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Outline

1. DM indirect searches

2. DM annihilation in the Early Universe

3. DM annihilation products

4. DM capture and annihilation rates

5. SIMPs exclusion as a study case

Neutrinos + Gammas
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Indirect Detection

indirect detection (how)
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Indirect Searches
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DM Capture and Annihilation

- DM Capture

= Py ; My ; OxN (Sd or Si) VY

- Annihilation rate Production at Early Universe

strongly model

- Annihilation products (SM particles) dependent

V: point to their sources; easily reach us; hard to detect
X: point to their sources; might not reach us; easy to detect

backgrounds

- Detection rate

— propagation / energy losses
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DM Production

- Annihilation XS

— production mechanism (Early Universe)

* thermal equilibrium in Early Universe

2 M"L' A/g\g I' =n<oav >

A
Wji\’\/‘:ﬁi?:?\? ' > H(t)

I A e AN
* connection to key parameters (pyx ; My ; OA ;vy)

* non thermal production (axions, super massive DM)
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Early Universe

Thermodynamics & Statistical Mechanics

-N DM particles => Boltzmann equation:

Expansion Annihilation
of the Rate
Universe
l N
dn;
- = —3Hn; — E {oijvij ) (ﬂi nj — n?qn(’%q>
dt . :
J=1 l
xx — ff ff — xX

Katherine Garrett and Gintaras DUda, “Dark Matter:A Primer,” Advances in Astronomy, (201 1)
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DM Freezes Out
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to Boltzmann eq.
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DM Freezes Out
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WIMP Abundance

If DM is a thermal relic, massive and weakly interacting
Freeze out condition: TI'pa = n, < oav >= H(t)

Freeze out temperature can be determined: T ~ m,/20)

Early Universe (radiation dominated):
1.66g0-°T*

mpl

H = s ~ 0.4g, T3
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WIMP Abundance

If DM is a thermal relic, massive and weakly interacting
Freeze out condition: TI'pa = n, < oav >= H(t)

Freeze out temperature can be determined: T ~ m,/20)

Early Universe (radiation dominated):
1.66g0-°T*

mpl

v _(nx) _(nx) N 100
©°7 s /e \s o m,mpglioa<v>

H —

s ~ 0.4g, T3

). -
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h? h?
ﬂxhz = Px h fx pe ~107°h?*GeVcm™°
Pe Pe
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WIMP " "Miracle”

Q. h? ~ (3 x 10~27cm? s_1>
< OAV >
G
o(weakscale) ~ — mw ~ 100GeV v = ¢/3
I

= oav ~ 9(10 %%)cm’s?

Q, = 0.1h?

DM abundance!
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WIMP " "Miracle”

Q. h? ~ (3 x 10~27cm? s_1>
< OAV >
G
o(weakscale) ~ — mw ~ 100GeV v = ¢/3
I

—26) 3 1

= oAV ~ Y(10 cm’s”~

Q, = 0.1h?

DM abundance!

Exercise 1: Redo this calculation.
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Non Thermal Production

m, upper limit: oca | m, 7

= Q,h? <1 + Unitarity = m, < 9(100TeV)
(thermally produced)

- super massive DM (wimpzillas, simpzillas):
— non-thermally produced at much later times

— low interaction rate such that thermal equilibrium
never happened

- axXions

- asymmetric DM: dark baryon with m ~ 5 GeV
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ndirect Searches
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ndirect Searches
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DM Capture

- take Sun and/or Earth as examples
- capture probability:

M, ; oyN; Vy; Dg; Py
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DM Capture
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- capture probability:

My oxN; Vi Des o py
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particle physics astrophysics

Vi < Vescape
- v speed distribution f(u): f(d)d®u
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Fin = / / f(u)dui - AdS
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DM Capture

- take Sun and/or Earth as examples
- capture probability:

My oxN; Vi Des o py
e ——
particle physics astrophysics

Vi < Vescape

- v speed distribution f(u): f(d)d®u

1 - .
Fin = o /'/f(u)duu'nds J = Rusinf
dF;, mf(u

)
dudJ2 u
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DM Capture

- take Sun and/or Earth as examples
- capture probability:

