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1.  The history of the Universe: the usual picture"

2.  Hints for extra energy density from BBN/CMB"

3.  A new particle in equilibrium with neutrinos?"

4.  For fun: MeV neutralino"
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Timeline: Very early Universe	  
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10 MeV" 1 MeV" 0.1 MeV" 1 meV"1 eV"

•  Inflation"
•  Leptogenesis/Baryogenesis"
•  Electroweak phase transition"
•  Quark-hadron phase transition"
•  …"
•  No direct window of the early Universe at 

these temperatures…"
…Focus on lower temperatures"



Timeline: Thermal bath	  
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•  Plasma of particles in a thermal bath:"
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Timeline: Neutrino decoupling	  
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•  Species remain in thermal equilibrium until"
•  Neutrinos decouple at ~2.3 MeV"
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Timeline: Big Bang Nucleosynthesis	  
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Timeline: Photon reheating	  
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10 MeV" 1 MeV" 0.1 MeV" 1 meV"1 eV"
BBN"

Events:" decoupling"⌫

me/3 MeV"

reheating"�

•  When electrons and positrons become non-relativistic, 
they transfer their entropy to photons "

•  Photon thermal bath heated "
"relative to neutrino bath:"
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Timeline: CMB formation	  
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10 MeV" 1 MeV" 0.1 MeV" 1 meV"1 eV"
BBN"

Events:" decoupling"⌫

me/3 MeV"

reheating"� decoupling"�

•  Electrons recombine with protons:"

•  Photons decouple from matter: cosmic microwave 
background is formed"

H+ + e� ! H + �



Timeline: Today	  
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10 MeV" 1 MeV" 0.1 MeV" 1 meV"1 eV"

today"

BBN"

Events:" decoupling"⌫

me/3 MeV"

reheating"�

•  Today we have (at least) two thermal relics:"

1.  CMB with                     (measured)"

2.  Cosmic neutrino background "
"with                     (not measured)"

T� = 2.725 K

T⌫ = 1.945 K

decoupling"�



Hints for new physics?	  
•  We can measure primordial nuclei created during BBN 

and the relic photons of CMB"
•  Data currently favours extra energy density present 

during BBN and CMB "

•  Energy density parameterized in terms of "
•        is the number of Majorana fermions at temperature"

•  In the standard picture of the Universe with three 
neutrinos "
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Questions…	  

•  Why is BBN sensitive to      ?"
•  What are the current experimental constraints?"

•  Why is the CMB sensitive to      ?"
•  What are the current experimental constraints?"

•  What will future experimental results tell us?"
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BBN: the helium abundance	  

•     and    kept in equilibrium "
"through weak interactions:"

•  Equilibrium number densities follow"

•  Reactions freeze out when                    , so that"

•  Essentially all of the neutrons end up as       , so"

•  Abundance parameterised in terms of the mass fraction:"
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Helium: measure of Neff	  

•  In more detail, the weak interactions freeze out 
when"

•  But              , so increasing        increases the 
expansion rate"

"leads to a larger value for"

"leads to a larger value for "
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Helium abundance over time	  
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CMB: temperature anisotropies	  
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10 J. Dunkley et al.

Fig. 5.— The power spectrum measured by ACT at 148GHz, scaled by !4, over the range dominated by primordial CMB (! < 3000).
The spectrum is consistent with the WMAP power spectrum over the scales 500 < ! < 1000, and gives a measure of the third to seventh
acoustic peaks. The best-fit ΛCDM cosmological model is shown, and is a good fit to the two datasets. At ! > 2000 the contribution
from point soures and SZ becomes significant (dashed shows the total best-fit theoretical spectrum; solid is lensed CMB). Three additional
theoretical models for the primordial CMB are shown with Neff=10 relativistic species, 4He fraction Yp = 0.5, and running of the spectral
index dns/d lnk = −0.075. They are consistent with WMAP but are excluded at least at the 95% level by the ACT data.

TABLE 3
Derived constraints on unresolved IR source emissiona

148GHz 218GHz

Poisson B3000 (µK2)b 7.8± 0.7± 0.7 90± 5± 10
C!(nK

2) 5.5± 0.5± 0.6 63 ± 3± 6
C! (Jy2 sr−1) 0.85± 0.08± 0.09 14.7± 0.7± 1.8

Clustered B3000 (µK2)c 4.6± 0.9± 0.6 54± 12 ± 5

Total IR B3000 (µK2) 12.5± 1.2 144± 13
aThe two errors indicate statistical uncertainty and a systematic

error due to clustered template uncertainty.
bEquivalent to the parameter Ad for 148GHz.
cEquivalent to the parameter Ac for 148GHz.

sion. The IR Poisson power is estimated to be Ad =
7.8±0.7 µK2, with derived Poisson IR power at 148GHz
and 218GHz given in Table 3. A clustered component is
required to fit the data, with Ac = 4.6± 0.9 µK2, corre-
sponding to power at 218GHz of B218

