

Mass Hierarchy & CP Violation with Long-Baseline Experiments

Brajesh Chandra Choudhary University of Delhi

July 15-19, 2013, IPPP – Durham at Lumley Castle, UK

What do We Know About the Neutrinos?

There are three generations of light neutrinos, they have mass, hence they mix and they don't travel faster than light.

Neutrino Mixing and PMNS Matrix

ELAVOR Eigenstates	$ \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} =$	$= \begin{bmatrix} U_{e1} & U_{e2} \\ U_{\mu 1} & U_{\mu 2} \\ U_{\tau 1} & U_{\tau 3} \end{bmatrix}$	$\begin{bmatrix} U_{e3} \\ U_{\mu 3} \\ U_{\tau 3} \end{bmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$	MASS Eigenstates
Atn	nospheric	Cross Mixing	Solar	Majorana
$U = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$ \begin{array}{ccc} 0 & 0 \\ c_{23} & s_{23} \\ -s_{23} & c_{23} \end{array} $	$egin{pmatrix} c_{13} & 0 \ s_{13} e^{-i \delta_{ m CP}} \ 0 & 1 & 0 \ -s_{13} e^{i \delta_{ m CP}} & 0 & c_{13} \ \end{pmatrix}$	$\begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$.	$ \begin{pmatrix} e^{i\eta_1} & 0 & 0 \\ 0 & e^{i\eta_2} & 0 \\ 0 & 0 & 1 \end{pmatrix}, $
	$v_{\mu} \leftrightarrow v_{\tau}$		$v_e \leftrightarrow v_\mu, v_\tau$	
Atmospheric v_{μ} Long Baseline		Reactor Short Baselin v_μ Long Baseline	ne Solar Reactor Long	Baseline
Long Baseline Accelerator Experiments v oscillations with $3v's$ can be described by 8 parameters - 2 mass-squared (Δm^2) difference, 2 signs of mass-squared (Δm^2)				

differences, 3 angles and 1 phase. BCC - Invisibles13, IPPP-Durham (Lurine, custic,

in Visibles13 What We Know, What We Don't Know, & What We Would Like to Know Reactor, T2K, NOvA, LBNE, HK T2K, NOVA, LBNE, LBNO, HK How large? LARGE ~ 10^o $-\sin^2\theta_{13}$ ν_3 Solar+KAMLAND Δm^2_{sol} $^{A}m_{21}^{2} ^{7.5X10^{-5}} eV^{2}$ $\Theta_{12} \sim 34^{0}$ $\Delta m^2_{\ atm}$ or (Mass)² $\Delta m^2_{\ atm}$ Atmosp. + K2K +MINOS MASS $\sim |\Delta m_{31}^2|^2 2.4 \times 10^{-3} \, eV^2$ $v_2 ////$ Δm^2_{sol} ϑ₂₃ ~ 45⁰ v_3 $\sin^2\theta_{13}$ Tritium or $0\nuetaeta$ Which One? Normal Inverted Majorana NOVA, LBNE, LBNO, HK, INO, PINGU, ORCA, REACTORS ? or Dirac ? $\mathbf{v}_{e}[|\mathbf{U}_{ei}|^{2}] \qquad \mathbf{v}_{u}[|\mathbf{U}_{ui}|^{2}]$ $v_{\tau}[|U_{\tau i}|^2]$ **Ο**νββ

Gonzales-Garcia, Maltoni, Salvado, Schwetz

arXiv:1209.3023v3-19.Dec.12

European Strategy of Particle Physics – First Update

Page 22 of the Document

Rapid progress in neutrino oscillation physics, with significant European involvement, has established a strong scientific case for a long-baseline neutrino programme exploring CP violation and the mass hierarchy in the neutrino sector. CERN should develop a neutrino programme to pave the way for a substantial European role in future longbaseline experiments. Europe should explore the possibility of major participation in leading neutrino projects in the US and Japan.

> Focus of the Talk – MH and CPV in Neutrinos

LBL v Experiments: Future 3v Oscillation Searches

Once positive evidence of θ_{13} has been found, the goal has moved towards search for neutrino mass hierarchy and CPV. Need for very sensitive experiments.

