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1. The Big Bang – (1sec  today)
The cosmological principle -- isotropy and homogeneity on large scales

Test 1

• The expansion of the Universe 
v=H0d 

H0=74.2±3.6 km s-1  Mpc-1

(Riess et al, 2009) 
Distant galaxies receding with vel 

proportional to distance away.

Relative distance at different times 
measured by scale factor a(t) with 

H =
ȧ

a

• Nobel prize for Saul Perlmuter, Brian 
Schmidt and Adam Riess in 2011



The Big Bang – (1sec  today)
Test 2

• The existence and 
spectrum of the CMBR

• T0=2.728 ± 0.004 K

• Evidence of isotropy -- 
detected by COBE to such 

incredible precision in 1992

• Nobel prize for John Mather 
2006



2dF Galaxy Redshift Survey

Homogeneous on large scales?



The Big Bang – (1sec  today)
Test 3

• The abundance of light 
elements in the Universe.

• Most of the visible matter 
just hydrogen and helium.

WMAP7 - detected effect of 
primordial He on temperature power 

spectrum, giving new test of 
primordial nucleosynthesis. 

(Komatsu et al, 2010) 

TextYP = 0.326± 0.075

Text�bh
2 = 0.0225± 0.0005 (68% CL)



The Big Bang – (1sec  today)
Test 4

• Given the irregularities seen in the CMBR, the development of 
structure can be explained through gravitational collapse.

COBE - 1992, 2006 

Nobel prize for 

George Smoot SDSS

WMAP-2010



Text

Text

Text

Text

The key equations
Einstein GR:

Geometry Matter Cosm const - could be 
matter or geometry

Relates curvature of spacetime to the matter distribution and its dynamics.

Require metric tensor gµν from which all curvatures derived indep of matter:

Invariant separation of two 
spacetime points (µ,ν=0,1,2,3):

Gµ� = 8�GTµ� � �gµ�

ds2 = gµ�(x)dxµdx�

Einstein tensor Gµν -- function of  gµν and its derivatives.
Energy momentum tensor Tµν -- function of matter fields present. 
For most cosmological substances can use perfect fluid representation for 
which we write

Uµ : fluid four vel = (1,0,0,0) - because comoving in the cosmological rest frame.
(ρ,p) : energy density and pressure of fluid in its rest frame

Tµ� = diag(�, p, p, p)

Tµ� = (� + p)UµU� + pgµ�



Reminder of curvatures
Christoffel symbols:

Riemann’s 
curvature 
tensor:

Ricci tensor:

Ricci scalar:

Einstein tensor:

Not needed here -- maybe in the tutorials

�µ
⇥⇤ =

1
2
gµ�(g⇤�,⇥ + g⇥�,⇤ � g⇤⇥,�)

Rµ
⇤⌅⇥ = �µ

⇤⇥,⌅ � �µ
⇤⌅,⇥ + �µ

�⌅��
⇥⇤ � �µ

�⇥��
⌅⇤

Rµ� = R⇥
µ�⇥

R = Rµ
µ

Gµ� = Rµ� �
1
2
gµ�R



Cosmology - isotropic and homogeneous FRW metric
Copernican Principle: We are in no special place. Since universe appears 
isotropic around us, this implies the universe is isotropic about every point. 
Such a universe is also homogeneous. 

Line element ds2 = �dt2 + a2(t)dx2

dx2 =
1

1� kr2
dr2 + r2(d�2 + sin2 �d⇥2)

t -- proper time measured by comoving (i.e. const spatial coord) observer. 
a(t) -- scale factor: k- curvature of spatial sections: k=0 (flat universe), k=-1 
(hyperbolic universe), k=+1 (spherical universe)

Aside for those familiar with this stuff -- not chosen a normalisation such that 
a0=1. We are not free to do that and simultaneously choose |k|=1. Can do so in 
the k=0 flat case. 



Intro Conformal time : τ(t) 

Implies useful simplification : 

Hubble parameter :
(often called Hubble constant) 

Hubble parameter relates velocity of recession of distant galaxies from us 
to their separation from us

�(t) �
� t dt�

a(t�)

ds2 = a2(�)(�d�2 + dx2)

H(t) � ȧ

a

v = H(t)r



Gµ� = 8�GTµ� � �gµ� applied to cosmology 

Friedmann:

€ 

H 2 ≡
˙ a 2

a2 =
8π
3

Gρ − k
a2 +

Λ
3

a(t) depends on matter, ρ(t)=Σiρi -- sum of all matter contributions, rad, 
dust, scalar fields ...

Eqn of state parameters: w=1/3 – Rad dom: w=0 – Mat dom: w=-1– Vac 
dom

Eqns (Λ=0):

Friedmann + 
Fluid energy 
conservation

€ 

H 2 ≡
˙ a 2

a2 =
8π
3

Gρ − k
a2

˙ ρ + 3(ρ + p) ˙ a 
a

= 0 �µTµ� = 0



Combine Friedmann and fluid equation to obtain 
Acceleration equation:

€ 

˙ ̇ a 
a

= −
8π
3

G (ρ + 3p) −−− Accn

€ 

If ρ + 3p < 0⇒ ˙ ̇ a > 0
Inflation condition -- more later

€ 

H 2 ≡
˙ a 2

a2 =
8π
3

Gρ − k
a2

˙ ρ + 3(ρ + p) ˙ a 
a

= 0

�(t) = �0

�
a

a0

⇥�3(1+w)

; a(t) = a0

�
t

t0

⇥ 2
3(1+w)

RD : w =
1
3

: �(t) = �0

�
a

a0

⇥�4

; a(t) = a0

�
t

t0

⇥ 1
2

MD : w = 0 : �(t) = �0

�
a

a0

⇥�3

; a(t) = a0

�
t

t0

⇥ 2
3

VD : w = �1 : �(t) = �0 ; a(t) ⇥ eHt

Solutions with curvature in problem set.



A neat equation

€ 

ρc (t) ≡
3H 2

8πG
; Ω(t) ≡ ρ

ρc
Friedmann eqn

Ωm - baryons, dark matter, neutrinos, electrons, 
radiation ...

ΩΛ - dark energy ; Ωk - spatial curvature

Critical density

� > 1⇥ k = +1
� =1 ⇥ k = 0

� < 1⇥ k = �1



Current bounds on H(z) -- Komatsu et al 2010 - (WMAP7+BAO+SN)

H2(z) = H2
0

�
�r(1 + z)4 + �m(1 + z)3 + �k(1 + z)2 + �de exp

�
3

⇤ z

0

1 + w(z�)
1 + z� dz�

⇥⇥

(Expansion rate) -- H0=70.4 ± 1.3 km/s/Mpc

(radiation) -- Ωr = (8.5 ± 0.3) x 10-5 

(baryons) -- Ωb = 0.0456 ± 0.0016

(dark matter) --  Ωm = 0.227 ± 0.014

(curvature) -- Ωk < 0.008 (95%CL)

(dark energy) -- Ωde = 0.728 ± 0.015 -- Implying univ accelerating  today

(de eqn of state) -- 1+w = 0.001 ± 0.057 -- looks like a cosm const.

If allow variation of form : w(z) = w0+ w’ z/(1+z) then
w0=-0.93 ±0.12 and w’=-0.38 ± 0.65 (68% CL)
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Planck SCIMAPlanck Collaboration: The Planck mission

Fig. 11. The SMICA CMB map (with 3% of the sky replaced by a constrained Gaussian realization).

5.2. Other CMB maps

Two other CMB maps based on Planck data are made available
within the 2013 set of products:

– a low-resolution (⇠1�) CMB map which is used within
the Planck likelihood code as the input for low-` (pixel-
based) part of the code. The map was produced with the
Commander algorithm (Planck Collaboration XII 2013)
which incorporates physically-motivated parametric fore-
ground models. In contrast to the other schemes developed
to extract the CMB (see Sect. 5.1), it provides direct samples
of the likelihood posterior and is therefore much more ef-
ficient computationally. The properties of the Commander
CMB map are not the most suitable for non-Gaussianity
studies, due to its lower angular resolution and contamina-
tion by foregrounds, but it is perfectly adequate for the low-`
likelihood, which does not require high resolution and toler-
ates a high level of masking. This map is not provided sepa-
rately in the 2013 release, but is packaged into the input data
required by the code.

– a CMB map (at ⇠7 arcmin resolution) is extracted us-
ing the Commander-Ruler algorithm together with a set
of astrophysical components (see Sect. 6.2.3, and Planck
Collaboration XII (2013)). The algorithm was not optimised
for CMB extraction but for the astrophysical foregrounds.
Nonetheless, it performs comparably well to the other CMB
maps up to ` ⇠ 1500 in terms of extraction of cosmological
parameters, as is shown in Planck Collaboration XII (2013)
and Planck Collaboration XV (2013).

5.3. CMB Lensing products

The high-resolution CMB fluctuations measured by Planck are
perturbed by gravitational lensing, primarily sourced by the
structure of the Universe on very large scales (near the peak of
the matter power spectrum at 300 Mpc comoving) at relatively
high redshifts (with a kernel peaking at z ⇠ 2). Lensing blurs
the primary CMB fluctuations, slightly washing out the acous-
tic peaks of the CMB power spectrum (Planck Collaboration
XV 2013; Planck Collaboration XVI 2013). Lensing also intro-
duces several distinct non-Gaussian statistical signatures into our
maps, which are studied in detail in Planck Collaboration XVII
(2013). The deflections caused by lensing on such large scales
are weak, with an RMS of ⇠ 2.50, and their e↵ect may be repre-
sented as a remapping by the gradient of a lensing potential �(n̂)
as

T (n̂) = T̃ (n̂)(n̂ + r�(n̂)), (2)

where n̂ is the direction vector, and T̃ is the unlensed CMB. In
Planck Collaboration XVII (2013) we reconstruct a map of the
lensing potential �(n̂), as well as estimates of its power spectrum
C��` . Although noisy, the Planck lensing potential map represents
a projected measurement of all dark matter back to the last scat-
tering surface, with considerable statistical power. In Fig. 5.3 we
plot the Planck lensing map, and in Fig. 5.3 we show an esti-
mate of its signal power spectrum. I have no idea why the fig-
ure numbers come out to be 5.3 no matter what I do... - latex
expert needed

As a tracer of the large scale gravitational potential, the
Planck lensing map is significantly correlated with other tracers
of large scale structure. We show several representative exam-
ples of such correlations in Planck Collaboration XVII (2013),
including the NVSS quasar catalog (Condon et al. 1998), the
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FIG. 1.

Wednesday, 20 March 13

Planck - 1 year - wow !

•Improvement over WMAP: ang resolution (x2.5), sensitvity (x10), freq 
coverage [9 bands (30-857 GHz) v 5 bands (23-90 GHz)]



How old are we?

€ 

H 2 ≡
˙ a 2

a2 =
8π
3

Gρ − k
a2

where ρ = ρm + ρr + ρΛ

t =
da
˙ a ∫ =

da
aH∫

€ 

t0 = H0
−1 x dx

Ωm0x +Ωr0 +ΩΛ 0x
4 + (1−Ω0)x

2[ ]
1
20

1

∫

whereΩ0 =Ωm0 +Ωr0 +ΩΛ 0

Today :H0
−1 = 9.8 ×109 h−1 years; h = 0.7

H�1
0 ��Hubble time

Useful estimate for age of 
universe



Horizons -- crucial concept in cosmology
a) Particle horizon: is the proper distance at time t that light could have 

 travelled since the big bang (i.e. at which a=0). It is given by

b) Event horizon: is the proper distance at time t that light will be able to 
travel in the future:

Trodden and Carroll 03

dp(t) = a(t)
� t

0

dt�

a(t�)

dEH(t) = a(t)
� ⇥

t

dt�

a(t�)



History of the Universe
1018 GeV 10-43 sec 1032 K QG/String epoch 

Inflation begins (?)

103 GeV 10-10 sec 1015 K Electroweak tran

1 GeV 10-4 sec 1012 K Quark-Hadron tran

1 MeV 1 sec 1010 K Nucleosynthesis

1 eV 104 years 104 K Matter-rad equality

105  years 3.103 K Decoupling  
microwave bgd.

10-3 eV 1010  years 3K Present epoch



The Big Bang – problems.
• Flatness problem – observed almost spatially flat cosmology requires 

fine tuning of initial conditions.

• Horizon problem -- isotropic distribution of CMB over whole sky 
appears to involve regions that were not in causal contact when CMB 

produced. How come it is so smooth?

• Monopole problem - where are all the massive defects which should be 
produced during GUT scale phase transitions.

• Relative abundance of matter – does not predict ratio baryons: radiation: 
dark matter.

• Origin of the Universe – simply assumes expanding initial conditions. 

• Origin of structure in the Universe from initial conditions homogeneous 
and isotropic. 

• The cosmological constant problem. 



Flatness problem

Today:

Why?

< 1.1

|�(1s)� 1| = O(10�16)



Horizon problem
Primordial density 

fluctuations.

CMB photons 
emitted from 

opp sides of sky 
are in thermal 
equilibrium at 

same temp – but 
no time for them 
to interact before 

photons were 
emitted because 
of finite horizon 

size.

Singularity

LSS

Z=infinite

Z=1100
CMBR last 

interacted at 1+Z 
= 1100

300,000 yrs after 
big bang

Hubble radius was 
2 degrees, 200 

Mpc

LSS thickness – 
15Mpc

Any region separated by > 2 deg – causally separated at decoupling.

Z=0

us



Monopole problem
Monopoles are generic prediction of GUT type 

models. 

They are massive stable objects, like domain walls 
and cosmic strings and many moduli fields. 

They scale like cold dark matter, so in the early 
universe would rapidly come to dominate the 

energy density.

Must find a mechanism to dilute them or avoid 
forming them. 



The big questions in cosmology todayThe big questions in cosmology today

a) What is dark matter? -- 23% of the energy density

b) What is dark energy? -- 73% of the energy density. Does dark energy interact 

with other stuff in the universe? 

c) Is dark energy really a new energy form or does the accelerating 

 universe signal a modification of our theory of gravity?

d) What is the origin of the density perturbations, giving rise to structures?

e) Is there a cosmological gravitational wave background?

f) Are the fluctuations described by Gaussian statistics? If there are 

 deviations from Gaussianity, where do they come from?

g) How many dimensions are there? Why do we observe only three 

 spatial dimensions?

h) Was there really a big bang (i.e. a spacetime singularity)? If not, what 

 was there before?



A bit of thermodynamics - remember your stat mech
Gas -weakly interacting in kinetic 

eqm. Distribution function for particle 
species x, physical momentum p 

fx(p) =
1

e
Ex�µx

T ± 1

- sign bosons, + sign fermions, µ chemical pot, T-temp: E2
x = p2 + m2

x

Include internal dof:  i.e. spin by gx (photons have g=2, neutrinos g=1)

number density:

energy density:

pressure:

nx =
gx

(2�)3

�
fx(p)d3p

⇥x =
gx

(2�)3

�
Ex(p)fx(p)d3p

px =
gx

(2�)3

� |p|2

3Ex(p)
fx(p)d3p

Non-Rel limit : m>>T Rel limit : m<<T -- BE and FD

nx � gx

�
mxT

2�

⇥ 3
2

e�
mx
T

⇥x � mxnx px � Tnx

nBE
x =

�(3)
⇥2

gxT 3 nFD
x � 3

4
nBE

x

⇤BE
x � ⇥2

30
gxT 4 ⇤FD

x � 7
8
⇤BE

x

�(3) = 1.202...



Friedmann eqn in early universe during rad dom:

Temp high so all particle species in therm eqm: for std model particles T>1TeV. 
Total num of dof for fermions (90), gauge and Higgs (28) so:

⇥rad = ⇥BE + ⇥FD =
�2

30
ge�(T )T 4

ge�(T = 1TeV ) = 106.75

If the interaction rate between particles becomes smaller than the expansion 
rate, then those particles have a smaller temp than the photons (temp T) but 
might be relativistic. So, intro specific temp for each relativistic species. 

ge�(T ) =
⇤

i=bosons

gi

�
Ti

T

⇥4

+
7
8

⇤

j=fermions

gj

�
Tj

T

⇥4

Hence: H = 0.33
�

ge�
T 2

mPl
and t = 1.52

mPl�
ge�T 2



Kinetic Equilibrium - characterised by T - particles exchange energy, energy density constant:

X1 + X2 � X1 + X2

Chemical Equilibrium - characterised by µ - species can change number, number density constant:

X1 + X2 � X3 + X4 with µ1 + µ2 = µ3 + µ4

Equilibrium condition: interaction rate happens faster than the expansion rate 
of the universe. � > H

Now: � = n < �v > Thermal Ave

Ave velNumber 
density

Cross 
section

Ex: Neutrino decoupling: �� � e+e� ⇥e� ⇥e ⇥⇥̄ � ⇥⇥̄

Cross section: � ⇥ G2
F T 2 � � ⇥ G2

F T 5

�
H

=
�

T

1MeV

⇥3
So for T>1 MeV, neutrinos in 
thermal eqm with photons, but 
below 1MeV, interaction rate 
too low to maintain eqm with 
photon plasma. 



Decoupling:  - departure from Kinetic Equilibrium
Freeze out:  - departure from Chemical Equilibrium

Estimate decoupling or freeze out temp by Γ=H:

Note that for neutrinos with m<1 MeV, we have m<T hence relativistic. Such particles which are 
relativistic at freeze-out are hot-dark-matter candidates. 

Weakly interacting particles tend to have m/T ~ 20, so non-relativistic particles and cold dark matter 
candidates. 

n < �v >� ⇥ge�
T 2

mPl

Taken from http://nedwww.ipac.caltech.edu/level5/Kolb/Kolb5_1.html 

Y - ratio of number density to entropy density



Turns out cold dark matter needed for structure formation. Doesn’t match 
observations if it is hot.  

Dark matter candidates:
* Axion (solves CP problem of QCD)
* Neutrino – known to have mass, cannot be 
   dominant dark matter.
* Neutralino – lightest supersymmetric particle.
* Gravitinos, Q-balls, WIMP-zillas…
* Kaluza-Klein dark matter 
* Black holes
* …

€ 

Ωmh
2 = 0.1369 ± 0.0037

Big Bang Nucleosynthesis -- formation of the lightest nuclei
If the temperature is low enough, protons and neutrons can 
bind together to produce elements such as 4He, D, 7Li. For this to happen, the 
temperature must drop below about 1 MeV.

• Binding starts at T below the binding energy of the nuclei. 
•During BBN the light elements are produced (in particular 3He, 4He, D, 7Li). Heavier 
elements are created in stars at a much later time.
•Can predict the abundances as a function of the energy density in baryons-- a great 
success of the Hot Big Bang



�bh
2 = 0.0225± 0.0005 (68% CL)



Phase Transitions in the Early Universe -- could be vital! 
Spontaneous symmetry breaking : Higgs, topological defects, ...
Finite temp effective potential:

VT (⇥) =
�
�1

2
m2 +

�

8
T 2

⇥
⇥2 +

1
4
�⇥4 + K

T >
2m⇥

�
then me� > 0 and < ⇥> = 0

T <
2m⇥

�
then me� < 0 and < ⇥> �= 0

symmetry restored

symmetry broken

Example: GUT phase transition, Electroweak PT, QCD PT
Formation of topological defects such as cosmic strings, domain walls, 
monopoles, textures ...

I owe a great deal to cosmic strings -- they are neat and through cosmic 
superstrings could provide the first observational evidence for string theory. 
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1. Dark Energy - Dark Matter - Modified Gravity



Weighing the Universe

a. Cluster baryon abundance using X-ray measurements of 
intracluster gas, or SZ measurements.

b. Weak grav lensing and large scale peculiar velocities.

c. Large scale structure distribution.

d. Numerical simulations of cluster formation. 

€ 

Ωmh
2 = 0.1369 ± 0.0037

(Komatsu et al, 2008) (WMAP5) H0=70.4±1.3 km s-1 Mpc-1



BBN
�bh

2 = 0.0225± 0.0005 (68% CL)

Majority of baryonic 
matter dark.

Require Dark 
matter !!

Candidates: WIMPS  (Neutralinos, Kaluza Klein Particles, 
Universal Extra Dimensions...)

Axinos, Axions, Axion-like light bosons, Sterile neutrinos, Q-balls, 
WIMPzillas, Elementary Black Holes... 

Search for them is on: 

1. Direct detection -- 20 expts worldwide

2. Indirect detection -- i.e. Bullet Cluster !

3. LHC -- i.e. missing momentum and energy



Dark Matter Candidates

C. Spiering, Cosmo 09



C. Spiering, Cosmo 09



Indirect evidence for Dark Matter -- Bullet Cluster 
Two clusters of galaxies colliding. 

Dark matter in each passes straight through and doesn’t interact -- seen through weak 
lensing in right image. 

Ordinary matter in each interacts in collision and heats up -- seen through infra red 
image on left. 

Clowe et al 2006



Evidence for Dark Energy?
Enter CMBR:

Provides clue. 1st angular peak in 
power spectrum.

€ 

3.Ω0=Ωm + ΩΛ

€ 

1−Ω0 = 0.03−0.025
+0.026

WMAP3-Depends on 
assumed priors
Spergel et al 2006

€ 

−0.0175 <Ωk < 0.0085 Dunkley et al 2008 (WMAP5)



WMAP7 and dark energy
Assume flat univ + 

+BAO+ SNLS:

(Komatsu et al, 2010) 

w = �0.980± 0.053

Drop prior of flat 
univ: WMAP + BAO 

+ SNLS:
w = �0.999+0.057

�0.056 �k = �0.0057+0.0067
�0.0068

Drop assumption of 
const w but keep flat 
univ: WMAP + BAO 

+ SNLS:

w0 = �0.93± 0.12
wa = �0.38+0.66

�0.65



Type la Luminosity distance v z [Reiss et al 2004] 

Flat model
Black dots -- Gold 

data set
Red dots -- HST 



Coincidence problem – why now?

Recall:

If:

Universe dom by 
dark energy at:

Univ accelerates 
at: 

Constraint:

€ 

−0.11<1+ w < 0.14 Komatsu et al 2008 (WMAP5)



The acceleration has not been forever -- pinning down the 
turnover will provide a very useful piece of information.



What is making the Universe accelerate?
Dark energy -- a weird form of energy that exists in empty 

space and pervades the universe -- also known as 
vacuum energy or cosmological constant. 

Smoothly distributed, doesn’t cluster.
Constant density or very slowly varying

Doesn’t interact with ordinary matter -- only with gravity
Big problem though. When you estimate how much you 

expect there to be, from the Quantum world, the 
observed amount is far less than expected.

Theoretical prediction = 10120 times observation



The problem with the cosmological constant

Einstein (1917) -- static universe with dust

Not easy to get rid of it, once universe found to be expanding. 

Lorentz inv 

Anything that contributes to energy density of vacuum acts like a 
cosmological constant

or

Effective cosm const Effective vac energy 

Age Flat Non-vac matter



< ⇥> =
1
2

�

fields

gi

⇥ �i

0

⇤
k2 + m2

d3k

(2�)3
�

�

fields

gi�4
i

16�2

Hence:

Problem: expect <ρ> of empty space to be much larger. Consider 
summing zero-point energies (ħω/2) of all normal modes of some field 

of mass m up to wave number cut off Λ>>m:

For many fields (i.e. leptons, quarks, gauge fields etc...):

where gi are the dof of the field (+ for bosons, - for fermions).

Imagine just one field contributed an energy density ρcr ~ (10-3 eV)4. 
Implies the cut-off scale Λ<0.01 eV -- well below scales we understand the 

physics of.



Not all is lost -- what if there is a symmetry present to reduce it? Supersymmetry does 
that. Every boson has an equal mass SUSY fermion partner and vice-versa, so their 

contributions to <ρ> cancel. 

However, SUSY seems broken today - no SUSY partners have been observed, so they 
must be much heavier than their standard model partners. If SUSY broken at scale M, 

expect <ρ>~M4  because of breakdown of cancellations. Current bounds suggest 
M~1TeV which leads to a discrepancy of 60 orders of magnitude as opposed to 118 ! 

Still a problem of course -- is there some unknown mechanism perhaps from quantum 
gravity that will make the vacuum energy vanish ? 

Planck scale:

But:
Must cancel to better than 118 decimal places.

Even at QCD scale require 41 decimal places!

Very unlikely a classical contribution to the vacuum energy density will cancel this 
quantum contribution to such high precision 



Different approaches to Dark 
Energy include amongst many:

 A true cosmological constant -- but why this value?
 Solid –dark energy such as arising from frustrated network of 

domain walls.
 Time dependent solutions arising out of evolving scalar fields 

-- Quintessence/K-essence.
 Modifications of Einstein gravity leading to acceleration today.
 Anthropic arguments.
 Perhaps GR but Universe is inhomogeneous.



Early evidence for a cosmological constant type term.

1987: Weinberg argued that anthropically ρvac could not be too large and 
positive otherwise galaxies and stars would not form. It should not be 
very different from the mean of the values suitable for life which is 

positive, and he obtained Ωvac ~ 0.6

1990: Observations of LSS begin to kick in showing the standard ΩCDM 
=1 struggling to fit clustering data on large scales, first through IRAS 

survey then through APM (Efstathiou et al).

1990: Efstathiou, Sutherland and Maddox - Nature (238) -- explicitly 
suggest a cosmology dominated today by a cosmological constant with 

Ωvac < 0.8 !

1998: Type Ia SN show striking evidence of cosm const and the field 
takes off.



String/M-theory -- where are the realistic models?

`No go’ theorem: forbids cosmic acceleration in cosmological solutions arising 
from compactification of pure SUGR models where internal space is time-independent, 

non-singular compact manifold without boundary --[Gibbons] 

Avoid no-go theorem by relaxing conditions of the theorem.

1. Allow internal space to be time-dependent, analogue of time-
dependent scalar fields (radion)

Current realistic potentials are too 
steep

Models kinetic, not matter 
domination before entering 

accelerated phase. 

Recent extension: forbids four dimensional cosmic acceleration in cosmological 
solutions arising from warped dimensional reduction --[Wesley 08] 



Four form Flux and the cosm const: [Bousso and Polchinski] 

Effective 4D theory from M4xS7 compactification

Eff cosm const:

EOM:

Negative bare cosm const:

Quantising c and 
considering J fluxes

Observed cosm const with J~100

Still needed to stabilise moduli but opened up way of obtaining many de 
Sitter vacua using fluxes -- String Landscape in which all the vacua 

would be explored because of eternal inflation.



1.The String Landscape approach

Type IIB String theory 
compactified from 10 dimensions to 

4. 

Internal dimensions stabilised by 
fluxes.

Many many vacua ~ 10500 !

Typical separation ~ 10-500 Λpl

Assume randomly distributed, tunneling allowed between vacua --> 
separate universes . 

Anthropic : Galaxies require vacua < 10-118 Λ pl [Weinberg] Most likely to find 
values not equal to zero!



Landscape gives a realisation of the multiverse picture. 

There isn’t one true vacuum but many so that makes it almost impossible to find our 
vacuum in such a Universe which is really a multiverse.

So how can we hope to understand or predict why we have our particular particle 
content and couplings when there are so many choices in different parts of the 

universe, none of them special ?

This sounds like bad news, we will rely on anthropic arguments to explain it through 
introducing the correct measures and establishing peaks in probability distributions. 

Or perhaps, it isn’t a cosmological constant, but a new field such as Quintessence 
which will eventually drive us to a unique vacuum with zero vacuum energy -- that 

too has problems, such as fifth force constraints, as we will see. 

[Witten 2008] 



Slowly rolling scalar fields 
Quintessence - Generic behaviour

1. PE  KE

2. KE dom scalar field 
energy den.

3. Const field.

4. Attractor solution: 
almost const ratio KE/
PE.

5. PE dom.

Attractors make initial conditions less important 
Nunes



Particle physics inspired models?
Pseudo-Goldstone Bosons -- approx sym φ --> φ + const. 

Leads to naturally small masses, naturally small couplings

Barbieri et al

V (⇥) = �4(1 + cos(⇥/Fa))
Axions could be useful for strong CP problem, dark matter and dark 

energy.



1. Chameleon fields [Khoury and Weltman (2003) …]

Key idea: in order to avoid fifth force type constraints on Quintessence 
models, have a situation where the mass of the field depends on the local 

matter density, so it is massive in high density regions and light (m~H) in low 
density regions (cosmological scales). 

2. Phantom fields [Caldwell (2002) …]

The data does not rule out w<-1. Can not accommodate in standard 
quintessence models but can by allowing negative kinetic energy for scalar field 

(amongst other approaches). 

3. K-essence [Armendariz-Picon et al …]

Scalar fields with non-canonical kinetic terms. Advantage over 
Quintessence through solving the coincidence model? 

Long period of perfect tracking, followed by domination of dark energy 
triggered by transition to matter domination -- an epoch during which 

structures can form. Similar fine tuning to Quintessence.



Ein eqn : Gµ⇥ = 8�GTµ⇥

General covariance : ⇥µGµ
⇥ = 0� ⇥µTµ

⇥ = 0

Tµ⇥ =
�

i

T (i)
µ⇥ ⇥ ⇤µTµ

⇥
(i) = �⇤µTµ

⇥
(j) is ok

4. Interacting Dark Energy [Kodama & Sasaki (1985), Wetterich (1995), Amendola (2000) + many 
others… ]

Idea: why not directly couple dark energy and dark matter?

Couple dark energy and dark matter fluid in form:

⇥µTµ
⇤

(⌅) =
�

2
3
⇥�(⇤)T�

�
(m)⇥⇤⇤

⇥µTµ
⇤
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�
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⇥�(⇤)T�

�
(m)⇥⇤⇤



Including neutrinos -- 2 distinct DM families -- resolve coincidence 
problem [Amendola et al (2007)] 

Depending on the coupling, find that the neutrino mass grows at late 
times and this triggers a transition to almost static dark energy.

Trigger scale set by when neutrinos become non-rel 

mν



Perhaps we are wrong -- maybe the question should be not whether dark 
energy exists, rather should we be modifying gravity? 

Has become a big industry but it 
turns out to be hard to do too much 

to General Relativity without 
falling foul of data.

 BBN occurred when the universe 
was about one minute old, about 

one billionth its current size. It fits 
well with GR and provides a test 

for it in the early universe.

Any alternative had better deliver 
the same successes not deviate too 
much at early times, but turn on at 

late times . 



Any theory deviating from GR must do so at late times yet remain 
consistent with Solar System tests. Potential examples include:

• f(R) gravity -- coupled to higher curv terms, changes the dynamical 
equations for the spacetime metric. 

[Starobinski 1980, Carroll et al 2003, ...]

•Modified source gravity -- gravity depends 
on nonlinear function of the energy.

•  Gravity based on the existence of extra 
dimensions -- DGP gravity 

We live on a brane in an infinite extra 
dimension. Gravity is stronger in the bulk, 

and therefore wants to stick close to the 
brane -- looks locally four-dimensional. 

Tightly constrained -- both from theory and 
observations -- ghosts !

Example of Galileon fields -- [Nicolis et al 
08]

[Carroll]



Accn from new Gravitational Physics? [Starobinski 1980, Carroll et al 2003, ...]

Modify Einstein

Const curv vac 
solutions: 

de Sitter or Anti de 
Sitter 

Transform to EH 
action: 

Scalar field minimally coupled to gravity and non minimally coupled to 
matter fields with potential: 



Cosmological solutions:
1. Eternal de Sitter - φ just reaches Vmax and 

stays there. Fine tuned and unstable.

2. Power law inflation -- φ overshoots Vmax , 
universe asymptotes with wDE=-2/3.

3. Future singularity-- φ doesn’t reach Vmax , and 
evolves back towards φ=0. 

1.Fine tuning needed so acceleration only recently: µ~10-33eV

2. Also, not consistent with classic solar system tests of gravity.

3. Claim that such R-n corrections fail to produce matter dom era [Amendola et 
al, 06]

But recent results based on singular perturbation theory suggests it is 
possible [Evans et al, 07 -- see also Carloni et al 04]



More general f (R) models [Gurovich & Starobinsky (79); Tkachev (92); Carloni et al (04,07,09); 
Amendola & Tsujikawa 08; Bean et al 07; Wu & Sawicki 07; Appleby & Battye (07) and (08); Starobinsky (07); Evans et 

al (07); Frolov (08)… ]

No Λ

Usually f (R) struggles to satisfy both solar system bounds on deviations 
from GR and late time acceleration. It brings in extra light degree of 

freedom --> fifth force constraints.

Ans: Make scalar dof massive in high density solar vicinity and hidden 
from solar system tests by chameleon mechanism.

Requires form for f (R) where mass of scalar is large and positive at high 
curvature. 

Issue over high freq oscillations in R and singularity in finite past.

In fact has to look like a standard cosmological constant [Song et al, Amendola et al]



To test GR on cosmological scales compare kinematic probes of dark 
energy to dynamical ones and look for consistency.

Kinematic probes:  only sensitive to a(t) such as standard candles, baryon 
oscillations.

Dynamical probes: sensitive to a(t) and structure growth such as weak 
lensing and cluster counts.

Determining the best way to test for dark energy and parameterise the dark 
energy equation of state is a difficult task, not least given the number of 

approaches that exist to modeling it . 

Dark Energy Task Force review: Albrecht et al : astro-ph/0609591

Findings on best figure of merit: Albrecht et al: arXiv:0901.0721



Invisibles 2013 
Cosmology - Lecture 3  

Ed Copeland -- Nottingham University

1. Origin of  Inflation and the primordial density fluctuations.



Return to the beginning -- Inflation

A period of accelerated expansion in the early Universe

Small smooth and coherent patch of Universe size less than  (1/H) 
grows to size greater than comoving volume that becomes entire 

observable Universe today.

Explains the homogeneity and spatial flatness of the Universe

and also explains why no massive relic particles predicted in say GUT 
theories

Leading way to explain observed inhomogeneities in the Universe 

€ 

˙ ̇ a 
a

= −
8π
3

G (ρ + 3p) −−− Accn

€ 

If ρ + 3p < 0⇒ ˙ ̇ a > 0



What is Inflation?
Any epoch of the Universe’s evolution during which the 

comoving Hubble length is decreasing. It corresponds to any 
epoch during which the Universe has accelerated expansion.

For inflation require material with negative pressure. Not 
many examples. One is a scalar field!

d

dt

�
H�1

a

⇥
< 0� ä > 0

€ 

˙ ̇ a 
a

= −
8π
3

G (ρ + 3p) −−− Accn

€ 

If ρ + 3p < 0⇒ ˙ ̇ a > 0



Intro fundamental scalar field -- like Higgs

If Universe is dominated by the potential of the field, it will 
accelerate! 

� =
1
2
⇥̇2 + V (⇥)

p =
1
2
⇥̇2 � V (⇥)

Of course no fundamental scalar field ever seen.

We aim to constrain potential from observations.

During inflation as field slowly rolls down its potential, it 
undergoes quantum fluctuations which are imprinted in the 

Universe. Also leads to gravitational wave production. 



Ḣ = �4�G⇥̇2,

H2 =
8�G

3
V (⇥) ; 3H⇥̇ +

dV

d⇥
= 0

ä > 0⇥ (� + 3p) < 0⇥ ⇥̇2 � V (⇥)

H2 =
8�G

3
⇥� ; ⇤̈ + 3H⇤̇ +

dV

d⇤
= 0

Examples of inflation
V Simplest case – single scalar field

EoM

Inflation Slow roll 
approx

So, define a quantity which specifies how fast H changes during inflation 

€ 

ρφ =V (φ) +
φ 2

•

2
; pφ =

φ 2
•

2
−V (φ)

Also: 
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Prediction -- potential determines important quantities

Slow roll parameters [Liddle & Lyth 1992]

Inflation occurs when both of 
these slow roll conditions are << 1

End of inflation corresponds to ε=1
How much does the universe expand? Given by number of e-folds

Last expression is true in the slow roll limit (for single field inflation). 



Solve say the Flatness problem: 

Assume inflation until tend = 10-34 sec

Assume immediate radn dom until today, t0 = 1017 sec 

Assume

Now

Inf

Number of e-folds required



� � 1 � 1 = � 3k

8�G⇥a2
⇤ a � 2 �⇥ exp(�2Ht)

1. Flatness

Solving the big bang problems

1

t

Ω

Inf starts Inf ends Durham 
today

Distant 
future



�mon ⇥ a�3 � 0

2. Horizon problem:

Physical: H-1 const 
during inflation.

Initial causally connected region

3. Monopole problem:

Everything infact diluted away except for the inflaton field 
itself.

Hence need to reheat the universe at end of 
inflation

rapidly during inflation

T ⇥ a�1 � 0



End of inflation
• Eventually SRA breaks down, as inflaton rolls to minima of its 

potential.

•Leaves a cold empty Universe apart from inflaton. 

• Inflation has to end and the energy density of the 
inflaton field decays into particles. This is 

reheating and happens as the field oscillates around 
the minimum of the potential

Experimental test of 
slow roll 

approximation – 
Aspen 2002

V

φφe



End of inflation.
•Inflaton is coupled to other matter fields and as it rolls down to the 
minima it produces particles –perturbatively or through parametric 
resonance where the field produces many particles in a few oscillations. 

•Dramatic consequences. Universe reheats, can restore previously broken 
symmetries, create defects again, lead to Higgs windings and sphaleron 
effects, generation of baryon asymmetry at ewk scale at end of a period of 
inflation.  

•Important constraints: e.g.: gravitino production means : Trh < 109 GeV   
-- often a problem!



�̇� + 3H�� + ���� = 0
�̇rad + 4H�rad � ���� = 0

Perturbative Reheating:

1. Instantaneous reheating where vac energy is converted immediately to 
radiation with TRH.

2. Reheat by slow decay of φ with the zero modes comoving energy 
density decaying into particles which scatter and thermalise. Assume 

decay width for this is same as for free φ. 

Expect small decay width, as flatness of potential requires weak coupling 
of φ to other fields. Also in SUGR if coupling not weak, overproduce 

gravitinos during reheating.  

Boltzmann eqn:

TRH – inflaton executes coherent oscillations about 
Vmin after inflation.
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⇤

8�G
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�aI
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Averaged over many coherent oscillations 

Values when coherent oscillations start.

Hubble expansion rate:

Equating: gives

Assume at this moment all coherent energy density 
immediately transferred into radiation. 

Hence:

Bound from Gravitino overproduction :



�̈k + 3H�̇k +
�

k2

a2
+ g2�2(t) sin2(mt)

⇥
�k = 0

Preheating: Traschen & Brandenberger; Kofman, Linde & Starobinsky

Non-perturbative resonant transfer of energy to particles induced 
by the coherent oscillations of φ -- can be very efficient!

Assume φ oscillating about min of potential.

In expanding universe Φ decreases due to redshift of momentum.

Assume scalar field X coupled to φ

Mode eqn: χk=X k a3/2:

Minkowski space: 
Φ const

Mathieu equation
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Growth of modes leads to growth of occupation numbers of created particles

Exponential instability 
regions:

Max growth at 2k = m

Number density = Energy of that mode/Energy of each particle (ωk)
Kofman, Linde and 

Starobinsky (97)

Period of enhanced rate of 
energy transfer – preheating, 

because particles produced not 
in thermal eqm. Explosive 
growth every time φ(t)=0.



Still occurs when A,q not constant:
Kofman, Linde and 

Starobinsky (97)

Longer time 
evolution

This efficient quick transfer of energy means that can have 
large reheat temperatures, phase transitions, defect production 
and baryogenesis through production of particles with mass 

bigger than inflaton mass. Can also generate potentially 
obervable primordial gravitational waves from pre-heating. 



The origins of perturbations -- the most 
important aspect of inflation

Idea: Inflaton field is subject to perturbations (quantum and thermal  fluctuations). 
Those are stretched to superhorizon scales, where they become classical. They induce 
metric perturbations which in turn become later the first perturbations to seed the 
structures in the universe. 

Also predict a cosmological gravitational wave background.

During inf Quantum fluc

Generates fluc in 
matter and metric 

Fourier 
modes:

Scalar  pertn – spectra of gaussian adiabatic density pertns 
generated by flucns in scalar field and spacetime metric. 

Responsible for structure formation.

Tensor pertn in metric– gravitational waves. 



Key features
During inflation comoving Hubble length (1/aH) 

decreases.

So, a given comoving scale can start inside (1/aH), be 
affected by causal physics, then later leave (1/aH) with 

the pertns generated being imprinted. 

Quantum flucns in inflaton arise from uncertainty 
principle.

Pertns are created on wide range of scales and generated 
causally.

Size of irregularities depend on energy scale at which 
inflation occurs. 



Rk =
H

⇥̇
�⇥k � const

Inflation SBB Durham today

Log(1/k)

Log(t)

Leave k=aH Renter k=a0 H0

Comoving scale k-1

Curvature  pertn 1/aH

Pertn created causally, stretched by expansion. 



The power spectra

Good approx -- power spectra as being power-laws with scale. 

Four parameters

Focus on statistical measures of clustering.

Inflation predicts amp of waves of a given k obey gaussian statistics, the 
amplitude of each wave chosen independently and randomly from its 
gaussian. It predicts how the amplitude varies with scale — the power 

spectrum

Density pertn

Grav waves
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Initial conditions Acoustic Oscillations Diffusion damping

Temperature Power Spectrum

HU & WHITE
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Temperature Power spectrum
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Power spectrum - LCDM fit
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Some formulae
Power spectra

Vacuum soln

Amp of density pertn

SRA WMAP: 60 efolds 
before tend

In other words the properties of the inflationary 
potential are constrained by the CMB



Tensor pertns : amp 
of grav waves.

Note: Amp of perts depends on form of potential. 
Tensor pertns gives info directly on potential but 

difficult to detect.



Observational consequences.
Precision CMBR expts like WMAP and Planck  probing spectra.

Standard approx – power law.

Power law ok, only a 
limited range of scales 

are observable.

For range 1Mpc 104 Mpc : 
Crucial 

eqn

n=1 ;  nG=0 – Harrison 
Zeldovich



CMBR  Measure relative importance of density pertns 
and grav waves.  

A unique test of inflation

Indep of choice of inf model, relies on slow roll and 
power law approx. Unfortunately nG too small for 

detection, but maybe Planck ! 

Cl -- radiation angular power spectrum. 



ns = 0.963± 0.012

Example if include WMAP7+BAO+H0 constraints:

No GW assumed:
ns = 0.973± 0.014
r < 0.24 (95% CL)

k0 = 0.002Mpc�1

Allow for GW:

(Komatsu et al, 2010) 



Some examples – Chaotic Inflation

with

Find:

SRA:

Inf soln:

H2 =
8�G

3
V (⇥) ; 3H⇥̇ +

dV

d⇥
= 0



End of 
inflation:

Num of 
e-folds:

N=60:
Scale just entering Hubble 
radius today, COBE scale

Amp of 
den pertn:

Take to be 60 efolds before 
end of inflation.

Find:



Amp of grav 
waves:

60 efolds before end 
of inflation.

Find:

Normalise to COBE:

Find: Constraint on inflaton mass!

Spectral 
indices Slow roll

Use values 60 e-folds before end of inflation.

Close to scale inv
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Digression Key features in Planck
•Its a bit strange -- the standard ΛCDM model subject to almost scale free 
Gaussian fluctuations in the early universe appears to work really well 
especially on small scales but ...

•There are some anomalies which although maybe at low signifcance could 
well be hints that all is not well, there is new physics lurking in there. 

•Clear evidence of tilt in spectra: ns now 6σ away from ns=1

•Potentially important difference with previous analysis: lower H0, higher 
Ωm, the universe is a bit older than we thought.

•No evidence for primordial NG 

•Hints of features on small angular scales, temp differences in N and S 
hemispheres.

