Parton shower matching and multijet merging at NLO

Marek Schönherr

Institute for Particle Physics Phenomenology

HP2, 05/09/2012

arXiv:1208.2815
The SHERPA event generator framework

- Two multi-purpose Matrix Element (ME) generators
 AMEGIC++ JHEP02(2002)044
 COMIX JHEP12(2008)039
 CS subtraction EPJC53(2008)501

- A Parton Shower (PS) generator
 CSSHOWER++ JHEP03(2008)038

- A multiple interaction simulation
 à la Pythia AMISIC++ hep-ph/0601012

- A cluster fragmentation module
 AHADIC++ EPJC36(2004)381

- A hadron and τ decay package HADRONS++

- A higher order QED generator using YFS-resummation
 PHOTONS++ JHEP12(2008)018

Sherpa’s traditional strength is the perturbative part of the event

MePs (CKKW), Mc@NLO, MeNLOPs, MePs@NLO
→ full analytic control mandatory for consistency/accuracy
The SHERPA event generator framework

- Two multi-purpose Matrix Element (ME) generators
 AMEGIC++ JHEP02(2002)044
 COMIX JHEP12(2008)039
 CS subtraction EPJC53(2008)501
- A Parton Shower (PS) generator
 CSSHOWER++ JHEP03(2008)038
- A multiple interaction simulation
 à la Pythia AMISIC++ hep-ph/0601012
- A cluster fragmentation module
 AHADIC++ EPJC36(2004)381
- A hadron and τ decay package HADRONS++
- A higher order QED generator using YFS-resummation
 PHOTONS++ JHEP12(2008)018

Sherpa’s traditional strength is the perturbative part of the event
M@PS (CKKW), MC@NLO, MeNLOPS, MEPS@NLO
→ full analytic control mandatory for consistency/accuracy
\[\langle O \rangle^{\text{NLO+PS}} = \int d\Phi_B \Bbar^{(A)}(\Phi_B) \left[\Delta^{(A)}(t_0, \mu^2_Q) O(\Phi_B)
ight. \\
+ \int_{t_0}^{\mu^2_Q} d\Phi_1 \frac{D^{(A)}(\Phi_B, \Phi_1)}{B(\Phi_B)} \Delta^{(A)}(t, \mu^2_Q) O(\Phi_R) \\
+ \int d\Phi_R \left[R(\Phi_R) - \sum_i D_i^{(A)}(\Phi_R) \right] O(\Phi_R) \]

- NLO weighted Born configuration \(\Bbar^{(A)} = B + \Bbar + I + \int d\Phi_1 [D^{(A)} - D^{(S)}] \)
- use \(D_i^{(A)} \) as resummation kernels \(\Delta^{(A)}(t, t') = \exp \left[\int_{t'}^{t} d\Phi_1 D^{(A)}/B \right] \)
- resummation phase space limited by \(\mu^2_Q = t_{\text{max}} \)
 → starting scale of parton shower evolution
 → should be of the order of the hard resummation scale
 ⇒ first implementation to allow to study \(\mu_Q \) uncertainty
\[\langle O \rangle^{NLO+PS} = \int d\Phi_B \: \bar{B}^{(A)}(\Phi_B) \left[\Delta^{(A)}(t_0, \mu_Q^2) \: O(\Phi_B) \right. \\
\left. + \int_{t_0}^{\mu_Q^2} d\Phi_1 \: \frac{D^{(A)}(\Phi_B, \Phi_1)}{B(\Phi_B)} \: \Delta^{(A)}(t, \mu_Q^2) \: O(\Phi_R) \right] \\
+ \int d\Phi_R \left[R(\Phi_R) - \sum_i D^{(A)}_i(\Phi_R) \right] \: O(\Phi_R) \]