CP-violation (U Complex): v's and anti-v's behave differently and their oscillation probabilities are not the same

● P (
$$v_{\mu} \rightarrow v_{e}$$
) = P₁ + P₂ + P₃ + P₄
IN VACUUM
• P₁ = Sin²(θ₂₃) Sin²(2θ₁₃) Sin²(1.27 Δm²₁₃ L/E) "Atmospheric"
• P₂ = ±J Sin(δ) Sin(1.27 Δm²₁₃ L/E)
• P₃ = J Cos(δ) Cos(1.27 Δm²₁₃ L/E)
• P₄ = Cos²(θ₂₃) Sin²(2θ₁₂) Sin²(1.27 Δm²₁₂ L/E) "Solar"
where
J = Cos(θ₁₃) Sin(2θ₁₂) Sin(2θ₁₃) Sin(2θ₂₃) X

 $Sin(1.27 \Delta m_{13}^2 L/E) Sin(1.27 \Delta m_{12}^2 L/E)$

+ for vbar and – for v

in Visibles13 LBL v Experiments: Future 3v Oscillation Searches – MATTER EFFECT

- In LBL experiment the neutrino beam traverses through the Earth and goes through forward coherent scattering due to interactions in matter.
- \Box In matter v_{e} interacts differently compared to other flavors.
 - \checkmark v_e has charged-current interaction with electrons in the matter
 - \checkmark $v_{e_{\tau}}$ v_{μ} and v_{τ} have neutral-current interactions with the matter
 - \checkmark v_s has no interaction at all
- Matter can change the oscillation probability due to an effective mass difference which is generated between different types of neutrinos.
- □ This modifies the mixing angle, enhancing the probability of conversion for *v* and suppressing for *v*bar, or vice-versa depending on the sign of Δm^2_{13} .

in Visibles13 LBL v Experiments: Future 3v Oscillation Searches – MATTER EFFECT

□ In matter the effective mixing is given by:

 $\sin^2 2\theta^m_{13} \approx \sin^2 2\theta_{13}/(\cos 2\theta_{13} - A/\Delta m^2)^2$

where $A = \pm 2\sqrt{2} G_F$. Y. $n_{B_e} E_v$ $n_B = Baryon Density$ $Y = -2Y_n + 4Y_e$ for v_e ($Y_n = neutrons/baryons$) $Y = -2Y_n$ for $v\mu$ ($Y_e = electrons/baryons$) Y = 0 for v_s

- □ This enhances (suppresses) the probability of conversion for *v* (*v*bar) to normal hierarchy and vice–versa for inverted hierarchy
- □ For a 2 GeV neutrino of energy, matter effect gives
 - ✓ About ±30% effect for NuMI & about ±11% effect for T2K
- □ By measuring $P(v_{\mu} \rightarrow v_{e})$ and $P(v_{\mu} \rightarrow v_{e})$, we are sensitive to θ_{13} , δ , and the type of hierarchy (or sign of Δm_{31}^{2})
- □ And this is what NOvA+T2K and LBNE/LAGUNA-LBNO will do.

Neutrinos from Accelerator Long-Baseline Experiments MINOS/MINOS+/NOvA/LBNE – USA-FNAL LAGUNA-LBNO – Europe-CERN T2K/T2HK – Japan–Tokai-Kamioka

Fermilab's Neutrino Program

NOVA

ΝΟνΑ

NOvA is a second-generation experiment on the NuMI beamline, which is optimized for the detection of $v_{\mu} \rightarrow v_{e}$ oscillations.

Three NOvA Detectors

NOvA Construction Status 14 Ktons of FD to be completed by 6/2014

NOvA Physics – MH

NOvA will measure $P(v_{\mu} \rightarrow v_{e}) \& P(v_{bar_{\mu}} \rightarrow v_{bar_{e}}) at 2 GeV$

Large θ_{13} is better for NOvA. It reduces the overlap between these bi-polarity ellipses, reducing the likelihood of degeneracy

Signal efficiency = 45%, NC fake rate = 0.1%. Data – 6E20 – 3 yrs in each mode.

in **V**isibles<u>1</u>3

NOvA Physics – Octant Resolution

in Visibles 13 NOvA+T2K - MH, CPV & Octant Degeneracy

- 3 + 3 years of running in neutrino and anti-neutrino mode.
- NOVA data will yield regions in P (v_e) vs. $P(vbar_e)$ space.
- A measurement of the probabilities might allow resolving the MH and provide information on δ_{CP}
 - > Additional sensitivity from T2K

LBME

Long Baseline Neutrino Experiment

Hope to Improve on this - from very beginning

LBNE Beam

- 1. Fermilab Homestake (South Dakota) = 1290 Km
- Wide Band Low Energy Beam Information from 1st and 2nd
 maxima at achievable neutrino energy
- 3. Larger separation between normal and inverted hierarchy
- 4. All neutrino parameters measured in the same detector complex
- 5. Expected spectra in 34kT LAr TPC w/ and w/o oscillation for 5 yrs running with neutrino (L) and anti-neutrinos (R)
- 6. Clear bi-nodal oscillation spectrum