My oxN; Vi Des o py
e ——
particle physics astrophysics

Vi < Vescape
- v speed distribution f(u): f(d)d®u

1 - .
Fin = o /'/f(u)duu'nds J = Rusinf
dF;, mf(u

) Press & Spergel - Astrophys.]. 296 (1985)

> A. Gould - Astrophys.|. 388 (1991)
du dJ u Jungman,Kamionkowski, Griest - Phys. Rep.267 (1995)
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DM Capture

- scattering rate: Q(w) = ngoyn W
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DM Capture

- scattering rate: Q(w) = ngoyn W

- fractional energy loss:

MX ImyN

— H _ *\  where =
Er = 2E, (M., + mp) (1 — cosf™) 2 M, + my
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DM Capture

- scattering rate: Q(w) = ngoyn W

- fractional energy loss:

Er

2E,

L

(My +

0 <

mN)

AE
E

(1 — cos@™)

<

where

M

MX ImyN

”:Mx—l—mN
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DM Capture

- scattering rate: Q(w) = ngoyn W

- fractional energy loss:

7
= 2E 1 — 0*) Where
ER X (MX + mN) ( COS )
AE 4 1
0 < — <
- E — M, my
- to ensure capture: % >
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DM Capture

- scattering rate: Q(w) = ngoyn W

- fractional energy loss:

u' L MX mN

_ 1 — 0*) Where
Er = 2E, (M, + mp) ( cos 67)

AE - 4 1
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DM Capture

4M, mn (H)z
: .. . (M, +mn)? w
= Scattering Is IsOotropic: Peap = 41\1\/}me
(My+mn)?
4M, m u ) 2
p o (fomllj)z (W) _ V_2 1 u” (M, — m)*
cap — 4M, mn w2 4MX IMN Vgsc

(My+mnN)?
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DM Capture

4M, mn (E)z
i . . .  (My+mp)? w
Scatterlng 1S ISOtropic: Peap = AM, mn
(My+mn)?
4M., m u
(Mx—li(mlhj)z (w) v? u’ (MX — mN)z
Pcap — 4M, mpyn — w2 1 4 M 2
(M, +mn)? v N e

capture is more efficient for My ~ mn
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DM Capture

4M, mn (E)z
- ' 1C | Yol _ (My+mn)? w
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DM Capture

4M, mn (E)z
: .. . (M, +mn)? w
= Scattering Is IsOotropic: Peap = 41\1\/}me
(My+mn)?
4M, m u )2
p _ (fomllj)z () v: 1 u® (My — mn)”
cap — 4M, mn w2 4MX IMN Vgsc

(M +mp )2

capture is more efficient for My ~ mn

otherwise kinematically suppressed
- capture rate per dI'c / f(u)

shell volume: dVv — = WQ(W) Peap du

- XS form factor suppression => if momentum transfer is not small
compared to nucleus radius
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Capture in the Sun and Earth

Dy 270km/s 100 GeV Oy N;
I = K F;(M fip; S(M i
c 0.3 GeV /cm?3 Vy M, lz: (M) 10—%2 cm? ¢i S(My/mni) s

! !

Ko ~ 102 Ke ~ 1012 form factor kin suppression
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Capture in the Sun and Earth

Dy 270km/s 100 GeV TN
r = K F;(M f;0; S(M i
c 0.3 GeV /cm?3 Vy M, lz: (M) 10—%2 cm? ¢i S(My/mni) s
Ko ~ 102 Ke ~ 1012 form factor kin suppression
3 2
e — K Dy 270km/s 100 GeV y | 1
C 0.3 GeV/cm3 Vy M, 10-42 cm?
Ko ~ 1023 Ke ~ 10"

2myj;
ot = Aoy, (1 — MNI) = for M, >> mn; = ob' = Ato,,
X
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Capture in the Sun and Earth

Dy 270km/s 100 GeV TN
r = K F;(M f;0; S(M i
c 0.3 GeV /cm?3 Vy M, lz: (M) 10—%2 cm? ¢i S(My/mni) s
Ko ~ 102 Ke ~ 1012 form factor kin suppression
3 2
e — K Dy 270km/s 100 GeV y | 1
C 0.3 GeV/cm3 Vy M, 10-42 cm?
Ko ~ 1023 Ke ~ 10"

2myj;
ot = Aoy, (1 — MNI) = for M, >> mn; = ob' = Ato,,
X

spin

I e 1025 Py 270km/s 100 GeV 0,
Co 0.3 GeV /cm?3 Vy M, 10-42 cm?