- NLO weighted Born configuration \(\bar{B}^{(A)} = B + \tilde{V} + I + \int d\Phi_1 [D^{(A)} - D^{(S)}] \)
- use \(D^{(A)}_i \) as resummation kernels \(\Delta^{(A)}(t, t') = \exp \left[\int_{t}^{t'} d\Phi_1 \: D^{(A)}/B \right] \)
- resummation phase space limited by \(\mu_Q^2 = t_{\text{max}} \)
 - starting scale of parton shower evolution
 - should be of the order of the hard resummation scale
- first implementation to allow to study \(\mu_Q \) uncertainty
\[\langle O \rangle^{\text{NLO+PS}} = \int d\Phi_B \bar{B}^{(A)}(\Phi_B) \left[\Delta^{(A)}(t_0, \mu^2_Q) O(\Phi_B) \right. \\
+ \int_{t_0}^{\mu^2_Q} d\Phi_1 \frac{D^{(A)}(\Phi_B, \Phi_1)}{B(\Phi_B)} \Delta^{(A)}(t, \mu^2_Q) O(\Phi_R) \\
\left. + \int d\Phi_R \left[R(\Phi_R) - \sum_i D_i^{(A)}(\Phi_R) \right] O(\Phi_R) \right]. \]

Frixione, Webber JHEP06(2002)029

Höche, Krauss, MS, Siegert arXiv:1111.1220

every term is well defined and NLO and NLL accuracy maintained if:

- \(D^{(A)} = \sum_i D_i^{(A)} \) is full colour correct in soft limit
- \(D^{(A)} = \sum_i D_i^{(A)} \) contains all spin correlations in collinear limit
- \(D_i^{(A)} \) and \(D_i^{(S)} \) have identical parton maps

\(\Rightarrow \) conventional parton showers need to be improved for that

e.g. choose \(D_i^{(A)} = D_i^{(S)} \) up to phase space constraints
Case study: Inclusive jet & dijet production

Describe wealth of experimental data with a single sample (LHC@7TeV)

MC@NLO di-jet production:

- $\mu_{R/F} = \frac{1}{4} H_T$, $\mu_Q = \frac{1}{2} p_\perp$
- CT10 PDF ($\alpha_s(m_Z) = 0.118$)
- hadron level calculation fully hadronised including MPI
- virtual MEs from BLACKHAT
 - Giele, Glover, Kosower
 - Bern et.al. arXiv:1112.3940
- $p_{j1}^\perp > 20$ GeV, $p_{j2}^\perp > 10$ GeV

Uncertainty estimates:

- $\mu_{R/F} \in \left[\frac{1}{2}, 2\right] \mu_{R/F}^{\text{def}}$
- $\mu_Q \in \left[\frac{1}{\sqrt{2}}, \sqrt{2}\right] \mu_Q^{\text{def}}$
- MPI activity in tr. region $\pm 10\%$
Case study: Inclusive jet & dijet production

Describe wealth of experimental data with a single sample (LHC@7TeV)

MC@NLO di-jet production:

- $\mu_{R/F} = \frac{1}{4} H_T$, $\mu_Q = \frac{1}{2} p_{\perp}$
- CT10 PDF ($\alpha_s(m_Z) = 0.118$)
- hadron level calculation
 fully hadronised including MPI
- virtual MEs from BLACKHAT
 Giele, Glover, Kosower
 Bern et.al. arXiv:1112.3940
- $p_{j_1 \perp} > 20 \text{ GeV}, p_{j_2 \perp} > 10 \text{ GeV}$

Uncertainty estimates:

- $\mu_{R/F} \in \left[\frac{1}{2}, 2 \right] \mu_{R/F}^{\text{def}}$
- $\mu_Q \in \left[\frac{1}{\sqrt{2}}, \sqrt{2} \right] \mu_Q^{\text{def}}$
- MPI activity in tr. region ± 10%
Case study: Inclusive jet & dijet production

Jet transverse momenta (anti-kt R=0.4)

- ATLAS data
- SHERPA MC@NLO
 \(\mu_R = \mu_F = \frac{1}{4} H_T, \mu_Q = \frac{1}{2} p_{\perp} \)
- \(\mu_R, \mu_F \) variation
- \(\mu_Q \) variation
- MPI variation

