Interpreting direct detection searches

www.ippp.dur.ac.uk

Christopher M^cCabe

with Oliver Buchmueller, Matthew Dolan and Sarah Alam Malik

JHEP 1401 025 (arXiv:1308.6799) and work in progress

Dark matter brainstorming meeting, Imperial College – 29th May 2014

Outline of this talk

- Standard interpretation of direct detection results
- Application to simple models
- Comparing direct detection and LHC limits

Direct detection results

Spin-dependent

Why constrain these parameters?

Interactions that dark matter might have with quarks

ame	Operator	Coefficient
D1	operator	
DI	$\chi \chi q q$	m_q/M_*°
D2	$\bar{\chi}\gamma^{3}\chi\bar{q}q$	im_q/M_*^3
D3	$ar\chi\chiar q\gamma^5 q$	im_q/M_*^3
D4	$ar{\chi}\gamma^5\chiar{q}\gamma^5q$	m_q/M_*^3
D5	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D6	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D7	$\bar{\chi}_{\alpha\mu}^{\mu}\chi_{\bar{a}\alpha}^{\mu}\chi_{\bar{a}\alpha}^{5}a$	$1/M^2$
	$\begin{bmatrix} \chi / \chi q / \mu / q \\ - \chi \mu - 5 + - 5 + - 5 \end{bmatrix}$	1/1/1/2
D8	$\chi\gamma^{\mu}\gamma^{\circ}\chi q\gamma_{\mu}\gamma^{\circ}q$	1/1/1-2
D9	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$	$1/M_*^2$
D10	$\left \bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{\alpha\beta}q\right $	i/M_{*}^{2}
D11	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$
D12	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i\alpha_s/4M_*^3$
D13	$\bar{\chi}\chi G_{\mu u} ilde{G}^{\mu u}$	$i\alpha_s/4M_*^3$
D14	$\bar{\chi}\gamma^5\chi G_{\mu u}\tilde{G}^{\mu u}$	$\alpha_s/4M_*^3$

Using operators excellent approximation when $M_{\rm med} > 500 {
m MeV}$ •

Coefficient

 m_{q}/M_{*}^{2}

 im_q/M_*^2 $1/M_{*}^{2}$

 $\alpha_s/4M_*^2$

 $i\alpha_s/4M_*^2$ $m_{a}/2M_{*}^{2}$

 $im_{q}/2M_{*}^{2}$ $\alpha_s/8M_*^2$

 $i\alpha_s/8M_*^2$

Why constrain these parameters?

• In the non-relativistic limit ($v_{\rm DM} \sim 10^{-3}$)

$$u = \begin{pmatrix} \sqrt{p.\sigma}\xi \\ \sqrt{p.\bar{\sigma}}\xi \end{pmatrix} \xrightarrow{\text{NR limit}} \sqrt{m} \begin{pmatrix} \xi \\ \xi \end{pmatrix} \qquad v = \begin{pmatrix} \sqrt{p.\sigma}\eta \\ -\sqrt{p.\bar{\sigma}}\eta \end{pmatrix} \xrightarrow{\text{NR limit}} \sqrt{m} \begin{pmatrix} \eta \\ -\eta \end{pmatrix}$$

 $\bar{\chi}\chi\,\bar{q}q \propto \mathbb{I} + \mathcal{O}(v_{\rm DM}^2) \qquad \bar{\chi}\gamma^{\mu}\gamma^5\chi\,\bar{q}\gamma_{\mu}\gamma^5q \propto \vec{s}_{\rm DM}\cdot\vec{s}_{\rm N} + \mathcal{O}(v_{\rm DM}^2)$ $\bar{\chi}\gamma^{\mu}\chi\,\bar{q}\gamma_{\mu}q \propto \mathbb{I} + \mathcal{O}(v_{\rm DM}^2) \qquad \bar{\chi}\gamma^5\chi\,\bar{q}\gamma^5q \propto \vec{s}_{\rm DM}\cdot\vec{s}_{\rm N}v_{\rm DM}^2 + \mathcal{O}(v_{\rm DM}^4)$

 All interactions fall into two categories: spin-independent or spin-dependent

Direct detection results

Constrain the cross-section to scatter with nucleon

Why constrain these parameters?