•Fewer clusters observed (factor of 2) in CMB compared to what predicted 
by ΛCDM
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Tensions: Planck v WMAP + SPT

Nottingham, March 2013
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Planck vs WMAP + SPT
Planck Collaboration: Planck Cosmological Parameters

Table A.1. Comparison of the base ⇤CDM parameters from Planck+WP+highL compared to the parameters determined by S12
from a joint likelihood analysis of SPT and WMAP7 spectra.

Planck+WP+highL WMAP7+SPT (S12)

Parameter Best fit 68% limit Best fit 68% limits

100⌦bh2 . . . . . . . 2.207 2.207 ± 0.027 2.223 2.229 ± 0.037
⌦ch2 . . . . . . . . . . 0.1203 0.1198 ± 0.0026 0.1097 0.1093 ± 0.0040
109As . . . . . . . . . 2.211 2.198 ± 0.056 2.143 2.142 ± 0.061
ns . . . . . . . . . . . . 0.958 0.959 ± 0.007 0.963 0.962 ± 0.010
⌧ . . . . . . . . . . . . . 0.093 0.091 ± 0.014 0.083 0.083 ± 0.014
100✓⇤ . . . . . . . . . 1.0414 1.0415 ± 0.0006 1.0425 1.0429 ± 0.0010
⌦⇤ . . . . . . . . . . . 0.683 0.685 ± 0.017 0.747 0.750 ± 0.020
H0 . . . . . . . . . . . 67.2 67.3 ± 1.2 72.3 72.5 ± 1.9

Fig. A.2. The acoustic scale distance ratio rs/DV (z) divided by
the distance ratio of the best fit WMAP7+SPT base ⇤CDM
cosmology of Table A.1. The points are colour coded as fol-
lows: green star (6dF); pink squares (SDSS DR7 as analyzed
by Percival et al. (2010)); black star (SDSS DR7 as analyzed
by Padmanabhan et al. (2012)); blue cross (BOSS DR9); blue
circles (WiggleZ). Error bars show 1� errors on the data
points. The grey band shows the ±1� range allowed by the
WMAP7+SPT data.

BAO data (see Fig. 15) and shows some tension with the
Riess et al. (2011) measurement of H0, the WMAP7+SPT best
fit cosmology is consistent with the H0 measurement but in se-
rious tension with the BAO measurements. The latter point is il-
lustrated by Fig. A.2, which is equivalent to Fig. 15 but uses the
WMAP7+SPT cosmology as a reference. All of the BAO mea-
surements lie systematically low compared to the WMAP7+SPT
cosmology38. If the WMAP7+SPT parameters were correct, as-
suming the base ⇤CDM cosmology, the BAO experiments must
have systematically underestimated the acoustic distance ratio
by about 5%. This seems implausible for what is essentially a
simple geometric measurement. H12 thus studied extensions to
the standard cosmology that reconcile the WMAP7+SPT power
spectra with the BAO measurements.

Since Planck and the SPT S12 spectra have a large over-
lap range at high multipoles, where both experiments have high
signal-to-noise, there is no need to use WMAP as an intermedi-
ary to establish a relative calibration. We can compare the spec-
tra directly via a joint likelihood analysis using the same fore-

38H12 quote a 2.3% probability of compatibility between the BOSS
measurement and the WMAP7+SPT data

ground model that is used in the main body of this paper. Since
the S12 spectrum is measured at a frequency of 150 GHz, we
first present results using only the Planck 143 ⇥ 143 spectrum
in the Planck likelihood. This reduces sensitivity to the details
of the foreground modelling. Apart from small colour correc-
tions, the foregrounds are identical except for di↵erences in the
Poisson point source amplitudes.

Absolute calibration of the SPT spectra is determined by
comparing with the WMAP7 spectrum in the multipole range
600  `  1000. Since the spectra from both experiments are
noisy in this range, there is a large ⇠ 3% uncertainty in the ab-
solute calibration of the S12. Here we use a version of the SPT
S12 likelihood which does not include marginalization over cal-
ibration uncertainties and self-consistently solve for map cali-
bration factor ySPT

150 between SPT and Planck. (This di↵ers from
the analysis of Calabrese et al. (2013) who use an SPT covari-
ance matrix that includes marginalization over calibration errors
and combine with other experiments without solving for relative
calibration factor.)

The results are shown in Fig. A.3 (a) 39. The best fit ⇤CDM
cosmology is very close to the best fit base ⇤CDM cosmology
of the Planck+WP+highL combination used in the main body
of the paper (shown by the blue lines in the figure). The Planck
spectra dominate the solution and the e↵ect of the SPT points is
to pull the best fit model solution slightly upwards in the multi-
pole range 650 <⇠ ` <⇠ 1500. This is caused by the SPT points at
` <⇠ 1100 which sit high relative to Planck.

We find similar results when we combine the S12 likelihood
with the full Planck+WP+highL likelihood. This is illustrated in
Figs. A.3 (b). Relative to Planck, the SPT spectra lie systemati-
cally high at ` <⇠ 1100. (The Planck spectrum sits high compared
to the best fit spectrum at ` >⇠ 2300, but in this region of the spec-
trum, foreground and beam errors become significant and intro-
duce large correlations between the data points.) The parameter
values for the Planck+S12 fits are listed in Table A.2.

To relate these results to the discrepancy in Fig. A.1 we have
also run MCMC chains with a joint WMAP9 (V+W band)+S12
likelihood, self-consistently solving for a relative calibration fac-
tor, y150

SPT/WMAP, between WMAP9 and S12 and using the fore-
ground model adopted in this paper. The parameter values from
this analysis are listed in the second column of Table A.2. (Note
that, compared to the WMAP7+S12 values listed in Table A.1,
the WMAP9+S12 parameters move a little closer to the Planck
parameters.)

39In Figs A.3 and A.4 we use the window functions provided by S12
to band average the Planck and theory data points at high multipoles. In
Fig. A.4, we band average the Planck and theory data points using the
WMAP9 binning scheme at `  650.

59

► Tension between Planck vs WMAP + South Pole Telescope (SPT) 
► Absolute calibration of SPT determined by matching to WMAP in overlap region 

of 600<$<1000
► Problem traced to this calibration - done in region where data are noisy 
► Evidence points to small excess bias in SPT spectrum in range 650<$<1100
► For “Planck + high $”#use Atacama Cosmology Telescope (ACT) data and SPT 

data at $>2000

Wednesday, 20 March 13

•Problem traced to calibration of SPT in overlap region with WMAP 
600<l<1000 where data noisy. 

•For high l use Planck + ACT data and SPT for l>2000
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Hubble constant
•Hubble constant low : 

•Model dependent - degeneracy with dark energy eos. 

•Local measurements: HST (Riess et al 2011) 

•Carnegie Hubble programme (Freedman et al 2012)

•Local measurements in 2.5σ tension with Planck

•New physics, problems with local measurements? 

•Maybe global and local values for H0 really are different ! Would see this 
effect if we lived in a slightly underdense part of the universe, matter 
would flow outwards and we would interpret as higher H0

•Note, low value completely consistent with Baryon Acoustic Oscillation 
values -- geometric probe of distance scales, means to break degenaracies. 

•Need to be careful when combining Planck + SN data !

Nottingham, March 2013
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The Hubble constant
► Planck H0 is lower than previous analysis. For LCDM Planck + WP + high $

Planck Collaboration: Planck Cosmological Parameters

Fig. 16. Comparison of H0 measurements, with estimates of ±1�
errors, from a number of techniques (see text for details). These
are compared with the spatially flat ⇤CDM model constraints
from Planck and WMAP9.

The results of this section show BAO measurements are an
extremely valuable complementary data set to Planck. The mea-
surements are basically geometrical and free from complex sys-
tematic e↵ects that plague many other types of astrophysical
measurements. The results are consistent from survey to survey
and are of comparable precision to to Planck. In addition, BAO
measurements can be used to beak parameter degeneracies in
analyses based purely on CMB data. For example, from the ex-
cellent agreement with the base ⇤CDM model evident in Fig.
15, we can infer that the combination of Planck and BAO mea-
surements will lead to tight constraints favouring ⌦k = 0 (Sect.
6.2) and a dark energy equation of state parameter, w = �1 (Sect.
6.5).

Finally, we note that we use the 6dF+SDSS(R)+BOSS in the
likelihood analysis of Sect. 6. This choice includes the two most
accurate BAO measurements and since the e↵ective redshifts of
these samples are widely separated, it should be a very good
approximation to neglect correlations between the surveys.

5.3. The Hubble Constant

A striking result from the fits of the base ⇤CDM model to
Planck power spectra is the low value of the Hubble constant,
which is tightly constrained by CMB data alone. From the
Planck+WP+highL fit we find:

H0 = 67.3 ± 1.2 kms�1Mpc�1, (68%, Planck+WP+highL). (51)

A low value of H0 has been found in other CMB experi-
ments, most notably from the recent WMAP9 analysis. Fitting
the base ⇤CDM model, Hinshaw et al. (2012a) find

H0 = 69.7 ± 2.4 kms�1Mpc�1, (68% WMAP9), (52)

consistent with (51) to within ⇠ 1�. We emphasize here that the
estimates (51) and (52) are highly model dependent. It is impor-
tant therefore to compare with astrophysical measurements of
H0, since any discrepancies could be a pointer to new physics.

There have been remarkable improvements in the the pre-
cision of the cosmic distance scale in the last decade or so.
The final results of the Hubble Spacs Telescope (HST) Key
Project Freedman et al. (2001), which used Cepheid calibrations
of secondary distance indicators, resulted in a Hubble constant
of H0 = 72 ± 8 kms�1Mpc�1 (where the error includes esti-
mates of both random and systematic errors). This estimate has
been used widely in combination with CMB observations and
other cosmological datasets to constrain cosmological parame-
ters (e.g., Spergel et al., 2003, 2007a). It has also been recog-
nised that an accurate, ⇠ 1% precision, measurement of H0,
when combined with CMB and other cosmological data, has
the potential to reveal exotic new physics, for example, a time-
varying dark energy equation of state, additional relativistic par-
ticles, or neutrino masses (see e.g., Suyu et al., 2012b, and ref-
erences therein). Establishing a more accurate cosmic distance
scale is, of course, an important problem in its own right. The
possibility of uncovering new fundamental physics provides an
additional incentive.

Two recent analyses have greatly improved the precision of
the cosmic distance scale. Riess et al. (2011) use HST observa-
tions of Cepheid variables in the host galaxies of eight SNe Ia to
calibrate the supernova magnitude-redshift relation. Their ‘best
estimate’ of the Hubble constant, from fitting the calibrated SNe
magnitude-redshift relation, is

H0 = 73.8 ± 2.4 kms�1Mpc�1, (Cepheids + SNeIa), (53)

where the error is 1� and includes known sources of systematic
errors. At face value, this measurement is discrepant with the
Planck estimate (51) at about the 2.5� level.

Freedman et al. (2012), as part of the Carnegie Hubble
Program, use Spitzer Space Telescope mid-infrared observations
to recalibrate secondary distance methods used in the HST Key
Project. These authors find

H0 = 74.3 ± 1.5 (statistical) ± 2.1 (systematic) kms�1Mpc�1,

(Carnegie HP). (54)

We have added the two sources of error in quadrature in the error
range shown in Figure 16. This estimate agrees with Eq. (53)
and is also discordant with the Planck value (Eq. 16) at about
the 2.5� level. The error analysis in Eq. (54) does not include a
number of known sources of systematic error and is very likely
an underestimate. For this reason, and because of the relatively
good agreement between Eq. (53) and (54), we do not use this
estimate in the likelihood analyses described in the next section.

The dominant source of error in the estimate (53) comes
from the first rung in the distance ladder. Using the megamaser-
based distance to NGC4258, Riess et al. (2011) find 74.8 ±
3.1 kms�1Mpc�1. Using parallax measurements for 10 Milky
Way Cepheids, they find 75.7 ± 2.6 kms�1Mpc�1, and us-
ing Cepheid observations and a revised distance to the Large
Magellanic Cloud, they find 71.3± 3.8 kms�1Mpc�1. These esti-
mates are consistent with each other, and the combined estimate
of (53) uses all three calibrations. The fact that the error budget
of measurement (53) is dominated by the ‘first rung’ calibrators
is a point of concern. An mild underestimate of the distance er-
rors to these calibrators could eliminate the tension with Planck.

Figure 16 includes three estimates of H0 based on three ‘ge-
ometrical’ methods18. The estimate labelled ‘UGC 3789’ shows
the result H0 = 71.6±5.7 kms�1Mpc�1 from VLBI observations

18Note that each of these estimates is weakly dependent on the as-
sumed background cosmology.
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Fig. 16. Comparison of H0 measurements, with estimates of ±1�
errors, from a number of techniques (see text for details). These
are compared with the spatially flat ⇤CDM model constraints
from Planck and WMAP9.

The results of this section show BAO measurements are an
extremely valuable complementary data set to Planck. The mea-
surements are basically geometrical and free from complex sys-
tematic e↵ects that plague many other types of astrophysical
measurements. The results are consistent from survey to survey
and are of comparable precision to to Planck. In addition, BAO
measurements can be used to beak parameter degeneracies in
analyses based purely on CMB data. For example, from the ex-
cellent agreement with the base ⇤CDM model evident in Fig.
15, we can infer that the combination of Planck and BAO mea-
surements will lead to tight constraints favouring ⌦k = 0 (Sect.
6.2) and a dark energy equation of state parameter, w = �1 (Sect.
6.5).

Finally, we note that we use the 6dF+SDSS(R)+BOSS in the
likelihood analysis of Sect. 6. This choice includes the two most
accurate BAO measurements and since the e↵ective redshifts of
these samples are widely separated, it should be a very good
approximation to neglect correlations between the surveys.

5.3. The Hubble Constant

A striking result from the fits of the base ⇤CDM model to
Planck power spectra is the low value of the Hubble constant,
which is tightly constrained by CMB data alone. From the
Planck+WP+highL fit we find:

H0 = 67.3 ± 1.2 kms�1Mpc�1, (68%, Planck+WP+highL). (51)

A low value of H0 has been found in other CMB experi-
ments, most notably from the recent WMAP9 analysis. Fitting
the base ⇤CDM model, Hinshaw et al. (2012a) find

H0 = 69.7 ± 2.4 kms�1Mpc�1, (68% WMAP9), (52)

consistent with (51) to within ⇠ 1�. We emphasize here that the
estimates (51) and (52) are highly model dependent. It is impor-
tant therefore to compare with astrophysical measurements of
H0, since any discrepancies could be a pointer to new physics.

There have been remarkable improvements in the the pre-
cision of the cosmic distance scale in the last decade or so.
The final results of the Hubble Spacs Telescope (HST) Key
Project Freedman et al. (2001), which used Cepheid calibrations
of secondary distance indicators, resulted in a Hubble constant
of H0 = 72 ± 8 kms�1Mpc�1 (where the error includes esti-
mates of both random and systematic errors). This estimate has
been used widely in combination with CMB observations and
other cosmological datasets to constrain cosmological parame-
ters (e.g., Spergel et al., 2003, 2007a). It has also been recog-
nised that an accurate, ⇠ 1% precision, measurement of H0,
when combined with CMB and other cosmological data, has
the potential to reveal exotic new physics, for example, a time-
varying dark energy equation of state, additional relativistic par-
ticles, or neutrino masses (see e.g., Suyu et al., 2012b, and ref-
erences therein). Establishing a more accurate cosmic distance
scale is, of course, an important problem in its own right. The
possibility of uncovering new fundamental physics provides an
additional incentive.

Two recent analyses have greatly improved the precision of
the cosmic distance scale. Riess et al. (2011) use HST observa-
tions of Cepheid variables in the host galaxies of eight SNe Ia to
calibrate the supernova magnitude-redshift relation. Their ‘best
estimate’ of the Hubble constant, from fitting the calibrated SNe
magnitude-redshift relation, is

H0 = 73.8 ± 2.4 kms�1Mpc�1, (Cepheids + SNeIa), (53)

where the error is 1� and includes known sources of systematic
errors. At face value, this measurement is discrepant with the
Planck estimate (51) at about the 2.5� level.

Freedman et al. (2012), as part of the Carnegie Hubble
Program, use Spitzer Space Telescope mid-infrared observations
to recalibrate secondary distance methods used in the HST Key
Project. These authors find

H0 = 74.3 ± 1.5 (statistical) ± 2.1 (systematic) kms�1Mpc�1,

(Carnegie HP). (54)

We have added the two sources of error in quadrature in the error
range shown in Figure 16. This estimate agrees with Eq. (53)
and is also discordant with the Planck value (Eq. 16) at about
the 2.5� level. The error analysis in Eq. (54) does not include a
number of known sources of systematic error and is very likely
an underestimate. For this reason, and because of the relatively
good agreement between Eq. (53) and (54), we do not use this
estimate in the likelihood analyses described in the next section.

The dominant source of error in the estimate (53) comes
from the first rung in the distance ladder. Using the megamaser-
based distance to NGC4258, Riess et al. (2011) find 74.8 ±
3.1 kms�1Mpc�1. Using parallax measurements for 10 Milky
Way Cepheids, they find 75.7 ± 2.6 kms�1Mpc�1, and us-
ing Cepheid observations and a revised distance to the Large
Magellanic Cloud, they find 71.3± 3.8 kms�1Mpc�1. These esti-
mates are consistent with each other, and the combined estimate
of (53) uses all three calibrations. The fact that the error budget
of measurement (53) is dominated by the ‘first rung’ calibrators
is a point of concern. An mild underestimate of the distance er-
rors to these calibrators could eliminate the tension with Planck.

Figure 16 includes three estimates of H0 based on three ‘ge-
ometrical’ methods18. The estimate labelled ‘UGC 3789’ shows
the result H0 = 71.6±5.7 kms�1Mpc�1 from VLBI observations

18Note that each of these estimates is weakly dependent on the as-
sumed background cosmology.
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Fig. 16. Comparison of H0 measurements, with estimates of ±1�
errors, from a number of techniques (see text for details). These
are compared with the spatially flat ⇤CDM model constraints
from Planck and WMAP9.

The results of this section show BAO measurements are an
extremely valuable complementary data set to Planck. The mea-
surements are basically geometrical and free from complex sys-
tematic e↵ects that plague many other types of astrophysical
measurements. The results are consistent from survey to survey
and are of comparable precision to to Planck. In addition, BAO
measurements can be used to beak parameter degeneracies in
analyses based purely on CMB data. For example, from the ex-
cellent agreement with the base ⇤CDM model evident in Fig.
15, we can infer that the combination of Planck and BAO mea-
surements will lead to tight constraints favouring ⌦k = 0 (Sect.
6.2) and a dark energy equation of state parameter, w = �1 (Sect.
6.5).

Finally, we note that we use the 6dF+SDSS(R)+BOSS in the
likelihood analysis of Sect. 6. This choice includes the two most
accurate BAO measurements and since the e↵ective redshifts of
these samples are widely separated, it should be a very good
approximation to neglect correlations between the surveys.

5.3. The Hubble Constant

A striking result from the fits of the base ⇤CDM model to
Planck power spectra is the low value of the Hubble constant,
which is tightly constrained by CMB data alone. From the
Planck+WP+highL fit we find:

H0 = 67.3 ± 1.2 kms�1Mpc�1, (68%, Planck+WP+highL). (51)

A low value of H0 has been found in other CMB experi-
ments, most notably from the recent WMAP9 analysis. Fitting
the base ⇤CDM model, Hinshaw et al. (2012a) find

H0 = 69.7 ± 2.4 kms�1Mpc�1, (68% WMAP9), (52)

consistent with (51) to within ⇠ 1�. We emphasize here that the
estimates (51) and (52) are highly model dependent. It is impor-
tant therefore to compare with astrophysical measurements of
H0, since any discrepancies could be a pointer to new physics.

There have been remarkable improvements in the the pre-
cision of the cosmic distance scale in the last decade or so.
The final results of the Hubble Spacs Telescope (HST) Key
Project Freedman et al. (2001), which used Cepheid calibrations
of secondary distance indicators, resulted in a Hubble constant
of H0 = 72 ± 8 kms�1Mpc�1 (where the error includes esti-
mates of both random and systematic errors). This estimate has
been used widely in combination with CMB observations and
other cosmological datasets to constrain cosmological parame-
ters (e.g., Spergel et al., 2003, 2007a). It has also been recog-
nised that an accurate, ⇠ 1% precision, measurement of H0,
when combined with CMB and other cosmological data, has
the potential to reveal exotic new physics, for example, a time-
varying dark energy equation of state, additional relativistic par-
ticles, or neutrino masses (see e.g., Suyu et al., 2012b, and ref-
erences therein). Establishing a more accurate cosmic distance
scale is, of course, an important problem in its own right. The
possibility of uncovering new fundamental physics provides an
additional incentive.

Two recent analyses have greatly improved the precision of
the cosmic distance scale. Riess et al. (2011) use HST observa-
tions of Cepheid variables in the host galaxies of eight SNe Ia to
calibrate the supernova magnitude-redshift relation. Their ‘best
estimate’ of the Hubble constant, from fitting the calibrated SNe
magnitude-redshift relation, is

H0 = 73.8 ± 2.4 kms�1Mpc�1, (Cepheids + SNeIa), (53)

where the error is 1� and includes known sources of systematic
errors. At face value, this measurement is discrepant with the
Planck estimate (51) at about the 2.5� level.

Freedman et al. (2012), as part of the Carnegie Hubble
Program, use Spitzer Space Telescope mid-infrared observations
to recalibrate secondary distance methods used in the HST Key
Project. These authors find

H0 = 74.3 ± 1.5 (statistical) ± 2.1 (systematic) kms�1Mpc�1,

(Carnegie HP). (54)

We have added the two sources of error in quadrature in the error
range shown in Figure 16. This estimate agrees with Eq. (53)
and is also discordant with the Planck value (Eq. 16) at about
the 2.5� level. The error analysis in Eq. (54) does not include a
number of known sources of systematic error and is very likely
an underestimate. For this reason, and because of the relatively
good agreement between Eq. (53) and (54), we do not use this
estimate in the likelihood analyses described in the next section.

The dominant source of error in the estimate (53) comes
from the first rung in the distance ladder. Using the megamaser-
based distance to NGC4258, Riess et al. (2011) find 74.8 ±
3.1 kms�1Mpc�1. Using parallax measurements for 10 Milky
Way Cepheids, they find 75.7 ± 2.6 kms�1Mpc�1, and us-
ing Cepheid observations and a revised distance to the Large
Magellanic Cloud, they find 71.3± 3.8 kms�1Mpc�1. These esti-
mates are consistent with each other, and the combined estimate
of (53) uses all three calibrations. The fact that the error budget
of measurement (53) is dominated by the ‘first rung’ calibrators
is a point of concern. An mild underestimate of the distance er-
rors to these calibrators could eliminate the tension with Planck.

Figure 16 includes three estimates of H0 based on three ‘ge-
ometrical’ methods18. The estimate labelled ‘UGC 3789’ shows
the result H0 = 71.6±5.7 kms�1Mpc�1 from VLBI observations

18Note that each of these estimates is weakly dependent on the as-
sumed background cosmology.
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Fig. 16. Comparison of H0 measurements, with estimates of ±1�
errors, from a number of techniques (see text for details). These
are compared with the spatially flat ⇤CDM model constraints
from Planck and WMAP9.

The results of this section show BAO measurements are an
extremely valuable complementary data set to Planck. The mea-
surements are basically geometrical and free from complex sys-
tematic e↵ects that plague many other types of astrophysical
measurements. The results are consistent from survey to survey
and are of comparable precision to to Planck. In addition, BAO
measurements can be used to beak parameter degeneracies in
analyses based purely on CMB data. For example, from the ex-
cellent agreement with the base ⇤CDM model evident in Fig.
15, we can infer that the combination of Planck and BAO mea-
surements will lead to tight constraints favouring ⌦k = 0 (Sect.
6.2) and a dark energy equation of state parameter, w = �1 (Sect.
6.5).

Finally, we note that we use the 6dF+SDSS(R)+BOSS in the
likelihood analysis of Sect. 6. This choice includes the two most
accurate BAO measurements and since the e↵ective redshifts of
these samples are widely separated, it should be a very good
approximation to neglect correlations between the surveys.

5.3. The Hubble Constant

A striking result from the fits of the base ⇤CDM model to
Planck power spectra is the low value of the Hubble constant,
which is tightly constrained by CMB data alone. From the
Planck+WP+highL fit we find:

H0 = 67.3 ± 1.2 kms�1Mpc�1, (68%, Planck+WP+highL). (51)

A low value of H0 has been found in other CMB experi-
ments, most notably from the recent WMAP9 analysis. Fitting
the base ⇤CDM model, Hinshaw et al. (2012a) find

H0 = 69.7 ± 2.4 kms�1Mpc�1, (68% WMAP9), (52)

consistent with (51) to within ⇠ 1�. We emphasize here that the
estimates (51) and (52) are highly model dependent. It is impor-
tant therefore to compare with astrophysical measurements of
H0, since any discrepancies could be a pointer to new physics.

There have been remarkable improvements in the the pre-
cision of the cosmic distance scale in the last decade or so.
The final results of the Hubble Spacs Telescope (HST) Key
Project Freedman et al. (2001), which used Cepheid calibrations
of secondary distance indicators, resulted in a Hubble constant
of H0 = 72 ± 8 kms�1Mpc�1 (where the error includes esti-
mates of both random and systematic errors). This estimate has
been used widely in combination with CMB observations and
other cosmological datasets to constrain cosmological parame-
ters (e.g., Spergel et al., 2003, 2007a). It has also been recog-
nised that an accurate, ⇠ 1% precision, measurement of H0,
when combined with CMB and other cosmological data, has
the potential to reveal exotic new physics, for example, a time-
varying dark energy equation of state, additional relativistic par-
ticles, or neutrino masses (see e.g., Suyu et al., 2012b, and ref-
erences therein). Establishing a more accurate cosmic distance
scale is, of course, an important problem in its own right. The
possibility of uncovering new fundamental physics provides an
additional incentive.

Two recent analyses have greatly improved the precision of
the cosmic distance scale. Riess et al. (2011) use HST observa-
tions of Cepheid variables in the host galaxies of eight SNe Ia to
calibrate the supernova magnitude-redshift relation. Their ‘best
estimate’ of the Hubble constant, from fitting the calibrated SNe
magnitude-redshift relation, is

H0 = 73.8 ± 2.4 kms�1Mpc�1, (Cepheids + SNeIa), (53)

where the error is 1� and includes known sources of systematic
errors. At face value, this measurement is discrepant with the
Planck estimate (51) at about the 2.5� level.

Freedman et al. (2012), as part of the Carnegie Hubble
Program, use Spitzer Space Telescope mid-infrared observations
to recalibrate secondary distance methods used in the HST Key
Project. These authors find

H0 = 74.3 ± 1.5 (statistical) ± 2.1 (systematic) kms�1Mpc�1,

(Carnegie HP). (54)

We have added the two sources of error in quadrature in the error
range shown in Figure 16. This estimate agrees with Eq. (53)
and is also discordant with the Planck value (Eq. 16) at about
the 2.5� level. The error analysis in Eq. (54) does not include a
number of known sources of systematic error and is very likely
an underestimate. For this reason, and because of the relatively
good agreement between Eq. (53) and (54), we do not use this
estimate in the likelihood analyses described in the next section.

The dominant source of error in the estimate (53) comes
from the first rung in the distance ladder. Using the megamaser-
based distance to NGC4258, Riess et al. (2011) find 74.8 ±
3.1 kms�1Mpc�1. Using parallax measurements for 10 Milky
Way Cepheids, they find 75.7 ± 2.6 kms�1Mpc�1, and us-
ing Cepheid observations and a revised distance to the Large
Magellanic Cloud, they find 71.3± 3.8 kms�1Mpc�1. These esti-
mates are consistent with each other, and the combined estimate
of (53) uses all three calibrations. The fact that the error budget
of measurement (53) is dominated by the ‘first rung’ calibrators
is a point of concern. An mild underestimate of the distance er-
rors to these calibrators could eliminate the tension with Planck.

Figure 16 includes three estimates of H0 based on three ‘ge-
ometrical’ methods18. The estimate labelled ‘UGC 3789’ shows
the result H0 = 71.6±5.7 kms�1Mpc�1 from VLBI observations

18Note that each of these estimates is weakly dependent on the as-
sumed background cosmology.

30

► Compatible with WMAP9 at ~ 1σ. Both are highly model dependent (e.g 
degeneracy between H0 and dark energy equation of state w). Important to 
compare with local measurements

► HST observations of Cepheids + SN (Reiss et al, 2011) 
► Carnegie Hubble program (Freedman et al, 2012)  

Planck Collaboration: Planck Cosmological Parameters

Fig. 16. Comparison of H0 measurements, with estimates of ±1�
errors, from a number of techniques (see text for details). These
are compared with the spatially flat ⇤CDM model constraints
from Planck and WMAP9.

The results of this section show BAO measurements are an
extremely valuable complementary data set to Planck. The mea-
surements are basically geometrical and free from complex sys-
tematic e↵ects that plague many other types of astrophysical
measurements. The results are consistent from survey to survey
and are of comparable precision to to Planck. In addition, BAO
measurements can be used to beak parameter degeneracies in
analyses based purely on CMB data. For example, from the ex-
cellent agreement with the base ⇤CDM model evident in Fig.
15, we can infer that the combination of Planck and BAO mea-
surements will lead to tight constraints favouring ⌦k = 0 (Sect.
6.2) and a dark energy equation of state parameter, w = �1 (Sect.
6.5).

Finally, we note that we use the 6dF+SDSS(R)+BOSS in the
likelihood analysis of Sect. 6. This choice includes the two most
accurate BAO measurements and since the e↵ective redshifts of
these samples are widely separated, it should be a very good
approximation to neglect correlations between the surveys.

5.3. The Hubble Constant

A striking result from the fits of the base ⇤CDM model to
Planck power spectra is the low value of the Hubble constant,
which is tightly constrained by CMB data alone. From the
Planck+WP+highL fit we find:

H0 = 67.3 ± 1.2 kms�1Mpc�1, (68%, Planck+WP+highL). (51)

A low value of H0 has been found in other CMB experi-
ments, most notably from the recent WMAP9 analysis. Fitting
the base ⇤CDM model, Hinshaw et al. (2012a) find

H0 = 69.7 ± 2.4 kms�1Mpc�1, (68% WMAP9), (52)

consistent with (51) to within ⇠ 1�. We emphasize here that the
estimates (51) and (52) are highly model dependent. It is impor-
tant therefore to compare with astrophysical measurements of
H0, since any discrepancies could be a pointer to new physics.

There have been remarkable improvements in the the pre-
cision of the cosmic distance scale in the last decade or so.
The final results of the Hubble Spacs Telescope (HST) Key
Project Freedman et al. (2001), which used Cepheid calibrations
of secondary distance indicators, resulted in a Hubble constant
of H0 = 72 ± 8 kms�1Mpc�1 (where the error includes esti-
mates of both random and systematic errors). This estimate has
been used widely in combination with CMB observations and
other cosmological datasets to constrain cosmological parame-
ters (e.g., Spergel et al., 2003, 2007a). It has also been recog-
nised that an accurate, ⇠ 1% precision, measurement of H0,
when combined with CMB and other cosmological data, has
the potential to reveal exotic new physics, for example, a time-
varying dark energy equation of state, additional relativistic par-
ticles, or neutrino masses (see e.g., Suyu et al., 2012b, and ref-
erences therein). Establishing a more accurate cosmic distance
scale is, of course, an important problem in its own right. The
possibility of uncovering new fundamental physics provides an
additional incentive.

Two recent analyses have greatly improved the precision of
the cosmic distance scale. Riess et al. (2011) use HST observa-
tions of Cepheid variables in the host galaxies of eight SNe Ia to
calibrate the supernova magnitude-redshift relation. Their ‘best
estimate’ of the Hubble constant, from fitting the calibrated SNe
magnitude-redshift relation, is

H0 = 73.8 ± 2.4 kms�1Mpc�1, (Cepheids + SNeIa), (53)

where the error is 1� and includes known sources of systematic
errors. At face value, this measurement is discrepant with the
Planck estimate (51) at about the 2.5� level.

Freedman et al. (2012), as part of the Carnegie Hubble
Program, use Spitzer Space Telescope mid-infrared observations
to recalibrate secondary distance methods used in the HST Key
Project. These authors find

H0 = 74.3 ± 1.5 (statistical) ± 2.1 (systematic) kms�1Mpc�1,

(Carnegie HP). (54)

We have added the two sources of error in quadrature in the error
range shown in Figure 16. This estimate agrees with Eq. (53)
and is also discordant with the Planck value (Eq. 16) at about
the 2.5� level. The error analysis in Eq. (54) does not include a
number of known sources of systematic error and is very likely
an underestimate. For this reason, and because of the relatively
good agreement between Eq. (53) and (54), we do not use this
estimate in the likelihood analyses described in the next section.

The dominant source of error in the estimate (53) comes
from the first rung in the distance ladder. Using the megamaser-
based distance to NGC4258, Riess et al. (2011) find 74.8 ±
3.1 kms�1Mpc�1. Using parallax measurements for 10 Milky
Way Cepheids, they find 75.7 ± 2.6 kms�1Mpc�1, and us-
ing Cepheid observations and a revised distance to the Large
Magellanic Cloud, they find 71.3± 3.8 kms�1Mpc�1. These esti-
mates are consistent with each other, and the combined estimate
of (53) uses all three calibrations. The fact that the error budget
of measurement (53) is dominated by the ‘first rung’ calibrators
is a point of concern. An mild underestimate of the distance er-
rors to these calibrators could eliminate the tension with Planck.

Figure 16 includes three estimates of H0 based on three ‘ge-
ometrical’ methods18. The estimate labelled ‘UGC 3789’ shows
the result H0 = 71.6±5.7 kms�1Mpc�1 from VLBI observations

18Note that each of these estimates is weakly dependent on the as-
sumed background cosmology.
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Fig. 16. Comparison of H0 measurements, with estimates of ±1�
errors, from a number of techniques (see text for details). These
are compared with the spatially flat ⇤CDM model constraints
from Planck and WMAP9.

The results of this section show BAO measurements are an
extremely valuable complementary data set to Planck. The mea-
surements are basically geometrical and free from complex sys-
tematic e↵ects that plague many other types of astrophysical
measurements. The results are consistent from survey to survey
and are of comparable precision to to Planck. In addition, BAO
measurements can be used to beak parameter degeneracies in
analyses based purely on CMB data. For example, from the ex-
cellent agreement with the base ⇤CDM model evident in Fig.
15, we can infer that the combination of Planck and BAO mea-
surements will lead to tight constraints favouring ⌦k = 0 (Sect.
6.2) and a dark energy equation of state parameter, w = �1 (Sect.
6.5).

Finally, we note that we use the 6dF+SDSS(R)+BOSS in the
likelihood analysis of Sect. 6. This choice includes the two most
accurate BAO measurements and since the e↵ective redshifts of
these samples are widely separated, it should be a very good
approximation to neglect correlations between the surveys.

5.3. The Hubble Constant

A striking result from the fits of the base ⇤CDM model to
Planck power spectra is the low value of the Hubble constant,
which is tightly constrained by CMB data alone. From the
Planck+WP+highL fit we find:

H0 = 67.3 ± 1.2 kms�1Mpc�1, (68%, Planck+WP+highL). (51)

A low value of H0 has been found in other CMB experi-
ments, most notably from the recent WMAP9 analysis. Fitting
the base ⇤CDM model, Hinshaw et al. (2012a) find

H0 = 69.7 ± 2.4 kms�1Mpc�1, (68% WMAP9), (52)

consistent with (51) to within ⇠ 1�. We emphasize here that the
estimates (51) and (52) are highly model dependent. It is impor-
tant therefore to compare with astrophysical measurements of
H0, since any discrepancies could be a pointer to new physics.

There have been remarkable improvements in the the pre-
cision of the cosmic distance scale in the last decade or so.
The final results of the Hubble Spacs Telescope (HST) Key
Project Freedman et al. (2001), which used Cepheid calibrations
of secondary distance indicators, resulted in a Hubble constant
of H0 = 72 ± 8 kms�1Mpc�1 (where the error includes esti-
mates of both random and systematic errors). This estimate has
been used widely in combination with CMB observations and
other cosmological datasets to constrain cosmological parame-
ters (e.g., Spergel et al., 2003, 2007a). It has also been recog-
nised that an accurate, ⇠ 1% precision, measurement of H0,
when combined with CMB and other cosmological data, has
the potential to reveal exotic new physics, for example, a time-
varying dark energy equation of state, additional relativistic par-
ticles, or neutrino masses (see e.g., Suyu et al., 2012b, and ref-
erences therein). Establishing a more accurate cosmic distance
scale is, of course, an important problem in its own right. The
possibility of uncovering new fundamental physics provides an
additional incentive.

Two recent analyses have greatly improved the precision of
the cosmic distance scale. Riess et al. (2011) use HST observa-
tions of Cepheid variables in the host galaxies of eight SNe Ia to
calibrate the supernova magnitude-redshift relation. Their ‘best
estimate’ of the Hubble constant, from fitting the calibrated SNe
magnitude-redshift relation, is

H0 = 73.8 ± 2.4 kms�1Mpc�1, (Cepheids + SNeIa), (53)

where the error is 1� and includes known sources of systematic
errors. At face value, this measurement is discrepant with the
Planck estimate (51) at about the 2.5� level.

Freedman et al. (2012), as part of the Carnegie Hubble
Program, use Spitzer Space Telescope mid-infrared observations
to recalibrate secondary distance methods used in the HST Key
Project. These authors find

H0 = 74.3 ± 1.5 (statistical) ± 2.1 (systematic) kms�1Mpc�1,

(Carnegie HP). (54)

We have added the two sources of error in quadrature in the error
range shown in Figure 16. This estimate agrees with Eq. (53)
and is also discordant with the Planck value (Eq. 16) at about
the 2.5� level. The error analysis in Eq. (54) does not include a
number of known sources of systematic error and is very likely
an underestimate. For this reason, and because of the relatively
good agreement between Eq. (53) and (54), we do not use this
estimate in the likelihood analyses described in the next section.

The dominant source of error in the estimate (53) comes
from the first rung in the distance ladder. Using the megamaser-
based distance to NGC4258, Riess et al. (2011) find 74.8 ±
3.1 kms�1Mpc�1. Using parallax measurements for 10 Milky
Way Cepheids, they find 75.7 ± 2.6 kms�1Mpc�1, and us-
ing Cepheid observations and a revised distance to the Large
Magellanic Cloud, they find 71.3± 3.8 kms�1Mpc�1. These esti-
mates are consistent with each other, and the combined estimate
of (53) uses all three calibrations. The fact that the error budget
of measurement (53) is dominated by the ‘first rung’ calibrators
is a point of concern. An mild underestimate of the distance er-
rors to these calibrators could eliminate the tension with Planck.

Figure 16 includes three estimates of H0 based on three ‘ge-
ometrical’ methods18. The estimate labelled ‘UGC 3789’ shows
the result H0 = 71.6±5.7 kms�1Mpc�1 from VLBI observations

18Note that each of these estimates is weakly dependent on the as-
sumed background cosmology.
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Fig. 16. Comparison of H0 measurements, with estimates of ±1�
errors, from a number of techniques (see text for details). These
are compared with the spatially flat ⇤CDM model constraints
from Planck and WMAP9.

The results of this section show BAO measurements are an
extremely valuable complementary data set to Planck. The mea-
surements are basically geometrical and free from complex sys-
tematic e↵ects that plague many other types of astrophysical
measurements. The results are consistent from survey to survey
and are of comparable precision to to Planck. In addition, BAO
measurements can be used to beak parameter degeneracies in
analyses based purely on CMB data. For example, from the ex-
cellent agreement with the base ⇤CDM model evident in Fig.
15, we can infer that the combination of Planck and BAO mea-
surements will lead to tight constraints favouring ⌦k = 0 (Sect.
6.2) and a dark energy equation of state parameter, w = �1 (Sect.
6.5).

Finally, we note that we use the 6dF+SDSS(R)+BOSS in the
likelihood analysis of Sect. 6. This choice includes the two most
accurate BAO measurements and since the e↵ective redshifts of
these samples are widely separated, it should be a very good
approximation to neglect correlations between the surveys.

5.3. The Hubble Constant

A striking result from the fits of the base ⇤CDM model to
Planck power spectra is the low value of the Hubble constant,
which is tightly constrained by CMB data alone. From the
Planck+WP+highL fit we find:

H0 = 67.3 ± 1.2 kms�1Mpc�1, (68%, Planck+WP+highL). (51)

A low value of H0 has been found in other CMB experi-
ments, most notably from the recent WMAP9 analysis. Fitting
the base ⇤CDM model, Hinshaw et al. (2012a) find

H0 = 69.7 ± 2.4 kms�1Mpc�1, (68% WMAP9), (52)

consistent with (51) to within ⇠ 1�. We emphasize here that the
estimates (51) and (52) are highly model dependent. It is impor-
tant therefore to compare with astrophysical measurements of
H0, since any discrepancies could be a pointer to new physics.

There have been remarkable improvements in the the pre-
cision of the cosmic distance scale in the last decade or so.
The final results of the Hubble Spacs Telescope (HST) Key
Project Freedman et al. (2001), which used Cepheid calibrations
of secondary distance indicators, resulted in a Hubble constant
of H0 = 72 ± 8 kms�1Mpc�1 (where the error includes esti-
mates of both random and systematic errors). This estimate has
been used widely in combination with CMB observations and
other cosmological datasets to constrain cosmological parame-
ters (e.g., Spergel et al., 2003, 2007a). It has also been recog-
nised that an accurate, ⇠ 1% precision, measurement of H0,
when combined with CMB and other cosmological data, has
the potential to reveal exotic new physics, for example, a time-
varying dark energy equation of state, additional relativistic par-
ticles, or neutrino masses (see e.g., Suyu et al., 2012b, and ref-
erences therein). Establishing a more accurate cosmic distance
scale is, of course, an important problem in its own right. The
possibility of uncovering new fundamental physics provides an
additional incentive.

Two recent analyses have greatly improved the precision of
the cosmic distance scale. Riess et al. (2011) use HST observa-
tions of Cepheid variables in the host galaxies of eight SNe Ia to
calibrate the supernova magnitude-redshift relation. Their ‘best
estimate’ of the Hubble constant, from fitting the calibrated SNe
magnitude-redshift relation, is

H0 = 73.8 ± 2.4 kms�1Mpc�1, (Cepheids + SNeIa), (53)

where the error is 1� and includes known sources of systematic
errors. At face value, this measurement is discrepant with the
Planck estimate (51) at about the 2.5� level.

Freedman et al. (2012), as part of the Carnegie Hubble
Program, use Spitzer Space Telescope mid-infrared observations
to recalibrate secondary distance methods used in the HST Key
Project. These authors find

H0 = 74.3 ± 1.5 (statistical) ± 2.1 (systematic) kms�1Mpc�1,

(Carnegie HP). (54)

We have added the two sources of error in quadrature in the error
range shown in Figure 16. This estimate agrees with Eq. (53)
and is also discordant with the Planck value (Eq. 16) at about
the 2.5� level. The error analysis in Eq. (54) does not include a
number of known sources of systematic error and is very likely
an underestimate. For this reason, and because of the relatively
good agreement between Eq. (53) and (54), we do not use this
estimate in the likelihood analyses described in the next section.