1st jet

2nd jet

3rd jet

4th jet

Höche, MS arXiv:1208.2815
Case study: Inclusive jet & dijet production

3-jet-over-2-jet ratio

- determined from incl. sample
- 2-jet rate at NLO+NLL
- 3-jet rate at LO+LL

- common scale choices
 → varied simultaneously

- at large H_T large MPI uncertainties
 → better MPI physics needed
 (soft QCD)

- similar description of related ATLAS observables
Case study: Inclusive jet & dijet production

Höche, MS arXiv:1208.2815
Case study: Inclusive jet & dijet production

Try different scale

- \(\mu_{R/F} = \frac{1}{4} H_T(y) \) with
 \[H_T(y) = \sum_{i \in \text{jets}} p_{\perp,i} e^{0.3|y_{\text{boost}} - y_i|} \]
 with \(y_{\text{boost}} = \frac{1}{n_{\text{jets}}} \sum_{i \in \text{jets}} y_i \)
- reduces to \(\mu_{R/F} = \frac{1}{2} p_\perp e^{0.3y^*} \) with \(y^* = \frac{1}{2}|y_1 - y_2| \)
 for \(2 \rightarrow 2 \) and captures real emission dynamics

Ellis, Kunszt, Soper PRD40(1989)2188

- better description of data at large rapidities, as expected

Höche, MS arXiv:1208.2815
Case study: Inclusive jet & dijet production

Try different scale

- \(\mu_{R/F} = \frac{1}{4} H_T^{(y)} \) with
 \(H_T^{(y)} = \sum_{i \in \text{jets}} p_{\perp,i} e^{0.3|y_{\text{boost}} - y_i|} \)
 with \(y_{\text{boost}} = \frac{1}{n_{\text{jets}}} \sum_{i \in \text{jets}} y_i \)

- reduces to \(\mu_{R/F} = \frac{1}{2} p_{\perp} e^{0.3y^*} \)
 with \(y^* = \frac{1}{2} |y_1 - y_2| \) for \(2 \rightarrow 2 \)
 and captures real emission dynamics

Ellis, Kunszt, Soper PRD40(1989)2188

- better description of data at large rapidities, as expected

description of most other observables worsened

need proper description of forward physics (e.g. (B)FKL)
Case study: Inclusive jet & dijet production

Inclusive jet transverse momenta in different rapidity ranges

Leading dijet selection

Höche, MS arXiv:1208.2815
Case study: Inclusive jet & dijet production

Inclusive jet transverse momenta in different rapidity ranges

Δy

Gap Fraction

Forward-backward selection

MC/data

Höche, MS arXiv:1208.2815

240 GeV < \(\bar{p}_\perp < 270 \) GeV

210 GeV < \(\bar{p}_\perp < 240 \) GeV

180 GeV < \(\bar{p}_\perp < 210 \) GeV

150 GeV < \(\bar{p}_\perp < 180 \) GeV

120 GeV < \(\bar{p}_\perp < 150 \) GeV

90 GeV < \(\bar{p}_\perp < 120 \) GeV

70 GeV < \(\bar{p}_\perp < 90 \) GeV

\(\mu_R = \mu_F = \frac{1}{4} H_T, \mu_Q = \frac{1}{2} p_\perp \)

\(R = F_\mu, \mu \)

\(p_\perp < 90 \) GeV

\(p_\perp < 120 \) GeV

\(p_\perp < 150 \) GeV

\(p_\perp < 180 \) GeV

\(p_\perp < 210 \) GeV

\(p_\perp < 240 \) GeV

\(p_\perp < 270 \) GeV

\(R = \frac{1}{\sqrt{\mu_R}} \)

\(\mu_R = \mu_F = \frac{1}{4} H_T, \mu_Q = \frac{1}{2} p_\perp \)

\(R = F_\mu, \mu \)

\(p_\perp < 90 \) GeV

\(p_\perp < 120 \) GeV

\(p_\perp < 150 \) GeV

\(p_\perp < 180 \) GeV

\(p_\perp < 210 \) GeV

\(p_\perp < 240 \) GeV

\(p_\perp < 270 \) GeV

\(R = \frac{1}{\sqrt{\mu_R}} \)

\(\mu_R = \mu_F = \frac{1}{4} H_T, \mu_Q = \frac{1}{2} p_\perp \)

