in Pissibles/ 3
neutrinos, dark noitter \& dark energy physics

Perspectives on the Flavor Problem

Benjamin Grinstein
UCSD

INVISIBLES
Lumley Castle, County Durham UK 2013

Flavor/CP and New Physics

Nature of first three may well be solely gravitational Baryogenesis requires CPV beyond that in the SM

- The Flavor Problem
of course, some of us are a bit distracted ...

Perspectives on ... which flavor problem?

- Many questions go under "flavor problem" I roughly classify them in two camps
- Fundamental or "origin of flavor"
- Why 3 generations
- Why the pattern of masses and mixings
- Structural or "coping with flavor"
- What does flavor physics say about my favorite BSM/NP model

Origin of flavor

- Very few examples of theories that "explain" the number of generations
- eg, particular compactifications of superstring theory
- Abundance of models ("theories of flavor") addressing mixing and masses, eg
- Discrete symmetries (A4, S_{3}, \ldots)
- Abelian, non-ableian
- Single higgs, multiple higgs
- w/wo SUSY
- ...
- Froggatt-Nielsen
- w/wo GUT
- w/wo SUSY
- ...
- Warped extra dimensions
- Localization along extra dims produces exponential mass ratios
- Wave function overlaps produce mixing
- Combinations of the above

Although not required, it is natural to assume a theory of the origin of flavor will address both, if not combine, the quark-flavor and the lepton-flavor problem:

- Number of generations tied: anomaly cancellation
- Neat fit of each generation into $\operatorname{SU}(5)$ (or SO (ı)) GUT multiplets

Coping with flavor

- "Flavor physics" often refers only to quark sector
- Quark mass matrices from EW breaking, and some masses comparable to EW scale
-Flavor changing processes abound!!
- SM: built in delicate cancellations (GIM)
- Strong constraints on NP/Diagnostic tool (coroner of models)

Coping with flavor

- "Flavor physics" often refers only to quark sector
- Quark mass matrices from EW breaking, and some masses comparable to EW scale
-Flavor changing processes abound!!
- SM: built in delicate cancellations (GIM)
- Strong constraints on NP/Diagnostic tool (coroner of models)

Merriam-Webster: "coroner:" a usually elected public officer whose principal duty is to inquire by an inquest into the cause of any death which there is reason to suppose is not due to natural causes

Coping with flavor

- "Flavor physics" often refers only to quark sector
- Quark mass matrices from EW breaking, and some masses comparable to EW scale
-Flavor changing processes abound!!
- SM: built in delicate cancellations (GIM)
- Strong constraints on NP/Diagnostic tool (coroner of models)

Merriam-Webster: "coroner:" a usually elected public officer whose principal duty is to inquire by an inquest into the cause of any death which there is reason to suppose is not due to natural causes

- Lepton Flavor: not necessarily at EW breaking
- Majorana neutrinos, large masses decouple (eg, see-saw)
- Dirac neutrinos: all masses small relative to EW
- Lepton Flavor changing processes .. nowhere near as rich
- BTW, Dirac neutrinos: not such a crazy idea
- An example I like (Arkani-Hamed \& Grossman):
- Dark side is strong interacting (weak at $\mathrm{M}_{\mathrm{P} \mathrm{l}}$)
- Gauge invariant operators in SM of $\operatorname{dim}<4$

$$
H \bar{L}, \quad|H|^{2}, \quad B_{\mu \nu}
$$

- Couple to gauge invariant dark operators, into scalar terms

$$
H \bar{L} N, \quad|H|^{2} S, \quad B_{\mu \nu} Y^{\mu \nu}
$$

- Operators, like N, become "fundamental" once dark side goes strong at scale Λ. Dimensionless coefficients naturally of order

$$
\left(\frac{\Lambda}{M_{P l}}\right)^{n}
$$

Generic bounds without a flavor symmetry

- Integrate out NP at UV scale
- Produce local operators
- Assume coupling is order 1 (generic, no flavor suppression)

Alternatively: Specific models

DNA of models (changed from authors' "DNA of flavor physics effects")

	AC	RVV2	AKM	δ LL	FBMSSM	LHT	RS
$D^{0}-\bar{D}^{0}$	$\star \star \star$	\star	\star	\star	\star	$\star \star \star$	$?$
ϵ_{K}	\star	$\star \star \star$	$\star \star \star$	\star	\star	$\star \star$	$\star \star \star$
$S_{\psi \phi}$	$\star \star \star$	$\star \star \star$	$\star \star \star$	\star	\star	$\star \star \star$	$\star \star \star$
$S_{\phi K_{S}}$	$\star \star \star$	$\star \star$	\star	$\star \star \star$	$\star \star \star$	\star	$?$
$A_{\mathrm{CP}}\left(B \rightarrow X_{s} \gamma\right)$	\star	\star	\star	$\star \star \star$	$\star \star \star$	\star	$?$
$A_{7,8}\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right)$	\star	\star	\star	$\star \star \star$	$\star \star \star$	$\star \star$	$?$
$A_{9}\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right)$	\star	\star	\star	\star	\star	\star	$?$
$B \rightarrow K^{(*)} \nu \bar{\nu}$	\star						
$B_{s} \rightarrow \mu^{+} \mu^{-}$	$\star \star \star$	\star	\star				
$K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$	\star	\star	\star	\star	\star	$\star \star \star$	$\star \star \star$
$K_{L} \rightarrow \pi^{0} \nu \bar{\nu}$	\star	\star	\star	\star	\star	$\star \star \star$	$\star \star \star$
$\mu \rightarrow e \gamma$	$\star \star \star$						
$\tau \rightarrow \mu \gamma$	$\star \star \star$	$\star \star \star$	\star	$\star \star \star$	$\star \star \star$	$\star \star \star$	$\star \star \star$
$\mu+N \rightarrow e+N$	$\star \star \star$						
d_{n}	$\star \star \star$	$\star \star \star$	$\star \star \star$	$\star \star$	$\star \star \star$	\star	$\star \star \star$
d_{e}	$\star \star \star$	$\star \star \star$	$\star \star$	\star	$\star \star \star$	\star	$\star \star \star$
$(g-2)_{\mu}$	$\star \star \star$	$\star \star \star$	$\star \star$	$\star \star \star$	$\star \star \star$	\star	$?$

AC: Agashe-Carone abliean U(I) susy
RVV2: Ross, Velasco-Sevilla, Vives (non-ab, susy)
AKM: Antusch, King. Malinsky (non-ab, susy)
FBMSSM: flavor blind MSSM
dLL: MFV MSSM with LL mass insertions
LHT: Littlest higgs with T-parity
RS: warped extra-dims model with custodial protection

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\star \star \star$ signals large effects, $\star \star$ visible but small effects and \star implies that the given model does not predict sizable effects in that observable.

Alternatively：Specific models

DNA of models（changed from authors＇＂DNA of flavor physics effects＂）

	AC	RVV2	AKM	$\delta \mathrm{LL}$	FBMSSM	LHT	RS
$D^{0}-\bar{D}^{0}$	大 $\star \star$	\star	\star	\star	\star	＊\star＊	？
ϵ_{K}	\star	$\star \star \star$	$\star \star \star$	\star	\star	$\star \star$	$\star \star \star$
$S_{\psi \phi}$	$\star \star \star$	$\star \star \star$	$\star \star \star$	\star	\star	$\star \star \star$	$\star \star \star$
$S_{\phi K_{S}}$	$\star \star \star$	$\star \star$	\star	＊\star＊	＊\star＊	＊	？
$A_{\mathrm{CP}}\left(B \rightarrow X_{s} \gamma\right)$	\star	\star	\star	＊＊＊	$\star \star \star$	\star	？
$A_{7,8}\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right)$	\star	\star	\star	＊＊＊	＊\star	$\star \star$	？
$A_{9}\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right)$	\star	\star	\star	\star	\star	\star	？
$B \rightarrow K^{(*)} \nu \bar{\nu}$	\star						
$B_{s} \rightarrow \mu^{+} \mu^{-}$	$\star \star \star$	$\star \star \star$	$\star \star \star$	大 \star＊	$\star \star \star$	\star	\star
$K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$	\star	\star	\star	\star	\star	$\star \star \star$	$\star \star \star$
$K_{L} \rightarrow \pi^{0} \nu \bar{\nu}$	\star	\star	\star	\star	\star	$\star \star \star$	$\star \star \star$
$\mu \rightarrow e \gamma$	$\star \star \star$						
$\tau \rightarrow \mu \gamma$	$\star \star \star$	$\star \star \star$	\star	$\star \star \star$	$\star \star \star$	$\star \star \star$	$\star \star \star$
$\mu+N \rightarrow e+N$	$\star \star \star$						
d_{n}	$\star \star \star$	$\star \star \star$	$\star \star \star$	＊\star	$\star \star \star$	\star	$\star \star \star$
d_{e}	$\star \star \star$	$\star \star \star$	$\star \star$	\star	＊大	\star	大 \star＊
$(g-2)_{\mu}$	$\star \star \star$	$\star \star \star$	$\star \star$	$\star \star \star$	$\star \star \star$	\star	？

AC：Agashe－Carone abliean U（I）susy
RVV2：Ross，Velasco－Sevilla，Vives（non－ab，susy）
AKM：Antusch，King．Malinsky（non－ab，susy）
FBMSSM：flavor blind MSSM
dLL：MFV MSSM with LL mass insertions
LHT：Littlest higgs with T－parity
RS：warped extra－dims model with custodial protection

Table 8：＂DNA＂of flavour physics effects for the most interesting observables in a selection of SUSY and non－SUSY models $\star \star \star$ signals large effects，$\star \star$ visible but small effects and \star implies that the given model does not predict sizable effects in that observable．

CPV in interference of mixing/decay

- Decay amplitudes in terms of weak $\left(\phi_{k}\right)$ and strong $\left(\delta_{k}\right)$ phases

$$
A_{f}=\langle f| H|B\rangle=\sum_{k} A_{k} e^{i \delta_{k}} e^{i \phi_{k}}, \quad \bar{A}_{\bar{f}}=\langle\bar{f}| H|\bar{B}\rangle=\sum_{k} A_{k} e^{i \delta_{k}} e^{-i \phi_{k}}
$$

- CPV in decay if non-vanishing

$$
\left|\bar{A}_{\bar{f}}\right|^{2}-\left|A_{f}\right|^{2} \propto \sin \left(\phi_{1}-\phi_{2}\right) \sin \left(\delta_{1}-\delta_{2}\right)
$$

- Theory input: strong phases (usually model dependent)
- Instead CPV in interference of mixing.decay can be theo-clean
- If amplitudes with a single weak phase dominate

- Simplest if f is a CP eigenstate

$$
\begin{aligned}
a(t) & =\frac{\Gamma\left[\bar{B}^{0}(t) \rightarrow f\right]-\Gamma\left[B^{0}(t) \rightarrow f\right]}{\Gamma\left[\bar{B}^{0}(t) \rightarrow f\right]+\Gamma\left[B^{0}(t) \rightarrow f\right]} \\
& =S_{f} \sin (\Delta m t)-C_{f} \cos (\Delta m t)
\end{aligned}
$$

where

$$
S_{f}=\frac{2 \operatorname{Im} \lambda_{f}}{1+\left|\lambda_{f}\right|^{2}},
$$

$$
C_{f}=\frac{1-\left|\lambda_{f}\right|^{2}}{1+\left|\lambda_{f}\right|^{2}}
$$

$$
\lambda_{f}=\frac{q}{p} \frac{\bar{A}_{f}}{A_{f}} .
$$

Gold plated examples: $b \rightarrow c \bar{c} s$

$\sin (2 \beta) \equiv \sin \left(2 \phi_{1}\right)$

$\mathrm{b} \rightarrow \mathbf{c c s} \mathbf{C}_{\mathrm{CP}}$

and $B_{s} \rightarrow \psi \phi, \psi \pi^{+} \pi^{-}$

$$
\lambda_{\psi \pi^{+} \pi^{-}}=-\left(\frac{V_{t b}^{*} V_{t s}}{V_{t b} V_{t s}^{*}}\right)\left(\frac{V_{c b} V_{c s}^{*}}{V_{c b}^{*} V_{c s}}\right)=-e^{-2 i \beta_{s}}
$$

small angle in squashed unitarity triangle ≈ 0 in SM

$$
\varphi_{s}^{S M} \equiv-2 \beta_{s}=-2 \arg \left(-\frac{V_{t s} V_{i b}}{V_{c s} V_{c b}}\right)=-0.04 \mathrm{rad}
$$