- Dark matter scatters off the whole nucleus ...but different experiments use different target nuclei
- Parameterising in terms of the nucleon cross-section allows an easy comparison of different experiments
- SI limits assume $\sigma_{
 m N} \propto A^2 \sigma_{
 m n}$
 - more generally $\sigma_{\rm N} \propto (f_p Z + f_n (A Z))^2 \sigma_{\rm n}$
- SD limits assume the DM couples either to neutron or proton only – good approximation

Why constrain these parameters?

Mini summary

- All interactions are either spin-independent or spindependent
 - Experiments place separate constraints on each
- Limit is on the cross-section to scatter of a nucleon (not the whole nucleus)
- SI limit assumes equal coupling to protons and neutrons
- SD limit separate limit for scattering on proton and neutron

Uncertainties?

- How robust are these limits?
- Sources of uncertainty come from
 - Astrophysical parameters
 - Response of the detector
 - Nuclear physics

Astrophysical parameters

• Cross-section is degenerate with the local DM density: $N_{\rm events} \propto \rho_{\rm DM} \sigma_n$ where $\rho_{\rm DM} = 0.3 \ {\rm GeV \ cm^{-3}}$

Label	Reference	Description	Sampling	$ ho_{ m dm} \; [m M_\odot pc^{-3}]$	$\rho_{\rm dm}~[{\rm GeVcm^{-3}}]$		
a) Local measures $(\rho_{\rm dm})$							
Kapteyn	Kapteyn (1922)	-	—	0.0076	0.285		
Jeans	Jeans (1922)	_	_	0.051	1.935		
Oort	Oort (1932)	_	—	0.0006 ± 0.0184	0.0225 ± 0.69		
Hill	Hill (1960)	_	_	-0.0054	-0.202		
Oort	Oort (1960)	_	_	0.0586 ± 0.015	2.2 ± 0.56		
Bahcall	Bahcall (1984a)	_	_	0.033 ± 0.025	1.24 ± 0.94		
$\operatorname{Bienayme}^\dagger$	Bienayme et al. (1987)	—	_	0.006 ± 0.005	0.22 ± 0.187		
KG^{\dagger}	Kuijken & Gilmore (1991)	_	_	0.0072 ± 0.0027	0.27 ± 0.102		
Bahcall	Bahcall et al. (1992)	_	—	0.033 ± 0.025	1.24 ± 0.94		
Creze	Creze et al. (1998)	_	—	-0.015 ± 0.015	-0.58 ± 0.56		
HF^{\dagger}	Holmberg & Flynn (2000b)	_	—	0.011 ± 0.01	0.4 ± 0.375		
HF^{\dagger}	Holmberg & Flynn (2004)	_	—	0.0086 ± 0.0027	0.324 ± 0.1		
Bienayme	Bienaymé et al. (2006)	—	_	0.0059 ± 0.005	0.51 ± 0.56		
Latest measurements							
MB12	Moni Bidin et al. (2012)	CSF	412	0.00062 ± 0.001	0.023 ± 0.042		
				$[0\pm 0.001]$	$[0\pm 0.042]$		
BT12	Bovy & Tremaine (2012)	CSF	412	0.008 ± 0.003	0.3 ± 0.11		
G12	Garbari et al. (2012)	VC	2×10^3	$0.022\substack{+0.015\\-0.013}$	$0.85\substack{+0.57\\-0.5}$		
$G12^*$	Garbari et al. (2012)	$VC + \Sigma_b$	2×10^3	$0.0087\substack{+0.007\\-0.002}$	$0.33^{+0.26}_{-0.075}$		
S12	Smith et al. (2012)	CSF	10^{4}	0.005 [no error]	0.19		
				[0.015]	[0.57]		
$\mathbf{Z13}$	Zhang et al. (2013)	CSF	10^{4}	0.0065 ± 0.0023	0.25 ± 0.09		
BR13	Bovy & Rix (2013)	CSF + MAP	10^{4}	0.006 ± 0.0018	0.22 ± 0.07		
	× •			$[0.008\pm 0.0025]$	$[0.3\pm0.094]$		