\(R = F_\mu, \mu \)

\(p_\perp < 90 \) GeV

\(p_\perp < 120 \) GeV

\(p_\perp < 150 \) GeV

\(p_\perp < 180 \) GeV

\(p_\perp < 210 \) GeV

\(p_\perp < 240 \) GeV

\(p_\perp < 270 \) GeV

\(R = \frac{1}{\sqrt{\mu_R}} \)
Case study: Inclusive jet & dijet production

- small-Δy region
 \Rightarrow small uncertainty on additional jet production
- large-Δy region
 \Rightarrow all uncertainties sizable
- small-\vec{p}_T region
 \Rightarrow dominated by perturbative uncertainties
- small-\vec{p}_T region
 \Rightarrow non-perturbative uncertainties as large as perturbative uncertainties

Reduction of theoretical uncertainty necessitates better understanding of soft QCD and non-factorisable contributions
Case study: Inclusive jet & dijet production

Forward energy flow

- energy flow in rapidity interval per event with a central back-to-back di-jet pair
- normalisation reduces μ_R/F and μ_Q dependence
- dominated by MPI modeling uncertainty

Höche, MS arXiv:1208.2815
NLO merging

LO merging:
- LO accuracy for $n \leq n_{\text{max}}$-jet processes
- preserve LL accuracy of the parton shower

Catani, Krauss, Kuhn, Webber JHEP11(2001)063
Lönnblad JHEP05(2002)046
Höche, Krauss, Schumann, Siegert JHEP05(2009)053
Hamilton, Richardson, Tully JHEP11(2009)038
Lönnblad, Prestel JHEP03(2012)019

NLO merging:
- NLO accuracy for $n \leq n_{\text{max}}$-jet processes
- preserve LL accuracy of the parton shower

Lavesson, Lönnblad JHEP12(2008)070
Höche, Krauss, MS, Siegert arXiv:1207.5030
Gehrmann, Höche, Krauss, MS, Siegert arXiv:1207.5031
\[\langle O \rangle^{\text{MEPS@NLO}} = \int d\Phi_n \bar{B}^{(A)}_n \left[\Delta^{(A)}_n(t_0, \mu_Q^2) O_n \right. \\
+ \int_{t_0}^{\mu_Q^2} d\Phi_1 \frac{D^{(A)}_n}{B_n} \Delta^{(A)}_n(t_{n+1}, \mu_Q^2) \Theta(Q_{\text{cut}} - Q) O_{n+1} \left. \right] \\
+ \int d\Phi_{n+1} \left[R_n - D^{(A)}_n \right] \Theta(Q_{\text{cut}} - Q) \Delta^{(PS)}_n(t_{n+1}, \mu_Q^2) O_{n+1} \\
+ \int d\Phi_{n+1} \bar{B}^{(A)}_{n+1} \left. \right] \times \left[\Delta^{(A)}_{n+1}(t_0, t_{n+1}) O_{n+1} + \int_{t_0}^{t_{n+1}} d\Phi_1 \frac{D^{(A)}_{n+1}}{B_{n+1}} \Delta^{(A)}_{n+1}(t_{n+2}, t_{n+1}) O_{n+2} \right] \\
+ \int d\Phi_{n+2} \left[R_{n+1} - D^{(A)}_{n+1} \right] \Theta(Q - Q_{\text{cut}}) O_{n+2} \]
\[\langle O \rangle^{\text{MEPs@NLO}} = \int d\Phi_n \bar{B}_n^{(A)} \left[\Delta_n^{(A)}(t_0, \mu_Q^2) O_n
right.
\left. + \int_{t_0}^{\mu_Q^2} d\Phi_1 \frac{D_n^{(A)}}{B_n} \Delta_n^{(A)}(t_{n+1}, \mu_Q^2) \Theta(Q_{\text{cut}} - Q) O_{n+1} \right]
\left. + \int d\Phi_{n+1} \left[R_n - D_n^{(A)} \right] \Theta(Q_{\text{cut}} - Q) \Delta_n^{(PS)}(t_{n+1}, \mu_Q^2) O_{n+1} \right]
+ \int d\Phi_{n+1} \bar{B}_{n+1}^{(A)} \left[\Delta_{n+1}^{(A)}(t_0, t_{n+1}) O_{n+1} + \int_{t_0}^{t_{n+1}} d\Phi_1 \frac{D_{n+1}^{(A)}}{B_{n+1}} \Delta_{n+1}^{(A)}(t_{n+2}, t_{n+1}) O_{n+2} \right]
\left. + \int d\Phi_{n+2} \left[R_{n+1} - D_{n+1}^{(A)} \right] \Theta(Q - Q_{\text{cut}}) O_{n+2} \right] \]
NLO merging