3000 = 54 ± 12 µK2.
A model with no clustered component has a poorer fit
to the data by ∆χ2 = 28, indicating a detection of clus-
tering at the 5σ level. It is the 218GHz power spectrum
that provides this detection; the 148GHz spectrum is
consistent with no clustered component.
In flux units, the effective index of unresolved IR emis-

sion is
αd = 3.69± 0.14 (19)

between 148GHz and 218GHz, where S(ν) ∝ να. The

dust index and Poisson amplitude are anti-correlated,
shown in Figure 4. This index estimate agrees with ob-
servations by SPT, who find α = 3.9± 0.3 for the Pois-
son component, and 3.8 ± 1.2 for the clustered compo-
nent over the same frequency range (Hall et al. 2010). A
property that can be derived from the effective index, α,
is the dust emissivity index, β. For galaxies at redshift
z = 0 the dust emission can be described by a modified
blackbody, S(ν) ∝ νβBν(Td), for dust temperature Td.
In the Rayleigh-Jeans (RJ) limit the flux then approx-
imates to S(ν) ∝ νβ+2Td, with β = α − 2. Using this
relation gives a dust emissivity index measured by ACT
of β = 1.7 ± 0.14, consistent with models (e.g., Draine
2003). However, the RJ limit is not expected to be as
good an approximation for redshifted graybodies (e.g.,
Hall et al. 2010), adding an uncertainty to β of up to
# 0.5. This should also be considered an effective in-
dex, given the likely temperature variation within each
galaxy.
We test the dependence of these constraints on choices

made in the likelihood, using the same set of tests de-
scribed in Sec 3.1. The estimated IR source parameters
do not depend strongly on the SZ template chosen, with
less than 0.1σ change if we use the Battaglia or TBO-1
SZ template. If the radio source index is set to αs = 0
instead of −0.5 there is a # 0.3σ reduction in the IR Pois-
son source power at 148GHz, and a 0.2σ increase in the
spectral index. As found in Sec 3.1, if the radio source

ACT arXiv:1009.0866 



CMB: Silk damping	  
•  ‘Silk damping’ or ‘diffusion damping’: photons 

diffuse from hot to cold regions damping 
temperature anisotropies"

•  Amount of damping depends on expansion rate:"
                  , so damping sensitive to"

•  Degenerate with     . Helium recombines with free 
electrons. More helium      fewer free electrons    "    

" photons diffuse further       more damping"

        Christopher McCabe   IPPP - Durham University"
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CMB: temperature anisotropies	  

        Christopher McCabe   IPPP - Durham University"

10 J. Dunkley et al.

Fig. 5.— The power spectrum measured by ACT at 148GHz, scaled by !4, over the range dominated by primordial CMB (! < 3000).
The spectrum is consistent with the WMAP power spectrum over the scales 500 < ! < 1000, and gives a measure of the third to seventh
acoustic peaks. The best-fit ΛCDM cosmological model is shown, and is a good fit to the two datasets. At ! > 2000 the contribution
from point soures and SZ becomes significant (dashed shows the total best-fit theoretical spectrum; solid is lensed CMB). Three additional
theoretical models for the primordial CMB are shown with Neff=10 relativistic species, 4He fraction Yp = 0.5, and running of the spectral
index dns/d lnk = −0.075. They are consistent with WMAP but are excluded at least at the 95% level by the ACT data.

TABLE 3
Derived constraints on unresolved IR source emissiona

148GHz 218GHz

Poisson B3000 (µK2)b 7.8± 0.7± 0.7 90± 5± 10
C!(nK

2) 5.5± 0.5± 0.6 63 ± 3± 6
C! (Jy2 sr−1) 0.85± 0.08± 0.09 14.7± 0.7± 1.8

Clustered B3000 (µK2)c 4.6± 0.9± 0.6 54± 12 ± 5

Total IR B3000 (µK2) 12.5± 1.2 144± 13
aThe two errors indicate statistical uncertainty and a systematic

error due to clustered template uncertainty.
bEquivalent to the parameter Ad for 148GHz.
cEquivalent to the parameter Ac for 148GHz.

sion. The IR Poisson power is estimated to be Ad =
7.8±0.7 µK2, with derived Poisson IR power at 148GHz
and 218GHz given in Table 3. A clustered component is
required to fit the data, with Ac = 4.6± 0.9 µK2, corre-
sponding to power at 218GHz of B218