 $v_{\mu} \rightarrow v_{e}$ Appearance Spectra – LAr Detector

Mass Hierarchy

5 σ + for all δ_{CP} for the current value of ϑ_{13}

CP Violation

$3\sigma \sim 70 - 75\% \delta_{CP}$ for sin²($2\theta_{13}$) = 0.095

Even LBNE10 Would be a Major Advance

Bands: 1 σ variations of ϑ_{13} , ϑ_{23} , Δm_{31}^2 (Fogli et al. arXiv:1205.5254v3)

```
T2K 750 kW x 5 yr v
NOvA 700 kW x (3 yr v + 3 yr \overline{v})
LBNE10 (80 GeV*) 700 kW x (5 yr v + 5 yr \overline{v})
```


Project-X

- ✓ Project-X is a proposed new high-intensity proton source with beam energy ranging from 3 GeV to 120 GeV based on a 3 GeV CW H- linac. With further acceleration to 8 GeV, and injection into existing RR/MI complex, it would support long-baseline neutrino experiments.
- ✓ Project-X would provide 2 MW of total beam power to the 3 GeV program for physics of rare processes (muon, kaon and nuclear physics), simultaneously with 2 MW to a neutrino production target at 60-120 GeV.
- ✓ Due to unprecedented flexibility in the timing structure of beams - pulsed or continuous wave, varying gaps between pulses, fast or slow spill - and in the variety of simultaneously delivered secondary beam - one will be able to perform cutting edge experiments in neutrino, muon, kaon and nuclear physics simultaneously.

Project-X – Basic Concept of the Accelerator

LBNE Summary in the Project-X Era

in **V**isibles13

Large θ_{13} – What Does It Mean for CPV & δ_{CP} ?

- ✓ With larger value of θ_{13} --- will the measurement of CPV become any easier?
- ✓ While the number of oscillated event sample increases leading to quicker determination of "Matter Hierarchy", the measurement of CPV and δ_{CP} is largely unaffected by the value of $\sin^2 2\vartheta_{13}$
- To the first order, this is due to two competing effects...
 > size of asymmetry one is trying to measure, and
 > the size of the event samples

v vs.vbar Asymmetry In Vacuum

Ignoring the matter effect and background for now

Understanding systematic will be the key to CP measurement

- Signal rate increases with θ₁₃ A factor of ~10 increase in signal in going from sin²2θ₁₃ = 0.01 to 0.10, so x3 improvement in statistical significance of signal
 - The asymmetry

 $\frac{P(\nu_{\mu} \rightarrow \nu_{e}) - P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})}{P(\nu_{\mu} \rightarrow \nu_{e}) + P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})}$

is proportional to $\sim 1/\sin\theta_{13}$

 the asymmetry gets smaller as θ₁₃ increases - a factor ~3 reduction in CP asymmetry going from sin²2θ₁₃ = 0.01 to 0.10 (independent of baseline)

The role of the ND becomes increasingly important.

ND Concept for LBNE

With external contribution, it would be possible to build a higherresolution and larger-ND (3.5m X 3.5m X 7.5m) capable of fulfilling oscillation needs and precision measurements/searches.

LBNE w & w/o ND – Mass Hierachy – 100 kT-yr – 10kT FD – 5 yrs v & vbar

Assumption: FD to be always underground for Atmospheric neutrinos
 FD w/Beam only even w/o ND (-----) can measure MH – better than 3σ for full CP

✓ FD w/Beam + Atmospheric w/o ND (-----) better than FD+ND w/Beam

BCC - Invisibles13

Barger, Bhattacharya, Chatterjee, Gandhi, Marfatia, Masud

LBNE w & w/o ND – Octant Degeneracy – 100 kT-yr – 10kT FD – 5 yrs v & vbar

LBNE w & w/o ND – CPV – 350 kT-yr & 100 kT-yr – in 10 yrs – 5 yrs v & vbar

With 100kT-yr w/ or w/o ND – one hardly gets 3 σ sensitivity in CPV With 350kT-yr - FD+ND with Beam (______) only much better than only FD w/ Beam+ Atmospheric w/o ND (-----). Beam only with FD+ND can do CPV to 5 σ . At 350kT-yr – it's the systematics that matters.