The dominant source of error in the estimate (53) comes
from the first rung in the distance ladder. Using the megamaser-
based distance to NGC4258, Riess et al. (2011) find 74.8 ±
3.1 kms�1Mpc�1. Using parallax measurements for 10 Milky
Way Cepheids, they find 75.7 ± 2.6 kms�1Mpc�1, and us-
ing Cepheid observations and a revised distance to the Large
Magellanic Cloud, they find 71.3± 3.8 kms�1Mpc�1. These esti-
mates are consistent with each other, and the combined estimate
of (53) uses all three calibrations. The fact that the error budget
of measurement (53) is dominated by the ‘first rung’ calibrators
is a point of concern. An mild underestimate of the distance er-
rors to these calibrators could eliminate the tension with Planck.

Figure 16 includes three estimates of H0 based on three ‘ge-
ometrical’ methods18. The estimate labelled ‘UGC 3789’ shows
the result H0 = 71.6±5.7 kms�1Mpc�1 from VLBI observations

18Note that each of these estimates is weakly dependent on the as-
sumed background cosmology.
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Fig. 16. Comparison of H0 measurements, with estimates of ±1�
errors, from a number of techniques (see text for details). These
are compared with the spatially flat ⇤CDM model constraints
from Planck and WMAP9.

The results of this section show BAO measurements are an
extremely valuable complementary data set to Planck. The mea-
surements are basically geometrical and free from complex sys-
tematic e↵ects that plague many other types of astrophysical
measurements. The results are consistent from survey to survey
and are of comparable precision to to Planck. In addition, BAO
measurements can be used to beak parameter degeneracies in
analyses based purely on CMB data. For example, from the ex-
cellent agreement with the base ⇤CDM model evident in Fig.
15, we can infer that the combination of Planck and BAO mea-
surements will lead to tight constraints favouring ⌦k = 0 (Sect.
6.2) and a dark energy equation of state parameter, w = �1 (Sect.
6.5).

Finally, we note that we use the 6dF+SDSS(R)+BOSS in the
likelihood analysis of Sect. 6. This choice includes the two most
accurate BAO measurements and since the e↵ective redshifts of
these samples are widely separated, it should be a very good
approximation to neglect correlations between the surveys.

5.3. The Hubble Constant

A striking result from the fits of the base ⇤CDM model to
Planck power spectra is the low value of the Hubble constant,
which is tightly constrained by CMB data alone. From the
Planck+WP+highL fit we find:

H0 = 67.3 ± 1.2 kms�1Mpc�1, (68%, Planck+WP+highL). (51)

A low value of H0 has been found in other CMB experi-
ments, most notably from the recent WMAP9 analysis. Fitting
the base ⇤CDM model, Hinshaw et al. (2012a) find

H0 = 69.7 ± 2.4 kms�1Mpc�1, (68% WMAP9), (52)

consistent with (51) to within ⇠ 1�. We emphasize here that the
estimates (51) and (52) are highly model dependent. It is impor-
tant therefore to compare with astrophysical measurements of
H0, since any discrepancies could be a pointer to new physics.

There have been remarkable improvements in the the pre-
cision of the cosmic distance scale in the last decade or so.
The final results of the Hubble Spacs Telescope (HST) Key
Project Freedman et al. (2001), which used Cepheid calibrations
of secondary distance indicators, resulted in a Hubble constant
of H0 = 72 ± 8 kms�1Mpc�1 (where the error includes esti-
mates of both random and systematic errors). This estimate has
been used widely in combination with CMB observations and
other cosmological datasets to constrain cosmological parame-
ters (e.g., Spergel et al., 2003, 2007a). It has also been recog-
nised that an accurate, ⇠ 1% precision, measurement of H0,
when combined with CMB and other cosmological data, has
the potential to reveal exotic new physics, for example, a time-
varying dark energy equation of state, additional relativistic par-
ticles, or neutrino masses (see e.g., Suyu et al., 2012b, and ref-
erences therein). Establishing a more accurate cosmic distance
scale is, of course, an important problem in its own right. The
possibility of uncovering new fundamental physics provides an
additional incentive.

Two recent analyses have greatly improved the precision of
the cosmic distance scale. Riess et al. (2011) use HST observa-
tions of Cepheid variables in the host galaxies of eight SNe Ia to
calibrate the supernova magnitude-redshift relation. Their ‘best
estimate’ of the Hubble constant, from fitting the calibrated SNe
magnitude-redshift relation, is

H0 = 73.8 ± 2.4 kms�1Mpc�1, (Cepheids + SNeIa), (53)

where the error is 1� and includes known sources of systematic
errors. At face value, this measurement is discrepant with the
Planck estimate (51) at about the 2.5� level.

Freedman et al. (2012), as part of the Carnegie Hubble
Program, use Spitzer Space Telescope mid-infrared observations
to recalibrate secondary distance methods used in the HST Key
Project. These authors find

H0 = 74.3 ± 1.5 (statistical) ± 2.1 (systematic) kms�1Mpc�1,

(Carnegie HP). (54)

We have added the two sources of error in quadrature in the error
range shown in Figure 16. This estimate agrees with Eq. (53)
and is also discordant with the Planck value (Eq. 16) at about
the 2.5� level. The error analysis in Eq. (54) does not include a
number of known sources of systematic error and is very likely
an underestimate. For this reason, and because of the relatively
good agreement between Eq. (53) and (54), we do not use this
estimate in the likelihood analyses described in the next section.

The dominant source of error in the estimate (53) comes
from the first rung in the distance ladder. Using the megamaser-
based distance to NGC4258, Riess et al. (2011) find 74.8 ±
3.1 kms�1Mpc�1. Using parallax measurements for 10 Milky
Way Cepheids, they find 75.7 ± 2.6 kms�1Mpc�1, and us-
ing Cepheid observations and a revised distance to the Large
Magellanic Cloud, they find 71.3± 3.8 kms�1Mpc�1. These esti-
mates are consistent with each other, and the combined estimate
of (53) uses all three calibrations. The fact that the error budget
of measurement (53) is dominated by the ‘first rung’ calibrators
is a point of concern. An mild underestimate of the distance er-
rors to these calibrators could eliminate the tension with Planck.

Figure 16 includes three estimates of H0 based on three ‘ge-
ometrical’ methods18. The estimate labelled ‘UGC 3789’ shows
the result H0 = 71.6±5.7 kms�1Mpc�1 from VLBI observations

18Note that each of these estimates is weakly dependent on the as-
sumed background cosmology.
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Fig. 16. Comparison of H0 measurements, with estimates of ±1�
errors, from a number of techniques (see text for details). These
are compared with the spatially flat ⇤CDM model constraints
from Planck and WMAP9.

The results of this section show BAO measurements are an
extremely valuable complementary data set to Planck. The mea-
surements are basically geometrical and free from complex sys-
tematic e↵ects that plague many other types of astrophysical
measurements. The results are consistent from survey to survey
and are of comparable precision to to Planck. In addition, BAO
measurements can be used to beak parameter degeneracies in
analyses based purely on CMB data. For example, from the ex-
cellent agreement with the base ⇤CDM model evident in Fig.
15, we can infer that the combination of Planck and BAO mea-
surements will lead to tight constraints favouring ⌦k = 0 (Sect.
6.2) and a dark energy equation of state parameter, w = �1 (Sect.
6.5).

Finally, we note that we use the 6dF+SDSS(R)+BOSS in the
likelihood analysis of Sect. 6. This choice includes the two most
accurate BAO measurements and since the e↵ective redshifts of
these samples are widely separated, it should be a very good
approximation to neglect correlations between the surveys.

5.3. The Hubble Constant

A striking result from the fits of the base ⇤CDM model to
Planck power spectra is the low value of the Hubble constant,
which is tightly constrained by CMB data alone. From the
Planck+WP+highL fit we find:

H0 = 67.3 ± 1.2 kms�1Mpc�1, (68%, Planck+WP+highL). (51)

A low value of H0 has been found in other CMB experi-
ments, most notably from the recent WMAP9 analysis. Fitting
the base ⇤CDM model, Hinshaw et al. (2012a) find

H0 = 69.7 ± 2.4 kms�1Mpc�1, (68% WMAP9), (52)

consistent with (51) to within ⇠ 1�. We emphasize here that the
estimates (51) and (52) are highly model dependent. It is impor-
tant therefore to compare with astrophysical measurements of
H0, since any discrepancies could be a pointer to new physics.

There have been remarkable improvements in the the pre-
cision of the cosmic distance scale in the last decade or so.
The final results of the Hubble Spacs Telescope (HST) Key
Project Freedman et al. (2001), which used Cepheid calibrations
of secondary distance indicators, resulted in a Hubble constant
of H0 = 72 ± 8 kms�1Mpc�1 (where the error includes esti-
mates of both random and systematic errors). This estimate has
been used widely in combination with CMB observations and
other cosmological datasets to constrain cosmological parame-
ters (e.g., Spergel et al., 2003, 2007a). It has also been recog-
nised that an accurate, ⇠ 1% precision, measurement of H0,
when combined with CMB and other cosmological data, has
the potential to reveal exotic new physics, for example, a time-
varying dark energy equation of state, additional relativistic par-
ticles, or neutrino masses (see e.g., Suyu et al., 2012b, and ref-
erences therein). Establishing a more accurate cosmic distance
scale is, of course, an important problem in its own right. The
possibility of uncovering new fundamental physics provides an
additional incentive.

Two recent analyses have greatly improved the precision of
the cosmic distance scale. Riess et al. (2011) use HST observa-
tions of Cepheid variables in the host galaxies of eight SNe Ia to
calibrate the supernova magnitude-redshift relation. Their ‘best
estimate’ of the Hubble constant, from fitting the calibrated SNe
magnitude-redshift relation, is

H0 = 73.8 ± 2.4 kms�1Mpc�1, (Cepheids + SNeIa), (53)

where the error is 1� and includes known sources of systematic
errors. At face value, this measurement is discrepant with the
Planck estimate (51) at about the 2.5� level.

Freedman et al. (2012), as part of the Carnegie Hubble
Program, use Spitzer Space Telescope mid-infrared observations
to recalibrate secondary distance methods used in the HST Key
Project. These authors find

H0 = 74.3 ± 1.5 (statistical) ± 2.1 (systematic) kms�1Mpc�1,

(Carnegie HP). (54)

We have added the two sources of error in quadrature in the error
range shown in Figure 16. This estimate agrees with Eq. (53)
and is also discordant with the Planck value (Eq. 16) at about
the 2.5� level. The error analysis in Eq. (54) does not include a
number of known sources of systematic error and is very likely
an underestimate. For this reason, and because of the relatively
good agreement between Eq. (53) and (54), we do not use this
estimate in the likelihood analyses described in the next section.

The dominant source of error in the estimate (53) comes
from the first rung in the distance ladder. Using the megamaser-
based distance to NGC4258, Riess et al. (2011) find 74.8 ±
3.1 kms�1Mpc�1. Using parallax measurements for 10 Milky
Way Cepheids, they find 75.7 ± 2.6 kms�1Mpc�1, and us-
ing Cepheid observations and a revised distance to the Large
Magellanic Cloud, they find 71.3± 3.8 kms�1Mpc�1. These esti-
mates are consistent with each other, and the combined estimate
of (53) uses all three calibrations. The fact that the error budget
of measurement (53) is dominated by the ‘first rung’ calibrators
is a point of concern. An mild underestimate of the distance er-
rors to these calibrators could eliminate the tension with Planck.

Figure 16 includes three estimates of H0 based on three ‘ge-
ometrical’ methods18. The estimate labelled ‘UGC 3789’ shows
the result H0 = 71.6±5.7 kms�1Mpc�1 from VLBI observations

18Note that each of these estimates is weakly dependent on the as-
sumed background cosmology.
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ters (�8[⌦m/0.27]0.3 = 0.77 ± 0.04). Key di�culties with this
type of measurement, as discussed in Planck Collaboration 15
(2013), include adequately modelling selection biases and cal-
ibrating cluster masses. These e↵ects are discussed in detail in
the analysis of ACT clusters by Hasselfield et al. (2013), who
adopt a number of approaches, including folding in dynamical
mass measurements, to calibrate biases in clusters mass esti-
mates. Some of these approaches give joint �8 � ⌦m constraints
consistent with the base ⇤CDM parameters reported here.

At this stage of our understanding of the biases and scat-
ter in the cluster mass calibrations, we believe that for the pur-
poses of this paper it is premature to use cluster counts to-
gether with CMB measurements to search for new physics.
Planck Collaboration 15 (2013) explore a number of possibil-
ities for reducing the tension between Planck CMB measure-
ments and tSZ cluster counts.

6. Extensions to the base ⇤CDM model

6.1. Grid of models

To explore possible deviations from ⇤CDM we have analysed
an extensive grid of models that covers many popular extensions
of ⇤CDM. As for the ⇤CDM we have also considered a va-
riety of data combinations for each model. For models involv-
ing more than one additional parameter we restrict ourselves to
Planck+WP combinations in order to obtain tighter constraints
by leveraging the relative amplitude in power spectrum at very
low ` and high `. Most models are run with Planck, Planck+WP,
Planck+WP+highL, all also importance sampled with Planck
lensing, BAO (Anderson et al., 2013; Padmanabhan et al., 2012;
Beutler et al., 2011), Union2.1, SNLS and HST (Riess et al.,
2011). For models where the non-CMB data gives a large re-
duction in parameter volume (e.g. ⌦K models), we run separate
chains instead of importance sampling.

These runs provide no compelling evidence for deviations
from the baseline model, and indeed as shown in Table 10 and
Fig. 21 the posteriors for individual extra parameters generally
overlap the fiducial model within one sigma, and the inclusion
of BAO data shrinks further the allowed scope for deviation. The
measured values of the ⇤CDM parameters are relatively robust
to inclusion of di↵erent parameters, but a few do broaden signif-
icantly when additional degeneracies open up — see Fig. 21

The full grid results are available online24. Here we summa-
rize some of the key results, and also consider a few additional
extensions.

6.2. Early Universe physics

Inflationary cosmology o↵ers elegant explanations of key fea-
tures of our Universe, such as its large size and near spa-
tially flat geometry. Within this scenario, the Universe under-
went a brief period of accelerated expansion (Starobinsky, 1979,
1982; Kazanas, 1980; Guth, 1981; Sato, 1981; Linde, 1982;
Albrecht & Steinhardt, 1982) during which quantum fluctua-
tions were inflated in scale to become the classical fluctuations
that we see today. In the simplest inflationary models, the pri-
mordial fluctuations are predicted to be adiabatic, nearly scale-
invariant and Gaussian (Mukhanov & Chibisov, 1981; Hawking,
1982; Starobinsky, 1982; Guth & Pi, 1982; Bardeen et al., 1983)

24 FIXME: PLA.. http://hfilfi.planck.fr/index.php/WG/
GridresultClik6

in good agreement with CMB observations and other probes of
large-scale structure.

Despite this success, the fundamental physics behind infla-
tion is not yet understood and there is no convincing evidence
that rules out alternative scenarios for the early Universe. A
large number of phenomenological models of inflation, some
inspired by string theory, have been discussed in the liter-
ature (see Liddle & Lyth, 2000; Bassett et al., 2006; Linde,
2008, for reviews), as well as alternatives to inflation includ-
ing pre-big bang scenarios (e.g., Gasperini & Veneziano, 1993;
Khoury et al., 2001; Boyle et al., 2004; Creminelli & Senatore,
2007; Brandenberger, 2012). Many of these models lead to dis-
tinctive signatures, such as departures from Gaussianity, isocur-
vature perturbations, oscillatory features in the power spectrum,
that are potentially observable. The detection of such signatures
would o↵er valuable information on the physics of the early
Universe and is one of the main science goals of Planck.

In this section we discuss basic aspects of the primordial
power spectrum, such as the spectral index, departures from a
pure power-law, limits on tensor modes etc. and discuss the im-
plications for inflationary cosmology. Tests of more complex
models, such as multi-field inflation, are discussed in a sepa-
rate paper Planck team (2013). In Planck collaboration (2013c),
the Planck maps are used to constrain possible deviations from
Gaussianity via measurements of the bispectrum and trispec-
trum.Planck collaboration (2013d) considers departures from
statistical isotropy and additional tests of non-Gaussianity.

6.2.1. Scale dependence of primordial fluctuations

The primordial fluctuations in the base ⇤CDM model are pa-
rameterized as a pure power-law with a spectral index ns (equa-
tion 2). Prior to Planck, CMB observations have favoured a
power law index with slope ns < 1, which is expected in simple
single-field slow-roll inflationary models (see e.g., Mukhanov
(2007) and equation 64a below). The final WMAP nine-year data
give ns = 0.972 ± 0.013 at 68% confidence (Hinshaw et al.,
2012b). Combining this with damping-tail measurements from
ACT and SPT data gives ns = 0.968 ± 0.009, indicating a
departure from scale invariance at the 3� level. The addition
of BAO data has resulted in a stronger preference for ns <
1 (Anderson et al., 2012b; Hinshaw et al., 2012b; Story et al.,
2012b; Sievers et al., 2013b). These constraints assume the ba-
sic six-parameter ⇤CDM cosmological model. Any new physics
that a↵ects the damping tail of the CMB spectrum, such as ad-
ditional relativistic particles, can alter these constraints substan-
tially and still allow a precisely scale invariant spectrum.

With Planck, a robust detection of the deviation from scale
invariance can now be made from a single set of CMB observa-
tions spanning three decades in scale from ` = 2 to ` = 2500.
We find

ns = 0.958 ± 0.007 (68%, Planck+WP+highL), (59)

for the base ⇤CDM model, a ⇠ 6� departure from scale invari-
ance. This is consistent with the results from previous CMB ex-
periments cited above. The statistical significance of this result
is high enough that the di↵erence between a purely scale invari-
ant spectrum can be seen easily in a plot of the power spectrum.
Fig. 22 shows the Planck spectrum of Fig. 10 plotted as `2D`
compared to the base ⇤CDM fit with ns = 0.958 (red dashed
line) and to the best fit base ⇤CDM cosmology with ns = 1. The
ns = 1 model has more power at small scales and is strongly
excluded by the Planck data.
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Fig. 23. The upper plot shows the posterior distribution for ns
for the base ⇤CDM model (black line) compared to the poste-
rior when a tensor component and a running scalar spectral in-
dex are added as extensions to the base ⇤CDM model (red line).
The middle plot shows the one and two � constraints on mod-
els with a running scalar spectral index with no tensor compo-
nent (blue contours) and with tensors (red contours). The lower
plot shows the one and two � constraints on the tensor-scalar
ratio, r0.002 and ns on models with no running (blue contours)
and with running (red contours). The dotted line show the ex-
pected relation between r and ns for a V(�) / �2 inflationary
potential (equations (64a) and (64b)); N is the number of infla-
tionary e-foldings as defined in the text. All of these results use
the Planck+WP+highL data combination.
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Fig. 24. Constraints on ns for ⇤CDM models with non-standard
relativistic species, Ne↵ , (upper figure) and helium fraction, YP,
(lower figure). We show 1 and � contours for various data com-
binations. Note the tightening of the constraints with the addition
of BAO data.

go in the other direction, giving no support for a running spectral
index when combined with WMAP. 25

The results from Planck data are as follows:

dns/d ln k = �0.014 ± 0.009 (68%, Planck+WP), (60a)
dns/d ln k = �0.015 ± 0.009 (68%, Planck+WP+highL), (60b)
dns/d ln k = �0.011 ± 0.008 (68%, Planck+lensing

+WP+highL). (60c)

(see Figs. 21 and 23). The consistency between (60a) and (60b)
shows that these results are insensitive to modelling of unre-
solved foregrounds. The preferred solutions have a small neg-
ative running, but not at a high level of statistical significance.
Closer inspection of the MCMC best fits shows that the change
in �2 when dns/d ln k is included as a parameter comes almost
entirely from the low multipole temperature likelihood. In fact,
the fits to the high multipole Planck likelihood have a slightly
worse �2 when dns/d ln k is included. The slight preference for a
negative running is therefore driven by the spectrum at low mul-
tipoles ` <⇠ 50. The tendency for negative running is partly miti-
gated by including the Planck lensing likelihood (equation60c).

The constraints on dns/d ln k are broadly similar if tensor
fluctuations are allowed in addition to a running of the spectrum
(Fig. 23) . Adding tensor fluctuations the marginalized posterior
distributions for dns/d ln k give:

dns/d ln k = �0.021 ± 0.012 (68%, Planck+WP), (61a)
25The di↵erences between the Planck results reported here and the

WMAP+SPT Hou et al. (2012a) results are discussed in Appendix A.
We show that there is evidence that the SPT spectrum su↵ers from a
small bias over the multipole range ⇠ 650�1500, which drives the joint
WMAP+SPT fits towards negative running. This bias is also responsible
for the other hints of new physics reported by Hou et al. (2012a).
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Fig. 23. The upper plot shows the posterior distribution for ns
for the base ⇤CDM model (black line) compared to the poste-
rior when a tensor component and a running scalar spectral in-
dex are added as extensions to the base ⇤CDM model (red line).
The middle plot shows the one and two � constraints on mod-
els with a running scalar spectral index with no tensor compo-
nent (blue contours) and with tensors (red contours). The lower
plot shows the one and two � constraints on the tensor-scalar
ratio, r0.002 and ns on models with no running (blue contours)
and with running (red contours). The dotted line show the ex-
pected relation between r and ns for a V(�) / �2 inflationary
potential (equations (64a) and (64b)); N is the number of infla-
tionary e-foldings as defined in the text. All of these results use
the Planck+WP+highL data combination.
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Fig. 24. Constraints on ns for ⇤CDM models with non-standard
relativistic species, Ne↵ , (upper figure) and helium fraction, YP,
(lower figure). We show 1 and � contours for various data com-
binations. Note the tightening of the constraints with the addition
of BAO data.

go in the other direction, giving no support for a running spectral
index when combined with WMAP. 25

The results from Planck data are as follows:

dns/d ln k = �0.014 ± 0.009 (68%, Planck+WP), (60a)
dns/d ln k = �0.015 ± 0.009 (68%, Planck+WP+highL), (60b)
dns/d ln k = �0.011 ± 0.008 (68%, Planck+lensing

+WP+highL). (60c)

(see Figs. 21 and 23). The consistency between (60a) and (60b)
shows that these results are insensitive to modelling of unre-
solved foregrounds. The preferred solutions have a small neg-
ative running, but not at a high level of statistical significance.
Closer inspection of the MCMC best fits shows that the change
in �2 when dns/d ln k is included as a parameter comes almost
entirely from the low multipole temperature likelihood. In fact,
the fits to the high multipole Planck likelihood have a slightly
worse �2 when dns/d ln k is included. The slight preference for a
negative running is therefore driven by the spectrum at low mul-
tipoles ` <⇠ 50. The tendency for negative running is partly miti-
gated by including the Planck lensing likelihood (equation60c).

The constraints on dns/d ln k are broadly similar if tensor
fluctuations are allowed in addition to a running of the spectrum
(Fig. 23) . Adding tensor fluctuations the marginalized posterior
distributions for dns/d ln k give:

dns/d ln k = �0.021 ± 0.012 (68%, Planck+WP), (61a)
25The di↵erences between the Planck results reported here and the

WMAP+SPT Hou et al. (2012a) results are discussed in Appendix A.
We show that there is evidence that the SPT spectrum su↵ers from a
small bias over the multipole range ⇠ 650�1500, which drives the joint
WMAP+SPT fits towards negative running. This bias is also responsible
for the other hints of new physics reported by Hou et al. (2012a).
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Rubino-Martin et al., 2009; Shaw & Chluba, 2011). The process
of recombination takes the Universe from a state of fully ion-
ized hydrogen and helium in the early Universe, through to the
completion of recombination with residual fraction xe ⇠ 10�4.
Sensitivity of the CMB power spectrum to xe enters through
changes to the sound horizon at recombination, from changes
in the timing of recombination, and to the detailed shape of the
recombination transition, which a↵ects the thickness of the last-
scattering surface and hence the amount of small-scale di↵usion
(Silk) damping, polarization, and line-of-sight averaging of the
perturbations.

Since the pioneering work of Peebles (1968) and
Zeldovich et al. (1969), which identified the main physical pro-
cesses involved in recombination, there has been significant
progress in numerically modelling the many relevant atomic
transitions and processes that can a↵ect the details of the
recombination process (Hu et al., 1995b; Seager et al., 2000;
Wong et al., 2008; Hirata & Switzer, 2008; Switzer & Hirata,
2008; Rubino-Martin et al., 2009; Chluba & Thomas, 2011;
Ali-Haimoud & Hirata, 2011). In recent years a consen-
sus has emerged between the results of two multi-level
atom codes HyRec5 (Switzer & Hirata, 2008; Hirata, 2008;
Ali-Haimoud & Hirata, 2011), and CosmoRec6 (Chluba et al.,
2010; Chluba & Thomas, 2011), demonstrating agreement at a
level better than that required for Planck (di↵erences less that
4 ⇥ 10�4 in the predicted temperature power spectra on small
scales).

These recombination codes are remarkably fast, given the
complexity of the calculation. However, the recombination his-
tory can be computed even more rapidly by using the sim-
ple e↵ective three-level atom model developed by Seager et al.
(2000) and implemented in the recfast code7, with appropri-
ately chosen small correction functions calibrated to the full nu-
merical results (Wong et al., 2008; Rubino-Martin et al., 2009;
Shaw & Chluba, 2011). We use recfast in our baseline param-
eter analysis, with correction functions adjusted so that the pre-
dicted power spectra C` agree with those from the latest ver-
sions of HyRec (January 2012) and CosmoRec (v2) to better than
0.05%8. We have confirmed, using importance sampling, that
cosmological parameter constraints using recfast are consis-
tent with those using CosmoRec at the 0.05� level. Since the re-
sults of the Planck parameter analysis are crucially dependent on
the accuracy of the recombination history, we have also checked,
following Lewis et al. (2006), that there is no strong evidence for
simple deviations from the assumed history; however any devi-
ation from the assumed history could significantly shift param-
eters compared to the results presented here and we have not
performed a detailed sensitivity analysis.

The background recombination model should accurately
capture the ionization history until the Universe is reionized
at late times via ultra-violet photons from stars and/or active
galactic nuclei. We approximate reionization as being relatively
sharp, with the mid-point parameterized by a redshift zre (where
xe = f /2) and width parameter �zre = 0.5. Hydrogen reioniza-
tion and the first reionization of helium are assumed to occur
simultaneously, so that when reionization is complete xe = f ⌘
1 + fHe ⇡ 1.08 (Lewis, 2008), where fHe is the helium to hydro-
gen ratio by number. In this parameterization, the optical depth

5http://www.sns.ias.edu/˜yacine/hyrec/hyrec.html
6http://www.chluba.de/CosmoRec/
7http://www.astro.ubc.ca/people/scott/recfast.html
8The updated recfast used here in the baseline model is publicly

available as version 1.5.2 and is the default in camb as of October 2012.

is almost independent of �zre and the only impact of the specific
functional form on cosmological parameters comes from very
small changes to the shape of the polarization power spectrum
on large angular scales. The second reionization of helium (i.e.,
He+ ! He++) produces very small changes to the power spec-
tra (�⌧ ⇠ 0.001, where ⌧ is the optical depth to Thomson scat-
tering) and does not need to be modelled in detail. We include
the second reionization of helium at a fixed redshift of z = 3.5
(consistent with observations of Lyman-↵ forest lines in quasar
spectra, e.g., Becker et al. 2011), which is su�ciently accurate
for the parameter analyses described in this paper.

2.1.3. Initial conditions

In our baseline model we assume purely adiabatic scalar per-
turbations at very early times, with a (dimensionless) curvature
power spectrum parameterized by

PR(k) = As

 
k
k0

!ns�1+(1/2)(dns/d ln k) ln(k/k0)

, (2)

with ns and dns/d ln k taken to be constant. For most of this
paper we shall assume no “running”, i.e., a power-law spec-
trum with dns/d ln k = 0. The pivot scale, k0, is chosen to be
k0 = 0.05 Mpc�1, roughly in the middle of the logarithmic range
of scales probed by Planck. With this choice, ns is not strongly
degenerate with the amplitude parameter As.

The amplitude of the small-scale linear CMB power spec-
trum is proportional to e�2⌧As. Because Planck measures this
amplitude very accurately there is a tight linear constraint be-
tween ⌧ and ln As (see Sect. 3.3.1). For this reason we usually
use ln As as a base parameter with a flat prior, which has a sig-
nificantly more Gaussian posterior than As. A linear parameter
redefinition then also allows the degeneracy between ⌧ and As
to be explored e�ciently. (The degeneracy between ⌧ and As is
broken by the relative amplitudes of large-scale temperature and
polarization CMB anisotropies and by the non-linear e↵ect of
CMB lensing.)

We shall also consider extended models with a significant
amplitude of primordial gravitational waves (tensor modes).
Throughout this paper, the (dimensionless) tensor mode spec-
trum is parameterized as a power-law with 9

Pt(k) = At

 
k
k0

!nt

. (3)

We define r0.05 ⌘ At/As, the primordial tensor-to-scalar ratio at
k = k0. Our constraints are only weakly sensitive to the tensor
spectral index, nt, which is near zero, and we adopt the theoret-
ically motivated single-field inflation consistency relation nt =
�r0.05/8, rather than varying nt independently. We put a flat prior
on r0.05, the ratio at the scalar pivot scale of k = 0.05 Mpc�1, but
also report the constraint at k = 0.002 Mpc�1 (denoted r0.002)
which is closer to the scale at which there is some sensitivity
to tensor modes in the large-angle temperature power spectrum.
For further discussion of the tensor-to-scalar ratio and its im-
plications for inflationary models see Planck Collaboration 17
(2013).

9For a transverse-traceless spatial tensor Hi j, the tensor part of the
metric is ds2 = a2[d⌘2 � (�i j + 2Hi j)dxidx j], and Pt is defined so that
Pt(k) = @ln kh2Hi j2Hi ji.
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ters (�8[⌦m/0.27]0.3 = 0.77 ± 0.04). Key di�culties with this
type of measurement, as discussed in Planck Collaboration 15
(2013), include adequately modelling selection biases and cal-
ibrating cluster masses. These e↵ects are discussed in detail in
the analysis of ACT clusters by Hasselfield et al. (2013), who
adopt a number of approaches, including folding in dynamical
mass measurements, to calibrate biases in clusters mass esti-
mates. Some of these approaches give joint �8 � ⌦m constraints
consistent with the base ⇤CDM parameters reported here.

At this stage of our understanding of the biases and scat-
ter in the cluster mass calibrations, we believe that for the pur-
poses of this paper it is premature to use cluster counts to-
gether with CMB measurements to search for new physics.
Planck Collaboration 15 (2013) explore a number of possibil-
ities for reducing the tension between Planck CMB measure-
ments and tSZ cluster counts.

6. Extensions to the base ⇤CDM model

6.1. Grid of models

To explore possible deviations from ⇤CDM we have analysed
an extensive grid of models that covers many popular extensions
of ⇤CDM. As for the ⇤CDM we have also considered a va-
riety of data combinations for each model. For models involv-
ing more than one additional parameter we restrict ourselves to
Planck+WP combinations in order to obtain tighter constraints
by leveraging the relative amplitude in power spectrum at very
low ` and high `. Most models are run with Planck, Planck+WP,
Planck+WP+highL, all also importance sampled with Planck
lensing, BAO (Anderson et al., 2013; Padmanabhan et al., 2012;
Beutler et al., 2011), Union2.1, SNLS and HST (Riess et al.,
2011). For models where the non-CMB data gives a large re-
duction in parameter volume (e.g. ⌦K models), we run separate
chains instead of importance sampling.

These runs provide no compelling evidence for deviations
from the baseline model, and indeed as shown in Table 10 and
Fig. 21 the posteriors for individual extra parameters generally
overlap the fiducial model within one sigma, and the inclusion
of BAO data shrinks further the allowed scope for deviation. The
measured values of the ⇤CDM parameters are relatively robust
to inclusion of di↵erent parameters, but a few do broaden signif-
icantly when additional degeneracies open up — see Fig. 21

The full grid results are available online24. Here we summa-
rize some of the key results, and also consider a few additional
extensions.

6.2. Early Universe physics

Inflationary cosmology o↵ers elegant explanations of key fea-
tures of our Universe, such as its large size and near spa-
tially flat geometry. Within this scenario, the Universe under-
went a brief period of accelerated expansion (Starobinsky, 1979,
1982; Kazanas, 1980; Guth, 1981; Sato, 1981; Linde, 1982;
Albrecht & Steinhardt, 1982) during which quantum fluctua-
tions were inflated in scale to become the classical fluctuations
that we see today. In the simplest inflationary models, the pri-
mordial fluctuations are predicted to be adiabatic, nearly scale-
invariant and Gaussian (Mukhanov & Chibisov, 1981; Hawking,
1982; Starobinsky, 1982; Guth & Pi, 1982; Bardeen et al., 1983)

24 FIXME: PLA.. http://hfilfi.planck.fr/index.php/WG/
GridresultClik6

in good agreement with CMB observations and other probes of
large-scale structure.

Despite this success, the fundamental physics behind infla-
tion is not yet understood and there is no convincing evidence
that rules out alternative scenarios for the early Universe. A
large number of phenomenological models of inflation, some
inspired by string theory, have been discussed in the liter-
ature (see Liddle & Lyth, 2000; Bassett et al., 2006; Linde,
2008, for reviews), as well as alternatives to inflation includ-
ing pre-big bang scenarios (e.g., Gasperini & Veneziano, 1993;
Khoury et al., 2001; Boyle et al., 2004; Creminelli & Senatore,
2007; Brandenberger, 2012). Many of these models lead to dis-
tinctive signatures, such as departures from Gaussianity, isocur-
vature perturbations, oscillatory features in the power spectrum,
that are potentially observable. The detection of such signatures
would o↵er valuable information on the physics of the early
Universe and is one of the main science goals of Planck.

In this section we discuss basic aspects of the primordial
power spectrum, such as the spectral index, departures from a
pure power-law, limits on tensor modes etc. and discuss the im-
plications for inflationary cosmology. Tests of more complex
models, such as multi-field inflation, are discussed in a sepa-
rate paper Planck team (2013). In Planck collaboration (2013c),
the Planck maps are used to constrain possible deviations from
Gaussianity via measurements of the bispectrum and trispec-
trum.Planck collaboration (2013d) considers departures from
statistical isotropy and additional tests of non-Gaussianity.

6.2.1. Scale dependence of primordial fluctuations

The primordial fluctuations in the base ⇤CDM model are pa-
rameterized as a pure power-law with a spectral index ns (equa-
tion 2). Prior to Planck, CMB observations have favoured a
power law index with slope ns < 1, which is expected in simple
single-field slow-roll inflationary models (see e.g., Mukhanov
(2007) and equation 64a below). The final WMAP nine-year data
give ns = 0.972 ± 0.013 at 68% confidence (Hinshaw et al.,
2012b). Combining this with damping-tail measurements from
ACT and SPT data gives ns = 0.968 ± 0.009, indicating a
departure from scale invariance at the 3� level. The addition
of BAO data has resulted in a stronger preference for ns <
1 (Anderson et al., 2012b; Hinshaw et al., 2012b; Story et al.,
2012b; Sievers et al., 2013b). These constraints assume the ba-
sic six-parameter ⇤CDM cosmological model. Any new physics
that a↵ects the damping tail of the CMB spectrum, such as ad-
ditional relativistic particles, can alter these constraints substan-
tially and still allow a precisely scale invariant spectrum.

With Planck, a robust detection of the deviation from scale
invariance can now be made from a single set of CMB observa-
tions spanning three decades in scale from ` = 2 to ` = 2500.
We find

ns = 0.958 ± 0.007 (68%, Planck+WP+highL), (59)

for the base ⇤CDM model, a ⇠ 6� departure from scale invari-
ance. This is consistent with the results from previous CMB ex-
periments cited above. The statistical significance of this result
is high enough that the di↵erence between a purely scale invari-
ant spectrum can be seen easily in a plot of the power spectrum.
Fig. 22 shows the Planck spectrum of Fig. 10 plotted as `2D`
compared to the base ⇤CDM fit with ns = 0.958 (red dashed
line) and to the best fit base ⇤CDM cosmology with ns = 1. The
ns = 1 model has more power at small scales and is strongly
excluded by the Planck data.
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Fig. 23. The upper plot shows the posterior distribution for ns
for the base ⇤CDM model (black line) compared to the poste-
rior when a tensor component and a running scalar spectral in-
dex are added as extensions to the base ⇤CDM model (red line).
The middle plot shows the one and two � constraints on mod-
els with a running scalar spectral index with no tensor compo-
nent (blue contours) and with tensors (red contours). The lower
plot shows the one and two � constraints on the tensor-scalar
ratio, r0.002 and ns on models with no running (blue contours)
and with running (red contours). The dotted line show the ex-
pected relation between r and ns for a V(�) / �2 inflationary
potential (equations (64a) and (64b)); N is the number of infla-
tionary e-foldings as defined in the text. All of these results use
the Planck+WP+highL data combination.
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Fig. 24. Constraints on ns for ⇤CDM models with non-standard
relativistic species, Ne↵ , (upper figure) and helium fraction, YP,
(lower figure). We show 1 and � contours for various data com-
binations. Note the tightening of the constraints with the addition
of BAO data.

go in the other direction, giving no support for a running spectral
index when combined with WMAP. 25

The results from Planck data are as follows:

dns/d ln k = �0.014 ± 0.009 (68%, Planck+WP), (60a)
dns/d ln k = �0.015 ± 0.009 (68%, Planck+WP+highL), (60b)
dns/d ln k = �0.011 ± 0.008 (68%, Planck+lensing

+WP+highL). (60c)

(see Figs. 21 and 23). The consistency between (60a) and (60b)
shows that these results are insensitive to modelling of unre-
solved foregrounds. The preferred solutions have a small neg-
ative running, but not at a high level of statistical significance.
Closer inspection of the MCMC best fits shows that the change
in �2 when dns/d ln k is included as a parameter comes almost
entirely from the low multipole temperature likelihood. In fact,
the fits to the high multipole Planck likelihood have a slightly
worse �2 when dns/d ln k is included. The slight preference for a
negative running is therefore driven by the spectrum at low mul-
tipoles ` <⇠ 50. The tendency for negative running is partly miti-
gated by including the Planck lensing likelihood (equation60c).

The constraints on dns/d ln k are broadly similar if tensor
fluctuations are allowed in addition to a running of the spectrum
(Fig. 23) . Adding tensor fluctuations the marginalized posterior
distributions for dns/d ln k give:

dns/d ln k = �0.021 ± 0.012 (68%, Planck+WP), (61a)
25The di↵erences between the Planck results reported here and the

WMAP+SPT Hou et al. (2012a) results are discussed in Appendix A.
We show that there is evidence that the SPT spectrum su↵ers from a
small bias over the multipole range ⇠ 650�1500, which drives the joint
WMAP+SPT fits towards negative running. This bias is also responsible
for the other hints of new physics reported by Hou et al. (2012a).
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Fig. 23. The upper plot shows the posterior distribution for ns
for the base ⇤CDM model (black line) compared to the poste-
rior when a tensor component and a running scalar spectral in-
dex are added as extensions to the base ⇤CDM model (red line).
The middle plot shows the one and two � constraints on mod-
els with a running scalar spectral index with no tensor compo-
nent (blue contours) and with tensors (red contours). The lower
plot shows the one and two � constraints on the tensor-scalar
ratio, r0.002 and ns on models with no running (blue contours)
and with running (red contours). The dotted line show the ex-
pected relation between r and ns for a V(�) / �2 inflationary
potential (equations (64a) and (64b)); N is the number of infla-
tionary e-foldings as defined in the text. All of these results use
the Planck+WP+highL data combination.
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Fig. 24. Constraints on ns for ⇤CDM models with non-standard
relativistic species, Ne↵ , (upper figure) and helium fraction, YP,
(lower figure). We show 1 and � contours for various data com-
binations. Note the tightening of the constraints with the addition
of BAO data.

go in the other direction, giving no support for a running spectral
index when combined with WMAP. 25

The results from Planck data are as follows:

dns/d ln k = �0.014 ± 0.009 (68%, Planck+WP), (60a)
dns/d ln k = �0.015 ± 0.009 (68%, Planck+WP+highL), (60b)
dns/d ln k = �0.011 ± 0.008 (68%, Planck+lensing

+WP+highL). (60c)

(see Figs. 21 and 23). The consistency between (60a) and (60b)
shows that these results are insensitive to modelling of unre-
solved foregrounds. The preferred solutions have a small neg-
ative running, but not at a high level of statistical significance.
Closer inspection of the MCMC best fits shows that the change
in �2 when dns/d ln k is included as a parameter comes almost
entirely from the low multipole temperature likelihood. In fact,
the fits to the high multipole Planck likelihood have a slightly
worse �2 when dns/d ln k is included. The slight preference for a
negative running is therefore driven by the spectrum at low mul-
tipoles ` <⇠ 50. The tendency for negative running is partly miti-
gated by including the Planck lensing likelihood (equation60c).

The constraints on dns/d ln k are broadly similar if tensor
fluctuations are allowed in addition to a running of the spectrum
(Fig. 23) . Adding tensor fluctuations the marginalized posterior
distributions for dns/d ln k give:

dns/d ln k = �0.021 ± 0.012 (68%, Planck+WP), (61a)
25The di↵erences between the Planck results reported here and the

WMAP+SPT Hou et al. (2012a) results are discussed in Appendix A.
We show that there is evidence that the SPT spectrum su↵ers from a
small bias over the multipole range ⇠ 650�1500, which drives the joint
WMAP+SPT fits towards negative running. This bias is also responsible
for the other hints of new physics reported by Hou et al. (2012a).
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Rubino-Martin et al., 2009; Shaw & Chluba, 2011). The process
of recombination takes the Universe from a state of fully ion-
ized hydrogen and helium in the early Universe, through to the
completion of recombination with residual fraction xe ⇠ 10�4.
Sensitivity of the CMB power spectrum to xe enters through
changes to the sound horizon at recombination, from changes
in the timing of recombination, and to the detailed shape of the
recombination transition, which a↵ects the thickness of the last-
scattering surface and hence the amount of small-scale di↵usion
(Silk) damping, polarization, and line-of-sight averaging of the
perturbations.

Since the pioneering work of Peebles (1968) and
Zeldovich et al. (1969), which identified the main physical pro-
cesses involved in recombination, there has been significant
progress in numerically modelling the many relevant atomic
transitions and processes that can a↵ect the details of the
recombination process (Hu et al., 1995b; Seager et al., 2000;
Wong et al., 2008; Hirata & Switzer, 2008; Switzer & Hirata,
2008; Rubino-Martin et al., 2009; Chluba & Thomas, 2011;
Ali-Haimoud & Hirata, 2011). In recent years a consen-
sus has emerged between the results of two multi-level
atom codes HyRec5 (Switzer & Hirata, 2008; Hirata, 2008;
Ali-Haimoud & Hirata, 2011), and CosmoRec6 (Chluba et al.,
2010; Chluba & Thomas, 2011), demonstrating agreement at a
level better than that required for Planck (di↵erences less that
4 ⇥ 10�4 in the predicted temperature power spectra on small
scales).

These recombination codes are remarkably fast, given the
complexity of the calculation. However, the recombination his-
tory can be computed even more rapidly by using the sim-
ple e↵ective three-level atom model developed by Seager et al.
(2000) and implemented in the recfast code7, with appropri-
ately chosen small correction functions calibrated to the full nu-
merical results (Wong et al., 2008; Rubino-Martin et al., 2009;
Shaw & Chluba, 2011). We use recfast in our baseline param-
eter analysis, with correction functions adjusted so that the pre-
dicted power spectra C` agree with those from the latest ver-
sions of HyRec (January 2012) and CosmoRec (v2) to better than
0.05%8. We have confirmed, using importance sampling, that
cosmological parameter constraints using recfast are consis-
tent with those using CosmoRec at the 0.05� level. Since the re-
sults of the Planck parameter analysis are crucially dependent on
the accuracy of the recombination history, we have also checked,
following Lewis et al. (2006), that there is no strong evidence for
simple deviations from the assumed history; however any devi-
ation from the assumed history could significantly shift param-
eters compared to the results presented here and we have not
performed a detailed sensitivity analysis.