Read:1404.1938

Astrophysical parameters

- Velocity parameters of Sun (v0) also has some influence
- Shifts the limit horizontally at low mass

McCabe:1005.0579

Response of the detector

• Detector effects important near threshold eg light response of XENON100 (now understood better)

Davis et al:1203.6823

Nuclear physics

• Issue for SD: Spin structure functions not known well

XENON100:1301.6620

Mini summary

- How robust are these limits?
- About a 30-50% uncertainty at 30 GeV and above
- Can be larger at low mass (near threshold)

Application to simple models

Consider vector mediators

$$\mathcal{L} = \bar{\chi}\gamma^{\mu}(a+b\gamma^5)\chi Z'_{\mu} + \bar{q}\gamma^{\mu}(c+d\gamma^5)q Z'_{\mu}$$

 $\begin{array}{ccc} \sum\limits_{q} \frac{ac}{M_{Z'}^2} \bar{\chi} \gamma^{\mu} \chi \, \bar{q} \gamma_{\mu} q & \stackrel{\text{N.R.}}{\longrightarrow} & \text{Spin-independent (SI)} \\ \sum\limits_{q} \frac{bd}{M_{Z'}^2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \, \bar{q} \gamma_{\mu} \gamma^5 q & \stackrel{\text{N.R.}}{\longrightarrow} & \text{Spin-dependent (SD)} \\ \hline \sum\limits_{q} \frac{bc}{M_{Z'}^2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \, \bar{q} \gamma_{\mu} q & \stackrel{\text{N.R.}}{\longrightarrow} & \text{Suppressed by } v_{\text{DM}}^2 \sim 10^{-6} \\ \hline \sum\limits_{q} \frac{ad}{M_{Z'}^2} \bar{\chi} \gamma^{\mu} \chi \, \bar{q} \gamma_{\mu} \gamma^5 q & \stackrel{\text{N.R.}}{\longrightarrow} & \text{Suppressed by } v_{\text{DM}}^2 \sim 10^{-6} \end{array}$

- If vector (SI) interaction is present, it will dominate
 - forbidden for Majorana fermions

Vector interaction (SI)

• The nucleon cross-section is $\sigma_{\rm n} = \frac{f^2 \mu^2}{\pi}$

- For protons:
$$f_p = \frac{(2g_u + g_d)g_{\rm DM}}{M_{Z'}^2}$$

- For neutrons:
$$f_n = rac{(g_u + 2g_d)g_{\mathrm{DM}}}{M_{Z'}^2}$$

- Only u, d coupling contributes
- Interactions with proton and neutron generally different
- Simplify problem by assuming all g_q equal

Vector interaction (SI) – some intuition

Vector interaction (SI)

Vector interaction (SI)

Axial-Vector interaction (SD)

• The nucleon cross-section is $\sigma_{\rm n} = \frac{3f^2\mu^2}{\pi}$

- For protons:
$$f_p = \frac{g_{\text{DM}}}{M_{Z'}^2} \sum_{q=u,d,s} g_q \Delta_q^p$$
 $\Delta_u^p = \Delta_d^n \approx 0.842$ - For neutrons: $f_n = \frac{g_{\text{DM}}}{M_{Z'}^2} \sum_{q=u,d,s} g_q \Delta_q^n$ $\Delta_u^p = \Delta_u^n \approx -0.427$

- Only u, d, s coupling contributes
- Interactions with proton and neutron generally different
- Simplify problem by assuming all g_q equal

Axial-Vector interaction (SD) – some intuition

Axial-Vector interaction (SD)

• Searches have comparable sensitivity and are complementary

Axial-Vector interaction (SD)

• Searches have comparable sensitivity and are complementary

Problems with EFT approach

• Limit on Λ in the EFT approach for

• Are these limits useful?

Problems with EFT approach: Example

• Find limit in simplified model and map back onto direct detection plane:

EFT limit gives misleading results

Summary

- Important to interpret dark matter searches in the right framework
- Direct detection experiments constrain the 'WIMP-nucleon cross section'
 - Very useful: constrains a large number of theories
 - Straightforward to map limits into other forms
- LHC monojet searches have been interpreted in an EFT framework
 - Limited use: gives wrong constraints when applied to simple models
 - comparison with direct detection limits is misleading