BCC - Invisibles13, II PP-Different Humey Castler - 15 - 19 July 2013

LAGUNA

LBNO

From the Newsroom of Maury Goodman

June 2013 Long-Baseline Neutrino Experiment

*** LBNE + LBNO

Discussions about joining forces are taking place between the mostly U.S. LBNE collaboration (Long-Baseline Neutrino Experiment) and the mostly European LBNO collaboration (Long-Baseline Neutrino Oscillation). Nobody has proposed calling it LBNI.

in Visibles13 Preparation for Snowmass

- Collaboration is preparing the LBNE Book.
- International contributions are absolutely critical for the success of LBNE starting with Phase 1
 - India
 - . Italy
 - . U.K.
 - Brazil
 - Japan-US neutrino task force
 - Hot news this week: working toward LBNE-LBNO combination!! This opens the door for CERN and European institutions to partner with U.S. on this project

LAGUNA – LBNO – Choice of Baselines

in **V**isibles13

INDIA-BASED NEUTRINO **OBSERVATORY** - Mass Hierarchy with Atmospheric v's

INDIA-Based Neutrino Observatory

- ✓ Underground laboratory in South India (9° 58' N, 77° 16'E)
- ✓ With ~1 km rock cover through a 2 km long tunnel.

Status of the Project

- Project approved by the Indian funding agencies. Environment & forest clearance obtained. 26 hectares of land acquired at the detector site. Construction of lab & surface facility to begin.
- Construction of a 50kT magnetized Iron Calorimeter (ICAL) detector to study properties of neutrinos.
- Development of INO center (a Detector R&D center) at Madurai (~100Km from INO).
- Human resource development (INO graduate training program going on for last several years).
- > Detector R & D almost complete.

INO-ICAL Detector

Number of Institutions ~ 25+

Mass Hierarchy with ICAL@INO

Events generated using Nuance & ICAL resolution in E and \cos \theta_{\text{zenith}}

~2.0 σ sensitivity for $\sin^2 \theta_{23} = 0.5$, $\sin^2 2\theta_{13} = 0.1$ in 5 yrs. ~2.7 σ sensitivity for $\sin^2 \theta_{23} = 0.5$, $\sin^2 2\theta_{13} = 0.1$ in 10 yrs.

Impact of $\delta_{\rm CP}$ on MH at ICAL@INO

Data generated at $\delta_{CP} = 0$ and fitted at non-zero δ_{CP} INO will give MH sensitivity almost independent of δ_{CP}

Mass Hierarchy with ICAL@INO

arXiv:1306.1423v1 [hep-ph] 6Jun2013 - Ghosh, Choubey

✓ Sin²2∂₁₃ = 0.1, Sin²∂₂₃ = 0.5, 500kTon Exposure
 ✓ Muon Energy Resolution = 2(5)%, Reconstruction Eff. = 80%
 ✓ MH sensitivity - 4.5 (4.0)σ

Hyper-Kamiokande CPV (LBL) & MH (Atmospheric)

HYPER-KAMIOKANDE in JAPAN

HK-LOI - arXiv:1109.3263v1 [hep-ex] 15 Sep 2011

2.5 degree off-axis 1.66 MB Beam power (10⁷ seconds/year) DATA for 5 yrs v (1.5 yr) + vbar (3.5 yr)

✓ 295 Km from J-PARC, 8 Km from Super-K
 ✓ Two Cylindrical Tanks - 48m (W) X 54m (H) X 250m (L)
 ✓ Total/Fiducial Mass = 0.99 (0.56) Mega Ton
 ✓ 90,000 20-inch PMT's, 20% photocathode coverage

If MH in known, 3σ CPV for 74% of the δ parameter space. CP Phase δ can be determined ~ 18 degrees for all δ . If MH not known, sensitivity decreases slightly due to degeneracy

HK-LOI - arXiv:1109.3263v1 [hep-ex] 15 Sep 2011

MH w/HYPER-KAMIOKANDE – 10 yrs Atmospheric Data

***** HK can determine MH at more than 3σ for $Sin^2\theta_{23} > 0.4$ **Can** solve octant degeneracy – i.e, $\sin^2\theta_{23} > 0.5$ or < 0.5 for $sin^2 2\theta_{23} < 0.99$

Summary and Conclusions

- ✓ Neutrino physics has moved in last 15 years from discovery to precise measurements.
- ✓ Discovery of large ϑ_{13} by reactors has opened the possibility of determining MH and measuring CPV in neutrinos.
- ✓ If nature is kind current LBL experiments NOvA and T2K to make statement on MH by 2020-22. Atmospheric and future LBL will determine MH at high confidence level.
- ✓ To measure CPV one needs large detectors, high beam power and extended exposure. Future LBL experiments - LBNE, LAGUNA-LBNO and T2-HK are the possible experiments which can measure δ_{CP} .