3000 = 54 ± 12 µK2.
A model with no clustered component has a poorer fit
to the data by ∆χ2 = 28, indicating a detection of clus-
tering at the 5σ level. It is the 218GHz power spectrum
that provides this detection; the 148GHz spectrum is
consistent with no clustered component.
In flux units, the effective index of unresolved IR emis-

sion is
αd = 3.69± 0.14 (19)

between 148GHz and 218GHz, where S(ν) ∝ να. The

dust index and Poisson amplitude are anti-correlated,
shown in Figure 4. This index estimate agrees with ob-
servations by SPT, who find α = 3.9± 0.3 for the Pois-
son component, and 3.8 ± 1.2 for the clustered compo-
nent over the same frequency range (Hall et al. 2010). A
property that can be derived from the effective index, α,
is the dust emissivity index, β. For galaxies at redshift
z = 0 the dust emission can be described by a modified
blackbody, S(ν) ∝ νβBν(Td), for dust temperature Td.
In the Rayleigh-Jeans (RJ) limit the flux then approx-
imates to S(ν) ∝ νβ+2Td, with β = α − 2. Using this
relation gives a dust emissivity index measured by ACT
of β = 1.7 ± 0.14, consistent with models (e.g., Draine
2003). However, the RJ limit is not expected to be as
good an approximation for redshifted graybodies (e.g.,
Hall et al. 2010), adding an uncertainty to β of up to
# 0.5. This should also be considered an effective in-
dex, given the likely temperature variation within each
galaxy.
We test the dependence of these constraints on choices

made in the likelihood, using the same set of tests de-
scribed in Sec 3.1. The estimated IR source parameters
do not depend strongly on the SZ template chosen, with
less than 0.1σ change if we use the Battaglia or TBO-1
SZ template. If the radio source index is set to αs = 0
instead of −0.5 there is a # 0.3σ reduction in the IR Pois-
son source power at 148GHz, and a 0.2σ increase in the
spectral index. As found in Sec 3.1, if the radio source
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CMB: measuring Neff	  

•  With     fixed:"
•  ACT find"
•  SPT find "

•  With free     : "
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Yp

Ne↵ = 4.6± 0.8 (1�)
Ne↵ = 3.9± 0.4 (1�)

Yp

21

Fig. 12.— The two-dimensional marginalized constraint on the primordial helium abundance Yp and the e↵ective number of relativistic
species Ne↵ for a model in which both parameters are free. The two-dimensional contours show the 68% and 95% confidence intervals.
The relation between the two quantities in standard BBN theory is shown by the dashed line, with the point (Ne↵ = 3.046, Yp = 0.2478)
shown by the square. The constraint on Ne↵ shown in Figure 11 is essentially a cut through this likelihood along the BBN curve, while
the constraint on Yp shown in Figure 10 is a cut along Ne↵ = 3.046.

Fig. 13.— The two-dimensional marginalized constraints on spectral running, primordial helium, or the e↵ective number of relativistic
species versus the combination �8(⌦M/0.25)0.47, which is well constrained by the cluster abundance measurement of Vikhlinin et al. (2009).
Each panel corresponds to a distinct Markov chain. “CMB” corresponds to SPT+WMAP7. The two-dimensional contours show the 68%
and 95% confidence intervals. The constraint on �8(⌦M/0.25)0.47 from the clusters and the corresponding 1� uncertainties are shown
by the vertical lines. The standard values of the spectral running, primordial helium, and the e↵ective number of relativistic species are
shown by the dotted horizontal lines. Adding the cluster abundance information moves the constraints on these parameters closer to their
standard values.



Status of results	  
•  BBN : 1-2    evidence for increased Neff"
•  CMB: 1-2.5    evidence for increased Neff"
•  But…impending results from Planck will lead to 

significant improvements:"
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2.3 Cosmological Parameters from Planck 33

FIG 2.8.—The left panel shows a realisation of the CMB power spectrum of the concordance ΛCDM model (red
line) after 4 years of WMAP observations. The right panel shows the same realisation observed with the sensitivity
and angular resolution of Planck.

since the fluctuations could not, according to this naive argument, have been in causal contact
at the time of recombination.

Inflation offers a solution to this apparent paradox. The usual Friedman equation for the
evolution of the cosmological scale factor a(t) is

H2 =
(

ȧ

a

)2

=
8πG

3
ρ − k

a2
, (2.5)

where dots denote differentiation with respect to time and the constant k is positive for a closed
universe, negative for an open universe and zero for a flat universe. Local energy conservation
requires that the mean density ρ and pressure p satisfy the equation

ρ̇ = −3
(

ȧ

a

)
(ρ + p). (2.6)

Evidently, if the early Universe went through a period in which the equation of state satisfied
p = −ρ, then according to Equation 2.6 ρ̇ = 0, and Equation 2.5 has the (attractor) solution

a(t) ∝ exp(Ht), H # constant. (2.7)

In other words, the Universe will expand nearly exponentially. This phase of rapid expansion
is known as inflation. During inflation, neighbouring points will expand at superluminal speeds
and regions which were once in causal contact can be inflated in scale by many orders of
magnitude. In fact, a region as small as the Planck scale, LPl ∼ 10−35 m, could be inflated
to an enormous size of 101012m—many orders of magnitude larger than our present observable
Universe (∼ 1026 m)!