\[\langle O \rangle_{\text{MEPs@NLO}} = \int d\Phi_n \bar{B}_n^{(A)} \left[\Delta_n^{(A)}(t_0, \mu_Q^2) O_n \right. \\
+ \int_{t_0}^{\mu_Q^2} d\Phi_1 \frac{D_n^{(A)}}{B_n} \Delta_n^{(A)}(t_{n+1}, \mu_Q^2) \Theta(Q_{\text{cut}} - Q) O_{n+1} \left. \right] \\
+ \int d\Phi_{n+1} \left[R_n - D_n^{(A)} \right] \Theta(Q_{\text{cut}} - Q) \Delta_n^{(PS)}(t_{n+1}, \mu_Q^2) O_{n+1} \\
+ \int d\Phi_{n+1} B_{n+1}^{(A)} \Theta(Q - Q_{\text{cut}}) \times \left[\Delta_{n+1}^{(A)}(t_0, t_{n+1}) O_{n+1} + \int_{t_0}^{t_{n+1}} d\Phi_1 \frac{D_{n+1}^{(A)}}{B_{n+1}} \Delta_{n+1}^{(A)}(t_{n+2}, t_{n+1}) O_{n+2} \right. \\
+ \int d\Phi_{n+2} \left[R_{n+1} - D_{n+1}^{(A)} \right] \Theta(Q - Q_{\text{cut}}) O_{n+2} \right] \]
\[\langle O \rangle^{\text{MEPS@NLO}} = \int d\Phi_n \bar{B}_n^{(A)} \left[\Delta_n^{(A)}(t_0, \mu_Q^2) O_n + \int_{t_0}^{\mu_Q^2} d\Phi_1 \frac{D_n^{(A)}}{B_n} \Delta_n^{(A)}(t_{n+1}, \mu_Q^2) \Theta(Q_{\text{cut}} - Q) O_{n+1} \right] \\
+ \int d\Phi_{n+1} \left[R_n - D_n^{(A)} \right] \Theta(Q_{\text{cut}} - Q) \Delta_n^{(PS)}(t_{n+1}, \mu_Q^2) O_{n+1} \\
+ \int d\Phi_{n+1} \bar{B}_{n+1}^{(A)} \left[1 + \frac{B_{n+1}}{B_{n+1}} \int_{t_{n+1}}^{\mu_Q^2} d\Phi_1 K_n \right] \Delta_n^{(PS)}(t_{n+1}, \mu_Q^2) \Theta(Q - Q_{\text{cut}}) \times \left[\Delta_{n+1}^{(A)}(t_0, t_{n+1}) O_{n+1} + \int_{t_0}^{t_{n+1}} d\Phi_1 \frac{D_{n+1}^{(A)}}{B_{n+1}} \Delta_{n+1}^{(A)}(t_{n+2}, t_{n+1}) O_{n+2} \right] \\
+ \int d\Phi_{n+2} \left[R_{n+1} - D_{n+1}^{(A)} \right] \Delta_{n+1}^{(PS)}(t_{n+2}, t_{n+1}) \Delta_n^{(PS)}(t_{n+1}, \mu_Q^2) \Theta(Q - Q_{\text{cut}}) O_{n+2} \]
NLO merging