$B \rightarrow \psi \phi\left(K^{+} K^{-}\right)$requires angular analysis, separate partial waves. Combined analysis:

$$
\phi_{s}=-0.002 \pm 0.083 \pm 0.027 \mathrm{rad}
$$

[G Cowan, ICHEP 2OI2]

$$
\underline{B} \rightarrow \mu^{+} \mu^{-}
$$

Reconstructed $B \rightarrow \mu^{+} \mu^{-}$ event from the LHCb Collaboration [muon.wordpress.com]

Sensitive to NP:

(b)

95\% C.L. Bounds

LHCb-CONF-2012-017 Preliminary upper limits (95\%C.L.):

$$
\begin{aligned}
& \mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)<4.2 \times 10^{-9} \\
& \mathcal{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)<8.1 \times 10^{-10}
\end{aligned}
$$

LHCb measurement (Nov 2012)

$$
\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(3.2_{-1.2}^{+1.4}(\text { stat })_{-0.3}^{+0.5}(\text { syst })\right) \times 10^{-9}
$$

recall:

$$
\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)^{\mathrm{SM}}=(3.23 \pm 0.27) \times 10^{-9}
$$

Also new (best) bound:

$$
\mathcal{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)<9.4 \times 10^{-10}
$$

[LHCb, Phys.Rev.Lett. IIO (2013) O2I8or]

Implications for NP searches

- With few exceptions, no deviations from SM
- Exceptions (some are going away already):
- $B^{-} \rightarrow \tau^{-} v$ (next slide), $B^{-} \rightarrow D \tau^{-} v, B^{-} \rightarrow D^{*} \tau^{-} v$
- Isospin asymmetry A_{I} in $B \rightarrow K \mu^{+} \mu^{-}$
- Flavor specific CP asymmetry $a_{\text {sl }}$
- FB-asymmetry in top production at Tevatron
- muon $g-2$
- Tightening bounds on NP require specialized analysis of specific models
- (infinitely) many variations of SUSY
- variations on extra-dimensions
- techni-color (strongly coupled higgs sector with dilaton)
-

Is there still a problem with $B^{-} \rightarrow \tau^{-} v$?

- $B^{-} \rightarrow \tau^{-} v$ in SM is tree level
- Clean SM prediction, lattice gives f_{B}

$$
\Gamma(B \rightarrow \tau \nu)=\frac{G_{F}^{2} m_{B}}{8 \pi} m_{\tau}^{2}\left(1-m_{\tau}^{2} / m_{B}^{2}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2}
$$

- Modified for τ, less for e, μ, by charged higgs in 2HDM
- 2HDM modifies box diagram too: cannot use SM extraction of $\sin (2 \beta)$ from $B^{0} \rightarrow \psi K_{S}$
- But NEW Belle result [arXiv:1208.4678]

Fit excluding $B^{-} \rightarrow \tau^{-} v \& B^{0} \rightarrow \psi K_{S}$

Is there still a problem with $B^{-} \rightarrow \tau^{-} v$?

- $B^{-} \rightarrow \tau^{-} v$ in SM is tree level
- Clean SM prediction, lattice gives f_{B}

$$
\Gamma(B \rightarrow \tau \nu)=\frac{G_{F}^{2} m_{B}}{8 \pi} m_{\tau}^{2}\left(1-m_{\tau}^{2} / m_{B}^{2}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2}
$$

- Modified for τ, less for e, μ, by charged higgs in 2HDM
- 2HDM modifies box diagram too: cannot use SM extraction of $\sin (2 \beta)$ from $B^{0} \rightarrow \psi K_{S}$
- But NEW Belle result [arXiv:1008.46-8]

$$
\mathcal{B}\left(B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}\right)=\left[0.72_{-0.25}^{+0.27}(\text { stat }) \pm 0.11(\text { syst })\right] \times 10^{-4}
$$

world avg. summer 2008

Fit excluding $B^{-} \rightarrow \tau^{-} v \& B^{0} \rightarrow \psi K_{S}$

CMSSM

[Haisch \& Mahmoudi, arXiv:I2IO.7806]

$$
R_{\mu^{+} \mu^{-}}=\frac{\operatorname{BR}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)_{\mathrm{MSSM}}}{\operatorname{BR}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)_{\mathrm{SM}}}
$$

flash back, 4 years ago...

CMSSM (at large $\tan \beta$, possibly)

$\tan \beta \sim 1$	charged Higgs and chargino
$\tan \beta \gg 1$	exchanges dominant Higgs exchange dominant

five new (beyond SM) parameters

CMSSM (at large $\tan \beta$, possibly)

$\tan \beta \sim 1$	charged Higgs and chargino
$\tan \beta \gg 1$	exchanges dominant Higgs exchange dominant

five new (beyond SM) parameters

CMSSM (at large $\tan \beta$, possibly)

$\tan \beta \sim 1$	charged Higgs and chargino
$\tan \beta \gg 1$	exchanges dominant Higgs exchange dominant

five new (beyond SM) parameters

At this point I am supposed to show you many more plots of the restricted parameter space in versions of low energy SUSY, extra-dimensions, little higgs.....

Instead, get some "perspective"

Minimal Flavor Violation (MFV)

- Let's take a more generic, less mode dependent, approach
- MFV Premise: Unique source of flavor braking
- Quark sector in SM, in absence of masses has large flavor (global) symmetry G_{F} :

$$
\mathrm{U}(3)_{Q_{L}} \otimes \mathrm{U}(3)_{U_{R}} \otimes \mathrm{U}(3)_{D_{R}}
$$

- In SM, symmetry is only broken by Yukawa interactions, parametrized by couplings Y_{U} and Y_{D}

For the benefit of the experts, who don't seem to get it:

- NP models must have at least this amount of symmetry breaking ("minimal")
- They may have more
- Irrelevant. Here is the story: given new stuff at a given scale Λ, virtual processes will induce corrections to flavor processes (not necessarily perturbatively). Question is: what is the minimum effect in flavor changing processes we have a right to expect?
- And, yes, it can be avoided by tuning

MFV cont'd

- Recall. Flavor group G_{F} is

$$
\mathrm{U}(3)_{Q_{L}} \otimes \mathrm{U}(3)_{U_{R}} \otimes \mathrm{U}(3)_{D_{R}}
$$

- In SM, symmetry is only broken by Yukawa interactions, parametrized by couplings Y_{U} and Y_{D}
- MFV: all breaking of G_{F} must arise from Y_{U} and Y_{D}.
- In practice: Build G_{F} invariants with Y_{U} and Y_{D} as constant fields, a.k.a. "spurions"

$$
\begin{aligned}
Y_{u} & =(\overline{3}, 3,1), \\
Y_{d} & =(\overline{3}, 1,3) .
\end{aligned}
$$

- When going to mass eigenstate basis, all mixing is parametrized by CKM and GIM-like cancellations are automatic
- Result: NP parametrized by high dimension operators: $\Lambda \leq 3-10 \mathrm{TeV}$
- For perturbative NP $\Lambda=4 \pi \mathrm{M}$

Digression: can we take spurions seriously?

- Want a model in which spurions are VEVs of scalars
- Want a renormalizable model
- Must gauge G_{F} (else NGB disaster)
- Desirable (but unnecessary): some chance of LHC physics. But
- expect $\mathrm{M}_{\mathrm{V}} \sim 10^{4} \mathrm{TeV}$ from K^{0} physics
- expect spectrum of vectors roughly like VEVs, i.e., like $Y_{U, D}$
- so all vectors heavier than $10^{4} \mathrm{TeV}$ unless, somehow: inverted hierarchy
- Must: anomaly free
- Desirable: Simplest
- Note: $N=3$ of generations "explained" (no less than $N_{c}=3$ colors explained) (while spectrum and pattern of mixings still engineered).

Surprisingly, the simplest renormalizable SM extension with gauged, anomaly free G_{F} has an inverted hierarchy of vector masses (relative to quark masses)

	$\mathrm{SU}(3)_{Q_{L}}$	$\mathrm{SU}(3)_{U_{R}}$	$\mathrm{SU}(3)_{D_{R}}$	$\mathrm{SU}(3)_{c}$	$\mathrm{SU}(2)_{L}$	$\mathrm{U}(1)_{Y}$
Q_{L}	3	1	1	3	2	$1 / 6$
U_{R}	1	3	1	3	1	$2 / 3$
D_{R}	1	1	3	3	1	$-1 / 3$
$\Psi_{u R}$	3	1	1	3	1	$2 / 3$
$\Psi_{d R}$	3	1	1	3	1	$-1 / 3$
Ψ_{u}	1	3	1	3	1	$2 / 3$
Ψ_{d}	1	1	3	3	1	$-1 / 3$
Y_{u}	$\overline{3}$	3	1	1	1	0
Y_{d}	$\overline{3}$	1	3	1	1	0
H	1	1	1	1	2	$1 / 2$

Most general renormalizable lagrangian

$$
\begin{aligned}
\mathcal{L}= & \mathcal{L}_{k i n}-V\left(Y_{u}, Y_{d}, H\right)+ \\
& \left(\lambda_{u} \bar{Q}_{L} \tilde{H} \Psi_{u R}+\lambda_{u}^{\prime} \bar{\Psi}_{u} Y_{u} \Psi_{u R}+M_{u} \bar{\Psi}_{u} U_{R}+\right. \\
& \left.\lambda_{d} \bar{Q}_{L} H \Psi_{d R}+\lambda_{d}^{\prime} \bar{\Psi}_{d} Y_{d} \Psi_{d R}+M_{d} \bar{\Psi}_{d} D_{R}+\text { h.c. }\right),
\end{aligned}
$$

Spectrum (arbitrary overall scale, take it as TeV)

but this is INVISIBLES ...

