}(v_{a} + \varepsilon_{ab}v_{b} + ..)^{2} + m_{\odot}(v_{b} - \varepsilon_{ab}v_{a} + ..)^{2} + m_{?}(v_{c} + ..)^{2}$$

$$\mathsf{TBM} \left\{ \begin{array}{l} v_{a} = \frac{1}{\sqrt{2}} \left( v_{\mu} - v_{\tau} \right) \\ v_{b} = \frac{1}{\sqrt{3}} \left( v_{e} + v_{\mu} + v_{\tau} \right) \\ v_{c} = \frac{1}{\sqrt{6}} \left( 2v_{e} - v_{\mu} - v_{\tau} \right) \end{array} \right. \qquad \mathsf{GR} \quad \left\{ \begin{array}{l} v_{a} = \frac{1}{\sqrt{2}} \left( v_{\mu} - v_{\tau} \right) \\ v_{b} = s_{\theta} v_{e} + c_{\theta} \left( v_{\mu} + v_{\tau} \right) / \sqrt{2} \\ v_{c} = c_{\theta} v_{e} - s_{\theta} \left( v_{\mu} + v_{\tau} \right) / \sqrt{2} \end{array} \right. \qquad t_{\theta} = 1/\phi$$

 $\theta_{13} \neq 0 \implies \text{must break} \quad U \implies v_{a,b} \quad and \ / \ or \quad v_{a,c} \quad \text{mixing}$ 

#### • General mixing (TBM case):

$$\sin^2 \theta_{23} = \frac{1}{2} + \mathcal{R}e(c_{23}^e)\xi + \frac{1}{\sqrt{3}} \left( \mathcal{R}e(c_{13}^\nu) - \sqrt{2} \mathcal{R}e(c_{23}^\nu) \right) \xi$$
$$\sin^2 \theta_{12} = \frac{1}{3} - \frac{2}{3} \mathcal{R}e(c_{12}^e + c_{13}^e)\xi + \frac{2\sqrt{2}}{3} \mathcal{R}e(c_{12}^\nu)\xi$$
$$\sin \theta_{13} = \frac{1}{6} \left| 3\sqrt{2} \left( c_{12}^e - c_{13}^e \right) + 2\sqrt{3} \left( \sqrt{2} c_{13}^\nu + c_{23}^\nu \right) \right| \xi.$$



c's random

Altarelli, Feruglio, Merlot

Restricted (bilinear) mixing (TBM case):

$$L_{m}^{v} = m_{@}(v_{a} + \varepsilon_{ab}v_{b} + ..)^{2} + m_{\odot}(v_{b} - \varepsilon_{ab}v_{a} + ..)^{2} + m_{?}(v_{c} + ..)^{2}$$

$$\mathsf{TBM} \left\{ \begin{array}{l} v_{a} = \frac{1}{\sqrt{2}} \left( v_{\mu} - v_{\tau} \right) \\ v_{b} = \frac{1}{\sqrt{3}} \left( v_{e} + v_{\mu} + v_{\tau} \right) \\ v_{c} = \frac{1}{\sqrt{6}} \left( 2v_{e} - v_{\mu} - v_{\tau} \right) \end{array} \right. U = \left( \begin{array}{c} \frac{2}{\sqrt{6}} & \frac{c}{\sqrt{3}} & \frac{s}{\sqrt{3}} e^{-i\delta} \\ -\frac{1}{\sqrt{6}} & \frac{c}{\sqrt{3}} - \frac{s}{\sqrt{2}} e^{i\delta} & \frac{c}{\sqrt{2}} + \frac{s}{\sqrt{3}} e^{-i\delta} \\ -\frac{1}{\sqrt{6}} & \frac{c}{\sqrt{3}} + \frac{s}{\sqrt{2}} e^{i\delta} & -\frac{c}{\sqrt{2}} + \frac{s}{\sqrt{3}} e^{-i\delta} \end{array} \right)$$