The background recombination model should accurately
capture the ionization history until the Universe is reionized
at late times via ultra-violet photons from stars and/or active
galactic nuclei. We approximate reionization as being relatively
sharp, with the mid-point parameterized by a redshift zre (where
xe = f /2) and width parameter �zre = 0.5. Hydrogen reioniza-
tion and the first reionization of helium are assumed to occur
simultaneously, so that when reionization is complete xe = f ⌘
1 + fHe ⇡ 1.08 (Lewis, 2008), where fHe is the helium to hydro-
gen ratio by number. In this parameterization, the optical depth

5http://www.sns.ias.edu/˜yacine/hyrec/hyrec.html
6http://www.chluba.de/CosmoRec/
7http://www.astro.ubc.ca/people/scott/recfast.html
8The updated recfast used here in the baseline model is publicly

available as version 1.5.2 and is the default in camb as of October 2012.

is almost independent of �zre and the only impact of the specific
functional form on cosmological parameters comes from very
small changes to the shape of the polarization power spectrum
on large angular scales. The second reionization of helium (i.e.,
He+ ! He++) produces very small changes to the power spec-
tra (�⌧ ⇠ 0.001, where ⌧ is the optical depth to Thomson scat-
tering) and does not need to be modelled in detail. We include
the second reionization of helium at a fixed redshift of z = 3.5
(consistent with observations of Lyman-↵ forest lines in quasar
spectra, e.g., Becker et al. 2011), which is su�ciently accurate
for the parameter analyses described in this paper.

2.1.3. Initial conditions

In our baseline model we assume purely adiabatic scalar per-
turbations at very early times, with a (dimensionless) curvature
power spectrum parameterized by

PR(k) = As

 
k
k0

!ns�1+(1/2)(dns/d ln k) ln(k/k0)

, (2)

with ns and dns/d ln k taken to be constant. For most of this
paper we shall assume no “running”, i.e., a power-law spec-
trum with dns/d ln k = 0. The pivot scale, k0, is chosen to be
k0 = 0.05 Mpc�1, roughly in the middle of the logarithmic range
of scales probed by Planck. With this choice, ns is not strongly
degenerate with the amplitude parameter As.

The amplitude of the small-scale linear CMB power spec-
trum is proportional to e�2⌧As. Because Planck measures this
amplitude very accurately there is a tight linear constraint be-
tween ⌧ and ln As (see Sect. 3.3.1). For this reason we usually
use ln As as a base parameter with a flat prior, which has a sig-
nificantly more Gaussian posterior than As. A linear parameter
redefinition then also allows the degeneracy between ⌧ and As
to be explored e�ciently. (The degeneracy between ⌧ and As is
broken by the relative amplitudes of large-scale temperature and
polarization CMB anisotropies and by the non-linear e↵ect of
CMB lensing.)

We shall also consider extended models with a significant
amplitude of primordial gravitational waves (tensor modes).
Throughout this paper, the (dimensionless) tensor mode spec-
trum is parameterized as a power-law with 9

Pt(k) = At

 
k
k0

!nt

. (3)

We define r0.05 ⌘ At/As, the primordial tensor-to-scalar ratio at
k = k0. Our constraints are only weakly sensitive to the tensor
spectral index, nt, which is near zero, and we adopt the theoret-
ically motivated single-field inflation consistency relation nt =
�r0.05/8, rather than varying nt independently. We put a flat prior
on r0.05, the ratio at the scalar pivot scale of k = 0.05 Mpc�1, but
also report the constraint at k = 0.002 Mpc�1 (denoted r0.002)
which is closer to the scale at which there is some sensitivity
to tensor modes in the large-angle temperature power spectrum.
For further discussion of the tensor-to-scalar ratio and its im-
plications for inflationary models see Planck Collaboration 17
(2013).

9For a transverse-traceless spatial tensor Hi j, the tensor part of the
metric is ds2 = a2[d⌘2 � (�i j + 2Hi j)dxidx j], and Pt is defined so that
Pt(k) = @ln kh2Hi j2Hi ji.
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ters (�8[⌦m/0.27]0.3 = 0.77 ± 0.04). Key di�culties with this
type of measurement, as discussed in Planck Collaboration 15
(2013), include adequately modelling selection biases and cal-
ibrating cluster masses. These e↵ects are discussed in detail in
the analysis of ACT clusters by Hasselfield et al. (2013), who
adopt a number of approaches, including folding in dynamical
mass measurements, to calibrate biases in clusters mass esti-
mates. Some of these approaches give joint �8 � ⌦m constraints
consistent with the base ⇤CDM parameters reported here.

At this stage of our understanding of the biases and scat-
ter in the cluster mass calibrations, we believe that for the pur-
poses of this paper it is premature to use cluster counts to-
gether with CMB measurements to search for new physics.
Planck Collaboration 15 (2013) explore a number of possibil-
ities for reducing the tension between Planck CMB measure-
ments and tSZ cluster counts.

6. Extensions to the base ⇤CDM model

6.1. Grid of models

To explore possible deviations from ⇤CDM we have analysed
an extensive grid of models that covers many popular extensions
of ⇤CDM. As for the ⇤CDM we have also considered a va-
riety of data combinations for each model. For models involv-
ing more than one additional parameter we restrict ourselves to
Planck+WP combinations in order to obtain tighter constraints
by leveraging the relative amplitude in power spectrum at very
low ` and high `. Most models are run with Planck, Planck+WP,
Planck+WP+highL, all also importance sampled with Planck
lensing, BAO (Anderson et al., 2013; Padmanabhan et al., 2012;
Beutler et al., 2011), Union2.1, SNLS and HST (Riess et al.,
2011). For models where the non-CMB data gives a large re-
duction in parameter volume (e.g. ⌦K models), we run separate
chains instead of importance sampling.

These runs provide no compelling evidence for deviations
from the baseline model, and indeed as shown in Table 10 and
Fig. 21 the posteriors for individual extra parameters generally
overlap the fiducial model within one sigma, and the inclusion
of BAO data shrinks further the allowed scope for deviation. The
measured values of the ⇤CDM parameters are relatively robust
to inclusion of di↵erent parameters, but a few do broaden signif-
icantly when additional degeneracies open up — see Fig. 21

The full grid results are available online24. Here we summa-
rize some of the key results, and also consider a few additional
extensions.

6.2. Early Universe physics

Inflationary cosmology o↵ers elegant explanations of key fea-
tures of our Universe, such as its large size and near spa-
tially flat geometry. Within this scenario, the Universe under-
went a brief period of accelerated expansion (Starobinsky, 1979,
1982; Kazanas, 1980; Guth, 1981; Sato, 1981; Linde, 1982;
Albrecht & Steinhardt, 1982) during which quantum fluctua-
tions were inflated in scale to become the classical fluctuations
that we see today. In the simplest inflationary models, the pri-
mordial fluctuations are predicted to be adiabatic, nearly scale-
invariant and Gaussian (Mukhanov & Chibisov, 1981; Hawking,
1982; Starobinsky, 1982; Guth & Pi, 1982; Bardeen et al., 1983)

24 FIXME: PLA.. http://hfilfi.planck.fr/index.php/WG/
GridresultClik6

in good agreement with CMB observations and other probes of
large-scale structure.

Despite this success, the fundamental physics behind infla-
tion is not yet understood and there is no convincing evidence
that rules out alternative scenarios for the early Universe. A
large number of phenomenological models of inflation, some
inspired by string theory, have been discussed in the liter-
ature (see Liddle & Lyth, 2000; Bassett et al., 2006; Linde,
2008, for reviews), as well as alternatives to inflation includ-
ing pre-big bang scenarios (e.g., Gasperini & Veneziano, 1993;
Khoury et al., 2001; Boyle et al., 2004; Creminelli & Senatore,
2007; Brandenberger, 2012). Many of these models lead to dis-
tinctive signatures, such as departures from Gaussianity, isocur-
vature perturbations, oscillatory features in the power spectrum,
that are potentially observable. The detection of such signatures
would o↵er valuable information on the physics of the early
Universe and is one of the main science goals of Planck.

In this section we discuss basic aspects of the primordial
power spectrum, such as the spectral index, departures from a
pure power-law, limits on tensor modes etc. and discuss the im-
plications for inflationary cosmology. Tests of more complex
models, such as multi-field inflation, are discussed in a sepa-
rate paper Planck team (2013). In Planck collaboration (2013c),
the Planck maps are used to constrain possible deviations from
Gaussianity via measurements of the bispectrum and trispec-
trum.Planck collaboration (2013d) considers departures from
statistical isotropy and additional tests of non-Gaussianity.

6.2.1. Scale dependence of primordial fluctuations

The primordial fluctuations in the base ⇤CDM model are pa-
rameterized as a pure power-law with a spectral index ns (equa-
tion 2). Prior to Planck, CMB observations have favoured a
power law index with slope ns < 1, which is expected in simple
single-field slow-roll inflationary models (see e.g., Mukhanov
(2007) and equation 64a below). The final WMAP nine-year data
give ns = 0.972 ± 0.013 at 68% confidence (Hinshaw et al.,
2012b). Combining this with damping-tail measurements from
ACT and SPT data gives ns = 0.968 ± 0.009, indicating a
departure from scale invariance at the 3� level. The addition
of BAO data has resulted in a stronger preference for ns <
1 (Anderson et al., 2012b; Hinshaw et al., 2012b; Story et al.,
2012b; Sievers et al., 2013b). These constraints assume the ba-
sic six-parameter ⇤CDM cosmological model. Any new physics
that a↵ects the damping tail of the CMB spectrum, such as ad-
ditional relativistic particles, can alter these constraints substan-
tially and still allow a precisely scale invariant spectrum.

With Planck, a robust detection of the deviation from scale
invariance can now be made from a single set of CMB observa-
tions spanning three decades in scale from ` = 2 to ` = 2500.
We find

ns = 0.958 ± 0.007 (68%, Planck+WP+highL), (59)

for the base ⇤CDM model, a ⇠ 6� departure from scale invari-
ance. This is consistent with the results from previous CMB ex-
periments cited above. The statistical significance of this result
is high enough that the di↵erence between a purely scale invari-
ant spectrum can be seen easily in a plot of the power spectrum.
Fig. 22 shows the Planck spectrum of Fig. 10 plotted as `2D`
compared to the base ⇤CDM fit with ns = 0.958 (red dashed
line) and to the best fit base ⇤CDM cosmology with ns = 1. The
ns = 1 model has more power at small scales and is strongly
excluded by the Planck data.

35

► Simplest models of inflation predict running of spectral index second order in 
slow roll parameters - easy to construct models with large running 

► Parameterize spectrum by

► WMAP + SPT suggested running at ~2σ level 

Planck Collaboration: Planck Cosmological Parameters

0.94 0.96 0.98 1.00
ns

0.0

0.2

0.4

0.6

0.8

1.0

P
/P

m
ax

�CDM
+running+tensors

0.94 0.96 0.98 1.00
ns

�0.06

�0.03

0.00

0.03

dn
s/

d
ln

k

�CDM+running

�CDM+running+tensors

0.94 0.96 0.98 1.00
ns

0.0

0.1

0.2

0.3

0.4

r 0
.0

02

N = 40

N = 50
N = 60

m 2� 2

�CDM+tensors

�CDM+running+tensors

Fig. 23. The upper plot shows the posterior distribution for ns
for the base ⇤CDM model (black line) compared to the poste-
rior when a tensor component and a running scalar spectral in-
dex are added as extensions to the base ⇤CDM model (red line).
The middle plot shows the one and two � constraints on mod-
els with a running scalar spectral index with no tensor compo-
nent (blue contours) and with tensors (red contours). The lower
plot shows the one and two � constraints on the tensor-scalar
ratio, r0.002 and ns on models with no running (blue contours)
and with running (red contours). The dotted line show the ex-
pected relation between r and ns for a V(�) / �2 inflationary
potential (equations (64a) and (64b)); N is the number of infla-
tionary e-foldings as defined in the text. All of these results use
the Planck+WP+highL data combination.
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Fig. 24. Constraints on ns for ⇤CDM models with non-standard
relativistic species, Ne↵ , (upper figure) and helium fraction, YP,
(lower figure). We show 1 and � contours for various data com-
binations. Note the tightening of the constraints with the addition
of BAO data.

go in the other direction, giving no support for a running spectral
index when combined with WMAP. 25

The results from Planck data are as follows:

dns/d ln k = �0.014 ± 0.009 (68%, Planck+WP), (60a)
dns/d ln k = �0.015 ± 0.009 (68%, Planck+WP+highL), (60b)
dns/d ln k = �0.011 ± 0.008 (68%, Planck+lensing

+WP+highL). (60c)

(see Figs. 21 and 23). The consistency between (60a) and (60b)
shows that these results are insensitive to modelling of unre-
solved foregrounds. The preferred solutions have a small neg-
ative running, but not at a high level of statistical significance.
Closer inspection of the MCMC best fits shows that the change
in �2 when dns/d ln k is included as a parameter comes almost
entirely from the low multipole temperature likelihood. In fact,
the fits to the high multipole Planck likelihood have a slightly
worse �2 when dns/d ln k is included. The slight preference for a
negative running is therefore driven by the spectrum at low mul-
tipoles ` <⇠ 50. The tendency for negative running is partly miti-
gated by including the Planck lensing likelihood (equation60c).

The constraints on dns/d ln k are broadly similar if tensor
fluctuations are allowed in addition to a running of the spectrum
(Fig. 23) . Adding tensor fluctuations the marginalized posterior
distributions for dns/d ln k give:

dns/d ln k = �0.021 ± 0.012 (68%, Planck+WP), (61a)
25The di↵erences between the Planck results reported here and the

WMAP+SPT Hou et al. (2012a) results are discussed in Appendix A.
We show that there is evidence that the SPT spectrum su↵ers from a
small bias over the multipole range ⇠ 650�1500, which drives the joint
WMAP+SPT fits towards negative running. This bias is also responsible
for the other hints of new physics reported by Hou et al. (2012a).
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Fig. 23. The upper plot shows the posterior distribution for ns
for the base ⇤CDM model (black line) compared to the poste-
rior when a tensor component and a running scalar spectral in-
dex are added as extensions to the base ⇤CDM model (red line).
The middle plot shows the one and two � constraints on mod-
els with a running scalar spectral index with no tensor compo-
nent (blue contours) and with tensors (red contours). The lower
plot shows the one and two � constraints on the tensor-scalar
ratio, r0.002 and ns on models with no running (blue contours)
and with running (red contours). The dotted line show the ex-
pected relation between r and ns for a V(�) / �2 inflationary
potential (equations (64a) and (64b)); N is the number of infla-
tionary e-foldings as defined in the text. All of these results use
the Planck+WP+highL data combination.
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Fig. 24. Constraints on ns for ⇤CDM models with non-standard
relativistic species, Ne↵ , (upper figure) and helium fraction, YP,
(lower figure). We show 1 and � contours for various data com-
binations. Note the tightening of the constraints with the addition
of BAO data.

go in the other direction, giving no support for a running spectral
index when combined with WMAP. 25

The results from Planck data are as follows:

dns/d ln k = �0.014 ± 0.009 (68%, Planck+WP), (60a)
dns/d ln k = �0.015 ± 0.009 (68%, Planck+WP+highL), (60b)
dns/d ln k = �0.011 ± 0.008 (68%, Planck+lensing

+WP+highL). (60c)

(see Figs. 21 and 23). The consistency between (60a) and (60b)
shows that these results are insensitive to modelling of unre-
solved foregrounds. The preferred solutions have a small neg-
ative running, but not at a high level of statistical significance.
Closer inspection of the MCMC best fits shows that the change
in �2 when dns/d ln k is included as a parameter comes almost
entirely from the low multipole temperature likelihood. In fact,
the fits to the high multipole Planck likelihood have a slightly
worse �2 when dns/d ln k is included. The slight preference for a
negative running is therefore driven by the spectrum at low mul-
tipoles ` <⇠ 50. The tendency for negative running is partly miti-
gated by including the Planck lensing likelihood (equation60c).

The constraints on dns/d ln k are broadly similar if tensor
fluctuations are allowed in addition to a running of the spectrum
(Fig. 23) . Adding tensor fluctuations the marginalized posterior
distributions for dns/d ln k give:

dns/d ln k = �0.021 ± 0.012 (68%, Planck+WP), (61a)
25The di↵erences between the Planck results reported here and the

WMAP+SPT Hou et al. (2012a) results are discussed in Appendix A.
We show that there is evidence that the SPT spectrum su↵ers from a
small bias over the multipole range ⇠ 650�1500, which drives the joint
WMAP+SPT fits towards negative running. This bias is also responsible
for the other hints of new physics reported by Hou et al. (2012a).
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Rubino-Martin et al., 2009; Shaw & Chluba, 2011). The process
of recombination takes the Universe from a state of fully ion-
ized hydrogen and helium in the early Universe, through to the
completion of recombination with residual fraction xe ⇠ 10�4.
Sensitivity of the CMB power spectrum to xe enters through
changes to the sound horizon at recombination, from changes
in the timing of recombination, and to the detailed shape of the
recombination transition, which a↵ects the thickness of the last-
scattering surface and hence the amount of small-scale di↵usion
(Silk) damping, polarization, and line-of-sight averaging of the
perturbations.

Since the pioneering work of Peebles (1968) and
Zeldovich et al. (1969), which identified the main physical pro-
cesses involved in recombination, there has been significant
progress in numerically modelling the many relevant atomic
transitions and processes that can a↵ect the details of the
recombination process (Hu et al., 1995b; Seager et al., 2000;
Wong et al., 2008; Hirata & Switzer, 2008; Switzer & Hirata,
2008; Rubino-Martin et al., 2009; Chluba & Thomas, 2011;
Ali-Haimoud & Hirata, 2011). In recent years a consen-
sus has emerged between the results of two multi-level
atom codes HyRec5 (Switzer & Hirata, 2008; Hirata, 2008;
Ali-Haimoud & Hirata, 2011), and CosmoRec6 (Chluba et al.,
2010; Chluba & Thomas, 2011), demonstrating agreement at a
level better than that required for Planck (di↵erences less that
4 ⇥ 10�4 in the predicted temperature power spectra on small
scales).

These recombination codes are remarkably fast, given the
complexity of the calculation. However, the recombination his-
tory can be computed even more rapidly by using the sim-
ple e↵ective three-level atom model developed by Seager et al.
(2000) and implemented in the recfast code7, with appropri-
ately chosen small correction functions calibrated to the full nu-
merical results (Wong et al., 2008; Rubino-Martin et al., 2009;
Shaw & Chluba, 2011). We use recfast in our baseline param-
eter analysis, with correction functions adjusted so that the pre-
dicted power spectra C` agree with those from the latest ver-
sions of HyRec (January 2012) and CosmoRec (v2) to better than
0.05%8. We have confirmed, using importance sampling, that
cosmological parameter constraints using recfast are consis-
tent with those using CosmoRec at the 0.05� level. Since the re-
sults of the Planck parameter analysis are crucially dependent on
the accuracy of the recombination history, we have also checked,
following Lewis et al. (2006), that there is no strong evidence for
simple deviations from the assumed history; however any devi-
ation from the assumed history could significantly shift param-
eters compared to the results presented here and we have not
performed a detailed sensitivity analysis.

The background recombination model should accurately
capture the ionization history until the Universe is reionized
at late times via ultra-violet photons from stars and/or active
galactic nuclei. We approximate reionization as being relatively
sharp, with the mid-point parameterized by a redshift zre (where
xe = f /2) and width parameter �zre = 0.5. Hydrogen reioniza-
tion and the first reionization of helium are assumed to occur
simultaneously, so that when reionization is complete xe = f ⌘
1 + fHe ⇡ 1.08 (Lewis, 2008), where fHe is the helium to hydro-
gen ratio by number. In this parameterization, the optical depth

5http://www.sns.ias.edu/˜yacine/hyrec/hyrec.html
6http://www.chluba.de/CosmoRec/
7http://www.astro.ubc.ca/people/scott/recfast.html
8The updated recfast used here in the baseline model is publicly

available as version 1.5.2 and is the default in camb as of October 2012.

is almost independent of �zre and the only impact of the specific
functional form on cosmological parameters comes from very
small changes to the shape of the polarization power spectrum
on large angular scales. The second reionization of helium (i.e.,
He+ ! He++) produces very small changes to the power spec-
tra (�⌧ ⇠ 0.001, where ⌧ is the optical depth to Thomson scat-
tering) and does not need to be modelled in detail. We include
the second reionization of helium at a fixed redshift of z = 3.5
(consistent with observations of Lyman-↵ forest lines in quasar
spectra, e.g., Becker et al. 2011), which is su�ciently accurate
for the parameter analyses described in this paper.

2.1.3. Initial conditions

In our baseline model we assume purely adiabatic scalar per-
turbations at very early times, with a (dimensionless) curvature
power spectrum parameterized by

PR(k) = As

 
k
k0

!ns�1+(1/2)(dns/d ln k) ln(k/k0)

, (2)

with ns and dns/d ln k taken to be constant. For most of this
paper we shall assume no “running”, i.e., a power-law spec-
trum with dns/d ln k = 0. The pivot scale, k0, is chosen to be
k0 = 0.05 Mpc�1, roughly in the middle of the logarithmic range
of scales probed by Planck. With this choice, ns is not strongly
degenerate with the amplitude parameter As.

The amplitude of the small-scale linear CMB power spec-
trum is proportional to e�2⌧As. Because Planck measures this
amplitude very accurately there is a tight linear constraint be-
tween ⌧ and ln As (see Sect. 3.3.1). For this reason we usually
use ln As as a base parameter with a flat prior, which has a sig-
nificantly more Gaussian posterior than As. A linear parameter
redefinition then also allows the degeneracy between ⌧ and As
to be explored e�ciently. (The degeneracy between ⌧ and As is
broken by the relative amplitudes of large-scale temperature and
polarization CMB anisotropies and by the non-linear e↵ect of
CMB lensing.)

We shall also consider extended models with a significant
amplitude of primordial gravitational waves (tensor modes).
Throughout this paper, the (dimensionless) tensor mode spec-
trum is parameterized as a power-law with 9

Pt(k) = At

 
k
k0

!nt

. (3)

We define r0.05 ⌘ At/As, the primordial tensor-to-scalar ratio at
k = k0. Our constraints are only weakly sensitive to the tensor
spectral index, nt, which is near zero, and we adopt the theoret-
ically motivated single-field inflation consistency relation nt =
�r0.05/8, rather than varying nt independently. We put a flat prior
on r0.05, the ratio at the scalar pivot scale of k = 0.05 Mpc�1, but
also report the constraint at k = 0.002 Mpc�1 (denoted r0.002)
which is closer to the scale at which there is some sensitivity
to tensor modes in the large-angle temperature power spectrum.
For further discussion of the tensor-to-scalar ratio and its im-
plications for inflationary models see Planck Collaboration 17
(2013).

9For a transverse-traceless spatial tensor Hi j, the tensor part of the
metric is ds2 = a2[d⌘2 � (�i j + 2Hi j)dxidx j], and Pt is defined so that
Pt(k) = @ln kh2Hi j2Hi ji.
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► Planck breaks degeneracy between spectral index and scalar to tensor ratio
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Fig. 23. The upper plot shows the posterior distribution for ns
for the base ⇤CDM model (black line) compared to the poste-
rior when a tensor component and a running scalar spectral in-
dex are added as extensions to the base ⇤CDM model (red line).
The middle plot shows the one and two � constraints on mod-
els with a running scalar spectral index with no tensor compo-
nent (blue contours) and with tensors (red contours). The lower
plot shows the one and two � constraints on the tensor-scalar
ratio, r0.002 and ns on models with no running (blue contours)
and with running (red contours). The dotted line show the ex-
pected relation between r and ns for a V(�) / �2 inflationary
potential (equations (64a) and (64b)); N is the number of infla-
tionary e-foldings as defined in the text. All of these results use
the Planck+WP+highL data combination.
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Fig. 24. Constraints on ns for ⇤CDM models with non-standard
relativistic species, Ne↵ , (upper figure) and helium fraction, YP,
(lower figure). We show 1 and � contours for various data com-
binations. Note the tightening of the constraints with the addition
of BAO data.

go in the other direction, giving no support for a running spectral
index when combined with WMAP. 25

The results from Planck data are as follows:

dns/d ln k = �0.014 ± 0.009 (68%, Planck+WP), (60a)
dns/d ln k = �0.015 ± 0.009 (68%, Planck+WP+highL), (60b)
dns/d ln k = �0.011 ± 0.008 (68%, Planck+lensing

+WP+highL). (60c)

(see Figs. 21 and 23). The consistency between (60a) and (60b)
shows that these results are insensitive to modelling of unre-
solved foregrounds. The preferred solutions have a small neg-
ative running, but not at a high level of statistical significance.
Closer inspection of the MCMC best fits shows that the change
in �2 when dns/d ln k is included as a parameter comes almost
entirely from the low multipole temperature likelihood. In fact,
the fits to the high multipole Planck likelihood have a slightly
worse �2 when dns/d ln k is included. The slight preference for a
negative running is therefore driven by the spectrum at low mul-
tipoles ` <⇠ 50. The tendency for negative running is partly miti-
gated by including the Planck lensing likelihood (equation60c).

The constraints on dns/d ln k are broadly similar if tensor
fluctuations are allowed in addition to a running of the spectrum
(Fig. 23) . Adding tensor fluctuations the marginalized posterior
distributions for dns/d ln k give:

dns/d ln k = �0.021 ± 0.012 (68%, Planck+WP), (61a)
25The di↵erences between the Planck results reported here and the

WMAP+SPT Hou et al. (2012a) results are discussed in Appendix A.
We show that there is evidence that the SPT spectrum su↵ers from a
small bias over the multipole range ⇠ 650�1500, which drives the joint
WMAP+SPT fits towards negative running. This bias is also responsible
for the other hints of new physics reported by Hou et al. (2012a).
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► r < 0.11 for Planck + WP + high $#(k pivot = 
0.002/Mpc)

► Constraint on energy scale of inflation
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HZ HZ + YHe HZ + Ne↵ ⇤CDM
105!b 2293 ± 23 2295 ± 23 2287 ± 23 2209 ± 27
104!c 1088 ± 13 1145 ± 17 1289 ± 44 1195 ± 26
✓MC 1.0429 ± 0.0005 1.0441 ± 0.0006 1.0406 ± 0.0007 1.0414 ± 0.0006
⌧ 0.114 ± 0.010 0.106 ± 0.012 0.103 ± 0.012 0.09 ± 0.013
ln

⇣

1010As

⌘

3.110 ± 0.021 3.125 ± 0.025 3.136 ± 0.025 3.088 ± 0.024
ns — — — 0.9616 ± 0.0072
Ne↵ — — 3.96 ± 0.19 —
YHe — 0.3084 ± 0.0085 — —
�2 ln(Lmax) 9833.8 9806.4 9807.3 9805.7

Table 3. Constraints on cosmological parameters and best-fit �2 ln(L) from Planck+WP data.

4.2. Constraints on power-law primordial spectra

We now consider all inflationary models which can be de-
scribed by the primordial perturbation parameters consisting of
the scalar amplitude and spectral index As , ns, and the tensor-to-
scalar ratio r, all defined at the pivot scale k⇤, assuming that the
spectral index does not vary with wavelength. Negligible run-
nings of the spectral indices are expected if the slow-roll condi-
tion are well satisfied, and either the hierarchy of ✏n describing
the Hubble parameter hierarchy or the slow-roll potential hier-
archy can be truncated to the first two terms with a sufficient
accuracy: in the next subsection we will relax this assumption.

Sampling the physical parameters As , ns , r is not the only
methodology to constrain slow-roll inflation. Another possibil-
ity is to sample the Hubble flow functions (HFF) in the ana-
lytic expressions for the scalar and tensor power spectra (Gong
& Stewart 2001; Leach et al. 2002). We perform a comparison
of slow-roll inflationary predictions by sampling the HFF with
Planck data in the Appendix and show that the results obtained
in this way agree with those derived by sampling the physi-
cal parameters. This confirms similar studies with earlier data
(Hamann et al. 2008c; Finelli et al. 2010).

The spectral index from Planck + WP is

ns = 0.9603 ± 0.0073. (32)

This tight bound on ns is crucial for constraining inflation from
Planck. The Planck constraint on r depends slightly on the pivot
scale; we adopt k⇤ = 0.002 Mpc�1 to quote our result. Planck
marginalised 95% confidence level for the tensor-to-scalar ratio
is r0.002 < 0.12. This bound improves on the most recent results,
including the WMAP 9-year constraint of r < 0.38 (Hinshaw
et al. 2012), the WMAP7 + ACT limit r < 0.28 (Sievers et al.
2013), and the WMAP7 + SPT limit of r < 0.18 (Story et al.
2012). The new bound from Planck is consistent with the limit
one can achieve from temperature anisotropies (Knox & Turner
1994). When tensors are added the spectral index from Planck
+WP is ns = 0.9624 ± 0.0075.

The Planck constraint on r corresponds to an upper bound
on the energy scale of inflation

V⇤ =
3AS r m4

P

128
< 6.4 ⇥ 10�12m4

P = (1.94 ⇥ 1016GeV)4 ,

at 95% confidence. This is equivalent to an upper bound on the
Hubble parameter during inflation of H⇤/mP < 7.3 ⇥ 10�6.

The Planck results on ns and r are robust to the addition of
external data sets. When the high-` CMB ACT+SPT data are
added, we obtain nS = 0.9600 ± 0.0072 and r < 0.11 at 95%
confidence. Including the Planck lensing likelihood gives nS =

0.9653 ± 0.0069 and r < 0.12, and adding BAO data gives nS =
0.9643 ± 0.0059 and r < 0.12.

In Fig. 1 we illustrate how the Planck constraints in the
(nS , r) 2-D plane relate to the predictions of a number of rep-
resentative inflationary potentials. The sensitivity of Planck data
to high multipoles removes the (nS , r) degeneracy found using
WMAP data. Planck data favour models with a concave poten-
tial. As shown in Fig. 1, most of the 95% allowed region lies
below the convex potential limit, and convex models with a red
tilt in the range [0.945-0.98] are allowed by Planck at 95% CL.

In the 2-D (nS , r) plane it is useful to classify the inflationary
potentials by the first two slow-roll parameters evaluated at the
pivot scale k⇤ = 0.002 Mpc�1. To represent our ignorance of the
stage of entropy generation, we adopt the interval [50, 60] for the
number of e-folds, N⇤, to the end of inflation; this uncertainty
will be plotted for those potentials which have a self-consistent
exit from inflation. In the following we discuss the status of the
most common inflationary potentials.

The simplest class of inflationary models is characterized by
a single monomial potential of the form:

V(�) = �nM4
pl

 

�

Mpl

!n

. (33)

Such class of potentials are the simplest chaotic models, in
which inflation starts from large values for the inflaton � > Mpl.
Inflation ends by violation of the slow-roll regime and we as-
sume this occurs at ✏ = 1. According to Eqs. ??, this class of
potentials predicts, to lowest order in slow-roll parameters,

ns � 1 ' �n(n + 2)M2
pl/�

2
⇤ (34)

r ' 8n2M2
pl/�

2
⇤ (35)

�2
⇤ ' nM2

pl(4N⇤ + n)/2. (36)

The �4�4 model is well outside of the 99.7% confidence region
in the (ns, r) plane, confirming indications from the WMAP data.

Inflation with a quadratic potential, n = 2 (Linde 1983),
has been considered as the simplest example for inflation, but
now lies between 68% and 95% CL, as shown in Fig. 1. The
quadratic model also represents an archetypal model for the exit
of inflation and the subsequent entropy production stage, which
starts with a non-perturbative preheating stage (Kofman et al.
1997) during the coherent oscillation regime of the inflaton.
Planck constrains 55 . N⇤ . 60 for this model, from which
ln ⇢th/⇢end & �20.8 can be derived at 95% CL. This assumes
that the coherent oscillation regime with wreh = 0 changes into
radiation suddenly at ⇢ = ⇢th in Eqn. 24.

The case of a linear potential with n = 1 (McAllister et al.
2010), motivated by axion monodromy, has ⌘ = 0 and is within

► Many models of inflation! For example:
► Simplest are power law single field models                       , field starts                         

and ends when  slow (next slide) violated
► Natural inflation                          , can be large field or small field 

depending on f
► Hybrid inflation, second field !# can end inflation
► R2 , inflation occurs by modified gravity
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HZ HZ + YHe HZ + Ne↵ ⇤CDM
105!b 2293 ± 23 2295 ± 23 2287 ± 23 2209 ± 27
104!c 1088 ± 13 1145 ± 17 1289 ± 44 1195 ± 26
✓MC 1.0429 ± 0.0005 1.0441 ± 0.0006 1.0406 ± 0.0007 1.0414 ± 0.0006
⌧ 0.114 ± 0.010 0.106 ± 0.012 0.103 ± 0.012 0.09 ± 0.013
ln

⇣

1010As

⌘

3.110 ± 0.021 3.125 ± 0.025 3.136 ± 0.025 3.088 ± 0.024
ns — — — 0.9616 ± 0.0072
Ne↵ — — 3.96 ± 0.19 —
YHe — 0.3084 ± 0.0085 — —
�2 ln(Lmax) 9833.8 9806.4 9807.3 9805.7

Table 3. Constraints on cosmological parameters and best-fit �2 ln(L) from Planck+WP data.

4.2. Constraints on power-law primordial spectra

We now consider all inflationary models which can be de-
scribed by the primordial perturbation parameters consisting of
the scalar amplitude and spectral index As , ns, and the tensor-to-
scalar ratio r, all defined at the pivot scale k⇤, assuming that the
spectral index does not vary with wavelength. Negligible run-
nings of the spectral indices are expected if the slow-roll condi-
tion are well satisfied, and either the hierarchy of ✏n describing
the Hubble parameter hierarchy or the slow-roll potential hier-
archy can be truncated to the first two terms with a sufficient
accuracy: in the next subsection we will relax this assumption.

Sampling the physical parameters As , ns , r is not the only
methodology to constrain slow-roll inflation. Another possibil-
ity is to sample the Hubble flow functions (HFF) in the ana-
lytic expressions for the scalar and tensor power spectra (Gong
& Stewart 2001; Leach et al. 2002). We perform a comparison
of slow-roll inflationary predictions by sampling the HFF with
Planck data in the Appendix and show that the results obtained
in this way agree with those derived by sampling the physi-
cal parameters. This confirms similar studies with earlier data
(Hamann et al. 2008c; Finelli et al. 2010).

The spectral index from Planck + WP is

ns = 0.9603 ± 0.0073. (32)

This tight bound on ns is crucial for constraining inflation from
Planck. The Planck constraint on r depends slightly on the pivot
scale; we adopt k⇤ = 0.002 Mpc�1 to quote our result. Planck
marginalised 95% confidence level for the tensor-to-scalar ratio
is r0.002 < 0.12. This bound improves on the most recent results,
including the WMAP 9-year constraint of r < 0.38 (Hinshaw
et al. 2012), the WMAP7 + ACT limit r < 0.28 (Sievers et al.
2013), and the WMAP7 + SPT limit of r < 0.18 (Story et al.
2012). The new bound from Planck is consistent with the limit
one can achieve from temperature anisotropies (Knox & Turner
1994). When tensors are added the spectral index from Planck
+WP is ns = 0.9624 ± 0.0075.

The Planck constraint on r corresponds to an upper bound
on the energy scale of inflation

V⇤ =
3AS r m4

P

128
< 6.4 ⇥ 10�12m4

P = (1.94 ⇥ 1016GeV)4 ,

at 95% confidence. This is equivalent to an upper bound on the
Hubble parameter during inflation of H⇤/mP < 7.3 ⇥ 10�6.

The Planck results on ns and r are robust to the addition of
external data sets. When the high-` CMB ACT+SPT data are
added, we obtain nS = 0.9600 ± 0.0072 and r < 0.11 at 95%
confidence. Including the Planck lensing likelihood gives nS =

0.9653 ± 0.0069 and r < 0.12, and adding BAO data gives nS =
0.9643 ± 0.0059 and r < 0.12.

In Fig. 1 we illustrate how the Planck constraints in the
(nS , r) 2-D plane relate to the predictions of a number of rep-
resentative inflationary potentials. The sensitivity of Planck data
to high multipoles removes the (nS , r) degeneracy found using
WMAP data. Planck data favour models with a concave poten-
tial. As shown in Fig. 1, most of the 95% allowed region lies
below the convex potential limit, and convex models with a red
tilt in the range [0.945-0.98] are allowed by Planck at 95% CL.

In the 2-D (nS , r) plane it is useful to classify the inflationary
potentials by the first two slow-roll parameters evaluated at the
pivot scale k⇤ = 0.002 Mpc�1. To represent our ignorance of the
stage of entropy generation, we adopt the interval [50, 60] for the
number of e-folds, N⇤, to the end of inflation; this uncertainty
will be plotted for those potentials which have a self-consistent
exit from inflation. In the following we discuss the status of the
most common inflationary potentials.

The simplest class of inflationary models is characterized by
a single monomial potential of the form:

V(�) = �nM4
pl

 

�

Mpl

!n

. (33)

Such class of potentials are the simplest chaotic models, in
which inflation starts from large values for the inflaton � > Mpl.
Inflation ends by violation of the slow-roll regime and we as-
sume this occurs at ✏ = 1. According to Eqs. ??, this class of
potentials predicts, to lowest order in slow-roll parameters,

ns � 1 ' �n(n + 2)M2
pl/�

2
⇤ (34)

r ' 8n2M2
pl/�

2
⇤ (35)

�2
⇤ ' nM2

pl(4N⇤ + n)/2. (36)

The �4�4 model is well outside of the 99.7% confidence region
in the (ns, r) plane, confirming indications from the WMAP data.

Inflation with a quadratic potential, n = 2 (Linde 1983),
has been considered as the simplest example for inflation, but
now lies between 68% and 95% CL, as shown in Fig. 1. The
quadratic model also represents an archetypal model for the exit
of inflation and the subsequent entropy production stage, which
starts with a non-perturbative preheating stage (Kofman et al.
1997) during the coherent oscillation regime of the inflaton.
Planck constrains 55 . N⇤ . 60 for this model, from which
ln ⇢th/⇢end & �20.8 can be derived at 95% CL. This assumes
that the coherent oscillation regime with wreh = 0 changes into
radiation suddenly at ⇢ = ⇢th in Eqn. 24.

The case of a linear potential with n = 1 (McAllister et al.
2010), motivated by axion monodromy, has ⌘ = 0 and is within
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HZ HZ + YP HZ + Ne↵ ⇤CDM
105⌦bh2 2296 ± 24 2296 ± 23 2285 ± 23 2205 ± 28
104⌦ch2 1088 ± 13 1158 ± 20 1298 ± 43 1199 ± 27
100✓MC 1.04292 ± 0.00054 1.04439 ± 0.00063 1.04052 ± 0.00067 1.04131 ± 0.00063
⌧ 0.125+0.016

�0.014 0.109+0.013
0.014 0.105+0.014

�0.013 0.089+0.012�0.014
ln

⇣

1010As

⌘

3.133+0.032
�0.028 3.137+0.027

�0.028 3.143+0.027
�0.026 3.089+0.024

�0.027
ns — — — 0.9603 ± 0.0073
Ne↵ — — 3.98 ± 0.19 —
YP — 0.3194 ± 0.013 — —
�2� ln(Lmax) 27.9 2.2 2.8 0

Table 3. Constraints on cosmological parameters and best-fit �2� ln(L) with respect to the standard ⇤CDM model, using
Planck+WP data, testing the significance of the deviation from the HZ model.

confirms similar studies with earlier data (Hamann et al., 2008c;
Finelli et al., 2010). For the non-expert this paragraph would be
hard to follow.

The spectral index estimated from Planck+WP data is

ns = 0.9603 ± 0.0073. (32)

This tight bound on ns is crucial for constraining inflation. The
Planck constraint on r depends slightly on the pivot scale; we
adopt k⇤ = 0.002 Mpc�1 to quote our result, with r0.002 < 0.12 at
95% confidence. This bound improves on the most recent results,
including the WMAP 9-year constraint of r < 0.38 (Hinshaw
et al., 2012a), the WMAP7 + ACT limit of r < 0.28 (Sievers
et al., 2013), and the WMAP7 + SPT limit of r < 0.18 (Story
et al., 2012). The new bound from Planck is consistent with
the limit one can achieve from temperature anisotropies alone
(Knox & Turner, 1994). When a possible tensors component is
included, the spectral index from Planck+WP is not significantly
changed, with ns = 0.9624 ± 0.0075.

The Planck constraint on r corresponds to an upper bound
on the energy scale of inflation

V⇤ =
3As r M4

pl

128
< 6.4 ⇥ 10�12M4

pl = (1.94 ⇥ 1016 GeV)4 , (33)

at 95% confidence. This is equivalent to an upper bound on the
Hubble parameter during inflation of H⇤/Mpl < 7.3 ⇥ 10�6.

The Planck results on ns and r are robust to the addition
of external data sets (see Table 4). When the high-` CMB
ACT+SPT data are added, we obtain ns = 0.9600 ± 0.0072 and
r < 0.11 at 95% confidence. Including the Planck lensing likeli-
hood gives ns = 0.9653 ± 0.0069 and r < 0.12, and adding BAO
data gives ns = 0.9643 ± 0.0059 and r < 0.12. These bounds
are sufficiently robust to the small changes in the polarization
likelihood at low multipoles. To test this robustness, instead of
using the WMAP polarization likelihood, we impose a Gaussian
prior ⌧ = 0.07 ± 0.013, to take into account small shifts due to
uncertainties in residual foreground contamination or instrument
systematic in the evaluation of ⌧, as performed in Appendix B of
Planck Collaboration XVI (2013). We obtain at most a reduction
of 8% for the upper bounds on r.

In terms of slow-roll parameters, Planck + WP constraints
imply ✏V < 0.008 at 95% CL ⌘V = �0.010+0.005

�0.011.
It is useful to plot the inflationary potentials in the ns � r

plane using the first two slow-roll parameters evaluated at the
pivot scale k⇤ = 0.002 Mpc�1 (Dodelson et al., 1997). Given
our ignorance of the details of the epoch of entropy generation,
we assume that the number of e-folds N⇤ to the end of inflation
lies in the interval [50, 60]. This uncertainty is plotted for those
potentials having a self-consistent exit from inflation.

Fig. 1 shows the Planck constraints in the ns�r plane and in-
dicates the predictions of a number of representative inflationary
potentials. The sensitivity of Planck data to high multipoles re-
moves the degeneracy between ns and r found using WMAP data.
Planck data favor models with a concave potential. As shown in
Fig. 1, most of the 95% allowed region lies below the convex
potential limit, and concave models with a red tilt in the range
[0.945-0.98] are allowed by Planck at 95% CL. In the following
we consider the status of several illustrative and commonly dis-
cussed inflationary potentials in light of the Planck observations.