Leptons

- it is easy to accommodate leptons in the gauged- G_{F} model
- MLFV: MFV for lepton sector
- Best justified by GUTs, so may as well...
- MFV GUT
- GUTs connect MFV in quark and lepton sectors
- New effects (e.g., LFV even for Dirac neutrino)
- Includes thoroughly studied models (e.g., SUSY-GUTs)
three families of left handed fields:

$$
\begin{array}{ccc}
\psi_{i} \sim \overline{5} & \chi_{i} \sim \mathbf{1 0} & N_{i} \sim \mathbf{1} \\
\left(d_{R}^{c}, L_{L}\right) & \left(Q_{L}, u_{R}^{c}, e_{R}^{c}\right) &
\end{array}
$$

In the absence of masses, symmetric under $S U(3)_{\overline{5}} \times S U(3)_{10} \times S U(3)_{1}$
Include symmetry breaking (here with one higgs):

$$
\begin{aligned}
& \lambda_{5}^{i j} \psi_{i}^{T} \chi_{j} H_{5}^{*}+\lambda_{10}^{i j} \chi_{i}^{T} \chi_{j} H_{5} \\
& \text { gives bad mass relations for light families } \\
& \lambda_{u} \propto \lambda_{10}, \lambda_{d} \propto \lambda_{e}^{T} \propto \lambda_{5} \\
& \frac{1}{M}\left(\lambda_{5}^{\prime}\right)^{i j} \psi_{i}^{T} \Sigma \chi_{j} H_{\overline{5}} \quad \Sigma \sim \mathbf{2 4} ; M \text { large; freedom to fix mass relations } \\
& \lambda_{u} \propto \lambda_{10}, \lambda_{d} \propto\left(\lambda_{5}+\epsilon \lambda_{5}^{\prime}\right), \lambda_{e}^{T} \propto\left(\lambda_{5}-\frac{3}{2} \epsilon \lambda_{5}^{\prime}\right), \quad \epsilon=M_{\mathrm{GUT}} / M \\
& \lambda_{1}^{i j} N_{i}^{T} \psi_{j} H_{5}+M_{R}^{i j} N_{i}^{T} N_{j} \quad \text { neutrino masses (Dirac+Majorana) }
\end{aligned}
$$

get old mixing structures (to be included in composite operators), like
quarks:
$\bar{Q}_{L} \lambda_{u}^{\dagger} \lambda_{u} Q_{L}$,
$\bar{d}_{R} \lambda_{d} \lambda_{u}^{\dagger} \lambda_{u} Q_{L}$
leptons: $\quad \bar{L}_{L} \lambda_{1}^{\dagger} \lambda_{1} L_{L}, \quad \bar{e}_{R} \lambda_{e} \lambda_{1}^{\dagger} \lambda_{1} L_{L}$
but also get interesting new ones, like

$$
\begin{array}{lll}
\text { quarks: } & \bar{Q}_{L}\left(\lambda_{e} \lambda_{e}^{\dagger}\right)^{T} Q_{L}, & \\
& \bar{d}_{R} \lambda_{e}^{T}\left(\lambda_{e} \lambda_{e}^{\dagger}\right)^{T} Q_{L}, & \bar{d}_{R}\left(\lambda_{e} \lambda_{1}^{\dagger} \lambda_{1}\right)^{T} Q_{L}, \\
& \bar{d}_{R}\left(\lambda_{e}^{\dagger} \lambda_{e}\right)^{T} d_{R}, & \bar{d}_{R}\left(\lambda_{1}^{\dagger} \lambda_{1}\right)^{T} d_{R}, \\
\text { leptons: } & \bar{L}_{L}\left(\lambda_{d} \lambda_{d}^{\dagger}\right)^{T} L_{L}, & \\
& \bar{e}_{R}\left(\lambda_{d} \lambda_{d}^{\dagger} \lambda_{d}\right)^{T} L_{L}, & \bar{e}_{R} \lambda_{u} \lambda_{u}^{\dagger} \lambda_{d}^{T} L_{L}, \\
& \bar{e}_{R} \lambda_{u} \lambda_{u}^{\dagger} e_{R}, & \bar{e}_{R}\left(\lambda_{d}^{\dagger} \lambda_{d}\right)^{T} e_{R},
\end{array}
$$

going over to quark/lepton mass basis, introduce two new mixing matrices $C=V_{e_{R}}^{T} V_{d_{L}}, \quad G=V_{e_{L}}^{T} V_{d_{R}}$ so get, for example

$$
\begin{aligned}
\bar{e}_{R} \lambda_{u} \lambda_{u}^{\dagger} e_{R} & \bar{e}_{R}\left[C \Delta^{(q)} C^{\dagger}\right]^{*} e_{R} \\
\bar{e}_{R} \lambda_{u} \lambda_{u}^{\dagger} \lambda_{d}^{T} L_{L} \longrightarrow & \bar{e}_{R}\left[C \Delta^{(q)} \bar{\lambda}_{d} G^{\dagger}\right]^{*} e_{L} \\
\bar{e}_{R} \lambda_{u} \lambda_{u}^{\dagger} \lambda_{e} L_{L} & \bar{e}_{R}\left[C \Delta^{(q)} C^{\dagger}\right]^{*} \bar{\lambda}_{e} e_{L} \\
\text { where } \Delta_{i j}^{(q)} \equiv & V_{\mathrm{CKM}}^{\dagger} \bar{\lambda}_{u}^{2} V_{\mathrm{CKM}}=\frac{m_{t}^{2}}{v^{2}}\left(V_{\mathrm{CKM}}\right)_{3 i}^{*}\left(V_{\mathrm{CKM}}\right)_{3 j}+\mathcal{O}\left(m_{c, u}^{2} / m_{t}^{2}\right) \\
& 3 \mathrm{I}
\end{aligned}
$$

quick example (probably out of time by now):
$\tau \rightarrow \mu \gamma, \quad \tau \rightarrow e \gamma \& \mu \rightarrow e \gamma$

$$
\Delta \mathcal{L}_{\text {eff }}=\frac{v}{\Lambda^{2}} \bar{e}_{R}\left[c_{1} \lambda_{e} \lambda_{1}^{\dagger} \lambda_{1}+c_{2} \lambda_{u} \lambda_{u}^{\dagger} \lambda_{e}+c_{3} \lambda_{u} \lambda_{u}^{\dagger} \lambda_{d}^{T}\right] \sigma^{\mu \nu} e_{L} F_{\mu \nu}
$$

quick example (probably out of time by now):
$\tau \rightarrow \mu \gamma, \quad \tau \rightarrow e \gamma \& \mu \rightarrow e \gamma$
$\Delta \mathcal{L}_{\text {eff }}=\frac{v}{\Lambda^{2}} \bar{e}_{R}\left[c_{1} \lambda_{e} \lambda_{1}^{\dagger} \lambda_{1}+c_{2} \lambda_{u} \lambda_{u}^{\dagger} \lambda_{e}+c_{3} \lambda_{u} \lambda_{u}^{\dagger} \lambda_{d}^{T}\right] \sigma^{\mu \nu} e_{L} F_{\mu \nu}$ just like pure MLFV
quick example (probably out of time by now):

$$
\tau \rightarrow \mu \gamma, \quad \tau \rightarrow e \gamma \& \mu \rightarrow e \gamma
$$

$$
(\lambda=0.22)
$$

(is the Cabibbo angle!)

Flavor Physics and FB asymmetry in top production at Tevatron

s-channel exchange models

〔Marques Tavares, Schmalz / Barcelo, Carmona, Masip, Santiago / Ferrario, Rodrigo / Frampton,Shu, Wang / Djouadi, Richard / Bauer, Goertz, Haisch, Pfoh, Westhoff / Bai, Hewett, Kaplan, Rizzo / Zerwekh /Hewet, Shelton, Spannowsky, Tait, Takeuchi / Haisch, Westhoff / Aguilar-Saavedra, Perez-Victoria, ...]
G is color octet for LO interference with QCD
Need axial coupling; "axigluon." For positive asymmetry and heavy G need $\underline{\operatorname{sign}\left(g^{q} g^{t}\right)=-1}$: vector-axial couplings non-flavor-universal.
Light G : suppressed light $-q$ couplings (from dijets)

t-channel exchange models

[Jung, Murayama, Pierce, Wells / Cheung, Keung, Yuan / Cao, Heng, Wu, Yang / Barger, Keung, Yu / Cao, McKeen, Rosner, Saughnessy, Wagner / Berger, Cao, Chen, Li, Zhang / Bhattacherjee, Biswal, Ghosh/ Zhou, Wang, Zhu / Aguilar-Saavedra, Perez-Victoria / Buckley, Hooper, Kopp, Neil / Rajaraman, Surujon, Tait/ Duraisamy, Rashed, Datta / Shu,Tait,Wang / Cao,Heng, Wu, Yang / Dorsner, Faifer, Kamenik, Kosnik /
Jung,Ko,Lee,Nam. Aguilar-Saavedra, Perez-Victoria / Patel, Sharma / Ligeti, Marques Tavares, Schmalz, ...]

- A large FB asymmetry requires large flavor violating couplings
- Like sign tt, di-jets, single top, very constrained at Tevatron and LHC

All models require non-trivial flavor interactions.
Natural implementation: Minimal Flavor Violating Fields, rich phenomenology [BG, Kagan, Trott, Zupan]

Conclusions

- Flavor physics in quark sector strongly constrains BSM/NP models
- Expect that any complete theory of flavor connects quark and lepton sectors
- In absence of direct evidence for new resonances, generic model independent analysis is valuable
- MFV:
- Simplest way of relaxing bounds on scale of NP
- Naturally arising (or to god approximation) in many popular models
- Extensible to leptons/GUTs
- Addresses flavor in top-quark-FB-asymmetry
- Gauged flavor models "explain:" number of generations
- Do not address patterns of masses and mixings
- MFV? Very nonlinearly
- Plethora of models for patterns of masses and mixings
- But many only in lepton sector
- Do not address number of generations (combine with gauged G_{F} ?)
- Still far form a "theory of flavor"

The End

More slides

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0 \quad \frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}} \overbrace{(0,0)}^{\frac{(\bar{\rho}, \bar{\eta})}{\phi_{2}} \underbrace{V_{c d} V_{c b}^{*}}_{c d}}
$$

CKM

CPV in Mixing

- In SM neutral pseudoscalar P^{0} can mix into antiparticle via box diagram
- Mixing rate depends on

- Mass of internal quark larger for heavier quark
- CKM factors $V_{i j}$
- Largest for B_{s} since t-quark is not suppressed by CKM

Mixing Theory

Effective two state system:

$$
i \frac{d}{d t}\binom{P^{0}}{\bar{P}^{0}}=H_{\mathrm{eff}}\binom{P^{0}}{\bar{P}^{0}} \quad H_{\mathrm{eff}}=M-\frac{i}{2} \Gamma \quad M^{\dagger}=M, \quad \Gamma^{\dagger}=\Gamma
$$

CPT: $\quad H_{\text {eff } 11}=H_{\text {eff } 22}$
diagonalize: $\quad\left|P_{L}\right\rangle=p\left|P^{0}\right\rangle+q\left|\bar{P}^{0}\right\rangle \quad\left|P_{H}\right\rangle=p\left|P^{0}\right\rangle-q\left|\bar{P}^{0}\right\rangle$
define: $\quad \bar{M}=\frac{M_{H}+M_{L}}{2} \quad \Delta M=M_{H}-M_{L} \approx 2\left|M_{12}\right|\left(1-\frac{\left|\Gamma_{12}\right|^{2}}{8\left|M_{12}\right|^{2}} \sin ^{2} \phi_{12}\right)$

$$
\begin{aligned}
& \bar{\Gamma}=\frac{\Gamma_{H}+\Gamma_{L}}{2} \quad \Delta \Gamma=\Gamma_{H}-\Gamma_{L} \approx 2\left|\Gamma_{12}\right| \cos \phi_{12}\left(1+\frac{\left|\Gamma_{12}\right|^{2}}{8\left|M_{12}\right|^{2}} \sin ^{2} \phi_{12}\right) \\
& \phi_{12}=\arg \left(-M_{12} / \Gamma_{12}\right)
\end{aligned}
$$

compute, eg: $\left(\frac{q}{p}\right)=\frac{\Delta M+\frac{i}{2} \Delta \Gamma}{2\left(M_{12}-\frac{i}{2} \Gamma_{12}\right)}$

Flavor Specific: $a_{s l}$

- Definition $\quad a_{s l}=\frac{\Gamma(\bar{P} \rightarrow f)-\Gamma(P \rightarrow \bar{f})}{\Gamma(\bar{P} \rightarrow f)+\Gamma(P \rightarrow \bar{f})}$
where $\Gamma(\bar{P} \rightarrow f)(t=0)=0=\Gamma(P \rightarrow \bar{f})(t=0)$
- Flavor specific means $\bar{f} \neq f$
- $B_{s} \rightarrow D^{+} \mu^{-} \bar{\nu}_{\mu}$ vs $\bar{B}_{s} \rightarrow D^{-} \mu^{+} \nu_{\mu}$
- Or same sign dileptons: one meson mixes and decays, the other decays without mixing: $\mu^{+} \mu^{+}$vs $\mu^{-} \mu^{-}$
- In SM

$$
a_{s l}=\frac{|p / q|^{2}-|q / p|^{2}}{|p / q|^{2}+|q / p|^{2}} \approx \frac{\Delta \Gamma}{\Delta M} \tan \phi_{12}
$$

so it is very small in SM,

[A. Lenz, Moriond 2012]