| Model | $\nu$ perturbation                                                                                                                                                                        | $s_{12}^l$                            | $\delta/\pi$ (1 $\sigma$ )                                | $\delta/\pi$ (3 $\sigma$ )       | $s_{12}^2$                                            | $s_{23}^2$ |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------|----------------------------------|-------------------------------------------------------|------------|
| TBM   | $\nu_{ab}$ mixing (NH)                                                                                                                                                                    | 0                                     | $\pm (0.36 - 0.47)$                                       | $\pm (0.05-1)$                   | 0.33                                                  | -          |
|       | (IH)                                                                                                                                                                                      | 0                                     | $\pm (0.51 - 0.67)$                                       | $\pm (0.08-1)$                   | 0.33                                                  | -          |
|       | (NH)                                                                                                                                                                                      | $\sqrt{rac{m_e}{m_\mu}}$             | $\pm (0.58 - 1)$                                          | 0-2                              | 0.29-0.38                                             | -          |
|       | (IH)                                                                                                                                                                                      | $\sqrt{rac{m_e}{m_\mu}}$             | $\pm(0 + 0.51)$                                           | <b>0</b> - <b>2</b>              | 0.29-0.38                                             | -          |
| TBM   | · · / NIII \                                                                                                                                                                              | 0                                     |                                                           | 0.0                              | 0.00                                                  | - 1        |
|       |                                                                                                                                                                                           | <i>s</i> <sup>v</sup> <sub>23</sub> = | $= \left  \frac{1}{\sqrt{2}} + e^{-i\delta} \right _{13}$ |                                  | $\sim$ $^2$                                           | -          |
|       | $L^{\nu} = m \left( (\nu - \nu) / \sqrt{2} \right)$                                                                                                                                       | $+ s_{12}e^{-i\delta}(v)$             | $(+v + v)^{2} + m_{z}$                                    | $(v + v + v)/\sqrt{3}$           | $-\sqrt{\frac{3}{5}}s_{12}e^{i\delta}(v_{1}-v_{1})$   | -          |
| TBM   | $I = \frac{L_m - m_{e}((v_{\mu} - v_{\tau})/\sqrt{2} + s_{13}e^{-(v_e + v_{\mu} + v_{\tau})}) + m_{\odot}((v_e + v_{\mu} + v_{\tau})/\sqrt{3} - \sqrt{2}s_{13}e^{-(v_{\mu} - v_{\tau})})$ |                                       |                                                           |                                  |                                                       |            |
| GR    | $\theta_{13}$                                                                                                                                                                             |                                       |                                                           |                                  |                                                       | -          |
|       | (111)                                                                                                                                                                                     | $\sqrt{m_c}$                          | $\pm (0.4 \pm 0.7)$                                       | ±(0.00-1.22)                     | 0.210                                                 | -          |
|       | (NH)                                                                                                                                                                                      | $\sqrt{\frac{m_{\mu}}{m_{\mu}}}$      | $\pm(1.05-2.07)$                                          | 0 2                              | 0.25-0.3                                              | -          |
|       | (IH)                                                                                                                                                                                      | $\sqrt{\frac{m_e}{m_e}}$              | $\pm (1-1.65)$                                            | 0 – 2                            | 0.25-0.3                                              | _          |
| GR    | $\nu_{ac}$ mixing (NH)                                                                                                                                                                    |                                       | (                                                         |                                  |                                                       |            |
| GR    | (IH)                                                                                                                                                                                      |                                       | _2                                                        | <u> </u>                         | $\underline{s} e^{-i\delta}$                          |            |
|       | (NH)                                                                                                                                                                                      |                                       | $\sqrt{6}$                                                | $\sqrt{3}$                       | $\sqrt{3} c$                                          |            |
|       | (IH)                                                                                                                                                                                      | U =                                   | $-\frac{1}{\sqrt{c}}$ $\frac{c}{\sqrt{2}}$                | $-\frac{s}{\sqrt{2}}e^{i\delta}$ | $\frac{c}{\sqrt{2}} + \frac{s}{\sqrt{2}}e^{-i\delta}$ |            |
| GR    | None                                                                                                                                                                                      |                                       | $\sqrt{6}$ $\sqrt{3}$                                     | $\sqrt{2}$                       | $\sqrt{2}$ $\sqrt{3}$                                 | .56        |
| BM    |                                                                                                                                                                                           |                                       | $- \frac{1}{\sqrt{2}}$                                    | $+ \frac{s}{2} e^{i\delta}$ -    | $-\frac{c}{2}+\frac{s}{2}e^{-i\delta}$                | .487       |
|       | Fit to data (NH) [6]                                                                                                                                                                      |                                       | $\sqrt{6} \sqrt{3}$                                       | $\sqrt{2}$                       | $\sqrt{2}$ $\sqrt{3}$                                 |            |
|       | (IH) [6]                                                                                                                                                                                  |                                       |                                                           |                                  |                                                       | 67         |
| I     |                                                                                                                                                                                           |                                       |                                                           |                                  |                                                       | 1.07       |