Power law potential and chaotic inflation

The simplest class of inflationary models is characterized by a
single monomial potential of the form

V(�) = �M4
pl

 

�

Mpl

!n

. (34)

This class of potentials are the simplest chaotic models, in which
inflation starts from large values for the inflaton, � > Mpl.
Inflation ends by violation of the slow-roll regime and we as-
sume this occurs at ✏V = 1. According to Eqs. 5, 6, and 15,
this class of potentials predicts to lowest order in slow-roll pa-
rameters ns � 1 ⇡ �n(n + 2)M2

pl/�
2⇤, r ⇡ 8n2M2

pl/�
2⇤, �2⇤ ⇡

nM2
pl(4N⇤ + n)/2. The ��4 model lies well outside of the 99.7%

confidence region in the ns � r plane. This result confirms pre-
vious findings from e.g., Hinshaw et al. (2012a) in which this
model is well outside the 95% CL for the WMAP 9-year data,
and is further excluded by CMB data at smaller scales.

The model with a quadratic potential, n = 2 (Linde, 1983),
often considered the simplest example for inflation, now lies at
the edge of the 95% CL for the Planck+WP+high-` data for 60 .
N⇤ . 70 e-folds, as shown in Fig. 1.

A linear potential with n = 1 (McAllister et al., 2010), mo-
tivated by axion monodromy, has ⌘V = 0 and lies within the
95% confidence region. Inflation with n = 2/3 (Silverstein &
Westphal, 2008) however, also motivated by axion monodromy,
now lies on the boundary of the 95% confidence region. More
permissive reheating priors allowing N⇤ < 50 could reconcile
this model with Planck data.

Exponential potential and power law inflation

Inflation with an exponential potential

V(�) = ⇤4 exp
 

�� �
Mpl

!

(35)
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A simple symmetry breaking potential

The symmetry-breaking potential (Olive, 1990)

V(�) = ⇤4
 

1 � �
2

µ2

!2

, (38)

considered as a small-field inflationary model is in agreement
with observations for super-Planckian value of the true vacuum,
i.e., 17 < µ/Mpl < 25.

Natural inflation

Another interesting class of potentials is natural inflation
(Freese et al., 1990; Adams et al., 1993), initially motivated by
its origin in symmetry breaking in an attempt to make more natu-
ral the extreme flatness of the potentials required for inflationary
cosmology. In natural inflation the effective one-dimensional
potential takes the form

V(�) = ⇤4
"

1 + cos
 

�

f

!#

, (39)

where f is a scale which determines the slope of the potential.
Depending on the value of f , the model falls into the large field
( f & 1.5Mpl) or small field ( f . 1.5Mpl) classification scheme.
Therefore, ns ⇡ 1 � M2

pl/ f 2 holds for small f and ns ⇡ 1 � 2/N,
r ⇡ 8/N holds for large f , approximating the m2�2 potential in
the latter case (with N⇤ ⇡ (2 f 2/M2

pl) ln[sin(�e/ f )/ sin(�⇤/ f )]).
The Planck+WP data constrain f > Mpl at 95% CL, improving
previous constraints based on WMAP 3-year data (Savage et al.,
2006).

Hybrid inflation

In hybrid inflationary models a second field, �, coupled to the
inflaton undergoes symmetry breaking. The simplest example of
this class is

V(�, �) = ⇤4
 

1 � �
2

µ2

!2

+ U(�) +
g2

2
�2�2 . (40)

For most of the parameter space these models can be considered
effectively as single field models for the inflaton �. The second
field � is close to the origin during the slow-roll regime for �,
and inflation ends either by ending the slow roll for the infla-
ton at ✏� ⇡ M2

pl(dU/d�)2/(⇤4 + U(�))2 ⇡ 1 or by the waterfall
transition of �. The simplest models with

U(�) =
m2

2
�2 (41)

are disfavoured for most of the parameter space (Cortês &
Liddle, 2009). Models with m2�2/2 ⇠ ⇤4 are disfavored due to
an overly large tensor-to-scalar ratio, and models with U(�) ⌧
⇤4 predict a spectral index ns > 1, also disfavored by the Planck
data.

We discuss hybrid inflationary models predicting ns < 1 sep-
arately. As an example, the spontaneously broken SUSY model
(Dvali et al., 1994)

U(�) = ↵⇤4 ln
 

�

µ

!

, (42)

predicts ns�1 ⇡ �(1+3↵/2)/N⇤ and r ⇡ 8↵/N⇤. For ↵ << 1 and
N⇤ ' 50, ns ' 0.98 is disfavored by Planck+WP+BAO data at
more than 95% CL. However, more permissive reheating priors
allowing N⇤ < 50 or a non-negligible ↵ give models that are
consistent with the Planck data.

R2 inflation

Inflationary models can also be accommodated within extended
theories of gravity. These theories can be analyzed either in the
original (Jordan) frame or in the conformally related Einstein
frame with a Klein-Gordon scalar field. Due to the invariance of
curvature and tensor perturbation power spectra with respect to
this conformal transformation, we can use the same methodol-
ogy described earlier.

The first inflationary model proposed was of this type, and
was based on higher order gravitational terms in the action
(Starobinsky, 1980)

S =
Z

d4x
p�g

M2
pl

2

 

R +
R2

6M2

!

, (43)

with the motivation to include semi-classical quantum effects.
The predictions for R2 inflation were first studied in Mukhanov
& Chibisov (1981); Starobinsky (1983) and can be summarized
as: ns�1 ⇡ �8(4N⇤+9)/(4N⇤+3) and r ⇡ 192/(4N⇤+3)2. Since r
is suppressed by another 1/N⇤ with respect to the scalar tilt, this
model predicts a tiny amount of gravitational waves. This model
predicts ns = 0.963 for N⇤ = 55 and is fully consistent with the
Planck constraints.

Non-minimally coupled inflaton

A non-minimal coupling of the inflaton to gravity, with an action
as

S =
Z

d4x
p�g
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(44)
leads to several interesting consequences, such as a suppression
of the tensor-to-scalar ratio.

The case of a massless self-interacting inflaton (�0 = 0) can
be in agreement with the Planck+WP data for ⇠ , 0. Within the
range 50 < N⇤ < 60, this model is within the Planck+WP 95%
confidence region for ⇠ > 0.0019, improving previous bounds
(Okada et al., 2010).

The amplitude of scalar perturbations is proportional to �/⇠2
for ⇠ � 1 and therefore the problem of tiny values for the in-
flaton self-coupling � can be alleviated (Salopek et al., 1989;
Fakir & Unruh, 1990). The regime �0 ⌧ Mpl is allowed and �
could be the Standard Model Higgs as proposed in Bezrukov &
Shaposhnikov (2009). The Higgs case with ⇠ � 1 has the same
predictions as the R2 model in terms of ns and r as a function of
N⇤; the reheating mechanism in the Higgs case could have been
more efficient than the one in R2 and therefore has a slightly
larger ns. This model is fully consistent with Planck constraints.
This paragraph is unclear - needs rewriting

The case with ⇠ < 0 and |⇠|�2
0/M

2
pl ⇠ 1 was also recently

emphasized in Linde et al. (2011). With the symmetry breaking
potential in Eq. 44, the large field case with inflaton � > �0 is
disfavored by Planck data, whereas the small field case � < �0
is in agreement with the data.

4.3. Running spectral index

We have shown that the single parameter Harrison-Zeldovich
spectrum fails to fit the data and that at least the first two terms,
As and ns, in the expansion of the primordial power spectrum in
powers of ln(k) given in Eq. 10 are needed. Here we consider
whether the data require the next term known as
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The symmetry-breaking potential (Olive, 1990)
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considered as a small-field inflationary model is in agreement
with observations for super-Planckian value of the true vacuum,
i.e., 17 < µ/Mpl < 25.

Natural inflation

Another interesting class of potentials is natural inflation
(Freese et al., 1990; Adams et al., 1993), initially motivated by
its origin in symmetry breaking in an attempt to make more natu-
ral the extreme flatness of the potentials required for inflationary
cosmology. In natural inflation the effective one-dimensional
potential takes the form

V(�) = ⇤4
"

1 + cos
 

�

f

!#

, (39)

where f is a scale which determines the slope of the potential.
Depending on the value of f , the model falls into the large field
( f & 1.5Mpl) or small field ( f . 1.5Mpl) classification scheme.
Therefore, ns ⇡ 1 � M2

pl/ f 2 holds for small f and ns ⇡ 1 � 2/N,
r ⇡ 8/N holds for large f , approximating the m2�2 potential in
the latter case (with N⇤ ⇡ (2 f 2/M2

pl) ln[sin(�e/ f )/ sin(�⇤/ f )]).
The Planck+WP data constrain f > Mpl at 95% CL, improving
previous constraints based on WMAP 3-year data (Savage et al.,
2006).

Hybrid inflation

In hybrid inflationary models a second field, �, coupled to the
inflaton undergoes symmetry breaking. The simplest example of
this class is

V(�, �) = ⇤4
 

1 � �
2
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!2

+ U(�) +
g2

2
�2�2 . (40)

For most of the parameter space these models can be considered
effectively as single field models for the inflaton �. The second
field � is close to the origin during the slow-roll regime for �,
and inflation ends either by ending the slow roll for the infla-
ton at ✏� ⇡ M2

pl(dU/d�)2/(⇤4 + U(�))2 ⇡ 1 or by the waterfall
transition of �. The simplest models with

U(�) =
m2

2
�2 (41)

are disfavoured for most of the parameter space (Cortês &
Liddle, 2009). Models with m2�2/2 ⇠ ⇤4 are disfavored due to
an overly large tensor-to-scalar ratio, and models with U(�) ⌧
⇤4 predict a spectral index ns > 1, also disfavored by the Planck
data.

We discuss hybrid inflationary models predicting ns < 1 sep-
arately. As an example, the spontaneously broken SUSY model
(Dvali et al., 1994)

U(�) = ↵⇤4 ln
 

�

µ

!

, (42)

predicts ns�1 ⇡ �(1+3↵/2)/N⇤ and r ⇡ 8↵/N⇤. For ↵ << 1 and
N⇤ ' 50, ns ' 0.98 is disfavored by Planck+WP+BAO data at
more than 95% CL. However, more permissive reheating priors
allowing N⇤ < 50 or a non-negligible ↵ give models that are
consistent with the Planck data.

R2 inflation

Inflationary models can also be accommodated within extended
theories of gravity. These theories can be analyzed either in the
original (Jordan) frame or in the conformally related Einstein
frame with a Klein-Gordon scalar field. Due to the invariance of
curvature and tensor perturbation power spectra with respect to
this conformal transformation, we can use the same methodol-
ogy described earlier.

The first inflationary model proposed was of this type, and
was based on higher order gravitational terms in the action
(Starobinsky, 1980)

S =
Z

d4x
p�g

M2
pl

2

 

R +
R2

6M2

!

, (43)

with the motivation to include semi-classical quantum effects.
The predictions for R2 inflation were first studied in Mukhanov
& Chibisov (1981); Starobinsky (1983) and can be summarized
as: ns�1 ⇡ �8(4N⇤+9)/(4N⇤+3) and r ⇡ 192/(4N⇤+3)2. Since r
is suppressed by another 1/N⇤ with respect to the scalar tilt, this
model predicts a tiny amount of gravitational waves. This model
predicts ns = 0.963 for N⇤ = 55 and is fully consistent with the
Planck constraints.

Non-minimally coupled inflaton

A non-minimal coupling of the inflaton to gravity, with an action
as

S =
Z

d4x
p�g
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(44)
leads to several interesting consequences, such as a suppression
of the tensor-to-scalar ratio.

The case of a massless self-interacting inflaton (�0 = 0) can
be in agreement with the Planck+WP data for ⇠ , 0. Within the
range 50 < N⇤ < 60, this model is within the Planck+WP 95%
confidence region for ⇠ > 0.0019, improving previous bounds
(Okada et al., 2010).

The amplitude of scalar perturbations is proportional to �/⇠2
for ⇠ � 1 and therefore the problem of tiny values for the in-
flaton self-coupling � can be alleviated (Salopek et al., 1989;
Fakir & Unruh, 1990). The regime �0 ⌧ Mpl is allowed and �
could be the Standard Model Higgs as proposed in Bezrukov &
Shaposhnikov (2009). The Higgs case with ⇠ � 1 has the same
predictions as the R2 model in terms of ns and r as a function of
N⇤; the reheating mechanism in the Higgs case could have been
more efficient than the one in R2 and therefore has a slightly
larger ns. This model is fully consistent with Planck constraints.
This paragraph is unclear - needs rewriting

The case with ⇠ < 0 and |⇠|�2
0/M

2
pl ⇠ 1 was also recently

emphasized in Linde et al. (2011). With the symmetry breaking
potential in Eq. 44, the large field case with inflaton � > �0 is
disfavored by Planck data, whereas the small field case � < �0
is in agreement with the data.

4.3. Running spectral index

We have shown that the single parameter Harrison-Zeldovich
spectrum fails to fit the data and that at least the first two terms,
As and ns, in the expansion of the primordial power spectrum in
powers of ln(k) given in Eq. 10 are needed. Here we consider
whether the data require the next term known as

Planck Collaboration: Constraints on inflation 11

A simple symmetry breaking potential

The symmetry-breaking potential (Olive, 1990)

V(�) = ⇤4
 

1 � �
2

µ2

!2

, (38)

considered as a small-field inflationary model is in agreement
with observations for super-Planckian value of the true vacuum,
i.e., 17 < µ/Mpl < 25.

Natural inflation

Another interesting class of potentials is natural inflation
(Freese et al., 1990; Adams et al., 1993), initially motivated by
its origin in symmetry breaking in an attempt to make more natu-
ral the extreme flatness of the potentials required for inflationary
cosmology. In natural inflation the effective one-dimensional
potential takes the form

V(�) = ⇤4
"

1 + cos
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f
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, (39)

where f is a scale which determines the slope of the potential.
Depending on the value of f , the model falls into the large field
( f & 1.5Mpl) or small field ( f . 1.5Mpl) classification scheme.
Therefore, ns ⇡ 1 � M2

pl/ f 2 holds for small f and ns ⇡ 1 � 2/N,
r ⇡ 8/N holds for large f , approximating the m2�2 potential in
the latter case (with N⇤ ⇡ (2 f 2/M2

pl) ln[sin(�e/ f )/ sin(�⇤/ f )]).
The Planck+WP data constrain f > Mpl at 95% CL, improving
previous constraints based on WMAP 3-year data (Savage et al.,
2006).

Hybrid inflation

In hybrid inflationary models a second field, �, coupled to the
inflaton undergoes symmetry breaking. The simplest example of
this class is

V(�, �) = ⇤4
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For most of the parameter space these models can be considered
effectively as single field models for the inflaton �. The second
field � is close to the origin during the slow-roll regime for �,
and inflation ends either by ending the slow roll for the infla-
ton at ✏� ⇡ M2

pl(dU/d�)2/(⇤4 + U(�))2 ⇡ 1 or by the waterfall
transition of �. The simplest models with

U(�) =
m2

2
�2 (41)

are disfavoured for most of the parameter space (Cortês &
Liddle, 2009). Models with m2�2/2 ⇠ ⇤4 are disfavored due to
an overly large tensor-to-scalar ratio, and models with U(�) ⌧
⇤4 predict a spectral index ns > 1, also disfavored by the Planck
data.

We discuss hybrid inflationary models predicting ns < 1 sep-
arately. As an example, the spontaneously broken SUSY model
(Dvali et al., 1994)

U(�) = ↵⇤4 ln
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, (42)

predicts ns�1 ⇡ �(1+3↵/2)/N⇤ and r ⇡ 8↵/N⇤. For ↵ << 1 and
N⇤ ' 50, ns ' 0.98 is disfavored by Planck+WP+BAO data at
more than 95% CL. However, more permissive reheating priors
allowing N⇤ < 50 or a non-negligible ↵ give models that are
consistent with the Planck data.

R2 inflation

Inflationary models can also be accommodated within extended
theories of gravity. These theories can be analyzed either in the
original (Jordan) frame or in the conformally related Einstein
frame with a Klein-Gordon scalar field. Due to the invariance of
curvature and tensor perturbation power spectra with respect to
this conformal transformation, we can use the same methodol-
ogy described earlier.

The first inflationary model proposed was of this type, and
was based on higher order gravitational terms in the action
(Starobinsky, 1980)

S =
Z

d4x
p�g
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with the motivation to include semi-classical quantum effects.
The predictions for R2 inflation were first studied in Mukhanov
& Chibisov (1981); Starobinsky (1983) and can be summarized
as: ns�1 ⇡ �8(4N⇤+9)/(4N⇤+3) and r ⇡ 192/(4N⇤+3)2. Since r
is suppressed by another 1/N⇤ with respect to the scalar tilt, this
model predicts a tiny amount of gravitational waves. This model
predicts ns = 0.963 for N⇤ = 55 and is fully consistent with the
Planck constraints.

Non-minimally coupled inflaton

A non-minimal coupling of the inflaton to gravity, with an action
as

S =
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leads to several interesting consequences, such as a suppression
of the tensor-to-scalar ratio.

The case of a massless self-interacting inflaton (�0 = 0) can
be in agreement with the Planck+WP data for ⇠ , 0. Within the
range 50 < N⇤ < 60, this model is within the Planck+WP 95%
confidence region for ⇠ > 0.0019, improving previous bounds
(Okada et al., 2010).

The amplitude of scalar perturbations is proportional to �/⇠2
for ⇠ � 1 and therefore the problem of tiny values for the in-
flaton self-coupling � can be alleviated (Salopek et al., 1989;
Fakir & Unruh, 1990). The regime �0 ⌧ Mpl is allowed and �
could be the Standard Model Higgs as proposed in Bezrukov &
Shaposhnikov (2009). The Higgs case with ⇠ � 1 has the same
predictions as the R2 model in terms of ns and r as a function of
N⇤; the reheating mechanism in the Higgs case could have been
more efficient than the one in R2 and therefore has a slightly
larger ns. This model is fully consistent with Planck constraints.
This paragraph is unclear - needs rewriting

The case with ⇠ < 0 and |⇠|�2
0/M

2
pl ⇠ 1 was also recently

emphasized in Linde et al. (2011). With the symmetry breaking
potential in Eq. 44, the large field case with inflaton � > �0 is
disfavored by Planck data, whereas the small field case � < �0
is in agreement with the data.

4.3. Running spectral index

We have shown that the single parameter Harrison-Zeldovich
spectrum fails to fit the data and that at least the first two terms,
As and ns, in the expansion of the primordial power spectrum in
powers of ln(k) given in Eq. 10 are needed. Here we consider
whether the data require the next term known as
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approximation by evaluating the following equations at the value
of the inflation field �⇤ where the mode k⇤ = a⇤H⇤ crosses the
Hubble radius for the first time. (For a nice review of the slow-
roll approximation, see for example Liddle & Lyth (1993)). The
number of e-folds before the end of inflation, N, at which the
pivot scale k⇤ exits from the Hubble radius, is

N⇤ =
Z te

t⇤
dt H ⇡ 1

M2
pl

Z �e

�⇤
d�

V
V�
, (12)

where the equality holds in the slow-roll approximation, and
subscript e refers to the end of inflation.

The coefficients of Eqs. 10 and 11 at their respective leading
orders in the slow-roll parameters are given by

As ⇡ V
24⇡2M4

pl✏V
(13)

At ⇡ 2V
3⇡2M4

pl

(14)

ns � 1 ⇡ 2⌘V � 6✏V (15)
nt ⇡ �2✏V (16)

dns/d ln k ⇡ �16✏V⌘V + 24✏2V + 2⇠2V (17)

dnt/d ln k ⇡ �4✏V⌘V + 8✏2V (18)

d2ns/d ln k2 ⇡ �192✏3V + 192✏2V⌘V � 32✏V⌘2
V

� 24✏V⇠2V + 2⌘V⇠
2
V + 2$3

V ,
(19)

where the slow-roll parameters ✏V and ⌘V are defined in Eqs. 5
and 6, and the higher order parameters are defined as follows

⇠2V =
M4

plV�V���
V2 , (20)

and

$3
V =

M6
plV

2
�V����

V3 . (21)

In single field inflation with a standard kinetic term, as dis-
cussed here, the tensor spectrum shape is not independent from
the other parameters. The slow-roll paradigm implies a tensor-
to-scalar ratio, at the pivot scale, of

r =
Pt(k⇤)
PR(k⇤)

⇡ 16✏ ⇡ �8nt , (22)

referred to as the consistency relation. This consistency relation
is also useful to understand how r is connected to the evolution
of the inflaton:

��

Mpl
⇡ 1p

8

Z N

0
dN
p

r . (23)

The above relation, called the Lyth bound, implies that an infla-
ton variation of the order of the Planck mass is needed to produce
r & 0.01. Such a threshold is useful to classify large and small
field inflationary models with respect to the Lyth bound.

2.3. Ending inflation and the epoch of entropy generation

The greatest uncertainty in calculating the perturbation spectrum
predicted from a particular inflationary potential arises in estab-
lishing the correspondence between the comoving wavenumber
today, and the inflaton energy density when the mode of that
wavenumber crossed the Hubble radius during inflation (Kinney

& Riotto, 2006). This correspondence depends both on the infla-
tionary model and on the cosmological evolution from the end
of inflation to the present.

After the slow-roll stage, �̈ becomes as important as the cos-
mological damping term 3H�̇. Inflation ends gradually as the
inflaton picks up kinetic energy so that w is no longer slightly
above �1, but rather far from that value. We may arbitrarily
deem that inflation ends when w = �1/3 (the value dividing
the cases of an expanding and a contracting comoving Hubble
radius), or, equivalently, at ✏V ⇡ 1, after which the epoch of
entropy generation starts. Because of couplings to other fields,
the energy initially in the form of scalar field vacuum energy
is transferred to the other fields by perturbative decay (reheat-
ing), possibly preceded by a non-perturbative stage (preheating).
There is considerable uncertainty about the mechanisms of en-
tropy generation, or thermalization, which subsequently lead to
a standard w = 1/3 radiation equation of state.

On the other hand, if we want to identify some k⇤ today with
the value of the inflaton field at the time this scale left the hori-
zon, Eq. 12 needs to be matched to an expression that quantifies
how much k⇤ has shrunk relative to the size of the horizon be-
tween the end of inflation and the time that mode re-enters the
horizon. This quantity depends both on the inflationary potential
and the details of the entropy generation process, and is given by

N⇤ ⇡ 71.21 � ln
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(24)

where ⇢end is the energy density at the end of inflation, ⇢th is
an energy scale by which the Universe has thermalized, a0H0 is
the present horizon scale, Vhor is the potential energy when the
present horizon scale left the horizon during inflation, and wint
characterizes the effective equation of state between the end of
inflation and the energy scale specified by ⇢th. In predicting the
primordial power spectra at observable scales for a specific in-
flaton potential, this uncertainty in the reheating history of the
Universe becomes relevant and can be taken into account by al-
lowing N⇤ to vary over a range of values. Note that wint is not
intended to provide a detailed model for entropy generation, but
rather to parameterize the uncertainty regarding the expansion
rate of the Universe during this intermediate era. Nevertheless,
constraints on wint provide observational limits on the uncertain
physics during this period.

The first two terms of Eq. 24 are model independent, with
the second term being roughly 5 for k⇤ = 0.05 Mpc�1. If ther-
malization occurs rapidly, or if the reheating stage is close to
radiation-like, the magnitude of the last term in Eq. 24 is . 1.
For most reasonable inflation models, the fourth term isO(1) and
the third term ⇠ �10, motivating the commonly assumed range
50 < N⇤ < 60. Nonetheless, more extreme values on both ends
are in principle possible (Liddle & Leach, 2003). In the figures
of Sect. 4 we will mark the range 50 < N⇤ < 60 to guide the
reader’s eye.

2.4. Perturbations from cosmic inflation at higher order

To calculate the quantum fluctuation generated during cosmic
inflation, a linearized quantum field theory in a time-dependent
background can be used. The leading order is the two-point cor-
relation function

hR(k1) R(k2)i = (2⇡)3 2⇡2

k3 PR(k) �3(k
1

+ k

2

), (25)
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Model Parameter Planck+WP Planck+WP+lensing Planck + WP+CMB high-` Planck+WP+BAO

⇤CDM + tensor ns 0.9624 ± +0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

�2� ln(Lmax) 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ⇤CDM+r model from Planck combined with other data sets.
The constraints are given at pivot scale k⇤ = 0.002 Mpc�1.
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Fig. 1. Marginalized 68% and 95% confidence levels for ns and r from Planck+WP and BAO data, compared to the theoretical
predictions of selected inflationary models.

is called power law inflation (Lucchin & Matarrese, 1985), be-
cause the exact solution for the scale factor is given by a(t) /
t2/�2 . This model is incomplete, since inflation would not end
without an additional mechanism to stop it. Assuming such
a mechanism exists, and leaves unmodified its predictions for
cosmological perturbations, this class of models predicts r =
�8(ns � 1), and is excluded at 99.7% confidence.

Inverse power law potential

Intermediate models (Barrow, 1990; Muslimov, 1990) with in-
verse power law potentials

V(�) = ⇤4
 

�

Mpl

!��
(36)

lead to inflation with a(t) / exp(At f ), with A > 0 and 0 < f <
1, where f = 4/(4 + �) and � > 0. In intermediate inflation
there is no natural end to inflation, but if the exit mechanism
leaves unmodified the inflationary predictions on cosmological
perturbations, this class of models predicts r ⇡ �8�(ns�1)/(��2)
(Barrow & Liddle, 1993). It is disfavored at 95% confidence for
any �.

Hill-top models

In another interesting class of potentials the inflaton rolls away
from an unstable equilibrium as in the first new inflationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(�) ⇡ ⇤4
 

1 � �
p

µp + ...

!

, (37)

where the ellipsis indicates higher order terms that are negli-
gible during inflation, but are needed to ensure the positive-
ness of the potential later on. An exponent of p = 2 is al-
lowed only as a large large-field ? inflationary model and pre-
dicts ns � 1 ⇡ �4M2

pl/µ
2 + 3r/8, r ⇡ 32�2⇤M2

pl/µ
4. Planck con-

strains the scale of the potential to super-Planckian values (i.e.,
8.5 < µ/Mpl < 12.6 at 68% CL for r ⇡ 0.)

Models with p � 3 predict ns � 1 ⇡ �(2/N)(p � 1)/(p � 2)
when r ⇠ 0. The Planck+WP+BAO data disfavor the hill-top
potential with p = 3 at more than 95% confidence; the case with
p = 4 is also in tension with Planck+WP+BAO, but allowed
within the 95% CL for N & 50. For larger values of r these
models provide a better fit to the Planck+WP+BAO data. This is
still not very clear yet

► Power law - (n=3,4 ruled out). Other interesting models include n=1, n=2/3 
(axial monodromy) 

► Power law (exponential potential) ruled out

Planck + WP
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Neutrino species
► Account for energy density of neutrinos by 
► Standard model predicts Neff = 3.046 
► Main affect on CMB is increasing expansion rate before recombination - 

reduced power in damping tail 
► WMAP + SPT suggested extra relativistic species at ~2σ level

Planck Collaboration: Planck Cosmological Parameters

Table 1. Cosmological parameters used in our analysis, with symbol, with value in the base ⇤CDM model, and summary definition
(see text for details). The top block contains parameters with uniform priors that are varied in the MCMC chains. The ranges of
these priors are listed in square brackets. The lower blocks define various derived parameters.

Parameter Prior range Baseline Definition

!b ⌘ ⌦bh2 . . . . . . . [0.005, 0.1] . . . Baryon density today
!c ⌘ ⌦ch2 . . . . . . . [0.001, 0.99] . . . Cold dark matter density today
100✓MC . . . . . . . . . [0.5, 10.0] . . . 100⇥ approximation to r⇤/DA (CosmoMC)
⌧ . . . . . . . . . . . . . . [0.01, 0.8] . . . Thomson scattering optical depth due to reionization
⌦K . . . . . . . . . . . . [�0.3, 0.3] 0 Curvature parameter today with ⌦tot = 1 �⌦KP

m⌫ . . . . . . . . . . . [0, 5] 0 The sum of neutrino masses in eV
me↵
⌫, sterile . . . . . . . . . [0, 3] 0 E↵ective mass of sterile neutrino in eV

w0 . . . . . . . . . . . . . [�3.0, 0.3] �1 Dark energy equation of state, w(a) = w + (1 � a)wa
wa . . . . . . . . . . . . . [�2, 2] 0 As above (perturbations modelled using PPF)
Ne↵ . . . . . . . . . . . . [0.05, 10.0] 3.046 E↵ective number of neutrino-like relativistic degrees of freedom (see text)
YP . . . . . . . . . . . . . [0.1, 0.5] BBN Fraction of baryonic mass in helium
�zre . . . . . . . . . . . . [0.1, 3.0] 0.5 Width of reionization transition (see text)
AL . . . . . . . . . . . . . [01] 1 Amplitude of the lensing power relative to the physical value
ns . . . . . . . . . . . . . [0.9, 1.1] . . . Scalar spectrum power-law index (k0 = 0.05Mpc�1)
nt . . . . . . . . . . . . . nt = �r0.05/8 Inflation Tensor spectrum power-law index (k0 = 0.05Mpc�1)
dns/d ln k . . . . . . . . [�1, 1] 0 Running of the spectral index
ln(1010As) . . . . . . . [2.7, 4.0] . . . Log power of the primordial curvature perturbations (k0 = 0.05Mpc�1)
r0.05 . . . . . . . . . . . . [0, 2] 0 Ratio of tensor primordial power to curvature power at k0 = 0.05 Mpc�1

⌦⇤ . . . . . . . . . . . . . . . Dark energy density divided by the critical density today
t0 . . . . . . . . . . . . . . . . Age of the Universe today (in Gyr)
⌦m . . . . . . . . . . . . . . . Matter density (inc. massive neutrinos) today divided by the critical density
�8 . . . . . . . . . . . . . . . . RMS matter fluctuations today in linear theory
zre . . . . . . . . . . . . . . . . Redshift at which Universe is half reionized
H0 . . . . . . . . . . . . [20,100] . . . Current expansion rate in km s�1Mpc�1

r0.002 . . . . . . . . . . . 0 Ratio of tensor primordial power to curvature power at k0 = 0.002 Mpc�1

109As . . . . . . . . . . . . . 109 ⇥ dimensionless curvature power spectrum at k0 = 0.05Mpc�1

!m ⌘ ⌦mh2 . . . . . . . . . Total matter density today (inc. massive neutrinos)

z⇤ . . . . . . . . . . . . . . . . Redshift for which the optical depth equals unity (see text)
r⇤ = rs(z⇤) . . . . . . . . . . Comoving size of the sound horizon at z = z⇤
100✓⇤ . . . . . . . . . . . . . 100⇥ angular size of sound horizon at z = z⇤ (r⇤/DA)
zdrag . . . . . . . . . . . . . . . Redshift at which baryon-drag optical depth equals unity (see text)
rdrag = rs(zdrag) . . . . . . . Comoving size of the sound horizon at z = zdrag

kD . . . . . . . . . . . . . . . . Characteristic damping comoving wavenumber (Mpc�1)
100✓D . . . . . . . . . . . . . 100⇥ angular extent of photon di↵usion at last scattering (see text)
zeq . . . . . . . . . . . . . . . . Redshift of matter-radiation equality (massless neutrinos)
100✓eq . . . . . . . . . . . . . 100⇥ angular size of the comoving horizon at matter-radiation equality
rdrag/DV(0.57) . . . . . . . BAO distance ratio at z = 0.57 (see Sect. 5.2)

but not entirely, complete by the time of electron-positron anni-
hilation. This leads to a slight heating of the neutrinos in addition
to that expected for the photons and hence to a small departure
from the thermal equilibrium prediction T� = (11/4)1/3T⌫ be-
tween the photon temperature T� and the neutrino temperature
T⌫. We account for the additional energy density in neutrinos by
assuming that they have a thermal distribution with an e↵ective
energy density

⇢⌫ = Ne↵
7
8

 
4

11

!4/3

⇢�, (1)

with Ne↵ = 3.046 in the baseline model (Mangano et al., 2002,
2005). This density is divided equally between three neutrino
species while they remain relativistic.

In our baseline model we assume a minimal-mass normal
hierarchy for the neutrino masses, accurately approximated for
current cosmological data as a single massive eigenstate with
m⌫ = 0.06 eV (⌦⌫h2 ⇡ P

m⌫/93.04 eV ⇡ 0.0006; corrections
and uncertainties at the meV level are well below the accuracy
required here). This is consistent with global fits to recent os-
cillation and other data (Forero et al., 2012), but is not the only

possibility. We discuss more general neutrino mass constraints
in Sect. 6.3.

We shall also consider the possibility of extra radiation,
beyond that included in the Standard Model. We approximate
this as having a thermal Fermi-Dirac distribution, and model it
as additional massless neutrinos contributing to the total Ne↵
determining the radiation density as in Eq. (1). We keep the
mass model and heating consistent with the baseline model at
Ne↵ = 3.046, so there is one massive neutrino with N(massive)

e↵ =

3.046/3 ⇡ 1.015, and massless neutrinos with N(massless)
e↵ =

Ne↵ � 1.015. In the case where Ne↵ < 1.015 we use one mas-
sive eigenstate with reduced temperature.

2.1.2. Ionization history

To make accurate predictions for the CMB power spectra, the
background ionization history has to be calculated to high ac-
curacy. Although the main processes that lead to recombina-
tion at z ⇡ 1090 are well understood, cosmological parame-
ters from Planck can be sensitive to sub-percent di↵erences in
the ionization fraction xe (Hu et al., 1995b; Lewis et al., 2006;

5
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Sect. 5.1 with non-zero
P

m⌫ acting like AL < 1. The lensing
power spectrum C��` is lower by 9.1% for the higher-mass best
fit at ` = 400 and larger by 2.1% at ` = 40, which is a simi-
lar trend to the residuals from the best-fit minimal-mass model
shown in the bottom panel of Fig. 12. Planck Collaboration 12
(2013) explores the robustness of the C��` estimates to various
data cuts and foreground-cleaning methods. The first (` = 40–
85) bandpower is the least stable to these choices, although
the variations are not statistically significant. We have checked
that excluding this bandpower does not change the posterior forP

m⌫ significantly, as expected since most of the constrainining
power on

P
m⌫ comes from the bandpowers on smaller scales.

At this stage, it is unclear what to make of this mild prefer-
ence for high masses from the 4-point function compared to the
2-point function. As noted in Planck Collaboration 12 (2013),
the lensing measurements from ACT (Das et al., 2013a) and
SPT (van Engelen et al., 2012a) show similar trends to those
from Planck where they overlap in scale. With further Planck
data (including polarization), and forthcoming results from the
full 2500 deg2 SPT temperature survey, we can expect more
definitive results on this issue in the near future.

Apart from its impact on the early-ISW e↵ect and lensing
potential, the total neutrino mass a↵ects the angular-diameter
distance to last scattering, and can be constrained through the
angular scale of the first acoustic peak. However, this e↵ect
is degenerate with ⌦⇤ (and so the derived H0) in flat mod-
els and with other late-time parameters such as ⌦K and w in
more general models (Howlett et al., 2012). Late-time geomet-
ric measurements help in reducing this “geometric” degeneracy.
Increasing the neutrino masses at fixed ✓⇤ increases the angular-
diameter distance for 0  z  z⇤ and reduces the expansion rate
at low redshift (z <⇠ 1) but increases it at higher redshift. The
spherically-averaged BAO distance DV(z) therefore increases
with increasing neutrino mass at fixed ✓⇤ and the Hubble con-
stant falls; see Fig. 8 of Hou et al. (2012b). With the BAO data
of Sect. 5.2, we find a significantly lower bound on the neutrino
mass:
X

m⌫ < 0.23 eV (95%; Planck+WP+highL+BAO). (71)

The ⇤CDM model with minimal neutrino masses was shown in
Sect. 5.3 to be in tension with recent direct measurements of H0
which favour higher values. Increasing the neutrino mass will
only make this tension worse and drive us to artificially tight
constraints on

P
m⌫. If we relax spatial flatness, the CMB ge-

ometric degeneracy becomes three-dimensional in models with
massive neutrinos and the constraints on

P
m⌫ weaken consider-

ably to

X
m⌫ <

8>><
>>:

0.98 eV (95%; Planck+WP+highL)
0.32 eV (95%; Planck+WP+highL+BAO).

(72)

6.3.2. Constraints on Ne↵

As discussed in Sect. 2, the density of radiation in the Universe
(besides photons) is usually parameterised by the e↵ective neu-
trino number Ne↵ . This parameter specifies the energy density
when the species are relativistic in terms of the neutrino tem-
perature assuming exactly three flavours and instantaneous de-
coupling. In the Standard Model, Ne↵ = 3.046 due to non-
instantaneous decoupling corrections (Mangano et al., 2005).

However, there has been some mild preference for
Ne↵ > 3.046 from recent CMB anisotropy measurements
(Komatsu et al., 2011; Dunkley et al., 2011c; Keisler et al.,
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Fig. 27. Marginalised posterior distribution of Ne↵ for
Planck+WP+highL (black) and additionally BAO (blue),
the H0 measurement (red), and both BAO and H0 (green).

2011c; Archidiacono et al., 2011; Hinshaw et al., 2012c;
Hou et al., 2012b). This is potentially interesting since an excess
could be caused by a neutrino/anti-neutrino asymmetry, sterile
neutrinos, and/or any other light relics in the Universe. In this
subsection we discuss the constraints on Ne↵ from Planck in
scenarios where the extra relativistic degrees of freedom are
e↵ectively massless.

The physics of how Ne↵ is constrained by CMB anisotropies
is explained in Bashinsky & Seljak (2004), Hou et al. (2011)
and Lesgourgues et al. (2013). The main e↵ect is that increasing
the radiation density at fixed ✓⇤ (to preserve the angular scales
of the acoustic peaks) and fixed zeq (to preserve the early-ISW
e↵ect and so first-peak height) increases the expansion rate be-
fore recombination and reduces the age there. Since the di↵usion
length scales approximately as the square root of the age, while
the sound horizon varies proportionately with the age, the angu-
lar scale of the photon di↵usion length, ✓D, increases so reduc-
ing power in the damping tail at a given multipole. Combining
Planck, WMAP polarization and the high-` experiments gives

Ne↵ = 3.36+0.68
�0.64 (95%; Planck+WP+highL). (73)

The marginalised posterior distribution is given in Fig. 27 (black
curve).

Increasing Ne↵ at fixed ✓⇤ and zeq necessarily raises the ex-
pansion rate at low redshifts too. Combining CMB with distance
measurements can therefore improve constraints (see Fig. 27) al-
though for the BAO observable rdrag/DV(z) the reduction in both
rdrag and DV(z) with increasing Ne↵ partly cancel. With the BAO
data of Sect. 5.2, the Ne↵ constraint is tightened to

Ne↵ = 3.30+0.54
�0.51 (95%; Planck+WP+highL+BAO). (74)

Our constraints from CMB alone and CMB+BAO are compati-
ble with the standard value Ne↵ = 3.046 at the 1� level giving
no evidence for extra relativistic degrees of freedom.

Since Ne↵ is positively correlated with H0, the tension be-
tween the Planck data and direct measurements of H0 in the base
⇤CDM model (Sect. 5.3) can be reduced at the expense of high
Ne↵ . The marginalised constraint is

Ne↵ = 3.62+0.50
�0.48 (95%; Planck+WP+highL+H0). (75)

42

► Planck and BAO consistent  with standard 
value at 1σ level - no evidence for extra 
relativistic degrees of freedom

► Neff is correlated with H0 - tension with of 
LCDM with local H0 can be relieved with 
higher Neff

Planck Collaboration: Planck Cosmological Parameters

Sect. 5.1 with non-zero
P

m⌫ acting like AL < 1. The lensing
power spectrum C��` is lower by 9.1% for the higher-mass best
fit at ` = 400 and larger by 2.1% at ` = 40, which is a simi-
lar trend to the residuals from the best-fit minimal-mass model
shown in the bottom panel of Fig. 12. Planck Collaboration 12
(2013) explores the robustness of the C��` estimates to various
data cuts and foreground-cleaning methods. The first (` = 40–
85) bandpower is the least stable to these choices, although
the variations are not statistically significant. We have checked
that excluding this bandpower does not change the posterior forP

m⌫ significantly, as expected since most of the constrainining
power on

P
m⌫ comes from the bandpowers on smaller scales.

At this stage, it is unclear what to make of this mild prefer-
ence for high masses from the 4-point function compared to the
2-point function. As noted in Planck Collaboration 12 (2013),
the lensing measurements from ACT (Das et al., 2013a) and
SPT (van Engelen et al., 2012a) show similar trends to those
from Planck where they overlap in scale. With further Planck
data (including polarization), and forthcoming results from the
full 2500 deg2 SPT temperature survey, we can expect more
definitive results on this issue in the near future.

Apart from its impact on the early-ISW e↵ect and lensing
potential, the total neutrino mass a↵ects the angular-diameter
distance to last scattering, and can be constrained through the
angular scale of the first acoustic peak. However, this e↵ect
is degenerate with ⌦⇤ (and so the derived H0) in flat mod-
els and with other late-time parameters such as ⌦K and w in
more general models (Howlett et al., 2012). Late-time geomet-
ric measurements help in reducing this “geometric” degeneracy.
Increasing the neutrino masses at fixed ✓⇤ increases the angular-
diameter distance for 0  z  z⇤ and reduces the expansion rate
at low redshift (z <⇠ 1) but increases it at higher redshift. The
spherically-averaged BAO distance DV(z) therefore increases
with increasing neutrino mass at fixed ✓⇤ and the Hubble con-
stant falls; see Fig. 8 of Hou et al. (2012b). With the BAO data
of Sect. 5.2, we find a significantly lower bound on the neutrino
mass:
X

m⌫ < 0.23 eV (95%; Planck+WP+highL+BAO). (71)

The ⇤CDM model with minimal neutrino masses was shown in
Sect. 5.3 to be in tension with recent direct measurements of H0
which favour higher values. Increasing the neutrino mass will
only make this tension worse and drive us to artificially tight
constraints on

P
m⌫. If we relax spatial flatness, the CMB ge-

ometric degeneracy becomes three-dimensional in models with
massive neutrinos and the constraints on

P
m⌫ weaken consider-

ably to

X
m⌫ <

8>><
>>:

0.98 eV (95%; Planck+WP+highL)
0.32 eV (95%; Planck+WP+highL+BAO).

(72)

6.3.2. Constraints on Ne↵

As discussed in Sect. 2, the density of radiation in the Universe
(besides photons) is usually parameterised by the e↵ective neu-
trino number Ne↵ . This parameter specifies the energy density
when the species are relativistic in terms of the neutrino tem-
perature assuming exactly three flavours and instantaneous de-
coupling. In the Standard Model, Ne↵ = 3.046 due to non-
instantaneous decoupling corrections (Mangano et al., 2005).

However, there has been some mild preference for
Ne↵ > 3.046 from recent CMB anisotropy measurements
(Komatsu et al., 2011; Dunkley et al., 2011c; Keisler et al.,
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Fig. 27. Marginalised posterior distribution of Ne↵ for
Planck+WP+highL (black) and additionally BAO (blue),
the H0 measurement (red), and both BAO and H0 (green).

2011c; Archidiacono et al., 2011; Hinshaw et al., 2012c;
Hou et al., 2012b). This is potentially interesting since an excess
could be caused by a neutrino/anti-neutrino asymmetry, sterile
neutrinos, and/or any other light relics in the Universe. In this
subsection we discuss the constraints on Ne↵ from Planck in
scenarios where the extra relativistic degrees of freedom are
e↵ectively massless.