—1

S(m, /my) s
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Capture in the Sun and Earth

Dy 270km/s 100 GeV TN
r = K F;(M f;0; S(M i
c 0.3 GeV /cm?3 Vy M, lz: (M) 10—%2 cm? ¢i S(My/mni) s
Ko ~ 102 Ke ~ 1012 form factor kin suppression
3 2
e — K Dy 270km/s 100 GeV y | 1
C 0.3 GeV/cm3 Vy M, 10-42 cm?
Ko ~ 1023 Ke ~ 10"

2mnny;
SI 4 Ni SI 4
o7 = A%oyp (1 — ) = for M, >> mn;i = o7 = A%0,p

1 MX
270km/s 100 GeV Uslﬁn
T ~ 1025 Px X ~1
Co =P 0 0.3 GeV /cm?3 Vy M, 10-42 cm? S(m,/mu) s

EARTH: XS is spin independent

SUN: SD (H) + S|
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Capture in the Sun

10

og=10"% em®

lll

10

100 l - 11000
M, [GeV)

Zentner, PRD 80 (2009)

XS: spin independent
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Annihilation Rate

- DM time evolution: N = I'c — 2Ta

I't = n <oav > where n=y density in the Sun
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Annihilation Rate

- DM time evolution: N = I'c — 2T'a

I'n = — I
I't = n <oav > where n=y density in the Sun
N N2
' = —n<oav >= < OA V >

2 2 Veff
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Annihilation Rate

- DM time evolution: N = I'c — 2T'a

I'an = —1I7
I't = n <oav > where n=y density in the Sun
I‘A:§H<OAV>: N < OA V >
2 2Verr
CA:<O'AV> N I‘A:Nch

Vefr 2
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Annihilation Rate

- DM time evolution: N = I'c — 2Ta

I'n = — I
I't = n <oav > where n=y density in the Sun
I N < > N < >
— —nNn< oAV >= OA V
A 5 A 2V o A
< OAV > N2CA
A Vs A 2

N = I'c — N2C,
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Maximum Ann Rate

N, = \/gtanh (\/I‘CCAt)

T = timescale for equilibrium among capture and annihilation

1
"~ JTcCa
I I
ift>>7r = N, = —C o Tp = -2
Ca 2
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Maximum Ann Rate

I'c

N, = atanh (\/I‘CCA t)

T = timescale for equilibrium among capture and annihilation

1
T—\/FCCA
I I
ift>>7 => Ny=4/-> = Fp = —
Ca 2

Annihilation rate is maximum at equilibrium
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Annihilation in the Sun and Earth

| TeV DM ; oyn = 107 *cm?

t_solar system —~ I .4 X I 09 )’ear'S




Annihilation in the Sun and Earth

| TeVDM:  o.n = 10 %%cm?

t_solar system ~ I .4 X I 09 )’eal"S
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Annihilation in the Sun and Earth

| TeVDM:  o.n = 10 %%cm?

t_solar system ~ I .4 X I 09 )’eal"S

1 . Far from
:Im ,5;75-“) E ‘: D w 7— — ~J 32 X 10 y of e °
&0 © JTcCa equilibrium
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Annihilation in the Sun and Earth

| TeVDM:  o.n = 10 %%cm?

t_solar system ~ I .4 X I 09 )’eal"S

Far from

equilibrium
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Annihilation in the Sun and Earth

| TeVDM:  o.n = 10 %%cm?

t_solar system ~ I .4 X I 09 )’eal"S
1 . Far from
® T ToCa 32 X 107y equilibrium

To ~ 5x 107y
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Annihilation in the Sun and Earth

| TeVDM:  o.n = 10 %%cm?

t_solar system ~ I .4 X I 09 )’eaI"S

< 1 Far from
il © T ToCa equilibrium

~ 32 x 10%y

In equilibrium

7
To ~ ox 107y for a long time
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Beyond the SM

Cosmology and particle physics complement

each other

While cosmology requires DM, particle physics

(extensions of the SM) independently offers
many candidates (LSP, LKKEP, ...)