| Model | $\nu$ perturbation     | $s_{12}^l$                 | $\delta/\pi (1\sigma)$ | $\delta/\pi$ (3 $\sigma$ ) | $s_{12}^2$               | $s_{23}^2$    |
|-------|------------------------|----------------------------|------------------------|----------------------------|--------------------------|---------------|
| TBM   | $\nu_{ab}$ mixing (NH) | 0                          | $\pm (0.36 - 0.47)$    | $\pm (0.05-1)$             | 0.33                     | -             |
|       | (IH)                   | 0                          | $\pm (0.51 – 0.67)$    | $\pm (0.08-1)$             | 0.33                     | -             |
|       | (NH)                   | $\sqrt{rac{m_e}{m_\mu}}$  | $\pm (0.58-1)$         | <b>0</b> - <b>2</b>        | 0.29 - 0.38              | -             |
|       | (IH)                   | $\sqrt{\frac{m_e}{m_\mu}}$ | $\pm(0-0.51)$          | <b>0</b> - <b>2</b>        | 0.29 - 0.38              | -             |
| TBM   | $\nu_{ac}$ mixing (NH) | 0                          | $\pm (0-0.38)$         | 0-2                        | 0.33                     | -             |
|       | (IH)                   | 0                          | $\pm (0.51-1)$         | <b>0</b> - <b>2</b>        | 0.33                     | -             |
|       | (NH)                   | $\sqrt{\frac{m_e}{m_\mu}}$ | $\pm (0-0.4)$          | <b>0</b> - <b>2</b>        | 0.29 - 0.38              | -             |
|       | (IH)                   | $\sqrt{\frac{m_e}{m_\mu}}$ | $\pm(0.5-1)$           | <b>0</b> - <b>2</b>        | 0.29 - 0.38              | -             |
| TBM   | None                   | $\sqrt{2} s_{13}$          | 0.7 - 1.3              | 0.5 - 1.5                  | -                        | 0.45 - 0.56   |
| GR    | $\nu_{ab}$ mixing (NH) | 0                          | $\pm (0.15 - 0.33)$    | $\pm$ (-0.03–0.79)         | 0.276                    | -             |
|       | (IH)                   | 0                          | $\pm(0.4-0.7)$         | $\pm (0.06 - 1.22)$        | 0.276                    | -             |
|       | (NH)                   | $\sqrt{\frac{m_e}{m_\mu}}$ | $\pm (1.65 - 2.07)$    | <b>0</b> - <b>2</b>        | 0.25 - 0.3               | -             |
|       | (IH)                   | $\sqrt{\frac{m_e}{m_\mu}}$ | $\pm (1 - 1.65)$       | <b>0</b> - <b>2</b>        | 0.25-0.3                 | -             |
| GR    | $\nu_{ac}$ mixing (NH) | 0                          | -0.39 - 0.39           | 0-2                        | 0.276                    | -             |
| GR    | (IH)                   | 0                          | -0.39 - 0.39           | <b>0</b> - <b>2</b>        | 0.276                    | -             |
|       | (NH)                   | $\sqrt{\frac{m_e}{m_\mu}}$ | $\pm (0-0.36)$         | <b>0</b> - <b>2</b>        | 0.25 - 0.3               | -             |
|       | (IH)                   | $\sqrt{\frac{m_e}{m_\mu}}$ | $\pm (0.521)$          | <b>0</b> - <b>2</b>        | 0.25 - 0.3               | -             |
| GR    | None                   | $\sqrt{2} s_{13}$          | $\pm (0.35 - 0.4)$     | $\pm (0.32 - 0.45)$        | -                        | 0.45-0.56     |
| BM    |                        | -                          | -                      | 0.75 - 1.25                | -                        | 0.485 - 0.487 |
|       | Fit to data (NH) [6]   |                            | 0.9-2.03               | 0 - 2                      | $0.287 - 0.313(1\sigma)$ | 0.408 - 0.414 |
|       | (IH) [6]               |                            | 0.9 - 2.03             | 0–2                        | $0.287 - 0.313(1\sigma)$ | 0.34 - 0.67   |

 $\theta_{13}$  charged lepton or neutrino origin?