The physics of how Ne↵ is constrained by CMB anisotropies
is explained in Bashinsky & Seljak (2004), Hou et al. (2011)
and Lesgourgues et al. (2013). The main e↵ect is that increasing
the radiation density at fixed ✓⇤ (to preserve the angular scales
of the acoustic peaks) and fixed zeq (to preserve the early-ISW
e↵ect and so first-peak height) increases the expansion rate be-
fore recombination and reduces the age there. Since the di↵usion
length scales approximately as the square root of the age, while
the sound horizon varies proportionately with the age, the angu-
lar scale of the photon di↵usion length, ✓D, increases so reduc-
ing power in the damping tail at a given multipole. Combining
Planck, WMAP polarization and the high-` experiments gives

Ne↵ = 3.36+0.68
�0.64 (95%; Planck+WP+highL). (73)

The marginalised posterior distribution is given in Fig. 27 (black
curve).

Increasing Ne↵ at fixed ✓⇤ and zeq necessarily raises the ex-
pansion rate at low redshifts too. Combining CMB with distance
measurements can therefore improve constraints (see Fig. 27) al-
though for the BAO observable rdrag/DV(z) the reduction in both
rdrag and DV(z) with increasing Ne↵ partly cancel. With the BAO
data of Sect. 5.2, the Ne↵ constraint is tightened to

Ne↵ = 3.30+0.54
�0.51 (95%; Planck+WP+highL+BAO). (74)

Our constraints from CMB alone and CMB+BAO are compati-
ble with the standard value Ne↵ = 3.046 at the 1� level giving
no evidence for extra relativistic degrees of freedom.

Since Ne↵ is positively correlated with H0, the tension be-
tween the Planck data and direct measurements of H0 in the base
⇤CDM model (Sect. 5.3) can be reduced at the expense of high
Ne↵ . The marginalised constraint is

Ne↵ = 3.62+0.50
�0.48 (95%; Planck+WP+highL+H0). (75)

42 ► No preference for this model from CMB 
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Planck Collaboration: Planck Cosmological Parameters
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Fig. 34. Plot indicating marginalized posterior probabilities for
the dark energy equation-of-state parameter w (assumed con-
stant), for the indicated combinations of data sets. A flat prior
on w from �3 to �0.3 was assumed. The dashed grey line indi-
cates the “cosmological constant” solution.

still basically consistent with a cosmological constant, though
SNLS does lead to a slightly lower value of w than Union2.1.
If instead we combine Planck+WP with HST measurements of
H0, the di↵erence between the values of H0 preferred by CMB
and HST reflects itself in the joint constraint of

w = �1.24+0.18
�0.19 (95%,Planck +WP + HST), (93)

which is in tension with w = �1.
If w , �1 then it is likely to change with time. In order to in-

vestigate this we consider a linear model, w(a) = w0 +wa(1� a),
where w0 is the value of the equation of state today and wa deter-
mines how the equation of state evolves away from w0 near the
present epoch (Chevallier & Polarski, 2001; Linder, 2003). This
parametrization captures the low-redshift behaviour of our mod-
els (light minimally-coupled scalar fields) as well as many others
as long as they do not contribute significantly to the total energy
density at early times. The dynamical evolution of w(a) can lead
to distinctive imprints in the CMB (Caldwell et al., 1998) which
would show up in the Planck data.

In Fig. 35 we plot contours of the joint posterior probabilities
for w0 and wa using Planck +WP+BAO data. We use indepen-
dent flat priors of �3 < w0 < �0.3 and �2 < wa < 2. The
points are coloured by the value of H0, which shows a clear
variation with w0 and wa. The “cosmological constant” point
(w0,wa) = (�1, 0) lies within the 1� contour and the marginal-
ized posteriors for w0 and wa are

w0 = �1.04+0.72
�0.69 (95%,Planck +WP + BAO), (94)

wa < 1.32 (95%,Planck +WP + BAO). (95)

Including the H0 measurement from HST moves (w0,wa)
slightly away from a cosmological constant, but the constraints
are still consistent with ⇤CDM at 2�.

Fig. 36 shows likelihood contours for the same set of (w0,wa)
parameters, now adding SNe data to Planck. As discussed in de-
tail in Sect. 5, there is a dependence of the base parameters on
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Fig. 35. Plot illustrating the joint posterior for w0 and wa
for Planck, WMAP-polarization- and BAO data, marginalizing
over other parameters. The contours are set at 68% and 95%.
Independent flat priors of �3 < w0 < �0.3 and �2 < wa < 2
were assumed. The colour of the scattered points indicates the
distribution of the Hubble parameter H0. Dashed grey lines guide
the eye to the “cosmological constant” solution.
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Fig. 36. Plot illustrating the joint posterior for w0 and wa,
marginalizing over other parameters, for di↵erent choices of ad-
ditional data to Planck and WMAP-polarization. Contour levels
are set at 68% and 95%. The grey contours use BAO. The red
contours use Union2.1 supernovae data. The blue contours use
SNLS supernovae data. Dashed grey lines guide the eye to the
“cosmological constant” solution.

the choice of dataset used for the SNe, and this continues with
the dark energy parameters. The results for Planck+Union2.1 are
in better agreement with a cosmological constant than those for
Planck+SNLS. We remark that the variations in the constraints
on dark energy parameters using di↵erent combinations of data
sets might be due to unmodelled systematics in the analysis, the
potential presence of which have been discussed in Sects. 5.3
and 5.4.

Dynamical dark energy models might also give a non-
negligible contribution to the energy density of the Universe at
early times. Such Early Dark Energy (EDE; Wetterich, 2004)
models may be very close to ⇤CDM recently but have a nonzero
dark energy density fraction, ⌦e, at early times. Such models
complement the (w0,wa) analysis by investigating how much
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2.1.4. Dark energy

In our baseline model we assume that the dark energy is a cos-
mological constant with current density parameter ⌦⇤. When
considering a dynamical dark energy component, we parame-
terize the equation of state either as a constant w or as a function
of the cosmological scale factor, a, with

w(a) ⌘ p
⇢
= w0 + (1 � a)wa, (4)

and assume that the dark energy does not interact with other con-
stituents other than through gravity. Since this model allows the
equation of state to cross below �1, a single-fluid model can-
not be used self-consistently. We therefore use the parameterized
post-Friedmann (PPF) model of Fang et al. (2008a). For models
with w > �1, the PPF model agrees with fluid models to signif-
icantly better accuracy than required for the results reported in
this paper.

2.1.5. Power spectra

Over the last decades there has been significant progress in
improving the accuracy, speed and generality of the numerical
calculation of the CMB power spectra given an ionization
history and set of cosmological parameters (Sugiyama,
1995; Ma & Bertschinger, 1995; Seljak & Zaldarriaga, 1996;
Seljak, 1996; White & Scott, 1996; Hu & White, 1997;
Zaldarriaga et al., 1998; Hu et al., 1998; Bucher et al., 2000;
Hu, 2000; Lewis & Challinor, 2002; Seljak et al., 2003; Doran,
2005; Challinor & Lewis, 2005; Cyr-Racine & Sigurdson, 2011;
Blas et al., 2011; Lesgourgues & Tram, 2011; Howlett et al.,
2012). Our baseline numerical Boltzmann code is camb10

(March 2013; Lewis et al., 2000), a parallelized line-of-sight
code developed from cmbfast (Seljak & Zaldarriaga, 1996)
and Cosmics (Bertschinger, 1995; Ma & Bertschinger, 1995),
which calculates the lensed CMB temperature and polariza-
tion power spectra. The code has been publicly available for
over a decade and has been very well tested (and improved)
by the community. Numerical stability and accuracy of the
calculation at the sensitivity of Planck has been explored in
detail (Hamann et al., 2009; Lesgourgues, 2011b; Howlett et al.,
2012), demonstrating that the raw numerical precision is
su�cient for numerical errors on parameter constraints from
Planck to be less than 10% of the statistical error around the
assumed cosmological model. (For the high multipole CMB
data at ` > 2000 used in Sect. 4, the default camb settings are
adequate because the power spectra of these experiments are
dominated by unresolved foregrounds and have large errors at
high multipoles.) To test the potential impact of camb errors,
we importance-sample a subset of samples from the posterior
parameter space using higher accuracy settings. This confirms
that di↵erences purely due to numerical error in the theory
prediction are less than 10% of the statistical error for all param-
eters, both with and without inclusion of high-` data. We also
performed additional tests of the robustness and accuracy of our
results by reproducing a fraction of them with the independent
Boltzmann code class (Lesgourgues, 2011a; Blas et al., 2011).

In the parameter analysis, information from CMB lensing
enters in two ways. Firstly, all the CMB power spectra are mod-
elled using the lensed CMB power spectra, which includes the
approximately 5% smoothing e↵ect on the acoustic peaks due
to lensing. Secondly, for some results we include the Planck

10http://camb.info

lensing likelihood, which encapsulates the lensing information
in the (mostly squeezed-shape) CMB trispectrum via a lensing
potential power spectrum (Planck Collaboration 12, 2013). The
theoretical predictions for the lensing potential power spectrum
are calculated by camb, optionally with corrections for the non-
linear matter power spectrum, along with the (non-linear) lensed
CMB power spectra. For the Planck temperature power spec-
trum, corrections to the lensing e↵ect due to non-linear struc-
ture growth can be neglected, however the impact on the lens-
ing potential reconstruction is important. We use the halofit
model (Smith et al., 2003) as updated by Takahashi et al. (2012)
to model the impact of non-linear growth on the theoretical pre-
diction for the lensing potential power.

2.2. Parameter choices

2.2.1. Base parameters

The first section of Table 1 lists our base parameters that have
flat priors when they are varied, along with their default values
in the baseline model. When parameters are varied, unless oth-
erwise stated, prior ranges are chosen to be much larger than the
posterior, and hence do not a↵ect the results of parameter esti-
mation. In addition to these priors, we impose a “hard” prior on
the Hubble constant of [20, 100] km s�1 Mpc�1.

2.2.2. Derived parameters

Matter-radiation equality zeq is defined as the redshift at which
⇢� + ⇢⌫ = ⇢c + ⇢b (where ⇢⌫ approximates massive neutrinos as
massless).

The redshift of recombination, z⇤, is defined so that the op-
tical depth to Thomson scattering from z = 0 (conformal time
⌘ = ⌘0) to z = z⇤ is unity, assuming no reionization. The optical
depth is given by

⌧(⌘) ⌘
Z ⌘

⌘0

⌧̇ d⌘0, (5)

where ⌧̇ = �a�Tne (and ne is the density of free electrons, �T
is the Thomson cross section). We define ✓⇤ = rs(z⇤)/DA(z⇤),
where rs is the sound horizon

rs(z) =
Z ⌘(z)

0

d⌘0p
3(1 + R)

, (6)

with R ⌘ 3⇢b/(4⇢�).
Baryon velocities decouple from the photon dipole when

Compton drag balances the gravitational force, which happens
at ⌧d ⇠ 1, where (Hu & Sugiyama, 1996)

⌧d(⌘) ⌘
Z ⌘

⌘0

⌧̇ d⌘0/R. (7)

Here again ⌧ is from recombination only, without reioniza-
tion contributions. We define a drag redshift zdrag, so that
⌧d(⌘(zdrag)) = 1. The sound horizon at the drag epoch is an im-
portant scale which is often used in studies of baryon acoustic
oscillations; we denote this as rdrag = rs(zdrag). We compute zdrag
and rdrag numerically from camb (see Sect. 5.2 for details of ap-
plication to BAO data).

The characteristic wavenumber for damping, kD, is given by

k�2
D (⌘) = �1

6

Z ⌘

0
d⌘0

1
⌧̇

R2 + 16(1 + R)/15
(1 + R)2 . (8)
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► Degeneracy with H0 means Planck alone can only weakly constrain dark energy
► Can be broken by CMB lensing (see later) and other probes 

► Setting wa = 0 obtain
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Fig. 32. The 2D joint posterior distribution betweenNe↵ and
Yp with both parameters varying freely, determined from the
Planck+WP+highL likelihood. The colour of each sample in
Markov chain indicates the associated value of ✓d/✓s. The Ne↵-
Yp relation from the BBN theory is shown by the dashed curve.
The vertical line shows the standard value Ne↵ = 3.046. The
region with Yp > 0.294 is highlighted in gray delineating the re-
gion of the plot exceeding the 2� upper limit of the recent mea-
surement of initial Solar helium abundance (Serenelli & Basu,
2010).

is thus an approximate degeneracy between these two parame-
ters. It can be partially broken by the phase shift of the acoustic
oscillations that arises due to the free streaming of the neutri-
nos (Bashinsky & Seljak, 2004). The other, less important de-
generacy breaking e↵ect, is the early ISW e↵ect discussed by
Hou et al. (2011).

The joint posterior distribution between Ne↵ and Yp from the
Planck+WP+highL likelihood is shown in Figure 32 with the
colour of each MCMC sample coding the value of ✓d/✓s = rd/rs.
The major constraint on Ne↵ and Yp comes from the precise mea-
surement of this ratio, leaving the degeneracy along the constant
✓d/✓s direction. The relation between Ne↵ and Yp from BBN
theory is shown by the dashed curve31. The standard BBN pre-
diction with Ne↵ = 3.046 is contained within the 68% confi-
dence region. The gray region is for Yp > 0.294 which is the 2�
conservative upper bound on the primordial helium abundance
from (Serenelli & Basu, 2010). Most of the samples are consis-
tent with this bound. The inferred estimates of Ne↵ and Yp from
the Planck+WP+HighL data are

Ne↵ = 3.33+0.59
�0.83, (68% CL), (89a)

Yp = 0.254+0.041
�0.033. (68% CL). (89b)

With YP allowed to vary, Ne↵ is no longer tightly constrained
by the value of ✓d/✓s. Instead, it is constrained due, at least in
part, to the impact that varying Ne↵ has on the phase shifts of the
acoustic oscillations. As shown in Hou et al. (2012b), this e↵ect
explains the observed correlation between Ne↵ and ✓s. This cor-
relation is shown in Fig. 33. The correlation in the ⇤CDM+Ne↵
model is also plotted in the figure showing that the Ne↵-Yp de-
generacy makes the phase shift e↵ect much more significant.

31For constant Ne↵ , the variation due to the uncertanty of the baryon
density is too small to show given the thickness of the curve.

Fig. 33. The 2D joint posterior distribution between Ne↵ and ✓s
from the LCDM+Ne↵+Yp (red) and LCDM+Ne↵ (blue) models,
using Planck+WL+HighL data.

6.5. Dark Energy Constraints

A major challenge for cosmology is to elucidate the nature of the
dark energy driving the accelerated expansion of the Universe.
The most prosaic explanation is that dark energy is a cosmo-
logical constant. An alternative is dynamical dark energy mod-
els (Wetterich, 1988; Ratra & Peebles, 1988), usually based on
a scalar field. In the simplest models the field is very light, has a
canonical kinetic energy term and is minimally coupled to grav-
ity. In such models the dark energy speed of sound equals the
speed of light and it has zero anisotropic stress. It thus con-
tributes very little to clustering. We shall only consider such
models in the following.

A simple way to parametrize dark energy is through its equa-
tion of state w ⌘ p/⇢ (Turner & White, 1997). A cosmolog-
ical constant has w ⌘ �1 while scalar field models typically
have time varying w with w � �1. The analysis performed here
is based on the “parameterized post-Friedmann” (PPF) frame-
work of Hu & Sawicki (2007) and Hu (2008) as implemented
in CAMB (Fang et al., 2008b,a) and discussed earlier in Sect. 2.
This allows us to investigate both regions of parameter space in
which w is less than minus one and models for which w changes
in time.

To begin we plot in Fig. 34 the marginalized posterior prob-
abilities for models with w =constant. For these runs we have
taken a flat prior on w from �3 to �0.3. (Note that adding in
high-` data, not illustrated, results in little change to the poste-
riors.) As expected, Planck alone does not strongly constrain w,
due to the degeneracy of this parameter with the Hubble expan-
sion. We can then attempt to break the degeneracy by combin-
ing Planck with other datasets. Adding in BAO data tightens the
posterior probability, giving

w = �1.13 ± 0.24 (95%,Planck +WP + BAO), (90)

in good agreement with the ⇤CDM model. Using supernovae
data leads to the stronger constraints

w = �1.09 ± 0.17 (95%,Planck +WP + Union2.1), (91)
w = �1.13+0.13

�0.14 (95%,Planck +WP + SNLS), (92)
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Fig. 32. The 2D joint posterior distribution betweenNe↵ and
Yp with both parameters varying freely, determined from the
Planck+WP+highL likelihood. The colour of each sample in
Markov chain indicates the associated value of ✓d/✓s. The Ne↵-
Yp relation from the BBN theory is shown by the dashed curve.
The vertical line shows the standard value Ne↵ = 3.046. The
region with Yp > 0.294 is highlighted in gray delineating the re-
gion of the plot exceeding the 2� upper limit of the recent mea-
surement of initial Solar helium abundance (Serenelli & Basu,
2010).

is thus an approximate degeneracy between these two parame-
ters. It can be partially broken by the phase shift of the acoustic
oscillations that arises due to the free streaming of the neutri-
nos (Bashinsky & Seljak, 2004). The other, less important de-
generacy breaking e↵ect, is the early ISW e↵ect discussed by
Hou et al. (2011).

The joint posterior distribution between Ne↵ and Yp from the
Planck+WP+highL likelihood is shown in Figure 32 with the
colour of each MCMC sample coding the value of ✓d/✓s = rd/rs.
The major constraint on Ne↵ and Yp comes from the precise mea-
surement of this ratio, leaving the degeneracy along the constant
✓d/✓s direction. The relation between Ne↵ and Yp from BBN
theory is shown by the dashed curve31. The standard BBN pre-
diction with Ne↵ = 3.046 is contained within the 68% confi-
dence region. The gray region is for Yp > 0.294 which is the 2�
conservative upper bound on the primordial helium abundance
from (Serenelli & Basu, 2010). Most of the samples are consis-
tent with this bound. The inferred estimates of Ne↵ and Yp from
the Planck+WP+HighL data are

Ne↵ = 3.33+0.59
�0.83, (68% CL), (89a)

Yp = 0.254+0.041
�0.033. (68% CL). (89b)

With YP allowed to vary, Ne↵ is no longer tightly constrained
by the value of ✓d/✓s. Instead, it is constrained due, at least in
part, to the impact that varying Ne↵ has on the phase shifts of the
acoustic oscillations. As shown in Hou et al. (2012b), this e↵ect
explains the observed correlation between Ne↵ and ✓s. This cor-
relation is shown in Fig. 33. The correlation in the ⇤CDM+Ne↵
model is also plotted in the figure showing that the Ne↵-Yp de-
generacy makes the phase shift e↵ect much more significant.

31For constant Ne↵ , the variation due to the uncertanty of the baryon
density is too small to show given the thickness of the curve.

Fig. 33. The 2D joint posterior distribution between Ne↵ and ✓s
from the LCDM+Ne↵+Yp (red) and LCDM+Ne↵ (blue) models,
using Planck+WL+HighL data.

6.5. Dark Energy Constraints

A major challenge for cosmology is to elucidate the nature of the
dark energy driving the accelerated expansion of the Universe.
The most prosaic explanation is that dark energy is a cosmo-
logical constant. An alternative is dynamical dark energy mod-
els (Wetterich, 1988; Ratra & Peebles, 1988), usually based on
a scalar field. In the simplest models the field is very light, has a
canonical kinetic energy term and is minimally coupled to grav-
ity. In such models the dark energy speed of sound equals the
speed of light and it has zero anisotropic stress. It thus con-
tributes very little to clustering. We shall only consider such
models in the following.

A simple way to parametrize dark energy is through its equa-
tion of state w ⌘ p/⇢ (Turner & White, 1997). A cosmolog-
ical constant has w ⌘ �1 while scalar field models typically
have time varying w with w � �1. The analysis performed here
is based on the “parameterized post-Friedmann” (PPF) frame-
work of Hu & Sawicki (2007) and Hu (2008) as implemented
in CAMB (Fang et al., 2008b,a) and discussed earlier in Sect. 2.
This allows us to investigate both regions of parameter space in
which w is less than minus one and models for which w changes
in time.

To begin we plot in Fig. 34 the marginalized posterior prob-
abilities for models with w =constant. For these runs we have
taken a flat prior on w from �3 to �0.3. (Note that adding in
high-` data, not illustrated, results in little change to the poste-
riors.) As expected, Planck alone does not strongly constrain w,
due to the degeneracy of this parameter with the Hubble expan-
sion. We can then attempt to break the degeneracy by combin-
ing Planck with other datasets. Adding in BAO data tightens the
posterior probability, giving

w = �1.13 ± 0.24 (95%,Planck +WP + BAO), (90)

in good agreement with the ⇤CDM model. Using supernovae
data leads to the stronger constraints

w = �1.09 ± 0.17 (95%,Planck +WP + Union2.1), (91)
w = �1.13+0.13

�0.14 (95%,Planck +WP + SNLS), (92)
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Fig. 34. Plot indicating marginalized posterior probabilities for
the dark energy equation-of-state parameter w (assumed con-
stant), for the indicated combinations of data sets. A flat prior
on w from �3 to �0.3 was assumed. The dashed grey line indi-
cates the “cosmological constant” solution.

still basically consistent with a cosmological constant, though
SNLS does lead to a slightly lower value of w than Union2.1.
If instead we combine Planck+WP with HST measurements of
H0, the di↵erence between the values of H0 preferred by CMB
and HST reflects itself in the joint constraint of

w = �1.24+0.18
�0.19 (95%,Planck +WP + HST), (93)

which is in tension with w = �1.
If w , �1 then it is likely to change with time. In order to in-

vestigate this we consider a linear model, w(a) = w0 +wa(1� a),
where w0 is the value of the equation of state today and wa deter-
mines how the equation of state evolves away from w0 near the
present epoch (Chevallier & Polarski, 2001; Linder, 2003). This
parametrization captures the low-redshift behaviour of our mod-
els (light minimally-coupled scalar fields) as well as many others
as long as they do not contribute significantly to the total energy
density at early times. The dynamical evolution of w(a) can lead
to distinctive imprints in the CMB (Caldwell et al., 1998) which
would show up in the Planck data.

In Fig. 35 we plot contours of the joint posterior probabilities
for w0 and wa using Planck +WP+BAO data. We use indepen-
dent flat priors of �3 < w0 < �0.3 and �2 < wa < 2. The
points are coloured by the value of H0, which shows a clear
variation with w0 and wa. The “cosmological constant” point
(w0,wa) = (�1, 0) lies within the 1� contour and the marginal-
ized posteriors for w0 and wa are

w0 = �1.04+0.72
�0.69 (95%,Planck +WP + BAO), (94)

wa < 1.32 (95%,Planck +WP + BAO). (95)

Including the H0 measurement from HST moves (w0,wa)
slightly away from a cosmological constant, but the constraints
are still consistent with ⇤CDM at 2�.

Fig. 36 shows likelihood contours for the same set of (w0,wa)
parameters, now adding SNe data to Planck. As discussed in de-
tail in Sect. 5, there is a dependence of the base parameters on
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Fig. 35. Plot illustrating the joint posterior for w0 and wa
for Planck, WMAP-polarization- and BAO data, marginalizing
over other parameters. The contours are set at 68% and 95%.
Independent flat priors of �3 < w0 < �0.3 and �2 < wa < 2
were assumed. The colour of the scattered points indicates the
distribution of the Hubble parameter H0. Dashed grey lines guide
the eye to the “cosmological constant” solution.
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Fig. 36. Plot illustrating the joint posterior for w0 and wa,
marginalizing over other parameters, for di↵erent choices of ad-
ditional data to Planck and WMAP-polarization. Contour levels
are set at 68% and 95%. The grey contours use BAO. The red
contours use Union2.1 supernovae data. The blue contours use
SNLS supernovae data. Dashed grey lines guide the eye to the
“cosmological constant” solution.

the choice of dataset used for the SNe, and this continues with
the dark energy parameters. The results for Planck+Union2.1 are
in better agreement with a cosmological constant than those for
Planck+SNLS. We remark that the variations in the constraints
on dark energy parameters using di↵erent combinations of data
sets might be due to unmodelled systematics in the analysis, the
potential presence of which have been discussed in Sects. 5.3
and 5.4.

Dynamical dark energy models might also give a non-
negligible contribution to the energy density of the Universe at
early times. Such Early Dark Energy (EDE; Wetterich, 2004)
models may be very close to ⇤CDM recently but have a nonzero
dark energy density fraction, ⌦e, at early times. Such models
complement the (w0,wa) analysis by investigating how much
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Fig. 34. Plot indicating marginalized posterior probabilities for
the dark energy equation-of-state parameter w (assumed con-
stant), for the indicated combinations of data sets. A flat prior
on w from �3 to �0.3 was assumed. The dashed grey line indi-
cates the “cosmological constant” solution.

still basically consistent with a cosmological constant, though
SNLS does lead to a slightly lower value of w than Union2.1.
If instead we combine Planck+WP with HST measurements of
H0, the di↵erence between the values of H0 preferred by CMB
and HST reflects itself in the joint constraint of

w = �1.24+0.18
�0.19 (95%,Planck +WP + HST), (93)

which is in tension with w = �1.
If w , �1 then it is likely to change with time. In order to in-

vestigate this we consider a linear model, w(a) = w0 +wa(1� a),
where w0 is the value of the equation of state today and wa deter-
mines how the equation of state evolves away from w0 near the
present epoch (Chevallier & Polarski, 2001; Linder, 2003). This
parametrization captures the low-redshift behaviour of our mod-
els (light minimally-coupled scalar fields) as well as many others
as long as they do not contribute significantly to the total energy
density at early times. The dynamical evolution of w(a) can lead
to distinctive imprints in the CMB (Caldwell et al., 1998) which
would show up in the Planck data.

In Fig. 35 we plot contours of the joint posterior probabilities
for w0 and wa using Planck +WP+BAO data. We use indepen-
dent flat priors of �3 < w0 < �0.3 and �2 < wa < 2. The
points are coloured by the value of H0, which shows a clear
variation with w0 and wa. The “cosmological constant” point
(w0,wa) = (�1, 0) lies within the 1� contour and the marginal-
ized posteriors for w0 and wa are

w0 = �1.04+0.72
�0.69 (95%,Planck +WP + BAO), (94)

wa < 1.32 (95%,Planck +WP + BAO). (95)

Including the H0 measurement from HST moves (w0,wa)
slightly away from a cosmological constant, but the constraints
are still consistent with ⇤CDM at 2�.

Fig. 36 shows likelihood contours for the same set of (w0,wa)
parameters, now adding SNe data to Planck. As discussed in de-
tail in Sect. 5, there is a dependence of the base parameters on
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Fig. 35. Plot illustrating the joint posterior for w0 and wa
for Planck, WMAP-polarization- and BAO data, marginalizing
over other parameters. The contours are set at 68% and 95%.
Independent flat priors of �3 < w0 < �0.3 and �2 < wa < 2
were assumed. The colour of the scattered points indicates the
distribution of the Hubble parameter H0. Dashed grey lines guide
the eye to the “cosmological constant” solution.
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Fig. 36. Plot illustrating the joint posterior for w0 and wa,
marginalizing over other parameters, for di↵erent choices of ad-
ditional data to Planck and WMAP-polarization. Contour levels
are set at 68% and 95%. The grey contours use BAO. The red
contours use Union2.1 supernovae data. The blue contours use
SNLS supernovae data. Dashed grey lines guide the eye to the
“cosmological constant” solution.

the choice of dataset used for the SNe, and this continues with
the dark energy parameters. The results for Planck+Union2.1 are
in better agreement with a cosmological constant than those for
Planck+SNLS. We remark that the variations in the constraints
on dark energy parameters using di↵erent combinations of data
sets might be due to unmodelled systematics in the analysis, the
potential presence of which have been discussed in Sects. 5.3
and 5.4.

Dynamical dark energy models might also give a non-
negligible contribution to the energy density of the Universe at
early times. Such Early Dark Energy (EDE; Wetterich, 2004)
models may be very close to ⇤CDM recently but have a nonzero
dark energy density fraction, ⌦e, at early times. Such models
complement the (w0,wa) analysis by investigating how much
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2.1.4. Dark energy

In our baseline model we assume that the dark energy is a cos-
mological constant with current density parameter ⌦⇤. When
considering a dynamical dark energy component, we parame-
terize the equation of state either as a constant w or as a function
of the cosmological scale factor, a, with

w(a) ⌘ p
⇢
= w0 + (1 � a)wa, (4)

and assume that the dark energy does not interact with other con-
stituents other than through gravity. Since this model allows the
equation of state to cross below �1, a single-fluid model can-
not be used self-consistently. We therefore use the parameterized
post-Friedmann (PPF) model of Fang et al. (2008a). For models
with w > �1, the PPF model agrees with fluid models to signif-
icantly better accuracy than required for the results reported in
this paper.

2.1.5. Power spectra

Over the last decades there has been significant progress in
improving the accuracy, speed and generality of the numerical
calculation of the CMB power spectra given an ionization
history and set of cosmological parameters (Sugiyama,
1995; Ma & Bertschinger, 1995; Seljak & Zaldarriaga, 1996;
Seljak, 1996; White & Scott, 1996; Hu & White, 1997;
Zaldarriaga et al., 1998; Hu et al., 1998; Bucher et al., 2000;
Hu, 2000; Lewis & Challinor, 2002; Seljak et al., 2003; Doran,
2005; Challinor & Lewis, 2005; Cyr-Racine & Sigurdson, 2011;
Blas et al., 2011; Lesgourgues & Tram, 2011; Howlett et al.,
2012). Our baseline numerical Boltzmann code is camb10

(March 2013; Lewis et al., 2000), a parallelized line-of-sight
code developed from cmbfast (Seljak & Zaldarriaga, 1996)
and Cosmics (Bertschinger, 1995; Ma & Bertschinger, 1995),
which calculates the lensed CMB temperature and polariza-
tion power spectra. The code has been publicly available for
over a decade and has been very well tested (and improved)
by the community. Numerical stability and accuracy of the
calculation at the sensitivity of Planck has been explored in
detail (Hamann et al., 2009; Lesgourgues, 2011b; Howlett et al.,
2012), demonstrating that the raw numerical precision is
su�cient for numerical errors on parameter constraints from
Planck to be less than 10% of the statistical error around the
assumed cosmological model. (For the high multipole CMB
data at ` > 2000 used in Sect. 4, the default camb settings are
adequate because the power spectra of these experiments are
dominated by unresolved foregrounds and have large errors at
high multipoles.) To test the potential impact of camb errors,
we importance-sample a subset of samples from the posterior
parameter space using higher accuracy settings. This confirms
that di↵erences purely due to numerical error in the theory
prediction are less than 10% of the statistical error for all param-
eters, both with and without inclusion of high-` data. We also
performed additional tests of the robustness and accuracy of our
results by reproducing a fraction of them with the independent
Boltzmann code class (Lesgourgues, 2011a; Blas et al., 2011).

In the parameter analysis, information from CMB lensing
enters in two ways. Firstly, all the CMB power spectra are mod-
elled using the lensed CMB power spectra, which includes the
approximately 5% smoothing e↵ect on the acoustic peaks due
to lensing. Secondly, for some results we include the Planck

10http://camb.info

lensing likelihood, which encapsulates the lensing information
in the (mostly squeezed-shape) CMB trispectrum via a lensing
potential power spectrum (Planck Collaboration 12, 2013). The
theoretical predictions for the lensing potential power spectrum
are calculated by camb, optionally with corrections for the non-
linear matter power spectrum, along with the (non-linear) lensed
CMB power spectra. For the Planck temperature power spec-
trum, corrections to the lensing e↵ect due to non-linear struc-
ture growth can be neglected, however the impact on the lens-
ing potential reconstruction is important. We use the halofit
model (Smith et al., 2003) as updated by Takahashi et al. (2012)
to model the impact of non-linear growth on the theoretical pre-
diction for the lensing potential power.

2.2. Parameter choices

2.2.1. Base parameters

The first section of Table 1 lists our base parameters that have
flat priors when they are varied, along with their default values
in the baseline model. When parameters are varied, unless oth-
erwise stated, prior ranges are chosen to be much larger than the
posterior, and hence do not a↵ect the results of parameter esti-
mation. In addition to these priors, we impose a “hard” prior on
the Hubble constant of [20, 100] km s�1 Mpc�1.

2.2.2. Derived parameters

Matter-radiation equality zeq is defined as the redshift at which
⇢� + ⇢⌫ = ⇢c + ⇢b (where ⇢⌫ approximates massive neutrinos as
massless).

The redshift of recombination, z⇤, is defined so that the op-
tical depth to Thomson scattering from z = 0 (conformal time
⌘ = ⌘0) to z = z⇤ is unity, assuming no reionization. The optical
depth is given by

⌧(⌘) ⌘
Z ⌘

⌘0

⌧̇ d⌘0, (5)

where ⌧̇ = �a�Tne (and ne is the density of free electrons, �T
is the Thomson cross section). We define ✓⇤ = rs(z⇤)/DA(z⇤),
where rs is the sound horizon

rs(z) =
Z ⌘(z)

0

d⌘0p
3(1 + R)

, (6)

with R ⌘ 3⇢b/(4⇢�).
Baryon velocities decouple from the photon dipole when

Compton drag balances the gravitational force, which happens
at ⌧d ⇠ 1, where (Hu & Sugiyama, 1996)

⌧d(⌘) ⌘
Z ⌘

⌘0

⌧̇ d⌘0/R. (7)

Here again ⌧ is from recombination only, without reioniza-
tion contributions. We define a drag redshift zdrag, so that
⌧d(⌘(zdrag)) = 1. The sound horizon at the drag epoch is an im-
portant scale which is often used in studies of baryon acoustic
oscillations; we denote this as rdrag = rs(zdrag). We compute zdrag
and rdrag numerically from camb (see Sect. 5.2 for details of ap-
plication to BAO data).

The characteristic wavenumber for damping, kD, is given by

k�2
D (⌘) = �1

6

Z ⌘

0
d⌘0

1
⌧̇

R2 + 16(1 + R)/15
(1 + R)2 . (8)
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► Degeneracy with H0 means Planck alone can only weakly constrain dark energy
► Can be broken by CMB lensing (see later) and other probes 

► Setting wa = 0 obtain
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Fig. 32. The 2D joint posterior distribution betweenNe↵ and
Yp with both parameters varying freely, determined from the
Planck+WP+highL likelihood. The colour of each sample in
Markov chain indicates the associated value of ✓d/✓s. The Ne↵-
Yp relation from the BBN theory is shown by the dashed curve.
The vertical line shows the standard value Ne↵ = 3.046. The
region with Yp > 0.294 is highlighted in gray delineating the re-
gion of the plot exceeding the 2� upper limit of the recent mea-
surement of initial Solar helium abundance (Serenelli & Basu,
2010).

is thus an approximate degeneracy between these two parame-
ters. It can be partially broken by the phase shift of the acoustic
oscillations that arises due to the free streaming of the neutri-
nos (Bashinsky & Seljak, 2004). The other, less important de-
generacy breaking e↵ect, is the early ISW e↵ect discussed by
Hou et al. (2011).

The joint posterior distribution between Ne↵ and Yp from the
Planck+WP+highL likelihood is shown in Figure 32 with the
colour of each MCMC sample coding the value of ✓d/✓s = rd/rs.
The major constraint on Ne↵ and Yp comes from the precise mea-
surement of this ratio, leaving the degeneracy along the constant
✓d/✓s direction. The relation between Ne↵ and Yp from BBN
theory is shown by the dashed curve31. The standard BBN pre-
diction with Ne↵ = 3.046 is contained within the 68% confi-
dence region. The gray region is for Yp > 0.294 which is the 2�
conservative upper bound on the primordial helium abundance
from (Serenelli & Basu, 2010). Most of the samples are consis-
tent with this bound. The inferred estimates of Ne↵ and Yp from
the Planck+WP+HighL data are

Ne↵ = 3.33+0.59
�0.83, (68% CL), (89a)

Yp = 0.254+0.041
�0.033. (68% CL). (89b)

With YP allowed to vary, Ne↵ is no longer tightly constrained
by the value of ✓d/✓s. Instead, it is constrained due, at least in
part, to the impact that varying Ne↵ has on the phase shifts of the
acoustic oscillations. As shown in Hou et al. (2012b), this e↵ect
explains the observed correlation between Ne↵ and ✓s. This cor-
relation is shown in Fig. 33. The correlation in the ⇤CDM+Ne↵
model is also plotted in the figure showing that the Ne↵-Yp de-
generacy makes the phase shift e↵ect much more significant.

31For constant Ne↵ , the variation due to the uncertanty of the baryon
density is too small to show given the thickness of the curve.

Fig. 33. The 2D joint posterior distribution between Ne↵ and ✓s
from the LCDM+Ne↵+Yp (red) and LCDM+Ne↵ (blue) models,
using Planck+WL+HighL data.

6.5. Dark Energy Constraints

A major challenge for cosmology is to elucidate the nature of the
dark energy driving the accelerated expansion of the Universe.
The most prosaic explanation is that dark energy is a cosmo-
logical constant. An alternative is dynamical dark energy mod-
els (Wetterich, 1988; Ratra & Peebles, 1988), usually based on
a scalar field. In the simplest models the field is very light, has a
canonical kinetic energy term and is minimally coupled to grav-
ity. In such models the dark energy speed of sound equals the
speed of light and it has zero anisotropic stress. It thus con-
tributes very little to clustering. We shall only consider such
models in the following.

A simple way to parametrize dark energy is through its equa-
tion of state w ⌘ p/⇢ (Turner & White, 1997). A cosmolog-
ical constant has w ⌘ �1 while scalar field models typically
have time varying w with w � �1. The analysis performed here
is based on the “parameterized post-Friedmann” (PPF) frame-
work of Hu & Sawicki (2007) and Hu (2008) as implemented
in CAMB (Fang et al., 2008b,a) and discussed earlier in Sect. 2.
This allows us to investigate both regions of parameter space in
which w is less than minus one and models for which w changes
in time.

To begin we plot in Fig. 34 the marginalized posterior prob-
abilities for models with w =constant. For these runs we have
taken a flat prior on w from �3 to �0.3. (Note that adding in
high-` data, not illustrated, results in little change to the poste-
riors.) As expected, Planck alone does not strongly constrain w,
due to the degeneracy of this parameter with the Hubble expan-
sion. We can then attempt to break the degeneracy by combin-
ing Planck with other datasets. Adding in BAO data tightens the
posterior probability, giving

w = �1.13 ± 0.24 (95%,Planck +WP + BAO), (90)

in good agreement with the ⇤CDM model. Using supernovae
data leads to the stronger constraints

w = �1.09 ± 0.17 (95%,Planck +WP + Union2.1), (91)
w = �1.13+0.13

�0.14 (95%,Planck +WP + SNLS), (92)
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Fig. 32. The 2D joint posterior distribution betweenNe↵ and
Yp with both parameters varying freely, determined from the
Planck+WP+highL likelihood. The colour of each sample in
Markov chain indicates the associated value of ✓d/✓s. The Ne↵-
Yp relation from the BBN theory is shown by the dashed curve.
The vertical line shows the standard value Ne↵ = 3.046. The
region with Yp > 0.294 is highlighted in gray delineating the re-
gion of the plot exceeding the 2� upper limit of the recent mea-
surement of initial Solar helium abundance (Serenelli & Basu,
2010).

is thus an approximate degeneracy between these two parame-
ters. It can be partially broken by the phase shift of the acoustic
oscillations that arises due to the free streaming of the neutri-
nos (Bashinsky & Seljak, 2004). The other, less important de-
generacy breaking e↵ect, is the early ISW e↵ect discussed by
Hou et al. (2011).

The joint posterior distribution between Ne↵ and Yp from the
Planck+WP+highL likelihood is shown in Figure 32 with the
colour of each MCMC sample coding the value of ✓d/✓s = rd/rs.
The major constraint on Ne↵ and Yp comes from the precise mea-
surement of this ratio, leaving the degeneracy along the constant
✓d/✓s direction. The relation between Ne↵ and Yp from BBN
theory is shown by the dashed curve31. The standard BBN pre-
diction with Ne↵ = 3.046 is contained within the 68% confi-
dence region. The gray region is for Yp > 0.294 which is the 2�
conservative upper bound on the primordial helium abundance
from (Serenelli & Basu, 2010). Most of the samples are consis-
tent with this bound. The inferred estimates of Ne↵ and Yp from
the Planck+WP+HighL data are

Ne↵ = 3.33+0.59
�0.83, (68% CL), (89a)

Yp = 0.254+0.041
�0.033. (68% CL). (89b)

With YP allowed to vary, Ne↵ is no longer tightly constrained
by the value of ✓d/✓s. Instead, it is constrained due, at least in
part, to the impact that varying Ne↵ has on the phase shifts of the
acoustic oscillations. As shown in Hou et al. (2012b), this e↵ect
explains the observed correlation between Ne↵ and ✓s. This cor-
relation is shown in Fig. 33. The correlation in the ⇤CDM+Ne↵
model is also plotted in the figure showing that the Ne↵-Yp de-
generacy makes the phase shift e↵ect much more significant.

31For constant Ne↵ , the variation due to the uncertanty of the baryon
density is too small to show given the thickness of the curve.

Fig. 33. The 2D joint posterior distribution between Ne↵ and ✓s
from the LCDM+Ne↵+Yp (red) and LCDM+Ne↵ (blue) models,
using Planck+WL+HighL data.

6.5. Dark Energy Constraints

A major challenge for cosmology is to elucidate the nature of the
dark energy driving the accelerated expansion of the Universe.
The most prosaic explanation is that dark energy is a cosmo-
logical constant. An alternative is dynamical dark energy mod-
els (Wetterich, 1988; Ratra & Peebles, 1988), usually based on
a scalar field. In the simplest models the field is very light, has a
canonical kinetic energy term and is minimally coupled to grav-
ity. In such models the dark energy speed of sound equals the
speed of light and it has zero anisotropic stress. It thus con-
tributes very little to clustering. We shall only consider such
models in the following.

A simple way to parametrize dark energy is through its equa-
tion of state w ⌘ p/⇢ (Turner & White, 1997). A cosmolog-
ical constant has w ⌘ �1 while scalar field models typically
have time varying w with w � �1. The analysis performed here
is based on the “parameterized post-Friedmann” (PPF) frame-
work of Hu & Sawicki (2007) and Hu (2008) as implemented
in CAMB (Fang et al., 2008b,a) and discussed earlier in Sect. 2.
This allows us to investigate both regions of parameter space in
which w is less than minus one and models for which w changes
in time.

To begin we plot in Fig. 34 the marginalized posterior prob-
abilities for models with w =constant. For these runs we have
taken a flat prior on w from �3 to �0.3. (Note that adding in
high-` data, not illustrated, results in little change to the poste-
riors.) As expected, Planck alone does not strongly constrain w,
due to the degeneracy of this parameter with the Hubble expan-
sion. We can then attempt to break the degeneracy by combin-
ing Planck with other datasets. Adding in BAO data tightens the
posterior probability, giving

w = �1.13 ± 0.24 (95%,Planck +WP + BAO), (90)

in good agreement with the ⇤CDM model. Using supernovae
data leads to the stronger constraints

w = �1.09 ± 0.17 (95%,Planck +WP + Union2.1), (91)
w = �1.13+0.13

�0.14 (95%,Planck +WP + SNLS), (92)
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Fig. 34. Plot indicating marginalized posterior probabilities for
the dark energy equation-of-state parameter w (assumed con-
stant), for the indicated combinations of data sets. A flat prior
on w from �3 to �0.3 was assumed. The dashed grey line indi-
cates the “cosmological constant” solution.

still basically consistent with a cosmological constant, though
SNLS does lead to a slightly lower value of w than Union2.1.
If instead we combine Planck+WP with HST measurements of
H0, the di↵erence between the values of H0 preferred by CMB
and HST reflects itself in the joint constraint of

w = �1.24+0.18
�0.19 (95%,Planck +WP + HST), (93)

which is in tension with w = �1.
If w , �1 then it is likely to change with time. In order to in-

vestigate this we consider a linear model, w(a) = w0 +wa(1� a),
where w0 is the value of the equation of state today and wa deter-
mines how the equation of state evolves away from w0 near the
present epoch (Chevallier & Polarski, 2001; Linder, 2003). This
parametrization captures the low-redshift behaviour of our mod-
els (light minimally-coupled scalar fields) as well as many others
as long as they do not contribute significantly to the total energy
density at early times. The dynamical evolution of w(a) can lead
to distinctive imprints in the CMB (Caldwell et al., 1998) which
would show up in the Planck data.