$a_{s l}: \mathrm{D} 0$, from di-muons

- Dimuons
- $a_{s l}^{b}=(-0.787 \pm 0.172$ (stat) ± 0.093 (syst) $) \%$ combined for d and s
- 3.9σ deviation from SM
- Also use IP (impact parameter) to separate d from s

$$
\begin{aligned}
a_{\mathrm{sl}}^{d} & =(-0.12 \pm 0.52) \% \\
a_{\mathrm{sl}}^{s} & =(-1.81 \pm 1.06) \% .
\end{aligned}
$$

[Phys.Rev. D82 (2010) 03200I]

[Phys.Rev. D84 (201I) 052007]

$a_{s l}: \mathrm{D} 0$, from semileptonic

[arXiv:I207.1769]
[Phys. Rev. D86, 072009 (2012)]

- New this year (Jul 7, Aug 29)
$-\frac{\Gamma\left(\bar{B}^{0} \rightarrow B^{0} \rightarrow \ell^{+} D^{(*)-} X\right)-\Gamma\left(B^{0} \rightarrow \bar{B}^{0} \rightarrow \ell^{-} D^{(*)+} X\right)}{\Gamma\left(\bar{B}^{0} \rightarrow B^{0} \rightarrow \ell^{+} D^{(*)-} X\right)+\Gamma\left(B^{0} \rightarrow \bar{B}^{0} \rightarrow \ell^{-} D^{(*)+} X\right)}$,
All D0 plot:
with 2 decay channels:

1. $B^{0} \rightarrow \mu^{+} \nu D^{-} X$,
with $D^{-} \rightarrow K^{+} \pi^{-} \pi^{-}$
(plus charge conjugate process);
2. $B^{0} \rightarrow \mu^{+} \nu D^{*-} X$,
with $D^{*-} \rightarrow \bar{D}^{0} \pi^{-}, \bar{D}^{0} \rightarrow K^{+} \pi^{-}$
(plus charge conjugate process);
(idem for B_{s})

- $a_{\mathrm{sl}}^{d}=[0.68 \pm 0.45$ (stat.) ± 0.14 (syst.) $] \%$.

$a_{\mathrm{sl}}^{s}=[-1.08 \pm 0.72($ stat $) \pm 0.17($ syst $)] \%$

$a_{s l}$ ：rest of the world

－LHCb ${ }_{\text {［PLB773（2012）／86］}}$

$$
a_{s l}^{s}=(-0.24 \pm 0 . \pm 0.33) \%
$$

－B－factories combined

$$
a_{s l}^{d}=(-0.05 \pm 0.56) \%
$$

－Superimposed on D0 plot，for comparison
－Consistent with SM
－Will have to wait for more（more precise） data（not Tevatron）

$a_{s l}$:summary

Characterize NP by

$$
M_{12}^{q}=M_{12}^{q, \mathrm{SM}} \Delta_{q}
$$

(does not include new LHCb result)

Combined fit to polarization, widths and angles in $B \rightarrow \psi \phi\left(K^{+} K^{-}\right)$ gives widths and angles:

Long Digression

Can we compute Γ (let alone $\Delta \Gamma$)?

- Standard lore: use OPE
- OPE: expansion in $1 / m_{b}$

- Normally:
[Lenz \& Nierste, eg: JHEP 0706 (2007) 072]
- OPE valid in "deep Euclidean region"
- Use dispersion relation to relate to physical region
- Result in integral over all energies in physical region
- Duality: replace integral over all energies by smearing over domain
- Duality works if smearing over large enough region:
- Include large number of resonances
- Smooth regions dominate

Poggio-Quinn-Weinberg:

$$
\bar{\sigma}(s)=\frac{1}{2 i}(\Pi(s+i \Delta)-\Pi(s-i \Delta))
$$

can use OPE for Π if Δ is large enough

- For B decay we cannot smear (integrate) over quark masses
- Neither can we compute for "deep euclidean" mass
- Maybe duality works if mass is large enough (large number of decay channels)?
- Test the idea by applying it to soluble model: QCD in 2-dims at large N_{c} (the 't Hooft model)

- Spikes from phase space at thresholds
- Constant difference between "exact" and perturbative: order $\left(1 / M_{Q}\right)^{0}$

$$
\Gamma(B)=\Gamma(Q)\left(1+0.14 / M_{Q}\right)
$$

- Smearing will turn the finite difference into one that decreases with $1 / M_{Q}$
- Q: how can this averaging procedure turn a constant difference into one that decreases as $\left(1 / M_{Q}\right)^{1}$?
- Go back to e+e-

Effect of including narrow resonances in lorentzian smearing:

$$
\bar{\sigma}(s)=\frac{\Delta}{\pi} \int_{0}^{\infty} d s^{\prime} \frac{\sigma\left(s^{\prime}\right)}{\left(s^{\prime}-s\right)^{2}+\Delta^{2}}
$$

red: PQW (exclude resonances)
green: include resonances
NOTE: very slow approach to duality,

effect of resonances significant in resonant region

- Lorentzian smearing

$$
\frac{1}{\left(\left(x-M_{Q}\right)^{2}+1\right)^{n}}
$$

- Justified by OPE provided

$$
n \geq 2
$$

- Corrections to OPE:

$$
\text { order } \frac{1}{M_{Q}^{2}}
$$

- I conclude:

Cannot trust OPE for width unless asymptotically heavy quark

End Long Digression

$b \rightarrow c c d$ modes $\quad B^{0} \rightarrow D^{+} \boldsymbol{D}^{-}$ CP-eigenstate

$$
\mathcal{S}=\sin 2 \phi_{1}, \mathcal{A}=0
$$

if negligible penguin
$b \rightarrow s$ penguin modes

$$
\sin \left(2 \beta^{\text {eff }}\right) \equiv \sin \left(2 \phi_{1}^{\text {eff }}\right) \text { vs } C_{C P} \equiv-A_{C P} \frac{\text { HFAG }}{\text { Moriond 2012 }}
$$

$B^{0} \rightarrow D^{*+} D^{*-} \quad B^{0} \rightarrow D^{ \pm} D^{* \mp}$
mix of CP -odd/even
\mathcal{S}, \mathcal{A} for each of Not a CP-eigenstate 2 amplitudes $\times 2$ modes longitudinal / transverse $\quad \Rightarrow C, \mathcal{S}, \mathcal{A}, \Delta \mathcal{S}, \Delta \mathcal{A}$

- No sign of deviations from standard CKM

- Many of these new: expect improvement in next generation

α / φ_{2} and Penguin Pollution

$\mathcal{S}_{\pi \pi}=\sqrt{1-\mathcal{F}_{\pi \pi}^{2}} \sin 2 \phi_{2}^{\text {eff }}$, where $\phi_{2}^{\text {eff }}=\left(\phi_{2}+\mathcal{K}\right)$ is not ϕ_{2}
[BG Phys.Lett. B229 (1989) 280]

- Isospin analysis [Gronau-London PRL65,338I(1990)]
- Relations with $B \rightarrow \pi^{+} \pi^{0}$ and $B^{0} \rightarrow \pi^{0} \pi^{0}$ (same for $B \rightarrow \rho \rho$ after resolving polarization)
- Isospin breaking effects are small

- Time-dependent Dalitz analysis [Snyder-Quinn PRD48,2139(1993)]
- $B^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ contains $\rho^{+} \pi^{-}, \rho^{-} \pi^{+}, \rho^{0} \pi^{0}$ and cross terms (interference)
- α / φ_{2} directly determined, $\rho^{ \pm} \pi^{0}$ and $\rho^{0} \pi^{ \pm}$may improve further (future)

NEW form LHCb

[Paul Soler ICHEP 20ı2]

$$
\begin{aligned}
& \mathcal{S}_{\pi \pi}=A_{\pi \pi}^{\operatorname{mix}}=0.56 \pm 0.17 \pm 0.03 \\
& \mathcal{A}_{\pi \pi}=A_{\pi \pi}^{\operatorname{dir}}=0.11 \pm 0.21 \pm 0.03
\end{aligned}
$$

$$
\phi_{2} / \alpha=\left(88.7_{-4.2}^{+4.6}\right)^{\circ}
$$

[CKMfitter Moriond2012]

Direct CPV

$D^{0} \rightarrow K^{+} K^{-}$and $\pi^{+} \pi^{-}$

$$
A \equiv \frac{\Gamma\left(\mathrm{D}^{+} \rightarrow \mathscr{P P P}\right)-\Gamma\left(\mathrm{D}^{-} \rightarrow \overline{\mathscr{P}} \overline{\mathscr{P}}\right)}{\Gamma\left(\mathrm{D}^{+} \rightarrow \mathscr{P P P}\right)+\Gamma\left(\mathrm{D}^{-} \rightarrow \overline{\mathscr{P}} \overline{\mathscr{P}}\right)}=\frac{2 \operatorname{Im}\left(a^{*} b\right) \operatorname{Im}\left(\Sigma^{*} \Delta\right)}{|a|^{2}|\Sigma|^{2}+|b|^{2}|\Delta|^{2}+2 \operatorname{Re}\left(a^{*} b\right) \operatorname{Re}\left(\Sigma^{*} \Delta\right)}
$$

$$
\begin{aligned}
& \text { where } \quad \mathcal{A}(\mathrm{D} \rightarrow \mathscr{P P P})=a \Sigma+b \Delta \quad \Sigma=\frac{1}{2}\left(V_{\mathrm{cs}}^{*} V^{\mathrm{us}}-V_{\mathrm{cd}}^{*} V_{\mathrm{ud}}\right), \quad \Delta=\frac{1}{2}\left(V_{\mathrm{cs}}^{*} V_{\mathrm{us}}+V_{\mathrm{cd}}^{*} V_{\mathrm{ud}}\right) \\
&|\Sigma| \sim \lambda \gg|\Delta| \sim \lambda^{5}
\end{aligned}
$$

$\mathrm{SU}(3)$ analysis: five invariant amplitudes

$$
\begin{aligned}
& \left\langle[8]_{j}^{j}\right|[\overline{6}]_{k \mid}\left|\mathrm{D}_{r}\right\rangle=\operatorname{S\mathscr {T}}_{j k r r}^{j}, \quad\left\langle[8]_{j}^{j}\right|\left[15_{M}\right]_{m}^{k l}\left|\mathrm{D}_{r}\right\rangle=E \mathscr{T}_{j m r}^{i k l}, \quad\left\langle[27]_{k}^{i k}\right|\left[5_{M}\right]_{p}^{m n}\left|\mathrm{D}_{r}\right\rangle=T \mathscr{T} \mathscr{T}_{k p r}^{i m n}, \\
& \left\langle[8]_{j}^{i}\right|[3]^{k}\left|\mathrm{D}_{r}\right\rangle=F \mathscr{F}_{j r}^{i k},\langle[1]|[3]^{i}\left|\mathrm{D}_{r}\right\rangle=G \mathscr{F}_{r}^{i},
\end{aligned}
$$

Then

$$
\begin{aligned}
& \mathcal{A}\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right)=(2 T+E-S) \Sigma+\frac{1}{2}(3 T+2 G+F-E) \Delta, \\
& \mathcal{A}\left(\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}\right)=-(2 T+E-S) \Sigma+\frac{1}{2}(3 T+2 G+F-E) \Delta .
\end{aligned}
$$

But $\quad \Gamma\left(\mathrm{D}^{0} \rightarrow \mathbf{K}^{+} \mathbf{K}^{-}\right) / \Gamma\left(\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-}\right) \approx 3$ requires both terms of similar size (enhanced $\left.G, F\right)$
\Rightarrow Expect sizable direct CPV in these decays! (predicted in 1989)

Of course, expect large $\mathrm{SU}(3)$ breaking effects.