$$s_{23} \approx s_{23}^{v} - \theta_{12}^{l} c_{23}^{v} e^{i\delta_{23}}$$

$$s_{12} \approx s_{12}^{v} - \theta_{12}^{l} c_{23}^{v} c_{12}^{v} e^{i\delta_{12}}$$

$$\theta_{13} e^{-i\delta_{13}} = \theta_{13}^{v} e^{-i\delta_{13}^{v}} - \theta_{12}^{l} s_{23}^{v} e^{-i(\delta_{23}^{v} + \delta_{12}^{e})}$$
Cabibbo haze:
$$\int_{M_{13}}^{M_{e}} \approx \theta_{12}^{l} s_{23}^{v} \approx \frac{\theta_{12}^{l}}{\sqrt{2}}$$

$$\int_{M_{13}}^{M_{e}} \approx \theta_{12}^{l} s_{23}^{v} \approx \frac{\theta_{12}^{l}}{\sqrt{2}}$$

$$M^{q,l} \qquad : \text{ small mixing ...dominated by } \theta_{C}$$

$$M^{v} \qquad : \text{ tri-bi-maximal}$$

$$L_{m}^{v} = m_{@} \left[\frac{1}{\sqrt{2}}(v_{\mu} - v_{\tau})\right]^{2} + m_{\odot} \left[\frac{1}{\sqrt{3}}(v_{e} + v_{\mu} + v_{\tau})\right]^{2}$$
Datta, Everett, Ramond  
Marzocca, Petkov, Romanino, Spinratt

Antusch et al

...but  $\theta_{12}^l = \theta_c$  inconsistent with other plausible GUT relations  $\dagger$ 

#### Symmetry fights back - I

## Klein symmetry: $Z_2 \times Z_2'$ : $S_{TBM,GR}$ , $(U \times CP)_{Diag}$

Harrison, Scott Feruglio, Hagedorn, Ziegler Ding, King, Luhn, Stuart Talbert, *GG*R



#### Symmetry fights back - I

Klein symmetry:  $Z_2 \times Z_2$ :  $S_{TRM, GR}$ ,  $(U \times CP)_{Diag}$ Feruglio, Hagedorn, Ziegler Ding, King, Luhn, Stuart Generalised CP  $\varphi(x) \xrightarrow{H_{CP}} X_{\mathbf{r}} \varphi^*(x')$   $(S_4 \rtimes H_{CP})$  $\sin \alpha_{21} = \sin \alpha_{31} = \sin \delta_{CP} = 0 ,$ Ι.  $\sin^2 \theta_{13} = \frac{2}{3} \sin^2 \theta, \quad \sin^2 \theta_{12} = \frac{1}{2 + \cos 2\theta}, \quad \sin^2 \theta_{23} = \frac{1}{2} \left[ 1 + \frac{\sqrt{3} \sin 2\theta}{2 + \cos 2\theta} \right]$  $\sin \alpha_{21} = 0$ ,  $\sin \alpha_{31} = 0$ ,  $|\sin \delta_{CP}| = 1$ , П.  $\sin^2 \theta_{13} = \frac{2}{3} \sin^2 \theta, \quad \sin^2 \theta_{12} = \frac{1}{2 + \cos^2 \theta}, \quad \sin^2 \theta_{23} = \frac{1}{2}$  $\sin^2 \theta_{13} = \frac{1}{6} \left( 2 - \sqrt{3} \cos 2\theta \right), \qquad \sin^2 \theta_{12} = \frac{2}{4 + \sqrt{3} \cos 2\theta},$ III.  $\sin^2 \theta_{23}^{1st} = \frac{2}{4 + \sqrt{3} \cos 2\theta}, \quad \text{or} \quad \sin^2 \theta_{23}^{2nd} = 1 - \frac{2}{4 + \sqrt{3} \cos 2\theta}.$  $\left|\sin\alpha_{21}\right| = \left|\frac{\sqrt{3} + 2\cos 2\theta}{2 + \sqrt{3}\cos 2\theta}\right|, \qquad \left|\sin\alpha_{31}'\right| = \left|\frac{4\sqrt{3}\sin 2\theta}{5 - 3\cos 4\theta}\right|,$  $\left|\sin \delta_{CP}\right| = \left|\frac{\sqrt{4 - 2\sqrt{3} \cos 2\theta} \left(4 + \sqrt{3}\cos 2\theta\right) \sin 2\theta}{5 - 3\cos 4\theta}\right|.$ 

Symmetry fights back - II

Direct: 
$$Z_2 \times Z'_2 \times Z_3 \subset G_{family}$$
  
 $G_{family} = \Delta(600)$ :  $\sin^2 \theta_{13} = 0.028$ ,  $\sin^2 \theta_{23} = 0.38$   
 $G_{family} = \Delta(6n^2) \cong (Z_n \times Z_n) \rtimes S_3$ , *n* even  
 $|V_{13}|$   
0.10  
0.15  
0.10  
0.15  
0.10  
0.15  
0.10  
0.15  
0.10  
0.15  
0.10  
0.15  
0.10  
0.15  
0.10  
0.15  
0.10  
0.15  
0.10  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  
0.15  