\[
\langle O \rangle^{\text{MEPS@NLO}} = \int d\Phi_n \, \bar{B}_n^{(A)} \left[\Delta_n^{(A)}(t_0, \mu_Q^2) \, O_n \right. \\
\left. + \int_{t_0}^{\mu_Q^2} d\Phi_1 \, \frac{D_n^{(A)}}{B_n} \, \Delta_n^{(A)}(t_{n+1}, \mu_Q^2) \, \Theta(Q_{\text{cut}} - Q) \, O_{n+1} \right] \\
+ \int d\Phi_{n+1} \left[R_n - D_n^{(A)} \right] \Theta(Q_{\text{cut}} - Q) \, \Delta_n^{(PS)}(t_{n+1}, \mu_Q^2) \, O_{n+1} \\
+ \int d\Phi_{n+1} \, \bar{B}_{n+1}^{(A)} \left[1 + \frac{B_{n+1}}{B_{n+1}} \int_{t_{n+1}}^{\mu_Q^2} d\Phi_1 \, K_n \right] \Delta_n^{(PS)}(t_{n+1}, \mu_Q^2) \, \Theta(Q - Q_{\text{cut}}) \\
\times \left[\Delta_{n+1}^{(A)}(t_0, t_{n+1}) \, O_{n+1} + \int_{t_0}^{t_{n+1}} d\Phi_1 \, \frac{D_{n+1}^{(A)}}{B_{n+1}} \, \Delta_{n+1}^{(A)}(t_{n+2}, t_{n+1}) \, O_{n+2} \right] \\
+ \int d\Phi_{n+2} \left[R_{n+1} - D_{n+1}^{(A)} \right] \Delta_{n+1}^{(PS)}(t_{n+2}, t_{n+1}) \, \Delta_n^{(PS)}(t_{n+1}, \mu_Q^2) \, \Theta(Q - Q_{\text{cut}}) \, O_{n+2}
\]
NLO merging

\[
\langle O \rangle^{\text{MEPS@NLO}} = \int d\Phi_n \bar{B}^{(A)}_n \left[\Delta_n^{(A)}(t_0, \mu_Q^2) O_n + \int_{t_0}^{\mu_Q^2} d\Phi_1 \frac{D_n^{(A)}}{B_n} \Delta_n^{(A)}(t_{n+1}, \mu_Q^2) \Theta(Q_{\text{cut}} - Q) O_{n+1} \right] \\
+ \int d\Phi_{n+1} \left[R_n - D_n^{(A)} \right] \Theta(Q_{\text{cut}} - Q) \Delta_n^{(PS)}(t_{n+1}, \mu_Q^2) O_{n+1} \\
+ \int d\Phi_{n+1} \bar{B}^{(A)}_{n+1} \left[1 + \frac{B_{n+1}}{B_{n+1}} \int_{t_{n+1}}^{\mu_Q^2} d\Phi_1 K_n \right] \Delta_n^{(PS)}(t_{n+1}, \mu_Q^2) \Theta(Q - Q_{\text{cut}}) \\
\times \left[\Delta_{n+1}^{(A)}(t_0, t_{n+1}) O_{n+1} + \int_{t_0}^{t_{n+1}} d\Phi_1 \frac{D_{n+1}^{(A)}}{B_{n+1}} \Delta_{n+1}^{(A)}(t_{n+2}, t_{n+1}) O_{n+2} \right] \\
+ \int d\Phi_{n+2} \left[R_{n+1} - D_{n+1}^{(A)} \right] \Delta_n^{(PS)}(t_{n+2}, t_{n+1}) \Delta_n^{(PS)}(t_{n+1}, \mu_Q^2) \Theta(Q - Q_{\text{cut}}) O_{n+2}
\]
\[\langle O \rangle^{\text{MEPS@NLO}} \]