As pointed out forcefully by Guth (1981), an early period of inflation offers solutions to
many fundamental problems. In particular, inflation can explain why our Universe is so nearly
spatially flat without recourse to fine-tuning, since after many e-foldings of inflation the cur-
vature term (k/a2) in Equation 2.5 will be negligible. Furthermore, the fact that our entire
observable Universe might have arisen from a single causal patch offers an explanation of the
so-called horizon problem (e.g., why is the temperature of the CMB on opposite sides of the
sky so accurately the same if these regions were never in causal contact?). But perhaps more
importantly, inflation also offers an explanation for the origin of fluctuations.
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Fig. 12.— The two-dimensional marginalized constraint on the primordial helium abundance Yp and the e↵ective number of relativistic
species Ne↵ for a model in which both parameters are free. The two-dimensional contours show the 68% and 95% confidence intervals.
The relation between the two quantities in standard BBN theory is shown by the dashed line, with the point (Ne↵ = 3.046, Yp = 0.2478)
shown by the square. The constraint on Ne↵ shown in Figure 11 is essentially a cut through this likelihood along the BBN curve, while
the constraint on Yp shown in Figure 10 is a cut along Ne↵ = 3.046.

Fig. 13.— The two-dimensional marginalized constraints on spectral running, primordial helium, or the e↵ective number of relativistic
species versus the combination �8(⌦M/0.25)0.47, which is well constrained by the cluster abundance measurement of Vikhlinin et al. (2009).
Each panel corresponds to a distinct Markov chain. “CMB” corresponds to SPT+WMAP7. The two-dimensional contours show the 68%
and 95% confidence intervals. The constraint on �8(⌦M/0.25)0.47 from the clusters and the corresponding 1� uncertainties are shown
by the vertical lines. The standard values of the spectral running, primordial helium, and the e↵ective number of relativistic species are
shown by the dotted horizontal lines. Adding the cluster abundance information moves the constraints on these parameters closer to their
standard values.
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Ways of increasing Neff	  
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•  Recall the definition of       : number of Majorana 
fermions with usual         temperature relation"

•  Two obvious ways to increase       :"

1.  The popular option: Introduce extra massless or very 
light particles eg sterile neutrino, hidden photon…"

2.  The underexplored option: Increase the         
temperature ratio"

"We have been exploring option 2"
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Heating the neutrinos	  
•  Recall, in the standard picture, photons reheated when 

electrons and positrons become non-relativistic"
•  Conditions the electrons must satisfy:"
1.  Decouple from neutrinos at ~2.3 MeV while still 

relativistic"
2.  Remain in thermal equilibrium with photons until non-

relativistic"

•  Now, introduce particle    that couples dominantly with 
neutrinos. It must:"

1.  Decouple with neutrinos at ~2.3 MeV while still 
relativistic"

2.  Remain in thermal equilibrium with neutrinos until non-
relativistic"
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New timeline: Thermal bath	  
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New timeline: Neutrino decoupling	  
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New timeline: Reheating	  
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10 MeV" 1 MeV" 0.1 MeV" 1 meV"1 eV"
BBN"

Events:"

me/3 MeV"

reheating"�

•  New temperature relation at end of BBN"

•               smoothly varies between 0 (            )         
and 1 (            )"

m  /3 MeV"�
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New timeline: Today	  
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10 MeV" 1 MeV" 0.1 MeV" 1 meV"1 eV"

today"Events:"

•  Today we have (at least) two thermal relics:"

1.  CMB with                     (measured)"

2.  Cosmic neutrino background with                              """""""""""

T� = 2.725 K

decoupling"�

BBN"
me/3 MeV"

reheating"�
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Change at BBN	  
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Change at recombination (CMB)	  
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The future?	  
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•  All values of      are consistent with the data at 
just over 1 "

•  How well will Planck do?"
•  Generate mock data with the following parameters"4
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FIG. 3: The di↵erence in Ne↵ at recombination and BBN, as
determined from the value of Yp. The red dot-dashed, solid
and dashed lines show the prediction for a complex scalar,
Majorana fermion and real scalar respectively. Greater at
CMB because of.

pansion in � such that the total rate for n ! p is given
by

�total

n!p = �̃n!p + ✏n1

(T )� + ✏n2

(T )�2 + ✏n3

(T )�3 , (6)

where ✏ni(T ) fit the change in the rates to an accuracy
better than a few percent. A similar expression holds for
the p! n rate.

The red dot-dashed, solid and dashed lines in Fig. 2
show our results for a complex scalar (B2), Majorana
fermion (F2) and real scalar (B1) respectively as a func-
tion of m�. Our results are in good qualitative agreement
with those found in [25, 26], with slight di↵erences due
to the updated parameter values that we use. Although
not shown here, our prediction for 7Li is similar to that in
[26]. The blue bands in the upper and lower panels show
the 1� region for Yp from [28] and the 1� weighted mean
of D/H from [29] respectively. For reference, the black
dotted lines show the predicted values of Yp and D/H
for the indicated values of N

e↵

. As we would expect,
for m� & 15 MeV, we recover the result from standard
BBN: this is because � is non-relativistic during BBN so
does not directly contribute to the energy density and it
has transferred its entropy to the neutrinos before they
decouple from the photons, meaning that the standard
neutrino-to-photon temperature relation is maintained.
For m� . 0.05 MeV, we asymptote to the result ex-
pected from a massless particle as � remains relativistic
throughout all of BBN.