Trimaximal mixing,  $\theta_{23} = 45^\circ \mp \theta_{13}/\sqrt{2}$ ,  $\delta = 0, \pi$ 

King, Neder, Stuart

Lam

#### Symmetry fights back - III

Vacuum alignment (A<sub>4</sub> model)

$$\langle \phi_{\rm atm} \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\1 \end{pmatrix} v_{\rm atm}, \qquad \langle \phi_{\rm sol} \rangle = \frac{1}{\sqrt{21}} \begin{pmatrix} 1\\4\\2 \end{pmatrix} v_{\rm sol} \qquad, \eta = \frac{2\pi}{5}$$
 King

$$\begin{split} W^{\text{flavon},R}_{A_4} &= gP\left(\frac{\xi^5_{\text{stm}}}{\Lambda^3} - M^2\right) + g'P'\left(\frac{\xi^5_{\text{sol}}}{\Lambda'^3} - M'^2\right) \\ W^{\text{flavon},\ell}_{A_4} &\sim A_e\varphi_e\varphi_e + A_\mu\varphi_\mu\varphi_\mu + A_\tau\varphi_\tau\varphi_\tau + O_{e\mu}\varphi_e\varphi_\mu + O_{e\tau}\varphi_e\varphi_\tau + O_{\mu\tau}\varphi_\mu\varphi_\tau \\ W^{\text{flavon},\nu}_{A_4} &= A_{\nu_2}(g_1\varphi_{\nu_2}\varphi_{\nu_2} + g_2\varphi_{\nu_2}\xi_{\nu_2}) + A_{\nu'_2}(g'_1\varphi_{\nu'_2}\varphi_{\nu'_2} + g'_2\varphi_{\nu'_2}\xi_{\nu'_2}) \\ &\quad + O_{e\nu_3}g_3\varphi_e\varphi_{\nu_3} + O_{\nu_2\nu_3}g_4\varphi_{\nu_2}\varphi_{\nu_3} + O_{\nu_1\nu_2}g_5\varphi_{\nu_1}\varphi_{\nu_2} + O_{\nu_1\nu_3}g_6\varphi_{\nu_1}\varphi_{\nu_3} \\ &\quad + O_{e\nu'_3}g'_3\varphi_e\varphi_{\nu'_3} + O_{\nu'_2\nu'_3}g'_4\varphi_{\nu'_2}\varphi_{\nu'_3} + O_{\nu'_1\nu'_2}g'_5\varphi_{\nu'_1}\varphi_{\nu'_2} + O_{\nu'_1\nu'_3}g'_6\varphi_{\nu'_1}\varphi_{\nu'_3} \\ &\quad + O_{\mu\nu_5}g_7\varphi_\mu\varphi_{\nu_5} + O_{\nu'_1\nu_5}g_8\varphi_{\nu'_1}\varphi_{\nu_5} + O_{\mu\nu_6}g_9\varphi_\mu\varphi_{\nu_6} + O_{\nu_5\nu_6}g_{10}\varphi_{\nu_5}\varphi_{\nu_6} \\ \Delta W^{\text{flavon},\ell}_{A_4} &\sim \sum_{l=e,\mu,\tau}^6 \frac{P}{\Lambda}\left((\varphi_{\nu_l}) \cdot \varphi_{\nu_l})\rho_{\nu_l} - M^3\right) + P(\frac{\rho_{\nu_1}^5}{\Lambda^3} - M^2) \end{split}$$

Symmetry fights back - IV

Mixing and masses from an extremum principle

 $-\mathcal{L}_Y = \bar{q}_L Y_D H D_R + \bar{q}_L Y_U \tilde{H} U_R + \bar{\ell}_L Y_E H E_R + \bar{\ell}_L Y_\nu \tilde{H} N + \text{h.c.} + \frac{M}{2} N \gamma_0 N$ 

$$G_{family}^{local} = \left[ SU(3) \right]^5 \otimes O(3) \xrightarrow{\langle Y_i \rangle} ?$$

Alonso, Gavela, Isidori, Maiani Alonso, Gavela, Hernandez, Merlo, Rigolin Grinstein, Redi, Villadoro

Yi dynamical variables- "Natural extrema"



#### "Natural extrema"

#### Quarks:

 $SU(3)_q \otimes SU(3)_U \otimes SU(3)_D \longrightarrow SU(2)_q \otimes SU(2)_U \otimes SU(2)_D \otimes U(1)$  $m_q = \operatorname{diag}(0, 0, c) \qquad U_{\operatorname{CKM}} = 1$ 