In Fig. 35 we plot contours of the joint posterior probabilities
for w0 and wa using Planck +WP+BAO data. We use indepen-
dent flat priors of �3 < w0 < �0.3 and �2 < wa < 2. The
points are coloured by the value of H0, which shows a clear
variation with w0 and wa. The “cosmological constant” point
(w0,wa) = (�1, 0) lies within the 1� contour and the marginal-
ized posteriors for w0 and wa are

w0 = �1.04+0.72
�0.69 (95%,Planck +WP + BAO), (94)

wa < 1.32 (95%,Planck +WP + BAO). (95)

Including the H0 measurement from HST moves (w0,wa)
slightly away from a cosmological constant, but the constraints
are still consistent with ⇤CDM at 2�.

Fig. 36 shows likelihood contours for the same set of (w0,wa)
parameters, now adding SNe data to Planck. As discussed in de-
tail in Sect. 5, there is a dependence of the base parameters on
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Fig. 35. Plot illustrating the joint posterior for w0 and wa
for Planck, WMAP-polarization- and BAO data, marginalizing
over other parameters. The contours are set at 68% and 95%.
Independent flat priors of �3 < w0 < �0.3 and �2 < wa < 2
were assumed. The colour of the scattered points indicates the
distribution of the Hubble parameter H0. Dashed grey lines guide
the eye to the “cosmological constant” solution.
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Fig. 36. Plot illustrating the joint posterior for w0 and wa,
marginalizing over other parameters, for di↵erent choices of ad-
ditional data to Planck and WMAP-polarization. Contour levels
are set at 68% and 95%. The grey contours use BAO. The red
contours use Union2.1 supernovae data. The blue contours use
SNLS supernovae data. Dashed grey lines guide the eye to the
“cosmological constant” solution.

the choice of dataset used for the SNe, and this continues with
the dark energy parameters. The results for Planck+Union2.1 are
in better agreement with a cosmological constant than those for
Planck+SNLS. We remark that the variations in the constraints
on dark energy parameters using di↵erent combinations of data
sets might be due to unmodelled systematics in the analysis, the
potential presence of which have been discussed in Sects. 5.3
and 5.4.

Dynamical dark energy models might also give a non-
negligible contribution to the energy density of the Universe at
early times. Such Early Dark Energy (EDE; Wetterich, 2004)
models may be very close to ⇤CDM recently but have a nonzero
dark energy density fraction, ⌦e, at early times. Such models
complement the (w0,wa) analysis by investigating how much
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Fig. 34. Plot indicating marginalized posterior probabilities for
the dark energy equation-of-state parameter w (assumed con-
stant), for the indicated combinations of data sets. A flat prior
on w from �3 to �0.3 was assumed. The dashed grey line indi-
cates the “cosmological constant” solution.

still basically consistent with a cosmological constant, though
SNLS does lead to a slightly lower value of w than Union2.1.
If instead we combine Planck+WP with HST measurements of
H0, the di↵erence between the values of H0 preferred by CMB
and HST reflects itself in the joint constraint of

w = �1.24+0.18
�0.19 (95%,Planck +WP + HST), (93)

which is in tension with w = �1.
If w , �1 then it is likely to change with time. In order to in-

vestigate this we consider a linear model, w(a) = w0 +wa(1� a),
where w0 is the value of the equation of state today and wa deter-
mines how the equation of state evolves away from w0 near the
present epoch (Chevallier & Polarski, 2001; Linder, 2003). This
parametrization captures the low-redshift behaviour of our mod-
els (light minimally-coupled scalar fields) as well as many others
as long as they do not contribute significantly to the total energy
density at early times. The dynamical evolution of w(a) can lead
to distinctive imprints in the CMB (Caldwell et al., 1998) which
would show up in the Planck data.

In Fig. 35 we plot contours of the joint posterior probabilities
for w0 and wa using Planck +WP+BAO data. We use indepen-
dent flat priors of �3 < w0 < �0.3 and �2 < wa < 2. The
points are coloured by the value of H0, which shows a clear
variation with w0 and wa. The “cosmological constant” point
(w0,wa) = (�1, 0) lies within the 1� contour and the marginal-
ized posteriors for w0 and wa are

w0 = �1.04+0.72
�0.69 (95%,Planck +WP + BAO), (94)

wa < 1.32 (95%,Planck +WP + BAO). (95)

Including the H0 measurement from HST moves (w0,wa)
slightly away from a cosmological constant, but the constraints
are still consistent with ⇤CDM at 2�.

Fig. 36 shows likelihood contours for the same set of (w0,wa)
parameters, now adding SNe data to Planck. As discussed in de-
tail in Sect. 5, there is a dependence of the base parameters on
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Fig. 35. Plot illustrating the joint posterior for w0 and wa
for Planck, WMAP-polarization- and BAO data, marginalizing
over other parameters. The contours are set at 68% and 95%.
Independent flat priors of �3 < w0 < �0.3 and �2 < wa < 2
were assumed. The colour of the scattered points indicates the
distribution of the Hubble parameter H0. Dashed grey lines guide
the eye to the “cosmological constant” solution.
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Fig. 36. Plot illustrating the joint posterior for w0 and wa,
marginalizing over other parameters, for di↵erent choices of ad-
ditional data to Planck and WMAP-polarization. Contour levels
are set at 68% and 95%. The grey contours use BAO. The red
contours use Union2.1 supernovae data. The blue contours use
SNLS supernovae data. Dashed grey lines guide the eye to the
“cosmological constant” solution.

the choice of dataset used for the SNe, and this continues with
the dark energy parameters. The results for Planck+Union2.1 are
in better agreement with a cosmological constant than those for
Planck+SNLS. We remark that the variations in the constraints
on dark energy parameters using di↵erent combinations of data
sets might be due to unmodelled systematics in the analysis, the
potential presence of which have been discussed in Sects. 5.3
and 5.4.

Dynamical dark energy models might also give a non-
negligible contribution to the energy density of the Universe at
early times. Such Early Dark Energy (EDE; Wetterich, 2004)
models may be very close to ⇤CDM recently but have a nonzero
dark energy density fraction, ⌦e, at early times. Such models
complement the (w0,wa) analysis by investigating how much
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► Parameterize dark energy using PPF framework of Hu and Sawicki (2007)
► No anisotropic stresses 
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2.1.4. Dark energy

In our baseline model we assume that the dark energy is a cos-
mological constant with current density parameter ⌦⇤. When
considering a dynamical dark energy component, we parame-
terize the equation of state either as a constant w or as a function
of the cosmological scale factor, a, with

w(a) ⌘ p
⇢
= w0 + (1 � a)wa, (4)

and assume that the dark energy does not interact with other con-
stituents other than through gravity. Since this model allows the
equation of state to cross below �1, a single-fluid model can-
not be used self-consistently. We therefore use the parameterized
post-Friedmann (PPF) model of Fang et al. (2008a). For models
with w > �1, the PPF model agrees with fluid models to signif-
icantly better accuracy than required for the results reported in
this paper.

2.1.5. Power spectra

Over the last decades there has been significant progress in
improving the accuracy, speed and generality of the numerical
calculation of the CMB power spectra given an ionization
history and set of cosmological parameters (Sugiyama,
1995; Ma & Bertschinger, 1995; Seljak & Zaldarriaga, 1996;
Seljak, 1996; White & Scott, 1996; Hu & White, 1997;
Zaldarriaga et al., 1998; Hu et al., 1998; Bucher et al., 2000;
Hu, 2000; Lewis & Challinor, 2002; Seljak et al., 2003; Doran,
2005; Challinor & Lewis, 2005; Cyr-Racine & Sigurdson, 2011;
Blas et al., 2011; Lesgourgues & Tram, 2011; Howlett et al.,
2012). Our baseline numerical Boltzmann code is camb10

(March 2013; Lewis et al., 2000), a parallelized line-of-sight
code developed from cmbfast (Seljak & Zaldarriaga, 1996)
and Cosmics (Bertschinger, 1995; Ma & Bertschinger, 1995),
which calculates the lensed CMB temperature and polariza-
tion power spectra. The code has been publicly available for
over a decade and has been very well tested (and improved)
by the community. Numerical stability and accuracy of the
calculation at the sensitivity of Planck has been explored in
detail (Hamann et al., 2009; Lesgourgues, 2011b; Howlett et al.,
2012), demonstrating that the raw numerical precision is
su�cient for numerical errors on parameter constraints from
Planck to be less than 10% of the statistical error around the
assumed cosmological model. (For the high multipole CMB
data at ` > 2000 used in Sect. 4, the default camb settings are
adequate because the power spectra of these experiments are
dominated by unresolved foregrounds and have large errors at
high multipoles.) To test the potential impact of camb errors,
we importance-sample a subset of samples from the posterior
parameter space using higher accuracy settings. This confirms
that di↵erences purely due to numerical error in the theory
prediction are less than 10% of the statistical error for all param-
eters, both with and without inclusion of high-` data. We also
performed additional tests of the robustness and accuracy of our
results by reproducing a fraction of them with the independent
Boltzmann code class (Lesgourgues, 2011a; Blas et al., 2011).

In the parameter analysis, information from CMB lensing
enters in two ways. Firstly, all the CMB power spectra are mod-
elled using the lensed CMB power spectra, which includes the
approximately 5% smoothing e↵ect on the acoustic peaks due
to lensing. Secondly, for some results we include the Planck

10http://camb.info

lensing likelihood, which encapsulates the lensing information
in the (mostly squeezed-shape) CMB trispectrum via a lensing
potential power spectrum (Planck Collaboration 12, 2013). The
theoretical predictions for the lensing potential power spectrum
are calculated by camb, optionally with corrections for the non-
linear matter power spectrum, along with the (non-linear) lensed
CMB power spectra. For the Planck temperature power spec-
trum, corrections to the lensing e↵ect due to non-linear struc-
ture growth can be neglected, however the impact on the lens-
ing potential reconstruction is important. We use the halofit
model (Smith et al., 2003) as updated by Takahashi et al. (2012)
to model the impact of non-linear growth on the theoretical pre-
diction for the lensing potential power.

2.2. Parameter choices

2.2.1. Base parameters

The first section of Table 1 lists our base parameters that have
flat priors when they are varied, along with their default values
in the baseline model. When parameters are varied, unless oth-
erwise stated, prior ranges are chosen to be much larger than the
posterior, and hence do not a↵ect the results of parameter esti-
mation. In addition to these priors, we impose a “hard” prior on
the Hubble constant of [20, 100] km s�1 Mpc�1.

2.2.2. Derived parameters

Matter-radiation equality zeq is defined as the redshift at which
⇢� + ⇢⌫ = ⇢c + ⇢b (where ⇢⌫ approximates massive neutrinos as
massless).

The redshift of recombination, z⇤, is defined so that the op-
tical depth to Thomson scattering from z = 0 (conformal time
⌘ = ⌘0) to z = z⇤ is unity, assuming no reionization. The optical
depth is given by

⌧(⌘) ⌘
Z ⌘

⌘0

⌧̇ d⌘0, (5)

where ⌧̇ = �a�Tne (and ne is the density of free electrons, �T
is the Thomson cross section). We define ✓⇤ = rs(z⇤)/DA(z⇤),
where rs is the sound horizon

rs(z) =
Z ⌘(z)

0

d⌘0p
3(1 + R)

, (6)

with R ⌘ 3⇢b/(4⇢�).
Baryon velocities decouple from the photon dipole when

Compton drag balances the gravitational force, which happens
at ⌧d ⇠ 1, where (Hu & Sugiyama, 1996)

⌧d(⌘) ⌘
Z ⌘

⌘0

⌧̇ d⌘0/R. (7)

Here again ⌧ is from recombination only, without reioniza-
tion contributions. We define a drag redshift zdrag, so that
⌧d(⌘(zdrag)) = 1. The sound horizon at the drag epoch is an im-
portant scale which is often used in studies of baryon acoustic
oscillations; we denote this as rdrag = rs(zdrag). We compute zdrag
and rdrag numerically from camb (see Sect. 5.2 for details of ap-
plication to BAO data).

The characteristic wavenumber for damping, kD, is given by

k�2
D (⌘) = �1

6

Z ⌘

0
d⌘0

1
⌧̇

R2 + 16(1 + R)/15
(1 + R)2 . (8)

7

► Degeneracy with H0 means Planck alone can only weakly constrain dark energy
► Can be broken by CMB lensing (see later) and other probes 

► Setting wa = 0 obtain
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Fig. 32. The 2D joint posterior distribution betweenNe↵ and
Yp with both parameters varying freely, determined from the
Planck+WP+highL likelihood. The colour of each sample in
Markov chain indicates the associated value of ✓d/✓s. The Ne↵-
Yp relation from the BBN theory is shown by the dashed curve.
The vertical line shows the standard value Ne↵ = 3.046. The
region with Yp > 0.294 is highlighted in gray delineating the re-
gion of the plot exceeding the 2� upper limit of the recent mea-
surement of initial Solar helium abundance (Serenelli & Basu,
2010).

is thus an approximate degeneracy between these two parame-
ters. It can be partially broken by the phase shift of the acoustic
oscillations that arises due to the free streaming of the neutri-
nos (Bashinsky & Seljak, 2004). The other, less important de-
generacy breaking e↵ect, is the early ISW e↵ect discussed by
Hou et al. (2011).

The joint posterior distribution between Ne↵ and Yp from the
Planck+WP+highL likelihood is shown in Figure 32 with the
colour of each MCMC sample coding the value of ✓d/✓s = rd/rs.
The major constraint on Ne↵ and Yp comes from the precise mea-
surement of this ratio, leaving the degeneracy along the constant
✓d/✓s direction. The relation between Ne↵ and Yp from BBN
theory is shown by the dashed curve31. The standard BBN pre-
diction with Ne↵ = 3.046 is contained within the 68% confi-
dence region. The gray region is for Yp > 0.294 which is the 2�
conservative upper bound on the primordial helium abundance
from (Serenelli & Basu, 2010). Most of the samples are consis-
tent with this bound. The inferred estimates of Ne↵ and Yp from
the Planck+WP+HighL data are

Ne↵ = 3.33+0.59
�0.83, (68% CL), (89a)

Yp = 0.254+0.041
�0.033. (68% CL). (89b)

With YP allowed to vary, Ne↵ is no longer tightly constrained
by the value of ✓d/✓s. Instead, it is constrained due, at least in
part, to the impact that varying Ne↵ has on the phase shifts of the
acoustic oscillations. As shown in Hou et al. (2012b), this e↵ect
explains the observed correlation between Ne↵ and ✓s. This cor-
relation is shown in Fig. 33. The correlation in the ⇤CDM+Ne↵
model is also plotted in the figure showing that the Ne↵-Yp de-
generacy makes the phase shift e↵ect much more significant.

31For constant Ne↵ , the variation due to the uncertanty of the baryon
density is too small to show given the thickness of the curve.

Fig. 33. The 2D joint posterior distribution between Ne↵ and ✓s
from the LCDM+Ne↵+Yp (red) and LCDM+Ne↵ (blue) models,
using Planck+WL+HighL data.

6.5. Dark Energy Constraints

A major challenge for cosmology is to elucidate the nature of the
dark energy driving the accelerated expansion of the Universe.
The most prosaic explanation is that dark energy is a cosmo-
logical constant. An alternative is dynamical dark energy mod-
els (Wetterich, 1988; Ratra & Peebles, 1988), usually based on
a scalar field. In the simplest models the field is very light, has a
canonical kinetic energy term and is minimally coupled to grav-
ity. In such models the dark energy speed of sound equals the
speed of light and it has zero anisotropic stress. It thus con-
tributes very little to clustering. We shall only consider such
models in the following.

A simple way to parametrize dark energy is through its equa-
tion of state w ⌘ p/⇢ (Turner & White, 1997). A cosmolog-
ical constant has w ⌘ �1 while scalar field models typically
have time varying w with w � �1. The analysis performed here
is based on the “parameterized post-Friedmann” (PPF) frame-
work of Hu & Sawicki (2007) and Hu (2008) as implemented
in CAMB (Fang et al., 2008b,a) and discussed earlier in Sect. 2.
This allows us to investigate both regions of parameter space in
which w is less than minus one and models for which w changes
in time.

To begin we plot in Fig. 34 the marginalized posterior prob-
abilities for models with w =constant. For these runs we have
taken a flat prior on w from �3 to �0.3. (Note that adding in
high-` data, not illustrated, results in little change to the poste-
riors.) As expected, Planck alone does not strongly constrain w,
due to the degeneracy of this parameter with the Hubble expan-
sion. We can then attempt to break the degeneracy by combin-
ing Planck with other datasets. Adding in BAO data tightens the
posterior probability, giving

w = �1.13 ± 0.24 (95%,Planck +WP + BAO), (90)

in good agreement with the ⇤CDM model. Using supernovae
data leads to the stronger constraints

w = �1.09 ± 0.17 (95%,Planck +WP + Union2.1), (91)
w = �1.13+0.13

�0.14 (95%,Planck +WP + SNLS), (92)
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Planck+WP+highL likelihood. The colour of each sample in
Markov chain indicates the associated value of ✓d/✓s. The Ne↵-
Yp relation from the BBN theory is shown by the dashed curve.
The vertical line shows the standard value Ne↵ = 3.046. The
region with Yp > 0.294 is highlighted in gray delineating the re-
gion of the plot exceeding the 2� upper limit of the recent mea-
surement of initial Solar helium abundance (Serenelli & Basu,
2010).
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With YP allowed to vary, Ne↵ is no longer tightly constrained
by the value of ✓d/✓s. Instead, it is constrained due, at least in
part, to the impact that varying Ne↵ has on the phase shifts of the
acoustic oscillations. As shown in Hou et al. (2012b), this e↵ect
explains the observed correlation between Ne↵ and ✓s. This cor-
relation is shown in Fig. 33. The correlation in the ⇤CDM+Ne↵
model is also plotted in the figure showing that the Ne↵-Yp de-
generacy makes the phase shift e↵ect much more significant.
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Fig. 33. The 2D joint posterior distribution between Ne↵ and ✓s
from the LCDM+Ne↵+Yp (red) and LCDM+Ne↵ (blue) models,
using Planck+WL+HighL data.

6.5. Dark Energy Constraints

A major challenge for cosmology is to elucidate the nature of the
dark energy driving the accelerated expansion of the Universe.
The most prosaic explanation is that dark energy is a cosmo-
logical constant. An alternative is dynamical dark energy mod-
els (Wetterich, 1988; Ratra & Peebles, 1988), usually based on
a scalar field. In the simplest models the field is very light, has a
canonical kinetic energy term and is minimally coupled to grav-
ity. In such models the dark energy speed of sound equals the
speed of light and it has zero anisotropic stress. It thus con-
tributes very little to clustering. We shall only consider such
models in the following.

A simple way to parametrize dark energy is through its equa-
tion of state w ⌘ p/⇢ (Turner & White, 1997). A cosmolog-
ical constant has w ⌘ �1 while scalar field models typically
have time varying w with w � �1. The analysis performed here
is based on the “parameterized post-Friedmann” (PPF) frame-
work of Hu & Sawicki (2007) and Hu (2008) as implemented
in CAMB (Fang et al., 2008b,a) and discussed earlier in Sect. 2.
This allows us to investigate both regions of parameter space in
which w is less than minus one and models for which w changes
in time.

To begin we plot in Fig. 34 the marginalized posterior prob-
abilities for models with w =constant. For these runs we have
taken a flat prior on w from �3 to �0.3. (Note that adding in
high-` data, not illustrated, results in little change to the poste-
riors.) As expected, Planck alone does not strongly constrain w,
due to the degeneracy of this parameter with the Hubble expan-
sion. We can then attempt to break the degeneracy by combin-
ing Planck with other datasets. Adding in BAO data tightens the
posterior probability, giving

w = �1.13 ± 0.24 (95%,Planck +WP + BAO), (90)

in good agreement with the ⇤CDM model. Using supernovae
data leads to the stronger constraints

w = �1.09 ± 0.17 (95%,Planck +WP + Union2.1), (91)
w = �1.13+0.13

�0.14 (95%,Planck +WP + SNLS), (92)
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Fig. 34. Plot indicating marginalized posterior probabilities for
the dark energy equation-of-state parameter w (assumed con-
stant), for the indicated combinations of data sets. A flat prior
on w from �3 to �0.3 was assumed. The dashed grey line indi-
cates the “cosmological constant” solution.

still basically consistent with a cosmological constant, though
SNLS does lead to a slightly lower value of w than Union2.1.
If instead we combine Planck+WP with HST measurements of
H0, the di↵erence between the values of H0 preferred by CMB
and HST reflects itself in the joint constraint of

w = �1.24+0.18
�0.19 (95%,Planck +WP + HST), (93)

which is in tension with w = �1.
If w , �1 then it is likely to change with time. In order to in-

vestigate this we consider a linear model, w(a) = w0 +wa(1� a),
where w0 is the value of the equation of state today and wa deter-
mines how the equation of state evolves away from w0 near the
present epoch (Chevallier & Polarski, 2001; Linder, 2003). This
parametrization captures the low-redshift behaviour of our mod-
els (light minimally-coupled scalar fields) as well as many others
as long as they do not contribute significantly to the total energy
density at early times. The dynamical evolution of w(a) can lead
to distinctive imprints in the CMB (Caldwell et al., 1998) which
would show up in the Planck data.

In Fig. 35 we plot contours of the joint posterior probabilities
for w0 and wa using Planck +WP+BAO data. We use indepen-
dent flat priors of �3 < w0 < �0.3 and �2 < wa < 2. The
points are coloured by the value of H0, which shows a clear
variation with w0 and wa. The “cosmological constant” point
(w0,wa) = (�1, 0) lies within the 1� contour and the marginal-
ized posteriors for w0 and wa are

w0 = �1.04+0.72
�0.69 (95%,Planck +WP + BAO), (94)

wa < 1.32 (95%,Planck +WP + BAO). (95)

Including the H0 measurement from HST moves (w0,wa)
slightly away from a cosmological constant, but the constraints
are still consistent with ⇤CDM at 2�.

Fig. 36 shows likelihood contours for the same set of (w0,wa)
parameters, now adding SNe data to Planck. As discussed in de-
tail in Sect. 5, there is a dependence of the base parameters on
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Fig. 35. Plot illustrating the joint posterior for w0 and wa
for Planck, WMAP-polarization- and BAO data, marginalizing
over other parameters. The contours are set at 68% and 95%.
Independent flat priors of �3 < w0 < �0.3 and �2 < wa < 2
were assumed. The colour of the scattered points indicates the
distribution of the Hubble parameter H0. Dashed grey lines guide
the eye to the “cosmological constant” solution.
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Fig. 36. Plot illustrating the joint posterior for w0 and wa,
marginalizing over other parameters, for di↵erent choices of ad-
ditional data to Planck and WMAP-polarization. Contour levels
are set at 68% and 95%. The grey contours use BAO. The red
contours use Union2.1 supernovae data. The blue contours use
SNLS supernovae data. Dashed grey lines guide the eye to the
“cosmological constant” solution.

the choice of dataset used for the SNe, and this continues with
the dark energy parameters. The results for Planck+Union2.1 are
in better agreement with a cosmological constant than those for
Planck+SNLS. We remark that the variations in the constraints
on dark energy parameters using di↵erent combinations of data
sets might be due to unmodelled systematics in the analysis, the
potential presence of which have been discussed in Sects. 5.3
and 5.4.

Dynamical dark energy models might also give a non-
negligible contribution to the energy density of the Universe at
early times. Such Early Dark Energy (EDE; Wetterich, 2004)
models may be very close to ⇤CDM recently but have a nonzero
dark energy density fraction, ⌦e, at early times. Such models
complement the (w0,wa) analysis by investigating how much
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► Mild tension for w<-1 but not 
significant 

► With variable w(a) similar conclusion
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Anomalies in low mulitpole spectrum
Measured power spectrum shows dip relative to best fit LCDM for 20<l<30 

Nottingham, March 2013

22

Low multipole spectrum
► Several ~2σ results driven by temperature spectrum at $<50
► Measured power spectrum shows `dip’ relative to best fit LCDM for 20<$<30

Planck Collaboration: Planck Cosmological Parameters
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Fig. 39. The figure to the left shows the Planck TT spectrum at low multipoles with 68% errors. The “rainbow” band show the best
fits to the entire Planck+WP likelihood for the base ⇤CDM cosmology, colour coded according to the value of the scalar spectral
index ns. The figure to the right shows the 68% and 95% limits on the relative amplitude of the base ⇤CDM fits to the Planck+WP
likelihood fitted only to the Planck TT likelihood over the multipole range 2  `  `max.

– A 95% upper limit on the summed neutrino mass of
P

m⌫ <
0.66 eV.

– A determination of the e↵ective number of neutrino-like rel-
ativistic degrees of freedom of Ne↵ = 3.36±0.34, compatible
with the standard value of 3.046.

– The results from Planck are consistent with the results of
the standard Big Bang Nucleosynthesis. In fact, combining
the CMB data with the most recent results on the deuterium
abundance (Pettini & Cooke, 2012), leads to the constraint
Ne↵ = 3.02 ± 0.27, again compatible with the standard value
of 3.046.

– New limits on a possible variation of the fine structure
constant, dark matter annihilation and primordial magnetic
fields.

We also find a number of marginal (around 2�) results,
perhaps indicative of internal tension within the Planck data.
Examples include the preference of the (phenomenological)
lensing parameter for values greater than unity (AL = 1.23±0.11;
equation 44) and for negative running (dns/d ln k = �0.015 ±
0.09; equation 60b). In Planck Collaboration 17 (2013), the
Planck data indicate a preference for anti-correlated isocurvature
modes and for models with a truncated power spectrum on large
scales. None of these results have a decisive level of statistical
significance, but they can all be traced to an unusual aspect of the
temperature power spectrum at low multipoles. As can be seen in
Fig. 1 and on an expanded scale in the left hand panel of Fig. 39,
the measured power spectrum shows a dip relative to the best-
fit base ⇤CDM cosmology in the multipole range 20 <⇠ ell <⇠ 30
and an excess at ` = 40. The existence of “glitches” in the power
spectrum at low multipoles was noted by the WMAP team in the
first year papers (Hinshaw et al., 2003; Spergel et al., 2003) and
acted as motivation to fit an inflation model with a step-like fea-
ture (Peiris et al., 2003). Similar investigations have been carried
out by a number of authors, (see e.g., Mortonson et al., 2009, and
references therein). At these low multipoles, the Planck spec-
trum is in excellent agreement with the WMAP nine-year spec-
trum (Planck Collaboration 08, 2013), so it is unlikely that any
of the features such as the low quadrupole or “dip” in the multi-
pole range 15–30 are caused by instrumental e↵ects or Galactic
foregrounds. These are real features of the CMB anisotropies.

The Planck data, however, constrain the parameters of the
base ⇤CDM model to such high precision that that there is little
remaining flexibility to fit the low multipole part of the spectrum.
To illustrate this point, the right hand panel of Fig. 39 shows the
68% and 95% limits on the relative amplitude of the base⇤CDM
model (sampling the chains constrained by the full likelihood)
fitted only to the Planck TT likelihood over the multipole range
2  `  `max. From multipoles ` ⇡ 25 to multipoles ` ⇡ 35, we
see more than a 2� departure from values of unity. (The max-
imum deviation from unity is 2.7� at ` = 30.) It is di�cult to
know what to make of this result, and we present it here as a “cu-
riosity” that needs further investigation. The Planck temperature
data are remarkably consistent with the predictions of the base
⇤CDM model at high multipoles, but it is also conceivable that
the ⇤CDM cosmology fails at low multipoles. There are other
indications, from both WMAP and Planck data for “anomalies”
at low multipoles (Planck Collaboration 09, 2013), that may be
indicative of new physics operating on the largest scales in our
Universe. Interpretation of large-scale anomalies (including the
results shown in Fig. 39) is di�cult in the absence of a theoreti-
cal framework. The problem here is assessing the role of a pos-
terior choices, i.e., that inconsistencies attract our attention and
influence our choice of statistical test. Nevertheless, we know
so little about the physics of the early Universe that we should
be open to the possibility that there is new physics beyond that
assumed in the base ⇤CDM model. Irrespective of the interpre-
tation, the unusual shape of the low multipole spectrum is at least
partly responsible for some of the 2� e↵ects seen in the analysis
of extentions to the ⇤CDM model discussed in Sect. 6.

Supplementary information from astrophysical datasets has
played an important role in the analysis of all previous CMB
experiments. For Planck the interpretation of results combined
with non-CMB datasets is not straightfoward (as a consequence
of the tensions discussed in Sect. 5). For the base ⇤CDM model,
the statistical power of the Planck data is so high that we find
very similar cosmological parameters if we add the Riess et al.
(2011) constraint on H0, or either of the two SNe samples, to
those derived from the CMB data alone. In these cases, the solu-
tions simply reflect the tensions discussed in Sect. 5, for exam-
ple, including the H0 measurement with Planck+WP likelihood
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► Agreement with WMAP is excellent for 20<$<30 - real features of CMB 
► More apparent with Planck as parameters fitted to such high precision - less 

freedom in fitting low $#spectrum
► Curiosity that needs further investigation - models with e.g. step in inflationary 

potential, anti-correlated isocurvature modes have marginal preference 
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Agrees with WMAP observation, real feature of CMB

New physics at play here? Step in inflation potential leading to feature? 
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Non-Gaussianity
Single field inflation produces negligible levels of primordial NG - a 
detection would rule out this large class of models. 

Multi-field models produce NG with different amplitudes, shapes and scale 
dependence. 

3 point function (Bispectrum) - simplest statistic to measure NG

Different k relations lead to local, orthogonal and equilateral types of fNL:

Planck finds no evidence for any of them  - single slow roll inflation survives!

NG places constraints on many models, DBI inflation, curvaton all fine.

Cyclic models in their simplest form give local |fNL| > 10 so under tension 
with Planck.

Nottingham, March 2013

28

Non Gaussianity (NG)
► Simplest models of single field inflation produces small levels of primordial NG - 

a detection would rule all these models out
► More complex inflationary models (e.g. multi-field produce NG with different 

amplitudes, shapes and scale dependence) - powerful window to HEP
► 3-point function (bispectrum) simplest statistic to measure NG

Planck Collaboration: Planck Cosmology Project P09a: fNL, Bispectrum, Trispectrum

between Gaussian and non-Gaussian perturbations. One of the
main goals of this paper is to constrain the amplitude and shape
of primordial NG using the angular bispectrum of the CMB
anisotropies. The CMB angular bispectrum is related to the is
related to the primordial bispectrum defined by

h�(k1)�(k2)�(k3)i = (2⇡)3�(3)(k1 + k2 + k3)B�(k1, k2, k3). (1)

Here we define the potential � in terms of the comoving cur-
vature perturbation ⇣ on superhorizon scales by � ⌘ (3/5)⇣.
In matter domination, on superhorizon scales, � is equivalent
to Bardeen’s gauge-invariant gravitational potential (Bardeen
1980), and we adopt this notation for historical consistency.
The bispectrum B�(k1, k2, k3) measures the correlation among
three perturbation modes. Assuming translational and rotational
invariance, it depends only on the magnitudes of the three
wavevectors. In general the bispectrum can be written as

B�(k1, k2, k3) = fNLF(k1, k2, k3) . (2)

Here, fNL is the so-called “nonlinearity parameter”
(Gangui et al. 1994; Wang & Kamionkowski 2000;
Komatsu & Spergel 2001; Babich et al. 2004), a dimen-
sionless parameter measuring the amplitude of NG. The
bispectrum is measured by sampling triangles in Fourier space.
The dependence of the function F(k1, k2, k3) on the type of
triangle (i.e., the configuration) formed by the three wavevec-
tors describes the shape of the bispectrum (Babich et al.
2004), which encodes much physical information. It can
also encode the scale dependence, i.e. the running, of the
bispectrum (Chen 2005).2 Di↵erent NG shapes are linked
to distinctive physical mechanisms that can generate such
non-Gaussian fingerprints in the early universe. For example,
the so-called “local” NG (Gangui et al. 1994; Verde et al.
2000; Wang & Kamionkowski 2000; Komatsu & Spergel 2001)
is characterized by a signal that is maximal for “squeezed”
triangles with k1 ⌧ k2 ' k3 (or permutations; Maldacena
2003) which occurs, in general, when the primordial NG is
generated on superhorizon scales. Conversely, “equilateral”
NG (Babich et al. 2004) peaks for equilateral configurations
k1 ⇡ k2 ⇡ k3, due to correlations between fluctuation modes
that are of comparable wavelengths, which can occur if the
three perturbation modes mostly interact when they cross the
horizon approximately at the same time. Other relevant shapes
include the so-called “folded” (or flattened) NG (Chen et al.
2007b), which is due to correlations between perturbation
modes that are enhanced for k1 ⇡ 2k2 ⇡ 2k3, or the “orthogonal”
NG (Senatore et al. 2010) that generates a signal with a positive
peak at the equilateral configuration and a negative peak at the
folded configuration.

We now sketch how non-Gaussian information in the ini-
tial conditions are transferred to observable quantities (in this
instance, the CMB anisotropies) in the context of inflation.
Primordial perturbations in the inflaton field(s) �(x, t) = �0(t) +
��(x, t) (where �� denotes quantum fluctuations about the back-
ground value �0(t)) can be characterized by the comoving cur-
vature perturbation ⇣, since this is conserved on superhori-
zon scales for adiabatic perturbations. The inflaton fluctuations

2 Specifically, one can define the shape of the bispectrum as the de-
pendence of F(k1, k2, k3)(k1k2k3)2 on the ratios of momenta, e.g., (k2/k1)
and (k3/k1), once the overall scale of the triangle K = k1 + k2 + k3 is
fixed. The scale dependence of the bispectrum can be characterized by
the dependence of F(k1, k2, k3)(k1k2k3)2 on the overall scale K once the
ratios (k2/k1) and (k3/k1) are fixed (see, e.g., Chen 2010b).

�� (in the flat gauge) induce a curvature perturbation3 ⇣ =
�(H/�̇0) �� at linear order; however, nonlinearities induce cor-
rections to this relation. The primordial NG in the curvature per-
turbation ⇣ is intrinsically nonlinear, so that its contribution to
the CMB anisotropies is transferred linearly at leading order. In
particular, at the linear level, the curvature perturbation ⇣ is re-
lated to Bardeen’s gravitational potential � during the matter-
dominated epoch by � = (3/5)⇣ and �T/T ⇠ g ⇣, where g is the
linear radiation transfer function; thus, any primordial NG will
be transferred to the CMB even at linear order. For example, in
the large-angular scale limit, the linear Sachs-Wolfe e↵ect reads
�T/T = ��/3 = �⇣/5. Further, any other field excited during
the inflationary phase which develops quantum fluctuations con-
tributing to the primordial curvature perturbation – whether or
not it is driving inflation – can leave its non-Gaussian imprint in
the CMB anisotropies.

Thus the bispectrum (1) measures the fundamental (self-) in-
teractions of the scalar field(s) involved in the inflationary phase
and/or generating the primordial curvature perturbation, as well
as measuring nonlinear processes occurring during or immedi-
ately after inflation. It therefore brings unprecedented insights
into the fundamental physics behind inflation, possibly allowing
for the first time a reconstruction of the inflationary Lagrangian
itself. For example, in a large class of inflationary models
which involve additional light field(s) di↵erent from the inflaton,
the superhorizon evolution of the fluctuations in the additional
field(s) and their transfer to the adiabatic curvature perturba-
tions can generate a large primordial NG of the local type. This
is the case of the curvaton-type models (Linde & Mukhanov
1997; Lyth & Wands 2002; Lyth et al. 2003) where the late-
time decay of a scalar field, belonging to the non-inflationary
sector of the theory, induces curvature perturbations; models
where the curvature perturbation is generated by the local fluc-
tuations of the inflaton’s coupling to matter during the reheat-
ing phase (Kofman 2003; Dvali et al. 2004a); multifield models
of inflation (see, e.g., Bartolo et al. 2002, Bernardeau & Uzan
2002, Vernizzi & Wands 2006, Rigopoulos et al. 2006, 2007;
Lyth & Rodriguez 2005, Byrnes & Choi 2010). Since the non-
linear processes take place on superhorizon scales, the form of
NG is local in real space and thus, in Fourier space, the bis-
pectrum correlates large and small Fourier modes. “Equilateral”
NG (Babich et al. 2004) is a generic feature of single-field mod-
els with a non-canonical kinetic term, which can also gener-
ate the “orthogonal” type of NG (Senatore et al. 2010). In gen-
eral, these models are characterized by higher-derivative inter-
actions of the inflaton field. The correlation between the fluc-
tuation modes is suppressed when one of the modes is on su-
perhorizon scales, because the derivative terms are redshifted
away, so that the correlation is maximal for three modes of com-
parable wavelengths that cross the horizon at the same time.
An example of “folded” NG is the one generated in a class of
single-field models with non-Bunch-Davies vacuum (Chen et al.
2007b; Holman & Tolley 2008). Indeed, these and other types of
primordial NG can also be produced in other models, and we re-
fer to Sect. 2 for more details. All these models can easily yield
primordial NG with an amplitude much bigger than the one pre-
dicted in the standard models of single-field slow-roll inflation,
for which the NG amplitude turns out to be proportional to the

3 For the curvature perturbation, we follow the notation and sign
conventions of Komatsu et al. (2011). ⇣ is also sometimes denoted
R (see e.g., Lidsey et al. 1997, Lyth & Riotto 1999 and references
therein), while the comoving curvature perturbation R as defined, e.g.,
in Malik & Wands (2009) is such that R = �⇣.
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between Gaussian and non-Gaussian perturbations. One of the
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2007b), which is due to correlations between perturbation
modes that are enhanced for k1 ⇡ 2k2 ⇡ 2k3, or the “orthogonal”
NG (Senatore et al. 2010) that generates a signal with a positive
peak at the equilateral configuration and a negative peak at the
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We now sketch how non-Gaussian information in the ini-
tial conditions are transferred to observable quantities (in this
instance, the CMB anisotropies) in the context of inflation.
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zon scales for adiabatic perturbations. The inflaton fluctuations

2 Specifically, one can define the shape of the bispectrum as the de-
pendence of F(k1, k2, k3)(k1k2k3)2 on the ratios of momenta, e.g., (k2/k1)
and (k3/k1), once the overall scale of the triangle K = k1 + k2 + k3 is
fixed. The scale dependence of the bispectrum can be characterized by
the dependence of F(k1, k2, k3)(k1k2k3)2 on the overall scale K once the
ratios (k2/k1) and (k3/k1) are fixed (see, e.g., Chen 2010b).

�� (in the flat gauge) induce a curvature perturbation3 ⇣ =
�(H/�̇0) �� at linear order; however, nonlinearities induce cor-
rections to this relation. The primordial NG in the curvature per-
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�T/T = ��/3 = �⇣/5. Further, any other field excited during
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Thus the bispectrum (1) measures the fundamental (self-) in-
teractions of the scalar field(s) involved in the inflationary phase
and/or generating the primordial curvature perturbation, as well
as measuring nonlinear processes occurring during or immedi-
ately after inflation. It therefore brings unprecedented insights
into the fundamental physics behind inflation, possibly allowing
for the first time a reconstruction of the inflationary Lagrangian
itself. For example, in a large class of inflationary models
which involve additional light field(s) di↵erent from the inflaton,
the superhorizon evolution of the fluctuations in the additional
field(s) and their transfer to the adiabatic curvature perturba-
tions can generate a large primordial NG of the local type. This
is the case of the curvaton-type models (Linde & Mukhanov
1997; Lyth & Wands 2002; Lyth et al. 2003) where the late-
time decay of a scalar field, belonging to the non-inflationary
sector of the theory, induces curvature perturbations; models
where the curvature perturbation is generated by the local fluc-
tuations of the inflaton’s coupling to matter during the reheat-
ing phase (Kofman 2003; Dvali et al. 2004a); multifield models
of inflation (see, e.g., Bartolo et al. 2002, Bernardeau & Uzan
2002, Vernizzi & Wands 2006, Rigopoulos et al. 2006, 2007;
Lyth & Rodriguez 2005, Byrnes & Choi 2010). Since the non-
linear processes take place on superhorizon scales, the form of
NG is local in real space and thus, in Fourier space, the bis-
pectrum correlates large and small Fourier modes. “Equilateral”
NG (Babich et al. 2004) is a generic feature of single-field mod-
els with a non-canonical kinetic term, which can also gener-
ate the “orthogonal” type of NG (Senatore et al. 2010). In gen-
eral, these models are characterized by higher-derivative inter-
actions of the inflaton field. The correlation between the fluc-
tuation modes is suppressed when one of the modes is on su-
perhorizon scales, because the derivative terms are redshifted
away, so that the correlation is maximal for three modes of com-
parable wavelengths that cross the horizon at the same time.
An example of “folded” NG is the one generated in a class of
single-field models with non-Bunch-Davies vacuum (Chen et al.
2007b; Holman & Tolley 2008). Indeed, these and other types of
primordial NG can also be produced in other models, and we re-
fer to Sect. 2 for more details. All these models can easily yield
primordial NG with an amplitude much bigger than the one pre-
dicted in the standard models of single-field slow-roll inflation,
for which the NG amplitude turns out to be proportional to the

3 For the curvature perturbation, we follow the notation and sign
conventions of Komatsu et al. (2011). ⇣ is also sometimes denoted
R (see e.g., Lidsey et al. 1997, Lyth & Riotto 1999 and references
therein), while the comoving curvature perturbation R as defined, e.g.,
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Amplitude Shape and scale dependence

► Local NG, signal in squeezed triangles                   e.g. multi-field inflation 
► Equilateral NG, signal peaks for                  e.g. single field with non-canonical 

kinetic term
► Folded NG,                      e.g.  single field with non Bunch-Davies vacuum
► Orthogonal NG, positive equilateral peak and negative folded peak, e.g Galileon 

inflation
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has taken place: a detectable amplitude of NG with specific tri-
angular configurations (corresponding broadly to well-motivated
classes of physical models) can be generated if any one of the
above conditions is violated (Bartolo et al. 2004a; Liguori et al.
2010; Chen 2010b; Komatsu 2010; Yadav & Wandelt 2010):

– “local” NG, where the signal peaks in “squeezed” triangles
(k1 ⌧ k2 ' k3) (e.g., multifield models of inflation);

– “equilateral” NG, peaking for k1 ⇡ k2 ⇡ k3. Examples
of this class include: single-field models with non-
canonical kinetic term (Chen et al. 2007b), such as k-
inflation (Armendariz-Picon et al. 1999; Chen et al. 2007b)
or Dirac-Born-Infield (DBI) inflation (Silverstein & Tong
2004; Alishahiha et al. 2004); models characterized by more
general higher-derivative interactions of the inflaton field,
such as ghost inflation (Arkani-Hamed et al. 2004); and
models arising from e↵ective field theories (Cheung et al.
2008);

– “folded” (or flattened) NG. Examples of this class in-
clude: single-field models with non-Bunch-Davies vac-
uum (Chen et al. 2007b; Holman & Tolley 2008) and models
with general higher-derivative interactions (Senatore et al.
2010; Bartolo et al. 2010a);

– “orthogonal” NG which is generated, e.g., in single-
field models of inflation with a non-canonical kinetic
term (Senatore et al. 2010), or with general higher-derivative
interactions.