As is clear from Fig. 2, the error on the measurements
of Yp and D/H are su�ciently large that all values of
m� are currently consistent with the data at just over
1�. Therefore no strong conclusions can be drawn solely
from BBN. We next turn to consider the e↵ect of � on
the CMB temperature anisotropies.

In the lower panel of Fig. 3 we show the di↵erence in
N

e↵

between the CMB and the BBN epochs, where we
have inferred NBBN

e↵

[Yp] at BBN from the values of Yp.

Fiducial values
Parameter

⇤CDM ⇤CDM+�
Prior range

⌦bh2 0.0223 0.0223 0.005! 0.1

⌦DMh2 0.110 0.135 0.01! 0.99

h 0.71 0.76 0.4! 1.0

100 ✓S 1.041 1.039 0.5! 10

⌧ 0.09 0.09 0.01! 0.8

ln[1010AS] 3.05 3.05 2.7! 4

nS 0.96 0.96 0.5! 1.5

f⌫ 0.008 0.015 0! 1

Ne↵ 3.046 4.418 0! 7

Yp 0.247 0.257 0.22! 0.27

�8(⌦m/0.25)0.47 0.790 0.830 –

TABLE I: The fiducial values of the various cosmological pa-
rameters used to generate the mock Planck data. ⇤CDM
corresponds to a cosmology without � while ⇤CDM+� in-
cludes the values of Yp and Ne↵ for a 1 MeV Majorana
fermion. The last column shows the flat priors used in
CosmoMC. The parameters have been chosen so that the value
of �8(⌦m/0.25)0.47 is consistent with the observational value
at 1�: �8(⌦m/0.25)0.47 = 0.813± 0.013± 0.024.

A similar figure could be drawn in which N
e↵

is inferred
from the values of D/H. We note that this scenario pre-
dicts that NCMB

e↵

is always larger than NBBN

e↵

[Yp]. This
is because the energy density of � grows relative to the
energy density of a massless particle because it becomes
non-relativistic when transferring its energy density to
the neutrinos. Blah! This is interesting!

IV. PLANCK FORECAST

In the previous sections, we have shown that a MeV-
mass particle, which is in thermal equilibrium with neu-
trinos throughout BBN, is consistent with the current
measurements of N

e↵

from BBN and the damping tail
of the CMB. However, we would ideally like to provide
strong constants or find evidence for such a scenario.
Planck will provide significantly improved measurements
of the CMB temperature anisotropy, therefore, we now
turn to forecast the sensitivity of Planck to our scenario.
To do this we follow [38, 39] and use the FUTURCMB [38]
add-on package to CosmoMC [40]. We generate mock CMB
data using the CAMB software [41] package to obtain an-
gular power spectra for the CMB anisotropies. From this
we use the TT , TE and EE angular spectra for multi-
ples 2  `  2500, and the lensing deflection maps for
dd and Td. As Planck B-mode measurement will likely
be noise-dominated, we omit it from our fits. We assume
a sky coverage of f

sky

= 0.65 and follow [39] in our ap-
proach to forecasting by replacing the power spectrum of
the mock data by the fiducial data set. Using CosmoMC,
we generate eight Markov chains in parallel and monitor
the convergence with the Gelman-Rubin R-statistic [42],

m�

�
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Model: MeV neutralino dark matter	  
•  Somewhat surprisingly, Dreiner et al have shown 

that a bino-like neutralino can be massless"

•  Satisfies constraints from "
•  Collider bounds"
•  Precision electroweak"
•  Rare meson decays"
•  Cosmological bounds"
•  Astrophysical bounds"
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Supernovae constraints	  
•  Supernovae core temperature ~ 40 MeV"
•  SN1987a sets limits on how rapidly supernova loses energy"
•  Light neutralino opens new channel for energy loss through"

        Christopher McCabe   IPPP - Durham University"

observed after Supernova 1987a [178, 179]. If light neutralinos exist with mass less or of order the
supernova core temperature, Tc = O(30MeV), they can also be produced abundantly during core
collapse. Depending on their interactions, these neutralinos escape freely from the supernova, rapidly
cooling the core [180]. As the temperature drops, the neutrino scattering cross section drops with the
square of the temperature, leading eventually to free-streaming neutrinos. Thus rapid cooling of the
supernova with a time scale well below 10 sec is excluded by the neutrino observation from Supernova
1987a. This can be used to set restrictions on the light neutralino mass, as well as its interactions.
This was originally addressed for photinos in Refs. [61–63]. The authors of Ref. [64] derived important
lower bounds on a light bino, which we briefly summarize here; see also Ref. [65]. Our focus here is on
a massless neutralino.