Leptons:  $SU(3)_l \otimes O(3) \rightarrow SU(2)_l \otimes U(1)$ 

$$\hat{m}_{\nu} = \frac{v^2}{M} \operatorname{diag}(y_1^2, y_2 y_3, y_2 y_3) ,$$
$$U_{\text{PMNS}}^{(0)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$

Difference due to Majorana masses restricting redefinition of neutrinos

Add perturbations:

$$m_{\nu} = \frac{v^2 y}{M} \begin{pmatrix} 1 + \delta + \sigma \ \epsilon + \eta \ \epsilon - \eta \\ \epsilon + \eta \ \delta + \kappa \ 1 \\ \epsilon - \eta \ 1 \ \delta - \kappa \end{pmatrix}$$

Quasi degenerate neutrinos Normal or inverted hierarchy 2 large mixing angles  $\Theta_{13}$  generically small

Masses -Froggatt-Nielsen

-Xtra-dimension/Composite

Masses -Froggatt-Nielsen

$$\left( \left< \theta \right> / \Lambda \right)^n$$

-Xtra-dimension/Composite





y = a

 $H^{(0)}$ 

4D strongly coupled AdS/CFT analogue

CFT - Walking Technicolour

 $\theta_{13}$  large

Leptons elementary - couple to Higgs via fermionic operators in strong sector Exponential suppression factors come from RG running with large scaling dimensions

Masses -Froggatt-Nielsen

-Xtra-dimension/Composite

Majorana or Dirac

}

Normal/Inverted/ Quasi-degenerate (O(3))







Dighe, Goswami, Rodejohann Ellis, Lola

....

Masses -Froggatt-Nielsen

-Xtra-dimension/Composite

-Texture (zeros)

e.g. 
$$\sin \theta_{13} = \sqrt{\frac{2}{3} \frac{\Delta m_{\rm sol}^2}{\Delta m_{\rm atm}^2}} T \chi M$$

Krishnan, Harrison, Scott

- Masses -Froggatt-Nielsen
  - -Xtra-dimension/Composite
  - -Texture (zeros)
- Quark-lepton unification?
  - -Spontaneous breaking (natural extrema) -Hierarchical see-saw

Quarks, charged leptons, neutrinos can have similar Dirac mass

$$\begin{split} \mathcal{L}_{Dirac}^{q,l,v} &= \alpha \ \psi_i \overline{\phi}_3^i \psi_j^c \overline{\phi}_3^j + \beta \left( \psi_i \overline{\phi}_{123}^i \psi_j^c \overline{\phi}_{23}^j + \psi_i \overline{\phi}_{23}^i \psi_j^c \overline{\phi}_{123}^j \right) + \gamma \ \psi_i \overline{\phi}_{23}^i \psi_j^c \overline{\phi}_{23}^j \Sigma_{45} \quad \alpha > \beta \\ \\ \frac{M^{Dirac}}{m_3} &= \begin{pmatrix} <\varepsilon^4 & \varepsilon^3 + \varepsilon^4 & -\varepsilon^3 + \varepsilon^4 \\ \varepsilon^3 + \varepsilon^4 & a\varepsilon^2 + \varepsilon^3 & -a\varepsilon^2 + \varepsilon^3 \\ -\varepsilon^3 + \varepsilon^4 & -a\varepsilon^2 + \varepsilon^3 & 1 \end{pmatrix} \qquad \begin{array}{c} \varepsilon^d = 0.15, \ a^d = 1 \\ \varepsilon^1 = 0.15, \ a^e = -3 \\ \varepsilon^u = 0.05, \ a^u = 1 \\ \varepsilon^v = 0.05, \ a^v = 0 \end{pmatrix} \qquad \begin{array}{c} m_b \simeq 3m_\tau \\ m_s \simeq m_\mu \end{array} ((1,1) \text{ T.Z.}) \\ m_d \simeq 9m_e \end{array} \end{split}$$

