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Physics – how to do it?

Experiment and observe – compare with predictions of models

No perfect experiments – always noise/uncertainties, limited resources/sensitivity/range

Logically deducing the true model doesn’t work

All we can say is if a model is plausible description of data or not

But how to determine this?
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Important information

If you really don’t like statistics ..... you can stop listening now
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Principle of Bayesian inference

Bayesian inference in a nutshell

Assess hypotheses/models by calculating their plausibilities, conditioned on some known

and/or presumed information.

Cox’s Theorem (1946)

The unique calculus of plausibility is probability theory (using some requirements

incl. comparability, consistency)

Unique extension of deductive logic incorporating uncertainty

truth → 1, falsehood → 0

Johannes Bergström Bayesian model comparison with applications



Foundations
Bayesian inference

Examples and applications

Probability interpretations: what is distributed in Pr(X )?

Bayesian probability

Describes uncertainty

Defined as plausibility

Probability distributed over different propositions X

X is not distributed nor random

Frequentist probability

Describes “randomness”

Defined as long-run relative frequency of event

X is distributed – a random variable
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Bayesian inference – updating probabilities

Updating probabilities

Models H1 . . .Hr , data D. Bayes’ theorem:

Pr(Hi |D) =
Pr(D|Hi ) Pr(Hi )

Pr(D)

Pr(Hi ) – prior probability

Pr(Hi |D) – posterior probability

Pr(D|Hi ) = L(Hi ) – likelihood of Hi

Pr(Hi |D)

Pr(Hj |D)
=

L(Hi )

L(Hj )

Pr(Hi )

Pr(Hj )

Posterior odds = Bayes factor · Prior odds

Usually Prior odds = 1

Calculate either

Bayes factor/posterior odds

In addition assume precisely one of the H′

i
s correct ⇒ finite Pr(Hi |D)
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Model likelihood or evidence

Models usually have free parameters Θ

Likelihood for model – evidence –

L(H) = Pr(D|H) =

∫
Pr(D|Θ,H) Pr(Θ|H)dNΘ =

∫
L(Θ)π(Θ)dNΘ

Model likelihood = Average likelihood of model parameters

π(Θ) – Prior distribution – plausibility of parameters assuming model correct

Evidence balances quality of fit vs. model complexity – can favour simpler model

All probabilities conditioned on relevant background information (models, experimental

setup, . . . )
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Occam’s razor

Evidence = probability with which model predicted observed data

Occam’s razor – “simple” ≡ predictive

Complex models compatible with large variety of data – predict less

D

P
r(

D
|H

)

 

 

Simpler model
More complex model

Possible
observations
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Jeffreys scale

Scale of interpretation easily calibrated: Jeffreys scale

| log(odds)| odds Pr(H1|D) Interpretation

< 1.0 . 3 : 1 . 0.75 Inconclusive

1.0 ≃ 3 : 1 ≃ 0.75 Weak evidence

2.5 ≃ 12 : 1 ≃ 0.92 Moderate evidence

5.0 ≃ 150 : 1 ≃ 0.993 Strong evidence

Johannes Bergström Bayesian model comparison with applications



Foundations
Bayesian inference

Examples and applications

Priors

Must specify priors on all model parameters – not invariant under general

reparametrizations

Important part of Bayesian analysis – consider carefully

Uniform prior in the variable you happen to be writing your equations in (signal rate,

x-section) often bad choice

Improper prior always bad choice

Evaluate sensitivity to prior choice
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Parameter inference

Parameter inference – posterior distribution

Assuming model H correct, infer its parameters

Pr(Θ|D,H) =
Pr(D|Θ,H) Pr(Θ|H)

Pr(D|H)
=

L(Θ)π(Θ)

L(H)

Posterior of subsets of parameter by integrating over other parameters

Posterior not enough to test/compare any model(s), claim discoveries – by definition

Comparing models using posterior

Compare nested model with η = η0 using

L(η = η0)

L(η 6= η0)
=

Pr(η0|D,H)

π(η0|H)
=

Posterior at η0

Prior at η0
(Savage-Dickey density ratio)
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Frequentist model evaluation: P-values

P-values

P-value ≡ probability of obtaining equal or more extreme data than the observed

assuming H0

Extreme ≡ large value of test statistic (χ2, profile likelihood, . . .)

Converted into “No. of σ’s” using Gaussian CDF: S = φ−1(1 − p)

P-values are not See also D’Agostini, 1112.3620

Probability H0 correct

Probability data is “just a fluctuation”

Probability of incorrectly rejecting H0

Type-1 error rate α (0.05, 0.01...)

Interpretation needs uniform scale – not really possible
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Model comparison in particle physics

In particle physics

Use to compare (“test”) different models

Testing existence of “new physics”

Discovery is primary – precise parameter values describing new physics often secondary

Possible applications

θ13 = 0 vs. θ13 > 0

CP-violation vs. CP-conservation

Normal vs. inverted ordering

Maximal vs. nonmaximal θ23

Evidence of effects of neutrino mass: 0νββ, β-decay, cosmology.

Theoretical models of lepton mass, flavour, DM, . . .

. . .
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Leptonic mixing angle θ13 – flashback to fall 2011

Question

Is θ13 = 0 or not?