This still requires an enhancement of F, G, but only of order 10
[Pirtskhalava \& Uttayarat, Phys.Lett. B7I2 (2OI2) 8i-86
Bhattacharya, Gronau \& Rosner, PRD85 (2012) 054014
Cheng \& Chiang, PRD85 (2012) 034036
Brod,Grossman, Kagan \& Zupan, JHEP i2IO (2012) I6I]

Or perhaps new physics??
[Rozanov \& Vysotsky, arXiv:IIII. 6949
Altmannshofer, Primulando, Yu \& Yu, JHEP 1204 (2OI2) 049
Cheng, Geng \& Wang, PRD85 (2012) 077702
Feldmann, Nandi \& Soni, JHEP 1206 (2012) 007
......]

$$
\Delta A_{c p}=A_{c p}\left(D^{0} \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right)-A_{c p}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right) \text {[\%] }
$$

LHCb	$-0.82 \pm 0.21 \pm 0.11$	PRL2012
CDF	$-0.62 \pm 0.21 \pm 0.10$	charm2012
BaBar	(see below)	PRD2011
Belle	$-0.87 \pm 0.41 \pm 0.06$	ICHEP2012
WA	$-0.678 \pm 0.147(>4 \sigma)$	HFAG2012

Individual $A_{C P}$ are not significant

	$A_{c p}\left(D^{0} \rightarrow K^{+} K^{-}\right)[\%]$	$A_{c p}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right)[\%]$
CDF	$-0.24 \pm 0.22 \pm 0.09$	$+0.22 \pm 0.24 \pm 0.11$
BaBar	$0.00 \pm 0.34 \pm 0.13$	$-0.24 \pm 0.52 \pm 0.22$
Belle	$-0.32 \pm 0.21 \pm 0.09$	$+0.55 \pm 0.36 \pm 0.09$

Rare decays

$B \rightarrow K^{*} \gamma$

- Sensitive to NP (no tree level SM, new particles in 1-loop)

- 2HDM type II (SUSY-like) always larger than SM
- Effective theorty approach to SM calcualtion:
- Matching (NNLO)
- Running (NNLO)
- Matrix elements (almost complete NNLO)

$$
\begin{aligned}
& \mathcal{L}_{\text {eff }}=\mathcal{L}_{\text {QCD } \times Q E D}(u, d, s, c, b)+\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{8} C_{i}(\mu) Q_{i} \\
& Q_{1,2}=\stackrel{\text { c. }}{\mathrm{b}}{ }_{\mathrm{s}}^{\mathrm{c}}=\left(\bar{s} \Gamma_{i} c\right)\left(\bar{c} \Gamma_{i}^{\prime} b\right), \quad \text { from } \quad \text { b.w. } \mathrm{c}, \\
& Q_{3,4,5,6}=\stackrel{\stackrel{\mathrm{q}}{\mathrm{~b}} \mathrm{~b}_{\mathrm{s}}^{\mathrm{q}}}{\mathrm{~s}}=\left(\bar{s} \Gamma_{i} b\right) \sum_{q}\left(\bar{q} \Gamma_{i}^{\prime} q\right), \\
& Q_{7}=\mathrm{b} \mathrm{~s}^{\mathrm{s}}=\frac{e m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu \nu} b_{R} F_{\mu \nu}, \\
& Q_{8}=\mathrm{b} \varepsilon^{\mathrm{g}} \mathrm{~s}=\frac{g m_{b}}{16 \pi^{2}} \bar{s}_{L} \sigma^{\mu \nu} T^{a} b_{R} G_{\mu \nu}^{a}, \\
& \left|C_{i}\left(m_{b}\right)\right| \sim 1 \\
& \left|C_{i}\left(m_{b}\right)\right|<0.07 \\
& C_{7}\left(m_{b}\right) \simeq-0.3 \\
& C_{8}\left(m_{b}\right) \simeq-0.15
\end{aligned}
$$

Known to NNLO

Relative size of various long distance contributions ("matrix elements") have been studied

Energetic photon production in charmless decays of the \bar{B}-meson

$\left(E_{\gamma} \gtrsim \frac{m b}{3} \simeq 1.6 \mathrm{GeV}\right)$
A. Without long-distance charm loops:

Dominant, well-controlled.

$\mathcal{O}\left(\alpha_{s} \Lambda / m_{b}\right), \quad(-1.5 \pm 1.5) \%$
[Lee, Neubert, Paz, 2006]
3. Collinear

Pert. $<1 \%$, nonp. $\sim-0.2 \%$ [Kapustin,Ligeti,Politzer, 1995]

Exp. $\pi^{0}, \eta, \eta^{\prime}, \omega$ subtracted.
Perturbatively $\sim 0.1 \%$.
B. With long-distance charm loops:

$\mathcal{O}\left(\Lambda^{2} / m_{c}^{2}\right), \quad \sim+3.1 \%$.
[Voloshin, 1996], [...],
[Buchalla, Isidori, Rey, 1997]

Exp. J / ψ subtracted $(<1 \%)$.
Perturbatively (including hard): $\sim+3.6 \%$.
$\phi_{i j}^{(1)}(\delta), \phi_{i j}^{(2) \beta_{0}}(\delta), \quad i, j=1,2$
7. Annihilation of $c \bar{c}$ in a heavy $(\bar{c} s)(\bar{q} c)$ state

$\mathcal{O}\left(\alpha_{s}(\Lambda / M)^{2}\right)$

$\mathcal{O}\left(\alpha_{s} \Lambda / M\right)$
$M \sim 2 m_{c}, 2 E_{\gamma}, m_{b}$.
e.g. $\begin{aligned} \mathcal{B}\left[B^{-} \rightarrow D_{s . J}(2457)^{-} D^{*}(2007)^{0}\right] & \simeq 1.2 \%, \\ \mathcal{B}\left[B^{0} \rightarrow D^{*}(2010)^{+} \bar{D}^{*}(2007)^{0} K^{-}\right] & \simeq 1.2 \%\end{aligned}$

HFAG 2010: $B\left(B \rightarrow X_{s} \gamma\right)=(3.55 \pm 0.26) \times 10^{-4}\left(\right.$ for $\left.\mathrm{E}_{\gamma}>1.6 \mathrm{GeV}\right)$
vs
$\mathrm{SM}: B\left(\mathrm{~B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma\right)=(3.15 \pm 0.23) \times 10^{-4}\left(\right.$ for $\left.\mathrm{E}_{\gamma}>1.6 \mathrm{GeV}\right)$

A Brief History of Time

$\operatorname{BR}\left[\bar{B} \rightarrow X_{s} \gamma\right]$ (units: 10^{-4})

Measurements \& the SM calculations

$$
B \rightarrow K^{(*)} l^{+} l^{-}
$$

- Sensitive to NP (no tree level SM, new particles in 1-loop)
- Many variables can be studied, e.g., forward-backward asymmetry A_{FB} or Isospin asymmetry:

$$
A_{I}=\frac{\mathcal{B}\left(B^{0} \rightarrow K^{(*) 0} \mu^{+} \mu^{-}\right)-\frac{\tau_{0}}{\tau_{+}} \mathcal{B}\left(B^{ \pm} \rightarrow K^{(*) \pm} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B^{0} \rightarrow K^{(*) 0} \mu^{+} \mu^{-}\right)+\frac{\tau_{0}}{\tau_{+}} \mathcal{B}\left(B^{ \pm} \rightarrow K^{(*) \pm} \mu^{+} \mu^{-}\right)}
$$

- Charmonium resonance region must be excluded $\left(B \rightarrow K^{(*)} \psi \rightarrow K^{(*)} l^{+} l^{-}\right)$
- Small $q^{2}=\left(p_{+}+p_{-}\right)^{2}$, large recoil energy for $K^{(*)}$, use SCET
- Large q^{2}, use HQET
- SM: fairly clean prediction of location of zero in $A_{F B}$, negligible A_{I}
$B \rightarrow K^{*} l^{+} l^{-}$
[Gallas, ICHEP 20I2]

Afb zero

Theory, including non-resonant $K \pi$, to order Λ / m_{b}, with maximum π energy cut

$B \rightarrow \mathrm{Kl}^{+} l^{-}$

Discrepant with SM predictions:

- Low rate at low q^{2}
- A_{I} negative throughout
- LHCb alone: 4.2σ from zero
- Why in K, but not in K^{*} ?
- NP models?

τ

Is there still a problem with $B^{-} \rightarrow \tau^{-} v$?

- $B^{-} \rightarrow \tau^{-} v$ in SM is tree level
- Clean SM prediction, lattice gives f_{B}

$$
\Gamma(B \rightarrow \tau \nu)=\frac{G_{F}^{2} m_{B}}{8 \pi} m_{\tau}^{2}\left(1-m_{\tau}^{2} / m_{B}^{2}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2}
$$

- Modified for τ, less for e, μ, by charged higgs in 2HDM
- 2HDM modifies box diagram too: cannot use SM extraction of $\sin (2 \beta)$ from $B^{0} \rightarrow \psi K_{S}$
- But NEW Belle result [arXiv:2008.46-8]

Fit excluding $B^{-} \rightarrow \tau^{-} \mathcal{V} \& B^{0} \rightarrow \psi K_{S}$

Is there still a problem with $B^{-} \rightarrow \tau^{-} v$?

- $B^{-} \rightarrow \tau^{-} v$ in SM is tree level
- Clean SM prediction, lattice gives f_{B}

$$
\Gamma(B \rightarrow \tau \nu)=\frac{G_{F}^{2} m_{B}}{8 \pi} m_{\tau}^{2}\left(1-m_{\tau}^{2} / m_{B}^{2}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2}
$$

- Modified for τ, less for e, μ, by charged higgs in 2HDM
- 2HDM modifies box diagram too: cannot use SM extraction of $\sin (2 \beta)$ from $B^{0} \rightarrow \psi K_{S}$
- But NEW Belle result [arXiv:1008,46-8]

$$
\mathcal{B}\left(B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}\right)=\left[0.72_{-0.25}^{+0.27}(\text { stat }) \pm 0.11(\text { syst })\right] \times 10^{-4}
$$

world avg. summer 2008

Fit excluding $B^{-} \rightarrow \tau^{-} v \& B^{0} \rightarrow \psi K_{S}$

$B^{-} \rightarrow D \tau^{-} v$ and $B^{-} \rightarrow D^{*} \tau^{-} v$

- Like $B^{-} \rightarrow \tau^{-} v$, tree level
- Like $B^{-} \rightarrow \tau^{-} v$, enhanced
 relative to SM
- Sensitive to more form factors, e.g.,

$$
\begin{aligned}
\left\langle D\left(p_{D}\right)\right| \bar{c} \gamma^{\mu} b\left|\bar{B}\left(p_{B}\right)\right\rangle & =F_{V}\left(q^{2}\right)\left[p_{B}^{\mu}+p_{D}^{\mu}-m_{B}^{2} \frac{1-r^{2}}{q^{2}} q^{\mu}\right] \\
& +F_{S}\left(q^{2}\right) m_{B}^{2} \frac{1-r^{2}}{q^{2}} q^{\mu},
\end{aligned}
$$

- 2HDM: tree level

$$
\left\langle D\left(p_{D}\right)\right| \bar{c} b\left|\bar{B}\left(p_{B}\right)\right\rangle=\frac{m_{B}^{2}\left(1-r^{2}\right)}{\bar{m}_{b}-\bar{m}_{c}} F_{S}\left(q^{2}\right) \quad r=m_{D} / m_{B}
$$

- Define R $\quad R(D)=\frac{\operatorname{Br}(\bar{B} \rightarrow D \tau v)}{\operatorname{Br}(\bar{B} \rightarrow D \ell v)} \quad R\left(D^{*}\right)=\frac{\operatorname{Br}\left(\bar{B} \rightarrow D^{*} \tau v\right)}{\operatorname{Br}\left(\bar{B} \rightarrow D^{*} \ell v\right)}$