Quarks, charged leptons, neutrinos can have similar Dirac mass

$$\begin{split} \mathcal{L}_{Dirac}^{q,l,v} &= \alpha \, \psi_i \bar{\phi}_3^i \psi_j^c \bar{\phi}_3^j + \beta \left( \psi_i \bar{\phi}_{123}^i \psi_j^c \bar{\phi}_{23}^j + \psi_i \bar{\phi}_{23}^i \psi_j^c \bar{\phi}_{123}^j \right) + \gamma \, \psi_i \bar{\phi}_{23}^i \psi_j^c \bar{\phi}_{23}^j \Sigma_{45} \quad \alpha > \beta \\ \\ \frac{M^{Dirac}}{m_3} &= \begin{pmatrix} < \varepsilon^4 & \varepsilon^3 + \varepsilon^4 & -\varepsilon^3 + \varepsilon^4 \\ \varepsilon^3 + \varepsilon^4 & a\varepsilon^2 + \varepsilon^3 & -a\varepsilon^2 + \varepsilon^3 \\ -\varepsilon^3 + \varepsilon^4 & -a\varepsilon^2 + \varepsilon^3 & 1 \end{pmatrix} & \begin{array}{c} \varepsilon^d = 0.15, \ a^d = 1 \\ \varepsilon^i = 0.15, \ a^c = -3 \\ \varepsilon^w = 0.05, \ a^w = 1 \\ \varepsilon^v = 0.05, \ a^w = 0 \end{pmatrix} \\ \\ \frac{M_1 \circ m_2 < M_3}{M_1 \circ m_2 \circ m_2} & \begin{array}{c} M_1 < M_2 < M_3 \\ M_1 < M_2 < M_3 \\ \\ \frac{M_1 \circ m_2 < M_3}{M_1 \circ m_2 \circ m_2} & \begin{array}{c} M_1 < M_2 < M_3 \\ M_1 < M_2 < M_3 \\ \end{array} \end{split}$$

Masses -Froggatt-Nielsen

$$\left( \stackrel{\langle \theta \rangle}{\longrightarrow}_{\Lambda} \right)^n$$

-Xtra-dimension/Composite

-Texture (zeros)

Quark-lepton unification?

-Spontaneous breaking (natural extrema) -Hierarchical see-saw

Symmetry/Anarchy?

Masses -Froggatt-Nielsen

 $\left( \left< \theta \right> \right> \right)^n$ 

-Xtra-dimension/Composite

-Texture (zeros)

Quark-lepton unification?

-Spontaneous breaking (natural extrema) -Hierarchical see-saw

Symmetry/Anarchy?

-Sparse data; departure from e.g. pure tri-bi-maximal mixing... will need precision measurement and prediction to decide

### Mass relations:

$$\theta_{C} = \left| \sqrt{\frac{m_{d}}{m_{s}}} - e^{i\delta} \sqrt{\frac{m_{u}}{m_{c}}} \right|$$
$$m_{\tau}(M_{GUT}) = m_{b}(M_{GUT})$$
$$m_{\mu}(M_{GUT}) = 3m_{s}(M_{GUT})$$
$$m_{e}(M_{GUT}) = \frac{1}{3}m_{s}(M_{GUT})$$

$$M^{d} = m_{b} \begin{pmatrix} < \varepsilon^{4} & \varepsilon^{3} & . \\ \varepsilon^{3} & \varepsilon^{2} & \varepsilon^{2} \\ . & . & 1 \end{pmatrix}$$

Gatto et al, Weinberg, Fritzsch

| $M^l = m_b$ | $< \varepsilon^4$<br>$1\varepsilon^3$ | $1\varepsilon^3$<br>$3\varepsilon^2$ | $\cdot \varepsilon^2$ |  |
|-------------|---------------------------------------|--------------------------------------|-----------------------|--|
|             |                                       |                                      | 1                     |  |

Georgi-Jarlskog

| Parameters                                    | Input SUSY Parameters           |         |         |         |          |         |  |
|-----------------------------------------------|---------------------------------|---------|---------|---------|----------|---------|--|
| $\tan \beta$                                  | 1.3                             | 10      | 38      | 50      | 38       | 38      |  |
| $\gamma_b$                                    | 0                               | 0       | 0       | 0       | -0.22    | +0.22   |  |
| $\gamma_d$                                    | 0                               | 0       | 0       | 0       | -0.21    | +0.21   |  |
| $\gamma_t$                                    | 0                               | 0       | 0       | 0       | 0        | -0.44   |  |
| Parameters                                    | Comparison with GUT Mass Ratios |         |         |         |          |         |  |
| $(m_b/m_\tau)(M_X)$                           | $1.00^{+0.04}_{-0.4}$           | 0.73(3) | 0.73(3) | 0.73(4) | 1.00(4)  | 1.00(4) |  |
| $(3m_s/m_\mu)(M_X)$                           | $0.70^{+0.8}_{-0.05}$           | 0.69(8) | 0.69(8) | 0.69(8) | 0.9(1)   | 0.6(1)  |  |
| $(m_d/3 m_e)(M_X)$                            | 0.82(7)                         | 0.83(7) | 0.83(7) | 0.83(7) | 1.05(8)  | 0.68(6) |  |
| $\left(\frac{\det Y^d}{\det Y^e}\right)(M_X)$ | $0.57\substack{+0.08\\-0.26}$   | 0.42(7) | 0.42(7) | 0.42(7) | 0.92(14) | 0.39(7) |  |