Profile likelihood ratio Schwetz, Tórtola, Valle, 1108.1376

L(θmax
13 )

L(θ13 = 0)
≃ 150 (∆χ2 ≃ 10) ⇒ p ≃ 1.5 · 10−3

Model comparison Bergström, 1205.4404

Compare model θ13 > 0 (∈ [0, π/2]) with model θ13 = 0

Compact parameter space ⇒ robust results

Approx L(θ13) ∝∼ Lprofile(θ13) ⇒

L(θ13 > 0)

L(θ13 = 0)
≃ 3

Barely weak preference for θ13 > 0

Assign 0.5 prior ⇒ Pr(θ13 = 0|D) ≃ 0.25
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Leptonic mixing angle θ23 – today

Question

θ23 is large, but is θ23 maximal (π/4) or not?

Profile likelihood (for NO) νfit v1.1: www.nu-fit.org, 1209.3023 (Gonzalez-Garcia, Maltoni, Salvado, Schwetz)

L(θmax
23 )

L(θ23 = π/4)
≃ 2.5 (∆χ2 ≃ 1.8) ⇒ p ≃ 0.18
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Leptonic mixing angle θ23 – today

Model comparison

Use L(s223) ∝∼ Lprofile(s
2
23) and π(s223) = 1

Compare model likelihoods
L(θ23 6= π/2)

L(θ23 = π/4)
≃ 0.3

Maximal mixing preferred by data (weakly)

Model with maximal θ23 (slightly) better than non-maximal model

Assign 0.5 prior ⇒ Pr(θ23 = π/4|D) ≃ 0.75

Octant comparison
L(θ23 < π/4)

L(θ23 > π/4)
≃ 2

Future prospects

Strong evidence for maximal mixing requires uncertainty on s223 of roughly 0.002
(0.02 for moderate)
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Neutrino parameters and cosmology

Cosmological data sensitive to Neff Planck collaboration, 1303.5076
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How much evidence is there against Neff = 3.046?
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Neutrino parameters and cosmology

Cosmological data sensitive to Neff Planck collaboration, 1303.5076
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How much evidence is there against Neff = 3.046?

Answer: cannot say – information is missing

Posterior obtained assuming Neff 6= 3.046

Model comparison
L(Neff = 3.046)

L(Neff 6= 3.046)
=

Posterior at 3.046

Prior at 3.046
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Results, Neff < 10 Verde, Feeney, Mortlock, Peiris, 1307.2904

Taking Neff < 10 ⇒

With H0 – no evidence of additional Neff

Without H0 – weak evidence against additional Neff

No evidence of additional Neff pre-Planck too
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Signal discovery in spectra Bergström, 1212.4484; Caldwell, Kröniger, physics/0608249

Question

Is there a signal?
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Estimate signal strength
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Signal discovery

Compare evidences of s + b model with b-only model

No need for distributions of test statistic

Do need prior on signal rate

Automatic compensation for LEE ∝ signal/spectrum widths
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Summary, conclusions

Bayesian inference rocks!!!

Consider your priors carefully

Don’t just estimate parameters of a fixed model – compare models too
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Thanks for listening!

http://www.xkcd.com/1132/
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Extra slides

Extra slides
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Analysing Beyond the Standard Model models

BSM models

Many BSM models have large – unconstrained – parameter spaces

Theorists’ favourite method – random scans

Generate many points in parameter space

Accept points which pass “cuts” (e.g., at 2σ)

Draw conclusions form distribution of points and/or the fraction of accepted points

Warning

No statistical/probabilistic measure attached to density of points

No statistical/probabilistic interpretation of results possible

But sometimes rough approximation of Bayesian analysis (reinvented?)
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U(1) flavour models – lepton sector Work with L. Merlo and D. Meloni

The models

Charged lepton masses (as quarks) are hierarchical

Mixing seem less so – but is hierarchy or anarchy preferred?

U(1) symmetry ⇒ obtain lepton masses and mixing “naturally” by suppressing charged

lepton and neutrino mass matrix elements by ǫni

Parameters

ǫ < 1 – flavon VEV/cutoff scale

ni – 4 integer charges of lepton doublets/singlets

30 additional “order one” parameters and phases in Yukawa/mass matrix

Data

me/mµ,me/mτ , leptonic mixing parameters, ∆m2
21/∆m2

31
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Analysing U(1) models

χ2-analysis

∆χ2(ǫ, charges) = 0 – all charges and ǫ can fit data equally well

Theorists’ response: So what?!?

Most of these values are unnatural – require large cancellations – hence implausible

Bayesian analysis

Consistently incorporated in Bayesian analysis through priors on O(1) parameters

Fix charges ⇒ nice Gaussian posteriors of ǫ

Compare charge assignments using model comparison

Fit charges as free parameters simultaneously

Compare “Anarchy” in neutrino sector (doublet charges = 0) with “Hierarchy”

probabilistically ⇒ some preference for Hierarchy
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Neutrinoless double beta decay Bergström, 1212.4484

Neutrinoless double beta decay

Majorana neutrinos can mediate 0νββ

Signal strength s ∝ |Nuclear matrix element|2|mee |2

mee =
∑

i miU
2
ei

Fitting data

Requires prior on mee – not uniform

NME calculations uncertain – unconstrained by data

NME uncertainties cannot be included in likelihood – but in prior

Compatibility of parameter constraints of ≥ 2 data sets

A model comparison question – compare “data compatible” with “data incompatible”
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Prior on mee – posterior using oscillation + β-decay
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