The two main neutralino production mechanisms in a supernova are electron-positron annihilation
and nucleon-nucleon (NN) “neutralino-strahlung”:

e+ + e− −→ χ̃0
1 + χ̃0

1 , (54)

N + N −→ N + N + χ̃0
1 + χ̃0

1 . (55)

Once produced, the neutralinos have a mean-free-path, λχ̃0
1
, in the supernova core which is determined

via the cross sections for the processes

χ̃0
1 + e −→ χ̃0

1 + e , (56)

χ̃0
1 + N −→ χ̃0

1 + N , (57)

as well as the electron and nucleon densities. If λχ̃0
1

is of order of the core size, Rc = O(10 km), or larger,
the neutralinos escape freely and thus cool the supernova rapidly. However, if the neutralinos have
masses mχ̃0

1
much greater than the supernova core temperature Tc, then their production is Boltzmann-

factor suppressed and they affect the cooling negligibly, independent of λχ̃0
1
. Demanding that mχ̃0

1
be

large enough that neutralino-cooling does not markedly alter the neutrino signal—particularly its time-
structure—allows one to set a lower limit on the neutralino mass. Note that this limit depends strongly
on the squark and selectron masses, which enter to the fourth power in Eqs. (54), (55) and Eqs. (56),
(57) through the relevant propagators.

A proper treatment of this problem would be to expand the existing supernova code(s) to include
the production and the scattering of neutralinos. Thus the neutralinos would be involved in the com-
plete time evolution of the supernova, which could affect the particle densities within the supernova
and the supernova temperature as a function of time. Such a treatment is beyond the scope of this
paper. A good estimate of the effect of the neutralinos on the supernova evolution can be obtained,
if we use the existing codes [181–184] and treat this non-supersymmetric supernova as a fixed back-
ground, i.e. we assume the neutralino effect on the evolution to be small. Using the resulting electron
and nucleon densities, we can compute the production and scattering of the light neutralinos. We then
employ the Raffelt criterion [185], requiring that the maximal emitted energy from the supernova via
neutralino radiation is ≤ 1052 erg. In Ref. [64], it was then found that for selectron masses in the range
300GeV <∼ mẽ <∼ 900GeV neutralino masses below 100MeV are excluded. As the selectron mass is
increased from 900 GeV the lower bound an the neutralino mass gradually decreases. For selectron
masses above 1.2 TeV there is no lower bound on the lightest neutralino mass.

Similar, however much less restrictive arguments also hold for the squark mass dependence. For a
massless neutralino, squark masses between 300 GeV and 360 GeV are excluded.

For selectron and squark masses below 300 GeV the mean-free-path of the neutralino is smaller
than the supernova core size: λχ̃0

1
< Rc, i.e. the neutralinos are trapped, and diffuse out, just like the

neutrinos. In this case the above approximate procedure is no longer valid and the neutralinos must be
included in the numerical supernova simulation. This has to-date not been performed. Thus at present,
massless neutralinos are not excluded by the Supernova 1987a observations for mẽ, mq̃ < 300 GeV or
both mẽ > 1200 GeV and mq̃ > 360GeV.
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Figure 3: The dependence of the neutralino lower mass bound on the selectron mass. Here we
chose Emax

χ̃ = 1052 erg and t0 = 1 s. The green-dashed line indicates the lower bound on the
selectron mass from LEP2. Beyond Mẽ = 1 TeV the exclusion curve drops rapidly.

The numerical fit in Eq. (18) is shown as the dashed curve in Fig. 2. Throughout the mass range
considered it agrees to better than 1% and the two curves are almost indistinguishable.

When using the Raffelt criterion it is also convenient to have a parameterization for the
emissivity

Ė(Mχ̃) = D

(

200GeV

Mẽ

)4

exp(b4x
4 + b3x

3 + b2x
2 + b1x) , x ≡ Mχ̃

MeV
, (20)

and the constants are given by

b1 = 4.75 × 10−4 , b2 = −2.25 × 10−4

b3 = 4.66 × 10−7 , b4 = −4.02 × 10−10 , D = 9.0125 × 1021 erg/g/s. (21)

Once we have computed Eχ̃(Mχ̃) we can determine a smallest permitted neutralino mass by
requiring the emitted energy to be below Emax

χ̃ of Eq. (7). If we choose Emax
χ̃ = 1052 erg, t0 = 1 s

and the neutralino to be pure bino then for Mẽ = 300GeV we have:

Mmin
χ̃ = 243MeV, (22)

while for Mẽ = 1 TeV we find Mmin
χ̃ = 90MeV. For a massless neutralino to be allowed we

require Mẽ ≥ 1275GeV.
The value of Mmin

χ̃ is shown for a wide range of selectron masses in Fig. 3. Note that values
of Mχ̃ below the solid (red) line are forbidden, as are values of Mẽ to the left of the solid line,
since in either case the total energy produced by the process (11) in the first one second will be
larger than Emax