GGR, Serna

### ...but $\theta_{12}^l = \theta_c$ inconsistent with other plausible GUT relations

$$\begin{aligned} \theta_{C} &= \left| \sqrt{\frac{m_{d}}{m_{s}}} - e^{i\delta} \sqrt{\frac{m_{u}}{m_{c}}} \right| & M^{d} = m_{b} \begin{pmatrix} \langle \varepsilon^{4} & \varepsilon^{3} & \langle \varepsilon^{3} \rangle \\ \varepsilon^{3} & \varepsilon^{2} & \varepsilon^{2} \\ \cdot & \cdot & 1 \end{pmatrix} & Hall, Rasin \\ m_{\tau}(M_{GUT}) &= m_{b}(M_{GUT}) \\ m_{\mu}(M_{GUT}) &= 3m_{s}(M_{GUT}) \\ m_{e}(M_{GUT}) &= \frac{1}{3}m_{s}(M_{GUT}) & M^{l} = m_{b} \begin{pmatrix} \langle \varepsilon^{4} & 1\varepsilon^{3} & \cdot \\ 1\varepsilon^{3} & 3\varepsilon^{2} & \varepsilon^{2} \\ \cdot & \cdot & 1 \end{pmatrix} \end{aligned}$$

$$\theta_{12}^{l} = \sqrt{\frac{m_e}{m_{\mu}}} = \frac{\theta_C}{3}$$
$$\theta_{13} = \frac{\theta_{12}^{l}}{\sqrt{2}} = 3^0$$

...needs additional neutrino contribution

How do we distinguish between these possibilities?

...correlations between mixing angles and phase

### Vacuum alignment

e.g. 
$$Z_3 \ltimes Z_n$$

$$\begin{array}{c} \varphi_i & Z_3 \phi_i & Z_n \\ \phi_1 & \to \phi_2 & \to & \alpha \\ \phi_2 & \to \phi_3 & \to & \alpha^2 \phi_2 \\ \phi_3 & \to & \phi_1 & \to & \alpha^{-3} \phi_3 \end{array}$$
 $\alpha^n = 1$ 

## Choice of discrete symmetry

Vacuum structure : 
$$Z_3 \ltimes Z_n \rightarrow \begin{cases} Z_3, \langle \phi \rangle = (1,1,1) & \lambda > 0 \\ Z_n, \langle \phi \rangle = (0,0,1) & \lambda < 0 \end{cases}$$

.

$$V(\phi) = -m^2 \phi^{\dagger i} \phi_i + \dots + \lambda \ m^2 \phi^{\dagger i} \phi_i \phi^{\dagger i} \phi_i$$

## Vacuum alignment

$$\begin{split} P & \supset \quad < P > \phi_{23} \phi_{123}^2 \to m_{3/2} \phi_{23} \phi_{123}^2 \\ V_{tree} &= m_{3/2}^2 |\phi_{123}|^4 + m_{3/2}^2 |\phi_{123} \phi_{23}|^2 \\ V_{rad} &= \alpha m_{3/2}^2 |\phi_2|^4 + \beta m_{3/2}^2 |\phi_3|^4 + \gamma m_{3/2}^2 |\phi_2 \phi_3|^4 + \delta m_{3/2}^2 |\phi_2 \phi_{23}|^2 + \dots \\ & s_{12}^{\nu 2} = s_{23}^{\nu 2} = 0.5 \\ \phi_{123} &\propto (1,1,1), \quad \phi_2 &\propto (1,0,0), \quad \phi_3 &\propto (0,0,1), \quad \phi_{23} &\propto (0,1,-1) \\ \alpha, \beta < 0, \quad \gamma, \delta > 0 \end{split}$$

#### Bi-maximal mixing "perturbation"

 $s_{12}^{\nu 2}$ 

$$= s_{23}^{\nu 2} = 0.5 \qquad V_{BM}^{\nu} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}\\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
$$V_{BM}^{l} = \begin{pmatrix} \cos \alpha & -e^{-i\delta^{l}} \sin \alpha & 0\\ e^{-i\delta^{l}} \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix}$$

$$s_{13} \approx \alpha/\sqrt{2}$$

$$s_{12}^2 \approx 1/2 + \alpha \cos \delta/\sqrt{2}$$

$$s_{23}^2 \approx 1/2 - \alpha^2/4$$

$$\delta = \delta^l.$$