\[
= \int d\Phi_n \bar{B}^{(A)}_n \left[\Delta^{(A)}_n(t_0, \mu_Q^2) O_n \\
+ \int^{\mu_Q^2} d\Phi_1 \frac{D^{(A)}_n}{B_n} \Delta^{(A)}_n(t_{n+1}, \mu_Q^2) \Theta(Q_{\text{cut}} - Q) O_{n+1} \right] \\
+ \int d\Phi_{n+1} \left[R_n - D^{(A)}_n \right] \Theta(Q_{\text{cut}} - Q) \Delta^{(PS)}_n(t_{n+1}, \mu_Q^2) O_{n+1} \\
+ \int d\Phi_{n+1} \bar{B}^{(A)}_n \left[1 + \frac{B_{n+1}}{\bar{B}_{n+1}} \int^{\mu_Q^2} d\Phi_1 K_n \right] \Delta^{(PS)}_n(t_{n+1}, \mu_Q^2) \Theta(Q - Q_{\text{cut}}) \\
\times \left[\Delta^{(A)}_{n+1}(t_0, t_{n+1}) O_{n+1} + \int^{t_{n+1}} d\Phi_1 \frac{D^{(A)}_{n+1}}{B_{n+1}} \Delta^{(A)}_{n+1}(t_{n+2}, t_{n+1}) O_{n+2} \right] \\
+ \int d\Phi_{n+2} \left[R_{n+1} - D^{(A)}_{n+1} \right] \Delta^{(PS)}_{n+1}(t_{n+2}, t_{n+1}) \Delta^{(PS)}_n(t_{n+1}, \mu_Q^2) \Theta(Q - Q_{\text{cut}}) O_{n+2} \]
NLO merging – Generation of MC counterterm

\[1 + \frac{B_{n+1}}{\bar{B}_{n+1}} \int_{t_{n+1}}^{\mu_Q^2} d\Phi_1 K_n \]

- same form as exponent of Sudakov form factor \(\Delta_n^{(PS)}(t_{n+1}, \mu_Q^2) \)
- truncated parton shower on \(n \)-parton configuration underlying \(n + 1 \)-parton event
 1. no emission → retain \(n + 1 \)-parton event as is
 2. first emission at \(t' \) with \(Q > Q_{\text{cut}} \), multiply event weight with \(B_{n+1}/\bar{B}_{n+1}^{(A)} \), restart evolution at \(t' \), do not apply emission kinematics
 3. treat every subsequent emission as in standard truncated vetoed shower
- generates

\[\left[1 + \frac{B_{n+1}}{\bar{B}_{n+1}} \int_{t_{n+1}}^{\mu_Q^2} d\Phi_1 K_n \right] \Delta_n^{(PS)}(t_{n+1}, \mu_Q^2) \]

⇒ identify \(\mathcal{O}(\alpha_s) \) counterterm with the emitted emission
NLO merging

Renormalisation scales:

- determined by clustering using PS probabilities and taking the respective nodal values t_i

$$\alpha_s(\mu^2_R)^{k} = \prod_{i=1}^{k} \alpha_s(t_i)$$

- change of scales $\mu_R \rightarrow \tilde{\mu}_R$ in MEs necessitates one-loop counter term

$$\alpha_s(\tilde{\mu}^2_R)^{k} \left(1 - \frac{\alpha_s(\tilde{\mu}^2_R)}{2\pi} \beta_0 \sum_{i=1}^{k} \ln \frac{t_i}{\tilde{\mu}^2_R} \right)$$

Factorisation scale:

- μ_F determined from core n-jet process

- change of scales $\mu_F \rightarrow \tilde{\mu}_F$ in MEs necessitates one-loop counter term

$$B_n(\Phi_n) \frac{\alpha_s(\tilde{\mu}^2_R)}{2\pi} \log \frac{\mu^2_F}{\tilde{\mu}^2_F} \left(\sum_{c=q,g}^{n} \int_{x_a/\tilde{\mu}_F}^{1} \frac{dz}{z} P_{ac}(z) f_c(x_a/z, \tilde{\mu}^2_F) + \ldots \right)$$
Results: $e^+e^- \rightarrow$ hadrons

$ee \rightarrow$ hadrons
(2,3,4 \oplus NLO; 5,6 \oplus LO)

Jet resolutions (Durham measure)
- MEPS@NLO vs MENLOPs
- at $y \ll 1$ dominated by hadr. effects → needs retuning
- much improved ren. scale dependence