All these models naturally predict values of | fNL| � 1. A de-
tection of such a signal would rule out the simplest models of
single-field inflation which, obeying all the conditions above, are
characterized by weak gravitational interactions with | fNL| ⌧ 1.

The above scheme provides a general classification of infla-
tionary models in terms of the corresponding NG shapes, which
we adopt for the data analysis presented in this paper:

1. “general” single-field inflationary models (tested using the
equilateral, orthogonal and folded shapes);

2. multifield models of inflation (tested using the local shape).

In each class, there exist specific realizations of inflationary
models which are characterized by the same underlying phys-
ical mechanism, generating a specific NG shape. We will inves-
tigate these classes of inflationary models by the constraining the
corresponding NG content, focusing on amplitudes and shapes.
Di↵erent NG shapes are observationally distinguishable if their
cross-correlation is su�ciently low; almost all of the shapes an-
alyzed in this paper are highly orthogonal to each other (e.g.,
Babich et al. 2004; Fergusson & Shellard 2007).

There are exceptional cases which evade this classification:
for example, some exotic non-local single-field theories of in-
flation produce local NG (Barnaby & Cline 2008), while some
multifield models can produce equilateral NG, e.g., if some par-
ticle production mechanism is present (examples include trapped
inflation (Green et al. 2009), and some models of axion inflation
(Barnaby & Peloso 2011; Barnaby et al. 2011, 2012b)). Another
example arises in a class of multifield models where the second
scalar field is not light, but has a mass m ⇡ H, of the order of
the Hubble rate during inflation. Then NG with an intermediate
shape, interpolating between local and equilateral, can be pro-
duced – “quasi-single field” models of inflation (Chen & Wang
2010a,b) – for which the NG shape is similar to the so-called
constant NG of Fergusson & Shellard (2007). Further, there is
the possibility of a superposition of shapes (and/or running of
NG), generated if di↵erent mechanisms sourcing NG act si-
multaneously during the inflationary evolution. For example, in

multifield DBI inflation, equilateral NG is generated at hori-
zon crossing from the higher-derivative interactions of the scalar
fields, and it adds to the local NG arising from the super-horizon
nonlinear evolution (e.g., Langlois et al. 2008a,b; Renaux-Petel
2009).

In the following subsections, we discuss each of these possi-
bilities in turn. The reader already familiar with this background
material may skip to Sect. 3.

2.1. General single-field models of inflation

Typically in models with non-standard kinetic term (or more
general higher-derivative interactions), inflaton perturbations
propagate with an e↵ective sound speed cs which can be smaller
than the speed of light, and this results in a contribution to
the NG amplitude fNL ⇠ c�2

s in the limit cs ⌧ 1. For exam-
ple, models with a non-standard kinetic term are described by
an inflaton Lagrangian L = P(X, �), where X = gµ⌫@µ� @⌫�,
with at most one derivative on �, and the sound speed is c2

s =
(@P/@X)/(@P/@X + 2X(@2P/@X2)).

In this case, two interaction terms give the dominant con-
tribution to primordial NG, one of the type (�̇�)3 and the other
of the type �̇�(r��)2, which arise from expanding the P(X, �)
Lagrangian. Each of these two interaction terms generates a
bispectrum with a shape similar to the equilateral type, with
the first inflaton interaction yielding a nonlinearity parameter
fNL ⇡ c�2

s , independent of the amplitude of the other bispectrum.
Equilateral NG is usually generated by derivative interactions of
the inflaton field: derivative terms are suppressed when one per-
turbation mode is frozen on superhorizon scales during inflation,
and the other two are still crossing the horizon, so that the corre-
lation between the three perturbation modes will be suppressed,
while it is maximal when all the three modes cross the horizon
at the same time, which happens for k1 ⇡ k2 ⇡ k3.

The equilateral type NG is well approximated by the tem-
plate (Creminelli et al. 2006)
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where P�(k) = A2/k4�ns is the power spectrum of Bardeen’s
gravitational potential with normalization A2 and scalar spectral
index ns. For example, the models introduced in the string theory
framework based on the DBI action (Silverstein & Tong 2004;
Alishahiha et al. 2004) can be described within the P(X, �)-class,
and they give rise to an equilateral NG with an overall amplitude
f equil
NL = �(35/108)c�2

s for cs ⌧ 1, which turns out typically to
be f equil

NL < �5. 5

The equilateral shape emerges also in models characterized
by more general higher-derivative interactions, such as ghost in-
flation (Arkani-Hamed et al. 2004) or models within e↵ective
field theories of inflation (Cheung et al. 2008; Senatore et al.
2010; Bartolo et al. 2010a).

5 An e↵ectively single-field model with a non-standard kinetic term
and a reduced sound speed for the adiabatic perturbation modes
might also arise in coupled multifield systems, where the heavy fields
are integrated out: see discussions in, e.g., Tolley & Wyman (2010);
Achúcarro et al. (2011); Shiu & Xu (2011).
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2010; Chen 2010b; Komatsu 2010; Yadav & Wandelt 2010):

– “local” NG, where the signal peaks in “squeezed” triangles
(k1 ⌧ k2 ' k3) (e.g., multifield models of inflation);

– “equilateral” NG, peaking for k1 ⇡ k2 ⇡ k3. Examples
of this class include: single-field models with non-
canonical kinetic term (Chen et al. 2007b), such as k-
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clude: single-field models with non-Bunch-Davies vac-
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with general higher-derivative interactions (Senatore et al.
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– “orthogonal” NG which is generated, e.g., in single-
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term (Senatore et al. 2010), or with general higher-derivative
interactions.

All these models naturally predict values of | fNL| � 1. A de-
tection of such a signal would rule out the simplest models of
single-field inflation which, obeying all the conditions above, are
characterized by weak gravitational interactions with | fNL| ⌧ 1.
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tionary models in terms of the corresponding NG shapes, which
we adopt for the data analysis presented in this paper:
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alyzed in this paper are highly orthogonal to each other (e.g.,
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2010a,b) – for which the NG shape is similar to the so-called
constant NG of Fergusson & Shellard (2007). Further, there is
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NG), generated if di↵erent mechanisms sourcing NG act si-
multaneously during the inflationary evolution. For example, in
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fields, and it adds to the local NG arising from the super-horizon
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2009).

In the following subsections, we discuss each of these possi-
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material may skip to Sect. 3.
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Typically in models with non-standard kinetic term (or more
general higher-derivative interactions), inflaton perturbations
propagate with an e↵ective sound speed cs which can be smaller
than the speed of light, and this results in a contribution to
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with at most one derivative on �, and the sound speed is c2
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tribution to primordial NG, one of the type (�̇�)3 and the other
of the type �̇�(r��)2, which arise from expanding the P(X, �)
Lagrangian. Each of these two interaction terms generates a
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fNL ⇡ c�2
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the inflaton field: derivative terms are suppressed when one per-
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where P�(k) = A2/k4�ns is the power spectrum of Bardeen’s
gravitational potential with normalization A2 and scalar spectral
index ns. For example, the models introduced in the string theory
framework based on the DBI action (Silverstein & Tong 2004;
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and a reduced sound speed for the adiabatic perturbation modes
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between Gaussian and non-Gaussian perturbations. One of the
main goals of this paper is to constrain the amplitude and shape
of primordial NG using the angular bispectrum of the CMB
anisotropies. The CMB angular bispectrum is related to the is
related to the primordial bispectrum defined by

h�(k1)�(k2)�(k3)i = (2⇡)3�(3)(k1 + k2 + k3)B�(k1, k2, k3). (1)

Here we define the potential � in terms of the comoving cur-
vature perturbation ⇣ on superhorizon scales by � ⌘ (3/5)⇣.
In matter domination, on superhorizon scales, � is equivalent
to Bardeen’s gauge-invariant gravitational potential (Bardeen
1980), and we adopt this notation for historical consistency.
The bispectrum B�(k1, k2, k3) measures the correlation among
three perturbation modes. Assuming translational and rotational
invariance, it depends only on the magnitudes of the three
wavevectors. In general the bispectrum can be written as

B�(k1, k2, k3) = fNLF(k1, k2, k3) . (2)

Here, fNL is the so-called “nonlinearity parameter”
(Gangui et al. 1994; Wang & Kamionkowski 2000;
Komatsu & Spergel 2001; Babich et al. 2004), a dimen-
sionless parameter measuring the amplitude of NG. The
bispectrum is measured by sampling triangles in Fourier space.
The dependence of the function F(k1, k2, k3) on the type of
triangle (i.e., the configuration) formed by the three wavevec-
tors describes the shape of the bispectrum (Babich et al.
2004), which encodes much physical information. It can
also encode the scale dependence, i.e. the running, of the
bispectrum (Chen 2005).2 Di↵erent NG shapes are linked
to distinctive physical mechanisms that can generate such
non-Gaussian fingerprints in the early universe. For example,
the so-called “local” NG (Gangui et al. 1994; Verde et al.
2000; Wang & Kamionkowski 2000; Komatsu & Spergel 2001)
is characterized by a signal that is maximal for “squeezed”
triangles with k1 ⌧ k2 ' k3 (or permutations; Maldacena
2003) which occurs, in general, when the primordial NG is
generated on superhorizon scales. Conversely, “equilateral”
NG (Babich et al. 2004) peaks for equilateral configurations
k1 ⇡ k2 ⇡ k3, due to correlations between fluctuation modes
that are of comparable wavelengths, which can occur if the
three perturbation modes mostly interact when they cross the
horizon approximately at the same time. Other relevant shapes
include the so-called “folded” (or flattened) NG (Chen et al.
2007b), which is due to correlations between perturbation
modes that are enhanced for k1 ⇡ 2k2 ⇡ 2k3, or the “orthogonal”
NG (Senatore et al. 2010) that generates a signal with a positive
peak at the equilateral configuration and a negative peak at the
folded configuration.

We now sketch how non-Gaussian information in the ini-
tial conditions are transferred to observable quantities (in this
instance, the CMB anisotropies) in the context of inflation.
Primordial perturbations in the inflaton field(s) �(x, t) = �0(t) +
��(x, t) (where �� denotes quantum fluctuations about the back-
ground value �0(t)) can be characterized by the comoving cur-
vature perturbation ⇣, since this is conserved on superhori-
zon scales for adiabatic perturbations. The inflaton fluctuations

2 Specifically, one can define the shape of the bispectrum as the de-
pendence of F(k1, k2, k3)(k1k2k3)2 on the ratios of momenta, e.g., (k2/k1)
and (k3/k1), once the overall scale of the triangle K = k1 + k2 + k3 is
fixed. The scale dependence of the bispectrum can be characterized by
the dependence of F(k1, k2, k3)(k1k2k3)2 on the overall scale K once the
ratios (k2/k1) and (k3/k1) are fixed (see, e.g., Chen 2010b).

�� (in the flat gauge) induce a curvature perturbation3 ⇣ =
�(H/�̇0) �� at linear order; however, nonlinearities induce cor-
rections to this relation. The primordial NG in the curvature per-
turbation ⇣ is intrinsically nonlinear, so that its contribution to
the CMB anisotropies is transferred linearly at leading order. In
particular, at the linear level, the curvature perturbation ⇣ is re-
lated to Bardeen’s gravitational potential � during the matter-
dominated epoch by � = (3/5)⇣ and �T/T ⇠ g ⇣, where g is the
linear radiation transfer function; thus, any primordial NG will
be transferred to the CMB even at linear order. For example, in
the large-angular scale limit, the linear Sachs-Wolfe e↵ect reads
�T/T = ��/3 = �⇣/5. Further, any other field excited during
the inflationary phase which develops quantum fluctuations con-
tributing to the primordial curvature perturbation – whether or
not it is driving inflation – can leave its non-Gaussian imprint in
the CMB anisotropies.

Thus the bispectrum (1) measures the fundamental (self-) in-
teractions of the scalar field(s) involved in the inflationary phase
and/or generating the primordial curvature perturbation, as well
as measuring nonlinear processes occurring during or immedi-
ately after inflation. It therefore brings unprecedented insights
into the fundamental physics behind inflation, possibly allowing
for the first time a reconstruction of the inflationary Lagrangian
itself. For example, in a large class of inflationary models
which involve additional light field(s) di↵erent from the inflaton,
the superhorizon evolution of the fluctuations in the additional
field(s) and their transfer to the adiabatic curvature perturba-
tions can generate a large primordial NG of the local type. This
is the case of the curvaton-type models (Linde & Mukhanov
1997; Lyth & Wands 2002; Lyth et al. 2003) where the late-
time decay of a scalar field, belonging to the non-inflationary
sector of the theory, induces curvature perturbations; models
where the curvature perturbation is generated by the local fluc-
tuations of the inflaton’s coupling to matter during the reheat-
ing phase (Kofman 2003; Dvali et al. 2004a); multifield models
of inflation (see, e.g., Bartolo et al. 2002, Bernardeau & Uzan
2002, Vernizzi & Wands 2006, Rigopoulos et al. 2006, 2007;
Lyth & Rodriguez 2005, Byrnes & Choi 2010). Since the non-
linear processes take place on superhorizon scales, the form of
NG is local in real space and thus, in Fourier space, the bis-
pectrum correlates large and small Fourier modes. “Equilateral”
NG (Babich et al. 2004) is a generic feature of single-field mod-
els with a non-canonical kinetic term, which can also gener-
ate the “orthogonal” type of NG (Senatore et al. 2010). In gen-
eral, these models are characterized by higher-derivative inter-
actions of the inflaton field. The correlation between the fluc-
tuation modes is suppressed when one of the modes is on su-
perhorizon scales, because the derivative terms are redshifted
away, so that the correlation is maximal for three modes of com-
parable wavelengths that cross the horizon at the same time.
An example of “folded” NG is the one generated in a class of
single-field models with non-Bunch-Davies vacuum (Chen et al.
2007b; Holman & Tolley 2008). Indeed, these and other types of
primordial NG can also be produced in other models, and we re-
fer to Sect. 2 for more details. All these models can easily yield
primordial NG with an amplitude much bigger than the one pre-
dicted in the standard models of single-field slow-roll inflation,
for which the NG amplitude turns out to be proportional to the

3 For the curvature perturbation, we follow the notation and sign
conventions of Komatsu et al. (2011). ⇣ is also sometimes denoted
R (see e.g., Lidsey et al. 1997, Lyth & Riotto 1999 and references
therein), while the comoving curvature perturbation R as defined, e.g.,
in Malik & Wands (2009) is such that R = �⇣.
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Bispectrum results
► Local, equilateral and orthogonal constraints similar for all foreground 

component separation methods 
► Consistency between all bispectrum estimator methods 

Planck Collaboration: Planck Cosmology Project P09a: fNL, Bispectrum, Trispectrum

Table 7. Results from the di↵erent estimators for fNL for 99 maps from a set of realistic lensed simulations passed through the
SMICA pipeline, described in Sect. 6.2. Both the results for the estimators individually and for the di↵erences with KSW are given.

KSW Binned Modal Wavelet Binned � KSW Modal � KSW Wavelet � KSW
Independent

Local . . . . . . . . . . . . . . . 7.6 ± 6.0 6.8 ± 5.8 7.7 ± 5.9 8.1 ± 8.4 . . . . . �0.8 ± 1.2 0.1 ± 1.4 0.5 ± 6.4
Equilateral . . . . . . . . . . . 4 ± 76 �1 ± 72 2 ± 76 �3 ± 76 . . . . . �5 ± 20 �2 ± 13 �7 ± 91
Orthogonal . . . . . . . . . . . �21 ± 42 �20 ± 41 �21 ± 42 �15 ± 53 . . . . . 1.6 ± 11 �0.1 ± 8 6.4 ± 48

Table 8. Results for the fNL parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the KSW es-
timator from the SMICA foreground-cleaned map. Both indepen-
dent single-shape results and results marginalized over the point
source bispectrum and with the ISW-lensing bias subtracted are
reported; error bars are 68% CL.

Independent ISW-lensing subtracted

KSW KSW

SMICA

Local . . . . . . . . . 9.8 ± 5.8 2.7 ± 5.8

Equilateral . . . . . �37 ± 75 �42 ± 75

Orthogonal . . . . . �46 ± 39 �25 ± 39

pansion when a high level of correlation with the primordial
templates is achieved. These accurate decompositions, which are
highly correlated with each other, are then matched to the data
in order to extract fNL. The di↵erent expansions are all di↵er-
ent implementations of the maximum-likelihood estimator given
in (32). So the final estimates are all expected to be optimal,
and measure fNL from nearly identical fitting templates. As dis-
cussed and tested in detail on simulations in Sect. 6, central fNL
values from di↵erent methods are expected to be consistent with
each other within about 0.3� fNL . It is then clear that comparing
outputs from both di↵erent estimators and di↵erent component
separation methods, as we do, allows for stringent internal con-
sistency checks and improved robustness of the final fNL results.

In addition, the binned and modal techniques produce shape-
independent full bispectrum reconstructions in their own di↵er-
ent domains. These reconstructions, discussed in Sect. 7.2, com-
plement the standard fNL measurements in an important way,
since they allow detection of possible NG features in the three-
point function of the data that do not correlate significantly with
the standard primordial shapes. This advantage is shared by the
skew-C` method, also applied to the data. A detection of such
features would either produce a warning that some residual spu-
rious NG e↵ects are still present in the data or provide an in-
teresting hint of “non-standard” primordial NG that is not cap-
tured by the local, equilateral and orthogonal shapes. Additional
constraints for a broad range of specific models are provided in
Sect. 7.3 (see also Sect. 2.3).

7.1. Constraints on local, equilateral and orthogonal fNL

Our goal here is to investigate the standard separable local, equi-
lateral and orthogonal templates used e.g., in previous WMAP
analyses (see e.g., Bennett et al. 2012). When using the modal,
binned, or wavelet estimator, these theoretical templates are ex-
panded approximately (albeit very accurately) using the relevant
basis functions or bins. On the other hand, the KSW estimator by

construction works with the exact templates and, for this reason,
it is chosen as the baseline to provide the final fNL results for
the standard shapes (local, equilateral, orthogonal), see Table 8.
However, both the binned and modal estimators achieve optimal
performance and an extremely high correlation for the standard
templates (⇠ 99%), so they are statistically equivalent to KSW,
as demonstrated in the previous section. This means that we can
achieve a remarkable level of cross-validation for our Planck
non-Gaussianity results. We will be able to present consistent
constraints for the local, equilateral and orthogonal models for
all four Planck foreground-separated maps, using three indepen-
dent optimal estimators (refer to Table 9). Regarding compo-
nent separation methods, we adopt the SMICA map as the de-
fault for the final KSW results given its preferred status among
foreground-separation techniques in Planck Collaboration XII
(2013). The other component separation maps will be used for
important cross-validation of our results and to evaluate poten-
tial sensitivity to foreground residuals.

All the results presented in this Section were obtained using
a mask leaving roughly 73% of the sky unmasked, which was
obtained conservatively as a combination of all the confidence
masks provided by the various component separation methods.
As will be shown in Sect. 8.2, results are robust to changes that
make the mask larger, but choosing a significantly smaller mask
would leave some NG foreground contamination. For the lin-
ear term CMB and noise calibration, and error bar determina-
tion, we used sets of realistic FFP6 maps that include all steps
of data processing, and have realistic noise and beam proper-
ties (Planck Collaboration ES 2013). The simulations were also
lensed using the Lenspix algorithm and filtered through the
component separation pipelines.

In Table 8 we show results for the combination of the KSW
estimator and the SMICA map, at a resolution of `max = 2500.
We present both “independent” single-shape results and “ISW-
lensing subtracted” ones. The former are obtained by directly
fitting primordial templates to the data. For the latter, two ad-
ditional operations have been performed. In the first place, as
the name indicates, they have been corrected by subtracting
the bias due to the correlation of the primordial bispectra to
the late-time ISW-lensing contribution (Mangilli & Verde 2009;
Junk & Komatsu 2012; Hanson et al. 2009b, see Sect. 5.2). In
addition, a joint fit of the primordial shape with the (Poissonian)
point source bispectrum amplitude extracted from the data
has been performed on the results marked “ISW-lensing sub-
tracted”.10 Since the ISW-lensing bispectrum is peaked on
squeezed configurations, its impact is well known to be largest
for the local shape. The ISW-lensing bias is also important for
orthogonal measurements (there is a correlation coe�cient r ⇠

10 More precisely, in the subtracted ISW-lensing results the equilateral
and orthogonal primordial shapes are also fit jointly, although this has a
nearly negligible impact on the final result because the two shapes are
by construction nearly perfectly uncorrelated.
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► Planck finds no evidence for local, equilateral and orthogonal primordial NG.
► Lensing-ISW bispectrum detected at ~2.5σ
► Full reconstruction consistent between foreground component separationPlanck Collaboration: Planck Cosmology Project P09a: fNL, Bispectrum, Trispectrum

Fig. 6. Full 3D CMB bispectrum recovered from the Planck foreground-cleaned maps, including SMICA (left), NILC (centre) and
SEVEM (right), using the hybrid Fourier mode coe�cients illustrated in Fig. 8, These are plotted in three-dimensions with multipole
coordinates {`1, `2, `3} on the tetrahedral domain shown in Fig. 1 out to `max = 2000. Several density contours are plotted with red
positive and blue negative. The bispectra extracted from the di↵erent foreground-separated maps appear to be almost indistinguish-
able.

Fig. 7. Planck CMB bispectrum detail in the signal-dominated regime showing a comparison between full 3D reconstruction using
hybrid Fourier modes (left) and hybrid polynomials (right). Note the consistency of the main bispectrum properties which include
an apparently ‘oscillatory’ central feature for low-` together with a flattened signal beyond to ` . 1400. Note also the periodic CMB
ISW-lensing signal in the squeezed limit along the edges of the tetrapyd.

foreground cleaned maps. The tetrapyd (see Fig. 1) is the region
defined by the multipoles that obey the triangle condition, with
`  `max. The 3D plots show the reduced bispectrum of the map,
divided by a Sachs-Wolfe CMB bispectrum solution for a con-
stant primordial shape, S (k1, k2, k3) = 1. This constant primor-
dial bispectrum template normalizaton is carried out in order to
remove an ⇠ `4 scaling from the starting bispectrum (it is anal-
ogous to multiplication of the power spectrum by `(` + 1)). To
facilitate the interpretation of 3D bispectrum figures, note that
squeezed configurations lie on the edges of the tetrapyd, flat-
tened on the faces and equilateral in the interior, with b``` on the
diagonal. The colour levels are equally spaced with red denot-
ing positive values, and blue denoting negative. Given the cor-
respondence of the �R

n coe�cients for SMICA, NILC, and SEVEM,
the reconstructed 3D signals also appear remarkably consistent,
showing similar contours out to ` . 1500. At large multipoles `

approaching `max = 2000, there is increased randomness in the
reconstruction due to the rise in experimental noise and some
evidence for a residual point source contribution.

There are some striking features evident in the 3D bispec-
trum reconstruction which appear in both Fourier and polyno-
mial representations, as shown in more detail in fig. 7. There is
an apparent oscillation at low ` . 500 already seen in WMAP7
Fergusson et al. (2012). Beyond out to ` ⇠ 1200 there are further
distinct features (mostly ‘flattened’ on the walls of the tetrapyd),
and an oscillating ISW-lensing contribution can be discerned in
the squeezed limit. Whatever its origin, Gaussian or otherwise,
fig. 7 reveals the CMB bispectrum of our Universe as observed
by Planck.

The cumulative sum F2
NL over the squared orthonormal co-

e�cients �R
n

2 from Eq. (64) for the Planck data is illustrated in
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Dipole asymmetry
WMAP maps saw evidence for  more power in one hemisphere. Planck 
sees this aswell at a level of 2-3σ. Evidence of new physics? Superhorizon 
fluctuations during inflation, curvaton features (Lyth yesterday)?
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Cluster constraints
► Conclusion: LCDM model from CMB expects to see ~2 times as many clusters 

as observed 
► Intriguing possibility: matter power spectrum is suppressed on galaxy cluster 

scales 
► One mechanism to do this is a non-zero neutrino mass The Planck Collaboration: Cosmology from SZ clusters counts
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Fig. 12. Cosmological constraints when including neutrino
masses

P
m⌫ from: Planck CMB data alone (black dotted line);

Planck CMB + SZ with 1�b in [0.7, 1] (red); Planck CMB + SZ
+ BAO with 1 � b in [0.7, 1] (blue); and Planck CMB + SZ with
1 � b = 0.8 (green).

studied in Planck Collaboration XII (2011), Sehgal et al. (2011),
Draper et al. (2012), and Biesiadzinski et al. (2012), based on
stacking analyses of X-ray, SZ, and lensing data for the very
large MaxBCG cluster sample, suggesting that the issue is not
yet fully settled from an observational point of view.

A different mass function may also help reconcile the ten-
sion. Mass functions are calibrated against numerical simula-
tions that may still suffer from volume effects for the largest ha-
los, as shown in the difference between the Tinker et al. (2008)
and Watson et al. (2012) mass functions. This does not seem suf-
ficient, however, given the results presented in Fig. 9.

Alternatively, the discrepancy may indicate the need to ex-
tend the minimal ⇤CDM model that is used to generate the �8
values. Any extension would need to modify the power spectrum
on the scales probed by clusters, while leaving the scales probed
by primary CMB observations unaffected. The inclusion of neu-
trino masses, quantified by their sum,

P
m⌫, can achieve this (see

Marulli et al. 2011 for a review of how cosmological observa-
tions can be affected by the inclusion of neutrino masses). The
SPT collaboration (Hou et al. 2012) recently considered such a
possibility to mitigate their tension with WMAP-7 primary CMB
data. There is an upper limit of

P
m⌫ < 0.093 eV from the Planck

primary CMB data alone (Planck Collaboration XVI 2013). If
we include the cluster count data using a fixed value (1�b) = 0.8,
then we find a 2.9� preference for the inclusion of neutrino
masses with

P
m⌫ = (0.58 ± 0.20) eV, as shown in Fig. 12. If,

on the other hand, we adopt a more conservative point of view
and allow (1 � b) to vary between 0.7 and 1.0, this preference
drops to 2� with

P
m⌫ = (0.45 ± 0.21) eV. Adding BAO data

to the compilation lowers the value of the required mass but in-
creases the significance, yielding

P
m⌫ = (0.22 ± 0.09) eV, due

to a breaking of the degeneracy between H0 and
P

m⌫.
As these results depends on the value and allowed range of

(1 � b), better understanding of the scaling relation is the key to

further investigation. This provides strong motivation for further
study of the relationship between Y and M.

7. Summary

We have used a sample of nearly 200 clusters from the PSZ,
along with the corresponding selection function, to place strong
constraints in the (⌦m,�8) plane. We have carried out a series
of tests to verify the robustness of our constraints, varying the
observed sample choice, the estimation method for the selection
function, and the theoretical methodology, and have found that
our results are not altered significantly by those changes.

The relation between the mass and the integrated SZ signal
plays a major role in the computation of the expected number
counts. Uncertainties in cosmological constraints from clusters
are no longer dominated by small number statistics, but by the
gas physics. Uncertainties in the Y–M relation include X-ray in-
strument calibration, X-ray temperature measurement, inhomo-
geneities in cluster density or temperature profiles, and selec-
tion effects. Considering several ingredients of the gas physics
of clusters, numerical simulations predict scaling relations with
30% scatter in amplitude (at a fiducial mass of 6⇥1014Msol). All
this points toward a mass bias between the true mass and the es-
timated mass of (1 � b) = 0.8+0.2

�0.1, and adopting the central value
we found constraints on ⌦m and �8 that are in good agreement
with previous measurements using clusters of galaxies.

Comparing our results with Planck primary CMB con-
straints within the ⇤CDM cosmology indicates some tension.
This can be alleviated by permitting a large mass bias (1 �
b ' 0.55), which is however significantly larger than expected.
Alternatively, the tension may motivate an extension of the
⇤CDM model that modifies its power spectrum shape. For ex-
ample the inclusion of non-zero neutrino masses helps in recon-
ciling the primary CMB and cluster constraints, a fit to Planck
CMB + SZ + BAO yielding

P
m⌫ = (0.22 ± 0.09) eV.

Cosmological parameter determination using clusters is cur-
rently limited by the knowledge of the observable–mass rela-
tions. In the future our goal is to increase the number of ded-
icated follow-up programmes to obtain better estimates of the
mass proxy and redshift for most of the S/N > 5 Planck clusters.
This will allow for better determination of the scaling laws and
the mass bias, increase the number of clusters that can be used,
and allow us to investigate an extended cosmological parameter
space.
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► From CMB alone
► From CMB + SZ + BAO

► More detailed investigation of y-parameter/
mass scaling is required, but potentially 
interesting cosmological result
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Fig. 26. Marginalised posterior distributions for
P

m⌫ in flat
models. We show results for Planck+WP+highL without (black)
and with (red) marginalisation over AL, showing how the
posterior is significantly broadened by removing the lens-
ing information from the temperature anisotropy power spec-
trum. The e↵ect of replacing the low-` temperature and
(WMAP) polarization data with a ⌧ prior is shown in green
(Planck�lowL+highL+⌧prior) and of further removing the high-
` data in gold (Planck�lowL+⌧prior). We also show the result of
including the lensing likelihood with Planck+WP+highL (blue)
and Planck�lowL+highL+⌧prior (cyan).

in the normal hierarchy scenario and 0.1 eV in the degenerate
hierarchy (Gonzalez-Garcia et al., 2012), the allowed neutrino
mass window is already quite tight and could be closed further
by current or forthcoming observations (Jimenez et al., 2010;
Lesgourgues et al., 2013).

Cosmological models with and without neutrino mass have
di↵erent primary CMB power spectra. For observationally-
relevant masses, neutrinos are still relativistic at recombina-
tion and the unique e↵ects of masses in the primary power
spectra are small. The main e↵ect is around the first acoustic
peak and is due to the early integrated Sachs-Wolfe (ISW) ef-
fect; neutrino masses have an impact here even for a fixed red-
shift of matter–radiation equality (Lesgourgues & Pastor, 2012;
Hall & Challinor, 2012; Hou et al., 2012b; Lesgourgues et al.,
2013). To date, this e↵ect has been the dominant one in con-
straining the neutrino mass from CMB data, as demonstrated
in Hou et al. (2012b). As we shall see here, the Planck data
move us into a new regime where the dominant e↵ect is from
gravitational lensing. Increasing neutrino mass, while adjust-
ing other parameters to remain in a high-probability region
of parameter space, increases the expansion rate at z >⇠ 1 and
so suppresses clustering on scales smaller than the horizon
size at the non-relativistic transition (Kaplinghat et al., 2003;
Lesgourgues et al., 2006). The net e↵ect for lensing is a sup-
pression of the CMB lensing potential and, for orientation, by
` = 1000 the suppression is FIXME: 20% in power for

P
m⌫ =

0.5 eV.
Here we report constraints assuming three species of degen-

erate massive neutrinos. At the level of sensitivity of Planck, the
e↵ect of mass splittings is negligible, and the degenerate model
can be assumed without loss of generality.

Combining the Planck+WP+highL data, we obtain an upper
limit on the summed neutrino mass of
X

m⌫ < 0.66 eV (95%; Planck+WP+highL). (67)

The posterior distribution is shown by the black curve in Fig. 26.
To demonstrate that the dominant e↵ect leading to the constraint
is gravitational lensing, we remove the lensing information by
marginalizing over AL

28. We see that the posterior broadens con-
siderably (see the red curve in Fig. 26) to give
X

m⌫ < 1.08 eV [95%; Planck+WP+highL (AL)], (68)

close to the value of 1.3 eV from the nine-year WMAP
data (Hinshaw et al., 2012c), corresponding to the limit above
which neutrinos become non-relativistic before recombination.
For comparison, the previous tightest upper limit from CMB
data alone,
X

m⌫ < 1.60 eV (95%; SPT+WMAP), (69)

was reported in Hou et al. (2012b).
As discussed in Sect. 5.1, the Planck+WP+highL data com-

bination has a preference for high AL. Since massive neutrinos
suppress the lensing power (like a low AL) there is a concern that
the same tensions which drive AL high may give artificially tight
constraints on

P
m⌫. We can investigate this issue by replacing

the low-` data with a prior on the optical depth (as in Sect. 5.1)
and removing the high-` data. Posterior distributions with the ⌧
prior, and additionally without the high-` data, are shown by the
green and gold curves, respectively, in Fig. 26. The constraint onP

m⌫ does not degrade much by replacing the low-` data with the
⌧ prior only, but the degradation is more severe when the high-`
data are also removed:

P
m⌫ < 1.31 eV (95% CL).

Including the lensing likelihood (see Sect. 5.1) has a signif-
icant, but surprising, e↵ect on our results. Adding the lensing
likelihood to the Planck+WP+highL data combination weakens
the limit on

P
m⌫,

X
m⌫ < 0.85 eV (95%; Planck+lensing+WP+highL), (70)

as shown by the blue curve in Fig. 26. This is representative of
a general trend that the Planck lensing likelihood favours largerP

m⌫ than the temperature power spectrum. Indeed, if we use
the data combination Planck�lowL+highL+⌧prior which gives a
weaker constraint from the temperature power spectrum, adding
lensing gives a best-fit away from zero (

P
m⌫ = 0.66 eV; cyan

curve in Fig. 26). However, the total �2 at the best-fit is only 0.3
lower than in the best-fitting base model (

P
m⌫ = 0.06 eV). The

fit to the lensing data is rather better (��2 = �3.2) while the fit to
the Planck temperature spectrum (excluding low-`) and high-` is
worse (��2 = 0.4 and 2.6, respectively). There are rather large
shifts in other cosmological parameters between these best-fit
solutions corresponding to shifts along the acoustic-scale degen-
eracy direction for the temperature power spectrum. Note that
as well as the change in H0 (which falls to compensate the in-
crease in

P
m⌫ at fixed acoustic scale), ns, !b and !c change sig-

nificantly keeping the lensed temperature spectrum almost con-
stant. These latter shifts are similar to those discussed for AL in

28The power spectrum of the temperature anisotropies is predomi-
nantly sensitive to changes in only one mode of the lensing potential
power spectrum (Smith et al., 2006). It follows that marginalising over
the single parameter AL is nearly equivalent to marginalising over the
full amplitude and shape information in the lensing power spectrum as
regards constraints from the temperature power spectrum.
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Fig. 12. Cosmological constraints when including neutrino
masses

P
m⌫ from: Planck CMB data alone (black dotted line);

Planck CMB + SZ with 1�b in [0.7, 1] (red); Planck CMB + SZ
+ BAO with 1 � b in [0.7, 1] (blue); and Planck CMB + SZ with
1 � b = 0.8 (green).

studied in Planck Collaboration XII (2011), Sehgal et al. (2011),
Draper et al. (2012), and Biesiadzinski et al. (2012), based on
stacking analyses of X-ray, SZ, and lensing data for the very
large MaxBCG cluster sample, suggesting that the issue is not
yet fully settled from an observational point of view.

A different mass function may also help reconcile the ten-
sion. Mass functions are calibrated against numerical simula-
tions that may still suffer from volume effects for the largest ha-
los, as shown in the difference between the Tinker et al. (2008)
and Watson et al. (2012) mass functions. This does not seem suf-
ficient, however, given the results presented in Fig. 9.

Alternatively, the discrepancy may indicate the need to ex-
tend the minimal ⇤CDM model that is used to generate the �8
values. Any extension would need to modify the power spectrum
on the scales probed by clusters, while leaving the scales probed
by primary CMB observations unaffected. The inclusion of neu-
trino masses, quantified by their sum,

P
m⌫, can achieve this (see

Marulli et al. 2011 for a review of how cosmological observa-
tions can be affected by the inclusion of neutrino masses). The
SPT collaboration (Hou et al. 2012) recently considered such a
possibility to mitigate their tension with WMAP-7 primary CMB
data. There is an upper limit of

P
m⌫ < 0.093 eV from the Planck

primary CMB data alone (Planck Collaboration XVI 2013). If
we include the cluster count data using a fixed value (1�b) = 0.8,
then we find a 2.9� preference for the inclusion of neutrino
masses with

P
m⌫ = (0.58 ± 0.20) eV, as shown in Fig. 12. If,

on the other hand, we adopt a more conservative point of view
and allow (1 � b) to vary between 0.7 and 1.0, this preference
drops to 2� with

P
m⌫ = (0.45 ± 0.21) eV. Adding BAO data

to the compilation lowers the value of the required mass but in-
creases the significance, yielding

P
m⌫ = (0.22 ± 0.09) eV, due

to a breaking of the degeneracy between H0 and
P

m⌫.
As these results depends on the value and allowed range of

(1 � b), better understanding of the scaling relation is the key to

further investigation. This provides strong motivation for further
study of the relationship between Y and M.

7. Summary

We have used a sample of nearly 200 clusters from the PSZ,
along with the corresponding selection function, to place strong
constraints in the (⌦m,�8) plane. We have carried out a series
of tests to verify the robustness of our constraints, varying the
observed sample choice, the estimation method for the selection
function, and the theoretical methodology, and have found that
our results are not altered significantly by those changes.

The relation between the mass and the integrated SZ signal
plays a major role in the computation of the expected number
counts. Uncertainties in cosmological constraints from clusters
are no longer dominated by small number statistics, but by the
gas physics. Uncertainties in the Y–M relation include X-ray in-
strument calibration, X-ray temperature measurement, inhomo-
geneities in cluster density or temperature profiles, and selec-
tion effects. Considering several ingredients of the gas physics
of clusters, numerical simulations predict scaling relations with
30% scatter in amplitude (at a fiducial mass of 6⇥1014Msol). All
this points toward a mass bias between the true mass and the es-
timated mass of (1 � b) = 0.8+0.2

�0.1, and adopting the central value
we found constraints on ⌦m and �8 that are in good agreement
with previous measurements using clusters of galaxies.

Comparing our results with Planck primary CMB con-
straints within the ⇤CDM cosmology indicates some tension.
This can be alleviated by permitting a large mass bias (1 �
b ' 0.55), which is however significantly larger than expected.
Alternatively, the tension may motivate an extension of the
⇤CDM model that modifies its power spectrum shape. For ex-
ample the inclusion of non-zero neutrino masses helps in recon-
ciling the primary CMB and cluster constraints, a fit to Planck
CMB + SZ + BAO yielding

P
m⌫ = (0.22 ± 0.09) eV.

Cosmological parameter determination using clusters is cur-
rently limited by the knowledge of the observable–mass rela-
tions. In the future our goal is to increase the number of ded-
icated follow-up programmes to obtain better estimates of the
mass proxy and redshift for most of the S/N > 5 Planck clusters.
This will allow for better determination of the scaling laws and
the mass bias, increase the number of clusters that can be used,
and allow us to investigate an extended cosmological parameter
space.
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2. Models of Inflation—variety is the spice of life.
 (where is the inflaton  in particle physics?)

Field theory:

Quantum corrections give coefficients proportional to 
and an additional term proportional to 

1. Chaotic 
inflation .

(Lyth and Riotto, Phys. Rep. 314, 1, (1998), Lyth and Liddle (2009)

V Inflates only for φ>>MP . Problem. 
Why only one term? All other 

models inflate at φ<MP and give 
negligible grav. waves. 



2. New 
inflation

V

3. Power-law 
inflation

1. Very useful because have exact solutions without recourse to slow roll. 
Similarly perturbation eqns can be solved exactly. 

2. No natural end to inflation



5. Hybrid 
inflation

2 fields, inf ends when 
V0 destabilised by 2nd 
non-inflaton field ψ

4. Natural 
inflation



Two field inflation – more general

Found  in SUSY models.

Better chance of success, plus lots of additional features, 
inc defect formation, ewk baryogenesis. 

Inflation ends 
by triggering 

phase transition 
in second field. 

Example of 
Brane inflation



Cosmic strings - may not do the full job but they can still contribute

Hybrid Inflation type models
String contribution < 11% implies Gµ < 0.7 ∗ 10−6.

Bevis et al 2007,2010.



Inflation model building today  -- big industry

Multi-field inflation

Inflation in string theory and braneworlds

Inflation in extensions of the standard model

Cosmic strings formed at the end of inflation

The idea is clear though:

Use a combination of data (CMB, LSS, SN, BAO ...) to try and 
constrain models of the early universe through to models 

explaining the nature of dark energy today. 



Inflation in string theory -- non trivial 
The η problem in Supergravity -- N=1 SUGR Lagrangian:

 with

 and

Expand K about φ=0

Canonically 
norm fields ϕ

Have model indep terms which lead to contribution to 
slow roll parameter η of order unity 

So, need to cancel this generic term possibly 
through additional model dependent terms.



Ex 1: Warped D3-brane D3-antibrane inflation where model 
dependent corrections to V can cancel model indep contributions 

[Kachru et al (03) -- KLMMT].  
Find: β relates to the coupling of warped 

throat to compact CY space. Can be 
fine tuned to avoid η problem  

Ex 2: DBI inflation -- simple -- it isn’t slow roll as the two branes 
approach each other so no η problem 

Ex 3: Kahler Moduli  Inflation [Conlon & Quevedo 05]

Inflaton is one of Kahler moduli in Type IIB flux compactification. 
Inflation proceeds by reducing the F-term energy.   No η problem 
because of presence of a symmetry, an almost no-scale property of 

the Kahler potential. 

Inflaton moduli: τn   



Find: with large 
volume modulus 

and for Ne ≈50-60 efolds 
with low energy scale

Volume modulus Inflaton [Blanco-Pillado et al 09] 
Can include curvaton as second evolving moduli --  Burgess et al 2010



Key inflationary parameters: 

n: Perhaps Planck will finally determine whether it is unity or not.

r: Tensor-to-scalar ratio : considered as a smoking gun for inflation but 
also produced by defects and some inflation models produce very little.

dn/dln k : Running of the spectral index, usually very small -- probably too 
small for detection.

fNL: Measure of cosmic non-gaussianity. Still consistent with zero, but 
tentative evidence of a non-zero signal in WMAP data which would 
provide an important piece of extra information to constrain models. For 
example, it could rule out single field models -- lots of current interest.

Gµ: string tension in Hybrid models where defects produced at end of 
period of inflation.

Also new perturbation generation mechanisms (e.g. Curvaton)  

Perturbations not from inflaton but from extra field and then couple 
through to curvature perturbation



Things not explored - no time
1. Gravitational waves from pre-heating

2. Non-Gaussianity from multi-field inflation

3. Nature of perturbations (adiabatic v non-adiabatic)

4. Thermal inflation and warm inflation

5. Going beyond slow roll

6. Inflation model building -- how easy in string theory.

7. Where is the inflaton in particle physics ? How fine tuned is it?

8. Low energy inflation (i.e. TeV scale).

9. Singularity -- eternal inflation ! 

10. Impact of multiverse on inflation.

11. Alternatives: pre-big bang, cyclic/ekpyrotic, string cosmology, varying 
speed of light, quantum gravity ....



And so where are we today?
 Exciting time in cosmology -- Big Bang huge success. 
 String - theory suggests we can consistently include gravity into 

particle physics. 
 What started the big bang ?
 How did inflation emerge – if at all ?
 How did the spacetime dimensions split up?
 Where did the particle masses come from?
 Why are there just three families of particles?
 Why is the Universe accelerating today?
 What is the dark matter
 Where is all the anti-matter?

Thank you for listening and good luck to you 
all with your research.