— stable particles which annihilate into SM particles

Thursday, July 11, 2013



Annihilation Products

X + X — SM particles
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Annihilation Products

Entirely model dependent!

Y + X — SM particles

- Which particles can reach us from :
neutrinos!
the Sun?

- Which ones can reach a orbiting CR +
satellite ? gammas!

CR don’t point to their sources

Look for channels which produce these particles
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Possible SM Products

X + X — SM particles

- primary products: tt, bb, W"W~_ z°Z° 1, ..
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X + X — SM particles

- primary products: tt, bb, W"W~_ z°Z° 1, ..
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Possible SM Products

X + X — SM particles

- primary products: tt, bb, W"W~_ z°Z° 1, ..

Model dependency:

- LSP: neutralino (depending on its mass)
produces all these states

- LKKP: if n=1 mode of gauge boson (B'): charged
leptons are preferred

- Majorana fermions with my < m¢: bb, 777~

Choose your favorite model!
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V as Annihilation Product
XX — qq
— VU
Y — tt = WTW~— — v
YX — bb = [vX

XX — 9qq — Jets
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V as Annihilation Product

XX — 4q
7 (E, M, )
Y — tt = WTW~— — [v

YX — bb = [vX

XX — qq — Jets
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XX — dq
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V as Annihilation Product

XX — dq
=72 E, M, )
Y — tt = WTW~— — v

X — bb — [vX energy dist

XX — qq — Jets

DM annihilation => products

l
unknown

and
model dependent
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V as Annihilation Product

XX — dq
=72 E, M, )
Y — tt = WTW~— — v

X — bb — [vX energy dist

XX — qq — Jets

DM annihilation => products

L !
unknown SM
and physics

model dependent
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SIMPS as a Case Scenario

Strongly Interacting Massive Particles

One tower from COM 3 ag:

€ deteotore of
aotive mace
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SIMPS as a Case Scenario

Strongly Interacting Massive Particles

One tower from COM 3 ag:

€ deteotore of
aotive mace

WIMPs: interact at most once in a target (Sun, Earth or a detector)

SIMPs: interact many times => much easier to capture or detect
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SIMP Production

- Thermal: mass limit of m, < ¥(100TeV)

- Non-thermal and extremely massive: Simpzillas (wimpzillas)

D. Chung; A. Riotto; R. Kolb

— expanding production beyond thermal

* low interaction rate in order to avoid thermal equilibrium

'y < H(t)

* extremely massive: close to the inflaton mass (10'2 GeV)
large mass prevents from thermalizing

* production mechanism: decay of inflaton; gravitational at
end of inflation, ...
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Why (w) simpzillas?

“In lustra past, theorists explained particles that were known
to exist (...) and predicted others that had to exist (...).
Overwhelmed by the sucesses of the standard model, they
now find themselves all too often enumerating the properties
of particles that have no reason not to exist.”

CHAMPS, A.de Rujula, S.L.Glashow, U.Sarid - Nuc. Phys. B 333 (1990)
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Simpzilla capture and annihilation in the Sun

ESTIMATED RATES

- Number of Simpzillas that hit the Sun:

— local DM density: 0.3 GeV/cm?

0.3 102 GeV
n, = 1\/1—(3111_3 — 3 x 1013 ( N © )cm_?’
X X

n<v>
471

— flux 1n the solar neighborhood: F =

— Sun’s area ~ 6 x 1022 cm?

1012 GeV
M,

~ 4 x 101 ( > s~ 1 Simpzillas hitting the Sun:

Thursday, July 11, 2013



Simpzilla’s trapped in the Sun

- number of interactions in the Sun:

- 12 Oxn
Nint = Do oxn Ro ~ 10 (10—24 cmz)
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Simpzilla’s trapped in the Sun

- number of interactions in the Sun:

- 12 Uxn
Nint = Do oxn Reo ~ 10 (10—24 cmz)

- assume DM impacts the Sun with vese = 600 Km/s =2 x 103 ¢
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- number of interactions in the Sun:

- 12 Uxn
Nint = Do oxn Ro ~ 10 (10—24 cmz)
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- energy loss per collision:
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Simpzilla’s trapped in the Sun