ALEPH data
Results: $e^+e^- \rightarrow \text{hadrons}$

Thrust ($E_{\text{CMS}} = 91.2$ GeV)

Sphericity ($E_{\text{CMS}} = 91.2$ GeV)
Results: \(pp \rightarrow W + \text{jets} \)

\[pp \rightarrow W + \text{jets} \ (0,1,2 \ @ \ NLO; \ 3,4 \ @ \ LO) \]

- \(\mu_{R/F} \in [\frac{1}{2}, 2] \mu_{\text{def}} \)
 - scale uncertainty much reduced
- NLO dependece for \(pp \rightarrow W + 0,1,2 \text{ jets} \)
- LO dependence for \(pp \rightarrow W + 3,4 \text{ jets} \)
- \(Q_{\text{cut}} = 30 \text{ GeV} \)
- good data description

Results: $pp \rightarrow W + \text{jets}$

$pp \rightarrow W + \text{jets}$ (0,1,2 @ NLO; 3,4 @ LO)

- $\mu_{R/F} \in \left[\frac{1}{2}, 2\right] \mu_{\text{def}}$
- Scale uncertainty much reduced
- NLO dependence for $pp \rightarrow W + 0,1,2$ jets
- LO dependence for $pp \rightarrow W + 3,4$ jets
- $Q_{\text{cut}} = 30$ GeV
- Good data description

Results: \(pp \rightarrow W + \text{jets}\)

Conclusions

- SHERPA’s MC@NLO formulation allows full evaluation of perturbative uncertainties (μ_F, μ_R, μ_Q)
- MC@NLO can be easily combined with MEPS \rightarrow MENLOPS
- MC@NLO is a necessary input for NLO merging \rightarrow MEPS@NLO
- MEPS@NLO gives full benefits of NLO calculations (scale dependences, normalisations) while also retaining full (N)LL accuracy of parton shower
 \Rightarrow will be included in next major release

Current release: SHERPA-1.4.1
http://sherpa.hepforge.org

- better description of perturbative QCD is only part of the story to achieve higher precision for (hard) collider observables
Thank you for your attention!
Case study: Inclusive jet & dijet production

Dijet azimuthal decorrelation in various p_{\perp} bins

- CMS data
- Sherpa MC@NLO
 - $\mu_R = \mu_F = \frac{1}{2} \mu_T$
 - $\mu_Q = \frac{1}{2} p_{\perp}$
- μ_R, μ_F variation
- μ_Q variation
- MPI variation

Höche, MS arXiv:1208.2815
Case study: Inclusive jet & dijet production

Inclusive jet transverse momenta in different rapidity ranges

\(p_\perp [\text{GeV}] \)

\(\frac{d\sigma}{dp_\perp} [\text{pb/GeV}] \)

- ATLAS data
- MC@NLO
- SHERPA MC@NLO

\(\mu_R = \mu_F = \frac{1}{2} H_T, \quad \mu_Q = \frac{1}{2} p_\perp \)

\(\mu_R, \mu_F \) variation

\(\mu_Q \) variation

MPI variation

Höche, MS arXiv:1208.2815
Case study: Inclusive jet & dijet production

Central transverse thrust in different leading jet p_{\perp} ranges

CMS data

SHERPA MC@NLO
$\mu_R = \mu_F = \frac{1}{2} H_T$, $\mu_Q = \frac{1}{2} p_{\perp}$

- μ_R, μ_F variation
- μ_Q variation
- MPI variation

Höche, MS arXiv:1208.2815
Central transverse thrust minor in different leading jet p_\perp ranges

\begin{align*}
\frac{1}{N} \frac{dN}{d\ln(T_{m,C})} \text{ [pb]} & \\
& \text{CMS data} \\
& \text{Phys. Rev. Lett. 106 (2011) 122003} \\
& \text{Sherpa MC@NLO} \\
& \mu_R = \mu_F = \frac{1}{4} H_T, \ \mu_Q = \frac{1}{2} p_\perp \\
& \mu_R, \mu_F \text{ variation} \\
& \mu_Q \text{ variation} \\
& \text{MPI variation} \\
\end{align*}

Höche, MS arXiv:1208.2815