	SM Theory	BaBar value	Diff.	
(D)	0.297 ± 0.017	$0.440 \pm 0.058 \pm 0.042$	$+2.0 \sigma$	3.4 σ deviation (above) SM in aggregate
$R\left(D^{*}\right)$	0.252 ± 0.003	$0.332 \pm 0.024 \pm 0.018$	$+2.7 \sigma$	

$\operatorname{SM}\left(\mathrm{D}^{*}\right) \quad \frac{d \Gamma_{\tau}}{d q^{2}}=\frac{G_{F}^{2}\left|V_{c b}\right|^{2}|\mathbf{p}| q^{2}}{96 \pi^{3} m_{B}^{2}}\left(1-\frac{m_{\tau}^{2}}{q^{2}}\right)^{2}\left[\left(\left|H_{++}\right|^{2}+\left|H_{--}\right|^{2}+\left|H_{00}\right|^{2}\right)\left(1+\frac{m_{\tau}^{2}}{2 q^{2}}\right)+\frac{3}{2} \frac{m_{\tau}^{2}}{q^{2}}\left|H_{0 t}\right|^{2}\right]$

$$
H_{t}^{2 \mathrm{HDM}}=H_{t}^{\mathrm{SM}} \times\left(1-\left(\frac{\tan ^{2} \beta}{m_{H \pm}^{2}}\right) \frac{q^{2}}{1 \mp m_{c} / m_{b}}\right) \quad \begin{aligned}
& - \text { for } D \tau v \\
& + \text { for } D^{\star} \tau v
\end{aligned}
$$

Taking into account the effect of $\tan \beta / m_{H}$ on efficiency
$R(D) \rightarrow \tan \beta / m_{H}=0.44 \pm 0.02$
$R\left(D^{*}\right) \rightarrow \tan \beta / m_{H}=0.75 \pm 0.04$
Mutually exclusive with
CL >99.8\%

NP?

Don't forget: General MSSM lives in a straightjacket because of flavor

General MSSM

Ruled out unless squarks almost degenerate Assume small

$$
\delta=\frac{\Delta m^{2}}{\bar{m}^{2}}
$$

and bound

Besmer et al, NPB609:359,2001

Must introduce (ad-hoc) CMSSM, or NUHM1, or better justified gauge mediation variants
(NUMHr="non-universal higgs masses"-1 version of MSSM)

- What remains as acceptable NP:
- Decoupling: Make all new particles ever heavier
- Flavor Blind: Make all flavor couplings small (MFV)
- Fabulous for hiding non-existent particles and interactions!
- I propose we should be doing something else:
- We do have deviations form SM
- Should focus on models that address anomalies
- Tricky: which anomalies do you focus on?
- >3 σ
- At least two experiments
- (No guaranteed persistence, witness $B \rightarrow \tau v$)
- Example: top-quark FB asymmetry at Tevatron

$$
\begin{aligned}
& \mathcal{H}_{\mathrm{eff}}^{b \rightarrow s}=-\frac{4 G_{F}}{\sqrt{2}} \sum_{i=3}^{10}\left[\left(V_{u s}^{*} V_{u b}+V_{c s}^{*} V_{c b}\right) C_{i}^{c}\right. \\
& \left.+V_{t s}^{*} V_{t b} C_{i}^{t}\right] P_{i}+V_{t s}^{*} V_{t b} C_{0}^{\ell} P_{0}^{\ell}+\text { h.c. } \\
& P_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s}_{L} \sigma^{\mu \nu} b_{R}\right) F_{\mu \nu}, \\
& P_{8}=\frac{g_{s}}{16 \pi^{2}} m_{b}\left(\bar{s}_{L} \sigma^{\mu \nu} T^{a} b_{R}\right) G_{\mu \nu}^{a}, \\
& P_{9}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right) \sum_{\ell}\left(\bar{\ell} \gamma^{\mu} \ell\right) \text {, } \\
& P_{10}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right) \sum_{\ell}\left(\bar{\ell} \bar{\gamma}^{\mu} \gamma_{5} \ell\right) \text {, } \\
& P_{0}^{\ell}=\frac{e^{2}}{16 \pi^{2}\left(\bar{s}_{L} b_{R}\right)\left(\bar{\ell}_{R} \ell_{L}\right) \text {. } \quad . \quad \text {. }}
\end{aligned}
$$

SM Theory $\left(B_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\right)$
Reliably compute CP-averaged decay rates in the flavor eigenstate basis

$$
\left.\left\langle\Gamma\left(B_{s}(t) \rightarrow f\right)\right\rangle\right|_{t=0}=\Gamma\left(B_{s}^{0} \rightarrow f\right)+\Gamma\left(\bar{B}_{s}^{0} \rightarrow f\right)
$$

$$
\begin{aligned}
& \operatorname{Br}\left(B_{s}\right)=(3.23 \pm 0.27) \times 10^{-9} \\
& \operatorname{Br}\left(B_{d}\right)=(1.07 \pm 0.27) \times 10^{-10}
\end{aligned}
$$

Digression
NEW: De Bruyn et al: This is not what is measured!
Cannot neglect life-time difference:

$$
y_{s} \equiv \frac{\Delta \Gamma_{s}}{2 \Gamma_{s}} \equiv \frac{\Gamma_{\mathrm{L}}^{(s)}-\Gamma_{\mathrm{H}}^{(s)}}{2 \Gamma_{s}}=0.088 \pm 0.014
$$

Decay rate is sum of two different exponentials

$$
\left\langle\Gamma\left(B_{s}(t) \rightarrow f\right)\right\rangle \equiv \Gamma\left(B_{s}^{0}(t) \rightarrow f\right)+\Gamma\left(\bar{B}_{s}^{0}(t) \rightarrow f\right)=R_{\mathrm{H}}^{f} e^{-\Gamma_{\mathrm{H}}^{(s)} t}+R_{\mathrm{L}}^{f} e^{-\Gamma_{\mathrm{L}}^{(s)} t}
$$

Experiment measures total number produced:

$$
\mathrm{BR}\left(B_{s} \rightarrow f\right)_{\exp } \equiv \frac{1}{2} \int_{0}^{\infty}\left\langle\Gamma\left(B_{s}(t) \rightarrow f\right)\right\rangle d t
$$

where
They obtain:

$$
\operatorname{BR}\left(B_{s} \rightarrow f\right)_{\text {theo }}=\left[\frac{1-y_{s}^{2}}{1+\mathcal{A}_{\Delta \Gamma}^{f} y_{s}}\right] \operatorname{BR}\left(B_{s} \rightarrow f\right)_{\exp }
$$

This applies to any final state f (not just $\mu^{+} \mu^{-}$)

$B_{s} \rightarrow f$	$\begin{array}{r} \mathrm{BR}\left(B_{s} \rightarrow f\right)_{\exp } \\ \quad \text { (measured) } \end{array}$	$\mathcal{A}_{\Delta \Gamma}^{f}(\mathrm{SM})$	$\begin{aligned} & \left.\overline{\mathrm{BR}\left(B_{s}\right.} f\right)_{\mathrm{th}} \\ & \text { From Eq. (8) } \end{aligned}$	$\begin{aligned} & \mathrm{BR}\left(B_{s} \rightarrow f\right)_{\exp } \\ & \text { From Eq. }(10) \end{aligned}$
$J / \psi f_{0}(980)$	$\left(1.29_{-0.28}^{+0.40}\right) \times 10^{-4}[18]$	0.9984 ± 0.0021 [14]	0.912 ± 0.014	0.890 ± 0.082 [6]
$J / \psi K_{\text {S }}$	$(3.5 \pm 0.8) \times 10^{-5}[7]$	$0.84 \pm 0.17 \quad[15]$	0.924 ± 0.018	N/A
$D_{s}^{-} \pi^{+}$	$(3.01 \pm 0.34) \times 10^{-3}[9]$	0 (exact)	0.992 ± 0.003	N/A
$K^{+} K^{-}$	$(3.5 \pm 0.7) \times 10^{-5}[18]$	-0.972 ± 0.012 [13]	1.085 ± 0.014	1.042 ± 0.033 [19]
$D_{s}^{+} D_{s}^{-}$	$\left(1.04_{-0.26}^{+0.29}\right) \times 10^{-2}[18]$	$-0.995 \pm 0.013 \quad[16]$	1.088 ± 0.014	N/A

more generally

MLFV

Note: LN vs LF

- Distinguish

Lepton Number (LN) violating interactions from Lepton Flavor (LF) violating interactions

- LN is a $\mathrm{U}(1)$ symmetry, assigning unit charge to all leptons (like baryon number for quarks)
- Majorana mass breaks LN
- LF is an $\mathrm{SU}(3)$ symmetry, mixing different flavors
- It commutes with $\mathrm{U}(1)_{\mathrm{LN}}$, ie, preserves the LN charge

Desirable to consider LFV at a 'low scale' (few TeV?), while for see-saw want LNV at an intermediate scale

$$
\Lambda_{\mathrm{LF}} \ll \Lambda_{\mathrm{LN}} \ll M_{\text {planck }}
$$

- Two approaches. Field content below LFV scale is three familigs of L_{i} and $e R i$ $\Lambda_{\text {LF }}$ (plus H and gauge). Then:
- Minimal: majorana mass is from non-renormalizable interaction
- Extended: include very heavy v_{Ri} insofar as it dictates MFV coupling, but then integrate out

MLFV: Minimal Field Content

Assumptions:

r. The breaking of the $\mathrm{U}(\mathrm{I})_{\mathrm{LN}}$ is independent from the breaking of lepton flavor G_{LF}, with large Λ_{LN} (associated with see-saw)
2. There are only two irreducible sources of $G_{\text {LF }}$ breaking, λ_{e} and g_{v}, defined by

$$
\mathcal{L}_{\text {Sym.Br. }}=-\lambda_{e}^{i j} \bar{e}_{R}^{i}\left(H^{\dagger} L_{L}^{j}\right)-\frac{1}{2 \Lambda_{L N}} g_{\nu}^{i j}\left(\bar{L}_{L}^{c i} \tau_{2} H\right)\left(H^{T} \tau_{2} L_{L}^{j}\right)+\text { h.c. }
$$

Implementation of MLFV in Minimal Field Content Case

- Want to add all possible terms to the lagrangian consistent with assumptions (and usual stuff: Lorentz invariance, gauge symmetry, locality, ...)
- Need characterization of terms that are allowed
- Use spurion method:

$$
\begin{array}{cc}
L_{L} \rightarrow V_{L} L_{L} & e_{R} \rightarrow V_{R} e_{R} \\
\lambda_{e} \rightarrow V_{R} \lambda_{e} V_{L}^{\dagger} & g_{\nu} \rightarrow V_{L}^{*} g_{\nu} V_{L}^{\dagger}
\end{array}
$$

(recall: $\quad \mathcal{L}_{\text {Sym.Br. }}=-\lambda_{e}^{i j} \bar{e}_{R}^{i}\left(H^{\dagger} L_{L}^{j}\right)-\frac{1}{2 \Lambda_{L N}} g_{\nu}^{i j}\left(\bar{L}_{L}^{c i} \tau_{2} H\right)\left(H^{T} \tau_{2} L_{L}^{j}\right)+$ h.c. $)$