- number of interactions in the Sun:

- 12 Uxn
Nint = Do oxn Reo ~ 10 (10—24 cmz)

- assume DM impacts the Sun with vese = 600 Km/s =2 x 103 ¢

.. m,v?
- energy loss per collision: M, >> m, = AE =

2

_ _ 6 9 xn
AEtot a Nint AE =2 x 10 (10_24 Cm2> GeV

Thursday, July 11, 2013



Simpzilla’s trapped in the Sun

- number of interactions in the Sun:

- 12 Uxn
Nint = Do oxn Reo ~ 10 (10—24 cmz)

- assume DM impacts the Sun with vese = 600 Km/s =2 x 103 ¢

2
myVv

- energy loss per collision: M, >> m, = AE = >

_ _ 6 9 xn
AEtot a Nint AE =2 x 10 (10_24 sz) GeV

GeV

- simpzilla initial enerey: E. ~ 2 x 10° X
P S 8 (1012 GeV>
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Simpzilla’s trapped in the Sun

- number of interactions in the Sun:

B 12 Uxn

- assume DM impacts the Sun with vese = 600 Km/s =2 x 103 ¢

2
myVv

- energy loss per collision: M, >> m, = AE = >

_ _ 6 9 xn
AEtot a Nint AE =2 x 10 (10_24 sz) GeV

GeV

- simpzilla initial enerey: E. ~ 2 x 10° X
P SY: <10 (1012GeV>

Most simpzillas are captured!

[c ~4x |06
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Simpzilla’s capture rate

- depends on efficiency of losing energy in the Sun: a(My, oyn, Re, Mg)

— q < |: efficient in losing energy => most will be captured

1012 % R 2 x 1033 g
I1 — 1017 1 2 X ©O) —1
C (147 ( m, ) (240km/s> <7 < 1019¢cm M., >
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Simpzilla’s capture rate

- depends on efficiency of losing energy in the Sun: a(My, oyn, Re, Mg)

— q < |: efficient in losing energy => most will be captured
1012 v R 2 x10% g
T — 1017 1 2 X © —1
C (L+y )< m, ) (240km/s> <7>< 1010(:m> ( M., ) >

— q < |:not efficient => only low velocity ones will be captured

1012 v R 2 x 1033 g
F _ 1017 1 2 B _x2 1 2 2 X © —1
C 1+y e ™ (1+y" +x7) m, 240km/s /) \ 7 x 101%cm Mg ”

~1
y = 2.5 ese VX -
~ \600km/s/ \ 240km/s
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Simpzilla’s capture rate
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Simpzilla’s annihilation

XX

SN

qq 99 L'a

hadronic jets




Simpzilla’s annihilation

XX

qq 99 L'a

hadronic jets

dNg 15 _3/2 5
= — 1 — =
dx 16 = ( X) .

(fragmentation function: C. Hill, Nuc. Phys. B 224 (1983)
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Simpzilla’s annihilation

XX

qq 99 L'a

hadronic jets

dNg 15 _3/2 5
= — 1 — =
dx 16 = ( X) .

(fragmentation function: C. Hill, Nuc. Phys. B 224 (1983)

1
dN A
NH — / H dx E = QCD

dx m,,
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Simpzilla’s annihilation

XX

q9 99

hadronic jets

dNg 15 _3/2 o
— = 1 —
dx 16 = ( x)

(fragmentation function: C. Hill, Nuc. Phys. B 224 (1983)

1
dN
NH — / HdX

dx
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Hadron Spectrum at Sun’s Core

- . 1012
Annihilation products: N,.; = 2.8 x 10° ( )
1Ly

Bs=1.6 x 106
_1NqQ
M= e = cs = 2.8 x 106

light gs = 7.4 x 106
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Hadron Spectrum at Sun’s Core

- . 1012
Annihilation products: N,.; = 2.8 x 10° ( )
1Ly

Bs = 1.6 X 106
MQ
m,, cs = 2.8 x 106

light gs = 7.4 x 106

Ng = ¢ =

H spectrum at Sun’s core:

E>mQ
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Top Spectrum at Sun’s Core