χ̃ . The lower selectron mass bound from LEP2 [35]:

Mẽ > 99.6GeV , (23)

is also indicated by the vertical dashed (green) line in the figure.
How sensitive are these results to the choice t0 = 1 second? We made this choice because we

expect most of the neutralino power to be emitted in a burst during the early, hottest, part of

8

Need to couple weakly to 
quarks and electrons:"
Squark mass > 300 GeV"
Selectron mass > 1.2 TeV"



MeV neutralino dark matter	  
•  In general, the relic density is too large"

•  Need a light mediator to keep in thermal 
equilibrium for longer"

        Christopher McCabe   IPPP - Durham University"
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FIG. 3: (Left): the thermal relic abundance of the lightest neutralino, as a function of its mass, in a standard cosmological
scenario where the energy density of the universe is radiation dominated at arbitrarily large temperatures. In the scatter
plot, filled black dots refer to the conservative models with tan β = 50, while empty red diamonds to tan β = 5. The green
curve indicates “optimistic” models with a light supersymmetric spectrum. (Right): The correlation between the thermal relic
abundance and the freeze-out temperature (defined in Eq. (9), in a standard cosmological scenario) for the same models as in
the left panel.

lightest neutralino mass and its relic abundance for mod-
els obtained in a scan of the (M1, µ) plane for the two
conservative cases (tan β = 5, 50) and for the optimistic
case (with tan β = 50). We compute the relic neutralino
abundance with the DarkSUSY package [43]. The result
we obtain was expected on generic theoretical grounds
(see e.g. fig. 5.2 in [23]): below a few MeV the freeze-out
occurs when the lightest neutralino is still relativistic,
and the neutralino number density per comoving volume
is constant and equal to its equilibrium value. In this
case, the relic number density is greatly insensitive to
the details of freeze-out, and the present day relic mass
density is simply given by [23]

Ωχh2 ! 7.83 × 10−2

(
geff

g∗S(Tf.o.)

)(mχ

eV

)
, (7)

where geff is equal to the number of internal degrees
of freedom g for a bosonic species, and to 3g/4 for a
fermionic species, g∗S stands for the effective number of
entropic degrees of freedom, evaluated here at the freeze-
out temperature. We indeed confirm the formula above,
and find, in the present case, for small masses, that

Ωχh2 ! 16.5
( mχ

keV

)
. (8)

The particles cease to be hot (or warm) relics (i.e. their
freeze-out no longer occurs when the particles are rela-
tivistic, or mildly relativistic) for mχ ! 10 MeV. Above

that mass scale, the details of particle freeze-out be-
come important, and therefore we find an increasingly
large scatter of possible relic densities. Generically, the
relic abundance is bounded from below by the fact that
the particle is weakly interacting, and therefore one ex-
pects a scaling of the pair annihilation cross section as
σ ∝ E2 = m2

χ. For cold relics, the thermal relic abun-
dance is inversely proportional to the pair annihilation
cross section, hence the lower bound we find approxi-
mately falls as the inverse WIMP mass squared. Eventu-
ally, for the optimistic case, it reaches the level of the cold
dark matter abundance, for masses in the few GeV range,
as expected from Lee-Weinberg type arguments. This is
also the result of the dedicated studies mentioned above
that assessed the smallest possible neutralino mass that
could have the “right” thermal relic abundance [6, 7, 8].

Since large scale structure data constrain the mass of a
fermionic dark matter species to values larger than a few
keV, it is clear (as also remarked long ago [26]) that only
few GeV neutralinos are dark matter particles compatible
with a standard cosmological scenario.

The next question is whether low mass neutralinos can
be accommodated as dark matter candidates relaxing the
assumption of radiation domination prior to BBN. This
means computing the freeze-out temperature of low mass
neutralino models. One way of quantitatively defining
the freeze-out temperature was proposed by Gondolo and
Gelmini in Ref. [44], and is the one we employ in the

Profumo  
arXiv:0806.2150 



Model: MSSM+RHD sneutrinos	  
•  Introduce sterile rhd sneutrino that mixes with lhd 

sneutrino"
•  Light states will be mostly rhd"

•  Constraints on mixing angle from Z-width, Higgs-width, 
supernova. All OK if "

        Christopher McCabe   IPPP - Durham University"
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Mixed-damping of light neutralino dark matter
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I. INTRODUCTION

Cold dark matter has been the standard paradigm for
the formation of structure. It leads to hierarchal struc-
ture formation with the smallest objects forming earliest.
It is also in agreement with the CMB and large scale sur-
veys. Numerical simulations indicate the cold dark mat-
ter no longer works as well as previously thought. For
example, it leads to too much substructure in Milky Way-
like galaxies, the central density of haloes is too cuspy and
there are too many dwarf galaxies in voids. One much
studied solution of these problems is warm dark matter.
The particle physics candidates that have dominated the
literature are sterile neutrinos or gravitinos with a mass
of order keV. In the usual warm dark matter set up, the
dark matter free streams after decoupling from the ther-
mal plasma. This free streaming erases the primordial
perturbations on scales below the free streaming length
�fs.