Then write all operators of dimension $5,6, \ldots$ consistent with assumptions.
For
need two lepton field ops:

$$
\mu \rightarrow e \gamma, \quad \mu+N \rightarrow e+N^{\prime}
$$

Ops with LL
Ops with RL

$$
\begin{aligned}
O_{L L}^{(1)} & =\bar{L}_{L} \gamma^{\mu} \Delta L_{L} H^{\dagger} i D_{\mu} H \\
O_{L L}^{(2)} & =\bar{L}_{L} \gamma^{\mu} \tau^{a} \Delta L_{L} H^{\dagger} \tau^{a} i D_{\mu} H \\
O_{L L}^{(3)} & =\bar{L}_{L} \gamma^{\mu} \Delta L_{L} \bar{Q}_{L} \gamma_{\mu} Q_{L} \\
O_{L L}^{(4 d)} & =\bar{L}_{L} \gamma^{\mu} \Delta L_{L} \bar{d}_{R} \gamma_{\mu} d_{R} \\
O_{L L}^{(4 u)} & =\bar{L}_{L} \gamma^{\mu} \Delta L_{L} \bar{u}_{R} \gamma_{\mu} u_{R} \\
O_{L L}^{(5)} & =\bar{L}_{L} \gamma^{\mu} \tau^{a} \Delta L_{L} \bar{Q}_{L} \gamma_{\mu} \tau^{a} Q_{L}
\end{aligned}
$$

$$
O_{R L}^{(1)}=g^{\prime} H^{\dagger} \bar{e}_{R} \sigma^{\mu \nu} \lambda_{e} \Delta L_{L} B_{\mu \nu}
$$

$$
O_{R L}^{(2)}=g H^{\dagger} \bar{e}_{R} \sigma^{\mu \nu} \tau^{a} \lambda_{e} \Delta L_{L} W_{\mu \nu}^{a}
$$

$$
O_{R L}^{(3)}=\left(D_{\mu} H\right)^{\dagger} \bar{e}_{R} \lambda_{e} \Delta D_{\mu} L_{L}
$$

$$
O_{R L}^{(4)}=\bar{e}_{R} \lambda_{e} \Delta L_{L} \bar{Q}_{L} \lambda_{D} d_{R}
$$

$$
O_{R L}^{(5)}=\bar{e}_{R} \sigma^{\mu \nu} \lambda_{e} \Delta L_{L} \bar{Q}_{L} \sigma_{\mu \nu} \lambda_{D} d_{R}
$$

$$
O_{R L}^{(6)}=\bar{e}_{R} \lambda_{e} \Delta L_{L} \bar{u}_{R} \lambda_{U}^{\dagger} i \tau^{2} Q_{L}
$$

$$
O_{R L}^{(7)}=\bar{e}_{R} \sigma^{\mu \nu} \lambda_{e} \Delta L_{L} \bar{u}_{R} \sigma_{\mu \nu} \lambda_{U}^{\dagger} i \tau^{2} Q_{L}
$$

We have used $\quad \Delta \equiv g_{\nu}^{\dagger} g_{\nu}$ with transformation $\quad \Delta \rightarrow V_{L} \Delta V_{L}^{\dagger}$
Also neglected Δ^{2}
We have neglected

For $\mu \rightarrow e e \bar{e}$ need, in addition, four lepton operators

$$
\begin{aligned}
& O_{4 L}^{(1)}=\bar{L}_{L} \gamma^{\mu} \Delta L_{L} \bar{L}_{L} \gamma_{\mu} L_{L} \\
& O_{4 L}^{(2)}=\bar{L}_{L} \gamma^{\mu} \tau^{a} \Delta L_{L} \bar{L}_{L} \gamma_{\mu} \tau^{a} L_{L} \\
& O_{4 L}^{(3)}=\bar{L}_{L} \gamma^{\mu} \Delta L_{L} \bar{e}_{R} \gamma_{\mu} e_{R} \\
& O_{4 L}^{(4)}=\delta_{n j} \delta_{m i}^{*} \bar{L}_{L}^{i} \gamma^{\mu} L_{L}^{j} \bar{L}_{L}^{m} \gamma^{\mu} L_{L}^{n} \\
& O_{4 L}^{(5)}=\delta_{n j} \delta_{m i}^{*} \bar{L}_{L}^{i} \gamma^{\mu} \tau^{a} L_{L}^{j} \bar{L}_{L}^{m} \gamma^{\mu} \tau^{a} L_{L}^{n}
\end{aligned}
$$

where we used $\delta=g_{\nu}$ (so we can use same expressions for extended field content case)

Up to dimension 6 operators, the new interactions are

$$
\mathcal{L}_{\mathrm{eff}}=\frac{1}{\Lambda_{\mathrm{LFV}}^{2}} \sum_{i=1}^{5}\left(c_{L L}^{(i)} O_{L L}^{(i)}+c_{4 L}^{(i)} O_{4 L}^{(i)}\right)+\frac{1}{\Lambda_{\mathrm{LFV}}^{2}}\left(\sum_{j=1}^{2} c_{R L}^{(j)} O_{R L}^{(j)}+\text { h.c. }\right)
$$

with coefficients naively
$c \sim 1$

We can now study the phenomenology of MLFV with minimal field content.

Useful to look at parameters first
Also useful to contrast with results of extended field content

Use $G_{L F}$ symmetry to rotate to the mass eigenstate basis ($v=$ Higgs vev)

$$
\begin{aligned}
& \lambda_{e}=\frac{m_{\ell}}{v}=\frac{1}{v} \operatorname{diag}\left(m_{e}, m_{\mu}, m_{\tau}\right) \\
& g_{\nu}=\frac{\Lambda_{L N}}{v^{2}} U^{*} m_{\nu} U^{\dagger}=\frac{\Lambda_{L N}}{v^{2}} U^{*} \operatorname{diag}\left(m_{\nu_{1}}, m_{\nu_{2}}, m_{\nu_{3}}\right) U^{\dagger}
\end{aligned}
$$

U is the PMNS matrix. It is determined from neutrino mixing:

$$
U \approx\left(\begin{array}{ccc}
c e^{i \alpha_{1} / 2} & s e^{i \alpha_{2} / 2} & s_{13} e^{-i \delta} \\
-s e^{i \alpha_{1} / 2} / \sqrt{2} & c e^{i \alpha_{2} / 2} / \sqrt{2} & 1 / \sqrt{2} \\
s e^{i \alpha_{1} / 2} / \sqrt{2} & -c e^{i \alpha_{2} / 2} / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)
$$

Here

$$
c \equiv \cos \theta_{\mathrm{sol}} \quad s \equiv \sin \theta_{\mathrm{sol}} \quad \theta_{\mathrm{sol}} \simeq 32.5^{\circ}
$$

s_{13} is poorly known, $s_{13}<0.3$
note added sorry: two different δ

- Hence, amplitudes are given in terms of
- Λ_{LN} and Λ_{LFV} (actually only ratio $\left.\Lambda_{\mathrm{LN}} / \Lambda_{\mathrm{LFV}}\right)$
- Coefficients, C, of order 1
- Low energy measured (or measurable) masses and mixing angles
- In particular, the following two combinations appear in the operators:

$$
\Delta=\frac{\Lambda_{L N}^{2}}{v^{4}} U m_{\nu}^{2} U^{\dagger} \quad \delta=\delta^{T}=\frac{\Lambda_{L N}}{v^{2}} U^{*} m_{\nu} U^{\dagger}
$$

MLFV: Extended Field Content

Recall, now we include RH neutrinos, flavor group has additional $\operatorname{SU}(3)_{v R}$ factor

Assumptions:
I. The right handed neutrino mass is flavor neutral, ie, it breaks $\mathrm{SU}(3)_{v \mathrm{v}}$ to $\mathrm{O}(3)$
2. The right handed neutrino mass is the only source of LN breakiny and $M_{M_{v}}^{i j} M_{\gg} \delta^{i j}$ $\Lambda_{\text {LFV }}$
3. Remaining LF-symmetry broken only by λ_{e} and λ_{v} defined by

$$
\mathcal{L}_{\text {Sym.Br. }}=-\lambda_{e}^{i j} \bar{e}_{R}^{i}\left(H^{\dagger} L_{L}^{j}\right)+i \lambda_{\nu}^{i j} \bar{\nu}_{R}^{i}\left(H^{T} \tau_{2} L_{L}^{j}\right)+\text { h.c. }
$$

Implementation of MLFV in Extended Field Content Case

$$
\mathcal{L}_{\text {Sym.Br. }}=-\lambda_{e}^{i j} \bar{e}_{R}^{i}\left(H^{\dagger} L_{L}^{j}\right)+i \lambda_{\nu}^{i j} \bar{\nu}_{R}^{i}\left(H^{T} \tau_{2} L_{L}^{j}\right)+\text { h.c. }
$$

Same as before, but now transformations are:

$$
\begin{gathered}
L_{L} \rightarrow V_{L} L_{L} \quad e_{R} \rightarrow V_{R} e_{R} \quad \nu_{R} \rightarrow O_{\nu} \nu_{R} \\
\lambda_{e} \rightarrow V_{R} \lambda_{e} V_{L}^{\dagger} \quad \lambda_{\nu} \rightarrow O_{\nu} \lambda_{\nu} V_{L}^{\dagger}
\end{gathered}
$$

Implementation of MLFV in Extended Field Content Case

$$
\mathcal{L}_{\text {Sym.Br. }}=-\lambda_{e}^{i j} \bar{e}_{R}^{i}\left(H^{\dagger} L_{L}^{j}\right)+i \lambda_{\nu}^{i j} \bar{\nu}_{R}^{i}\left(H^{T} \tau_{2} L_{L}^{j}\right)+\text { h.c. }
$$

Same as before, but now transformations are:

$$
\begin{gathered}
L_{L} \rightarrow V_{L} L_{L} \quad e_{R} \rightarrow V_{R} e_{R} \quad \nu_{R} \rightarrow O_{\nu} \nu_{R} \\
\lambda_{e} \rightarrow V_{R} \lambda_{e} V_{L}^{\dagger} \quad \lambda_{\nu} \rightarrow O_{\nu} \lambda_{\nu} V_{L}^{\dagger}
\end{gathered}
$$

As before

$$
\Delta=\lambda_{\nu}^{\dagger} \lambda_{\nu} \quad \Delta \rightarrow V_{L} \Delta V_{L}^{\dagger}
$$

Implementation of MLFV in Extended Field Content Case

$$
\mathcal{L}_{\text {Sym.Br. }}=-\lambda_{e}^{i j} \bar{e}_{R}^{i}\left(H^{\dagger} L_{L}^{j}\right)+i \lambda_{\nu}^{i j} \bar{\nu}_{R}^{i}\left(H^{T} \tau_{2} L_{L}^{j}\right)+\text { h.c. }
$$

Same as before, but now transformations are:

$$
\begin{gathered}
L_{L} \rightarrow V_{L} L_{L} \quad e_{R} \rightarrow V_{R} e_{R} \quad \nu_{R} \rightarrow O_{\nu} \nu_{R} \\
\lambda_{e} \rightarrow V_{R} \lambda_{e} V_{L}^{\dagger} \quad \lambda_{\nu} \rightarrow O_{\nu} \lambda_{\nu} V_{L}^{\dagger}
\end{gathered}
$$

As before

$$
\Delta=\lambda_{\nu}^{\dagger} \lambda_{\nu} \quad \Delta \rightarrow V_{L} \Delta V_{L}^{\dagger}
$$

but now not directly related to mass matrix

$$
m_{\nu}=\frac{v^{2}}{M_{\nu}} \lambda_{\nu}^{T} \lambda_{\nu}
$$

Implementation of MLFV in Extended Field Content Case

$$
\mathcal{L}_{\text {Sym.Br. }}=-\lambda_{e}^{i j} \bar{e}_{R}^{i}\left(H^{\dagger} L_{L}^{j}\right)+i \lambda_{\nu}^{i j} \bar{\nu}_{R}^{i}\left(H^{T} \tau_{2} L_{L}^{j}\right)+\text { h.c. }
$$

Same as before, but now transformations are:

$$
\begin{gathered}
L_{L} \rightarrow V_{L} L_{L} \quad e_{R} \rightarrow V_{R} e_{R} \quad \nu_{R} \rightarrow O_{\nu} \nu_{R} \\
\lambda_{e} \rightarrow V_{R} \lambda_{e} V_{L}^{\dagger} \quad \lambda_{\nu} \rightarrow O_{\nu} \lambda_{\nu} V_{L}^{\dagger}
\end{gathered}
$$