100 g o i i :
% 10—1 3 \ ~ f}\@ _5‘
N & .
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= N7,
£10-2 S RN
- N . ]
£ AN
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QU -
@O 4
V from top decay C?J,\\ S
10—4 ool Lol Lo gl \
102 103 104
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lLA., Lam Hui, Rocky Kolb, PRD 64,
2001
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Secondary V from Simpzilla Annihilation

t = W+ b (~100%)
— elve (10%)
— pv, (10%)
— Tv, (10%)

T — pv, v, (18%) CC
evelV,r (18%) br — 7
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Secondary V from Simpzilla Annihilation

t = W+ b (~100%)
— elve (10%)
— pv, (10%)
— Tv, (10%)

T — pv, v, (18%) CC
evelV,r (18%) br — 7

Vv spectrum at Sun’s core:

d_N _ N E + mw
dE VE + m)[(E + m¢)2 — m?[[(E + mw)2 — m%]
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Secondary V from Simpzilla Annihilation

t = W+ b (~100%)
— elve (10%)
— pv, (10%)
— Tv, (10%)

T — pv, v, (18%) CC
evelV,r (18%) br — 7

Vv spectrum at Sun’s core:

d_N _ N E + mw
dE VE + m)[(E + m)?2 - m2[[(E + mw)2 — m%/]

12
v emission rate (above 50 GeV): N, ~ 10? (10 )
at the Sun’s core
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Estimated Event Rate in lceCube
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Signal vs Background

Simpzillas
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Simpzilla Indirect Detection

V. propagation from Sun’s core to Earth

Monte Carlo Simulation: WIMPSIM code

(M. Blennow, J. Edsjo, T. Ohlsson - JCAP 01 2008)
=> CC and NC interactions

=> V oscillations
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Simpzilla Indirect Detection

V. propagation from Sun’s core to Earth

Monte Carlo Simulation: WIMPSIM code

(M. Blennow, J. Edsjo, T. Ohlsson - JCAP 01 2008)
=> CC and NC interactions
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— Input: Vu spectrum at Sun’s core
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Simpzilla Indirect Detection

V. propagation from Sun’s core to Earth

Monte Carlo Simulation: WIMPSIM code

(M. Blennow, J. Edsjo, T. Ohlsson - JCAP 01 2008)
=> CC and NC interactions

=> V oscillations

— Input: Vu spectrum at Sun’s core

— Output: Vyu flux (j}_ﬁ) at the detector
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Vi Rate at lceCube

Number of [ at given angular region () at lceCube:

Ao,
/ (dE,, dA dtdQ) ] ABy toxp Aett {!
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Vi Rate at lceCube

Number of [ at given angular region () at lceCube:

doy
/(dE,, dAdtdQ)ddE”teXQ
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Vi Rate at lceCube

Number of [ at given angular region () at lceCube:

do,
/(dE,, dAdtdQ)ddE”teXQ

Effective area: efficiency of detector (energy dependent)
v, S8 4, probability
U energy loss
detector and analysis efficiency
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Vi Rate at lceCube

Number of [ at given angular region () at lceCube:

doy
/(dE,, dAdtdQ)ddE”teX@

Effective area: efficiency of detector (energy dependent)
v, S8 4, probability
U energy loss
detector and analysis efficiency

Comparison of detected events with predicted rate
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Expected Rate

in lceCube
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lceCube-22 Results

lceCube-22 published results: Phys. Rev. D 81(2010)
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Closing the SIMP window
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Closing the SIMP window

-20
OP o
= = e
Camo

*’E -21
©
B0 -22 = MErasianan
= e

-23 aeaes s IA, Laura Baudis, PRL 90, 2003

2 = ac - & 1 Mack et al, PRD 76,2007

j " Starkman et al, PRD 41, 1990
= ' S
4
-26 ~
-27 _
e Direct _j
-28
4 6 8 10 12 14
log M_ (GeV)
lLA., Carlos de Los Heros, PRD 81,

2010

Thursday, July 11, 2013



Exercise 2: Do a rough estimate on the number of
WIMPs captured by the Sun, following the steps done
for Simps. Find out the ratio between the capture rate
of Simps over the one for wimps, for a mass and cross

section value of your choice.

Exercise 3: Suppose you have a beyond the SM
favorite DM candidate. List the necessary
steps to estimate if it is possible to indirectly detect
it.
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