As before

$$
\Delta=\lambda_{\nu}^{\dagger} \lambda_{\nu} \quad \Delta \rightarrow V_{L} \Delta V_{L}^{\dagger}
$$

but now not directly related to mass matrix

$$
m_{\nu}=\frac{v^{2}}{M_{\nu}} \lambda_{\nu}^{T} \lambda_{\nu}
$$

However

$$
\delta=\lambda_{\nu}^{T} \lambda_{\nu} \quad \delta \rightarrow V_{L}^{*} \delta V_{L}^{\dagger}
$$

Implementation of MLFV in Extended Field Content Case

$$
\mathcal{L}_{\text {Sym.Br. }}=-\lambda_{e}^{i j} \bar{e}_{R}^{i}\left(H^{\dagger} L_{L}^{j}\right)+i \lambda_{\nu}^{i j} \bar{\nu}_{R}^{i}\left(H^{T} \tau_{2} L_{L}^{j}\right)+\text { h.c. }
$$

Same as before, but now transformations are:

$$
\begin{gathered}
L_{L} \rightarrow V_{L} L_{L} \quad e_{R} \rightarrow V_{R} e_{R} \quad \nu_{R} \rightarrow O_{\nu} \nu_{R} \\
\lambda_{e} \rightarrow V_{R} \lambda_{e} V_{L}^{\dagger} \quad \lambda_{\nu} \rightarrow O_{\nu} \lambda_{\nu} V_{L}^{\dagger}
\end{gathered}
$$

As before

$$
\Delta=\lambda_{\nu}^{\dagger} \lambda_{\nu} \quad \Delta \rightarrow V_{L} \Delta V_{L}^{\dagger}
$$

but now not directly related to mass matrix

$$
m_{\nu}=\frac{v^{2}}{M_{\nu}} \lambda_{\nu}^{T} \lambda_{\nu}
$$

However

$$
\delta=\lambda_{\nu}^{T} \lambda_{\nu} \quad \delta \rightarrow V_{L}^{*} \delta V_{L}^{\dagger}
$$

In CP limit

$$
\lambda_{\nu}^{*}=\lambda_{\nu} \quad \text { and } \quad{ }_{86} \Delta=\lambda_{\nu}^{T} \lambda_{\nu}
$$

- Same operator basis as before (chose Δ and δ by transformation properties)
- Same effective lagrangian, but with $\Lambda_{\mathrm{NL}} \rightarrow M_{v}$
- Summary: In mass eigenstate basis

$$
\Delta=\left\{\begin{array}{l}
\frac{\Lambda_{\mathrm{LN}}^{2}}{v^{4}} U m_{\nu}^{2} U^{\dagger} \\
\frac{M_{\nu}}{v^{2}} U m_{\nu} U^{\dagger}
\end{array}\right.
$$

minimal field content extended field content, CP limit

$$
\delta=\delta^{T}= \begin{cases}\frac{\Lambda_{\mathrm{L} N}}{v^{2}} U^{*} m_{\nu} U^{\dagger} & \text { minimal field content } \\ \frac{M_{\nu}}{v^{2}} U^{*} m_{\nu} U^{\dagger} & \text { extended field content }\end{cases}
$$

MLFV: Phenomenology

- Future experiments will (continue to) look for flavor changing neutral interactions in the charged lepton sector:
- MECO ... was cancelled, but ... muze
- PRIME at the PRISM muon facility at JPARC will measure μ-to-e conversion at 10^{-18} sensitivity
- MEG at PSI looks for $\mu^{+} \rightarrow \mathrm{e}^{+} \gamma$ at 10^{-13} single event sensitivity

$\mu \rightarrow \mathrm{e} \gamma, \mu^{-t o}$-e conversion and their relatives I: minimal field content

$$
B_{\ell_{i} \rightarrow \ell_{j}(\gamma)}=10^{-50}\left(\frac{\Lambda_{\mathrm{LN}}}{\Lambda_{\mathrm{LFV}}}\right)^{4} R_{\ell_{i} \rightarrow \ell_{j}(\gamma)}\left(s_{13}, \delta ; c^{(i)}\right)
$$

- since $\Delta \propto \mathrm{U}\left(m_{\nu}\right)^{2} \mathrm{U}^{\dagger}$, only differences of m^{2} enter; these are measured!
- s_{13} and δ unknown PMNS parameters (scan on δ)
- choose $c^{(i)}$ of order one for the estimate
- ratio of scales can be large:
perturbative $g_{v} \Rightarrow \Lambda_{\mathrm{LN}} \lesssim 3 \times 10^{13}\left(1 \mathrm{eV} / m_{\nu}\right) \mathrm{GeV}$ so $\Lambda_{\mathrm{LFV}} \sim 1 \mathrm{TeV} \Rightarrow \Lambda_{\mathrm{LN}} / \Lambda_{\mathrm{LFV}} \lesssim 10^{10}$

Predictive: $l \rightarrow l^{\prime} \gamma$ patterns are independent of unknown input parameters (scales cancel in ratios, in this case $\mathrm{c}^{(i)}$'s cancel too, and all other parameters are from long distance)

If $\mathrm{s}_{\mathrm{I}_{3}}$ is small, look at tau modes.
Here $\Lambda_{L N} / \Lambda_{L F V}=10^{10}$ and $c_{R L}^{(1)}-c_{R L}^{(2)}=1$

Belle and BaBar have recent bounds (summer ' 05)
of a few $\times 10^{-7}$ for $\operatorname{Br}(\tau \rightarrow 1 \gamma)$ and $\operatorname{Br}(\tau \rightarrow 111)$

$\mu \rightarrow \mathrm{e} \gamma, \mu^{-t o-e}$ conversion and their relatives II: extended field content

- Replace $\Lambda_{\mathrm{LN}}^{2} / \Lambda_{\mathrm{LFV}}^{2}$ by $v M_{\nu} / \Lambda_{\mathrm{LFV}}^{2}$
- Now $\Delta \propto U m_{\nu} U \dagger$ so amplitudes depend on oyerall neutrino mass scale (ie, lightest neutrino mass)

$B_{\ell_{i} \rightarrow \ell_{j}(\gamma)}=10^{-25}\left(\frac{v M_{\nu}}{\Lambda_{\mathrm{LFV}}^{2}}\right)^{2} \widehat{R}_{\ell_{i} \rightarrow \ell_{j}(\gamma)}\left(s_{13}, m_{\nu}^{\text {lightest }} ; c^{(i)}\right)$
perturbative $\lambda_{v} \Rightarrow M_{v} \leqslant 10^{13} \mathrm{GeV} ;{ }_{92}$ with $\Lambda_{L F V} \geq 1 \mathrm{TeV}, \quad \frac{v M_{\nu}}{\Lambda_{L F V}^{2}} \leq 10^{9}$

One final note: results depend on hierarchy of neutrino masses, $\operatorname{normal}\left(\mathrm{m}_{v 1} \sim \mathrm{~m}_{v_{2}} \ll \mathrm{~m}_{v_{3}}\right)$ vs. inverted $\left(\mathrm{m}_{\mathrm{v} 1} \ll \mathrm{~m}_{v_{2}} \sim \mathrm{~m}_{v_{3}}\right)$

31 Decays: 4L operators

$$
\Gamma_{\mu \rightarrow 3 e} / \Gamma_{\mu \rightarrow e \nu \bar{\nu}}=\left[\left|a_{+}\right|^{2}+2\left|a_{-}\right|^{2}-8 \operatorname{Re}\left(a_{0}^{*} a_{-}\right)-4 \operatorname{Re}\left(a_{0}^{*} a_{+}\right)+6 I\left|a_{0}\right|^{2}\right] \begin{cases}\left(\frac{\Lambda_{\mathrm{LN}}}{\Lambda_{\mathrm{LFV}}}\right)^{4}\left|a_{e \mu}\right|^{2} & \text { minimal } \\ \left(\frac{v M_{\nu}}{\Lambda_{\mathrm{LFV}}{ }^{2}}\right)^{2}\left|b_{e \mu}\right|^{2} & \text { extended }\end{cases}
$$

$$
a_{+}=\sin ^{2} \theta_{w}\left(c_{L L}^{(1)}+c_{L L}^{(2)}\right)+c_{4 L}^{(3)}
$$

$$
a_{-}=\left(\sin ^{2} \theta_{w}-\frac{1}{2}\right)\left(c_{L L}^{(1)}+c_{L L}^{(2)}\right)+c_{4 L}^{(1)}+c_{4 L}^{(2)}+\frac{2 \delta_{e \mu} \delta_{e e}^{*}}{\Delta_{e \mu}}\left(c_{4 L}^{(4)}+c_{4 L}^{(5)}\right)
$$

$$
a_{0}=2 e^{2}\left(c_{R L}^{(1)}-c_{R L}^{(2)}\right)^{*}
$$

$$
\begin{aligned}
& \Gamma_{\tau \rightarrow e \mu \bar{\mu}}=\Gamma_{\tau \rightarrow e \nu \bar{\nu}} \frac{v^{4}\left|\Delta_{e \tau}\right|^{2}}{\Lambda_{\mathrm{LFV}}^{4}}\left[\left|a_{+}\right|^{2}+\left|\tilde{a}_{-}\right|^{2}-4 \operatorname{Re}\left[a_{0}^{*}\left(a_{+}+\tilde{a}_{-}\right)\right]+12 \tilde{I}\left|a_{0}\right|^{2}\right] \\
& \Gamma_{\tau \rightarrow \mu \mu \bar{e}}=\Gamma_{\tau \rightarrow e \nu \bar{\nu}} \frac{v^{4}\left|2 \delta_{e \tau} \delta_{\mu \mu}\right|^{2}}{\Lambda_{\mathrm{LFV}}^{4}}\left|c_{L}^{(4)}+c_{L}^{(5)}\right|^{2}
\end{aligned}
$$

Part of loop graph (W is virtual).
For any one intermediate quark amplitude is

$$
M_{W}^{D} F\left(m_{q}^{2} / M_{W}^{2}, \mu / M_{W}\right)
$$

Sum over intermediate quarks and expand

$$
\sum_{q} V_{q d} V_{q s}^{*} F\left(m_{q}^{2} / M_{W}^{2}\right) \approx \sum_{q} V_{q d} V_{q s}^{*}\left[F(0)+\frac{m_{q}^{2}}{M_{W}^{2}} F^{\prime}(0)+\cdots\right]
$$

For first term use

$$
\begin{gathered}
\sum_{q} V_{q d} V_{q s}^{*}=0 \quad \text { and for second } \sum_{q \neq u} V_{q d} V_{q s}^{*}=-V_{u d} V_{u s}^{*} \\
\Longrightarrow \sum_{q} m_{q}^{2} V_{q d} V_{q s}^{*}=\sum_{q \neq u}\left(m_{q}^{2}-m_{u}^{2}\right) V_{q d} V_{q s}^{*} \\
96 \quad \underline{(\text { jump back })}
\end{gathered}
$$

Decays of/to hadrons

Hopelessly small!

$$
\begin{array}{ll}
\pi^{0} \rightarrow \mu^{+} e^{-} & 10^{-25} \\
\Upsilon \rightarrow \tau \mu & 10^{-20} \\
\tau \rightarrow \pi \mu & 10^{-15}
\end{array}
$$

- We have also explored the effects of deleting a class of operators.
- For example: assume 4 L operators are not present
- Can we get 31 decays? Yes, through loops
- Need care in loops of light quarks: chiral lagrangian does the job
- Result: amplitude is \sim.. of 4 L ops (large logs)
- Equivalently, these give a -20% correction to rate
- Patterns are similar to those from 4L

98