It is known that free streaming is not the only way in
which to erase the primordial perturbations. In partic-
ular, it has been emphasised in xxx that e↵ects present
when the dark matter is still coupled to the plasma can
lead to larger damping lengths. For example, xxx has
explored viscous damping, xxx damping from acoustic
oscillations. In Boehm et al, a general classification of
damping lengths was carried out. An e↵ect that hasn’t
received much attention is mixed-damping, caused by
neutrinos that have decoupled from the dark matter but
the dark matter still has interactions with the neutrinos.

In the particle physics literature, the neutralino has
been the prominent dark matter candidate for many
years. Supersymmetry is perhaps the best motivated
way to solve the gauge hierarchy problem. The lack
of signals of SUSY particles at the LHC may lead you
to believe standard implementations of SUSY, such as
the CMSSM, may not be valid. In the standard imple-
mentation of SUSY, the neutralino has a mass typical of
SUSY soft mass terms. It gets its abundance from ther-
mal freeze out and is cold. However, in xxxx it is pointed
out that the lightest neutralino of any mass is consistent
with constraints from laboratory and astrophysical con-
straints. Indeed, even a massless neutralino, which would
constitute hot dark matter is allowed.

In this paper, we introduce an extension of the MSSM

⇤
Electronic address: xxxx

that includes three right handed neutrinos and their su-
perpartners. Our dark matter will be a mostly bino neu-
tralino with a keV-MeV mass. A light mixed left-right
handed sneutrino will also be in the spectrum. We will
explore under what conditions the neutralino can act
as a warm dark matter candidate through the mixed-
damping. We introduce the model and briefly mention
some constraints of the light particles in our theory. We
calculate the relic abundance and mixed damping length
and explore the parameters when the neutralino is light
and warm. Finally, we mention constraints and signals
through which the model can be tested.

II. THE MODEL

The model we will consider. In addition to the MSSM
we introduce three right handed neutrino superfields N .
To the superpotential terms are

�L =
Z

d2✓�ijLiHuNj +
1
2
MNiNiNi , (1)

where �ij ⇠ 10�7 and MNi ⇠ TeV. We can introduce
soft breaking terms

�L = �m2
ñi
|ñi|2�AihuL̃iñi� 1

2
�ijM

2
Bñiñj +h.c. . (2)

Here Ai ⇠ TeV are flavour diagonal scalar A-terms and
Bij = �ijM

2
B ⇠ (100 MeV)2. We probably won’t care

about the Bij terms although they are interesting as they
can lead to the generation of neutrino masses at loop
level. For now, we will ignore it.

A. Light neutralino

Searches for charginos impose a lower bound on M2,
When the GUT relation M1 ⇡ M2

2 is imposed, this trans-
lates onto a bound on M1. In general, the GUT relation
may not hold, in which case there is no lower bound on
M1 (from direct particle searches at colliders). Inter-
estingly, it is straightforward to see from the neutralino
mass matrix that when the (tree level) relation

M1 =
M2M

2
Z sin(2�) sin2 ✓W

µM2 �M2
Z sin(2�) cos2 ✓W

(3)

holds, the lightest neutralino is massless.

2

As usual, the lightest neutralino is a superposition of
bino, neutral wino and higginos. We define

�̃1 = N11B̃ + N12W̃
0 + N13h̃

0
d + N14h̃

0
u . (4)

In the limit M2, µ�MZ , M1, we have (at tree level)

m�̃1 ⇡

���M1 � sin(2�) sin2 ✓W
M2

Z
µ

���

1 + sin2 ✓W

⇣
MZ
µ

⌘2 (5)

|N11| ⇡ 1r
1 + sin2 ✓W

⇣
MZ
µ

⌘2
(6)

|N12| ⇡ O
✓

N11
M1

M2

◆
(7)

|N13| ⇡ sin �
q

1�N2
11 (8)

|N14| ⇡ cos �
q

1�N2
11 . (9)

We see that in this limit, the lightest neutralino is almost
entirely bino. There is a small component that will couple
to the Z-boson. We also see that to have a keV or MeV
mass without a large fine tuning, we need a small M1 and
large µ (ignoring the fact that having a large hierarchy
in the gaugino masses may require a large fine tuning!).

B. Constraints on a light neutralino

Various bounds are summarised in 0901.3485. There
are some bounds from LEP, dipole moments, rare me-
son decays that are easily satisfied. The most inter-
esting bounds are from the Z-width constraint and su-
pernova. We’ll deal with the supernova bound now and
consider the Z-width constraint later. The relevant pa-
per is 0304289. During core collapse of a supernova, the
core temperature is O(30 MeV). Particles of this mass
or smaller can in principal be produced, for example,
through electron-positron annihilation to two neutrali-
nos (assuming t-channel slepton exchange dominates) or
through neutralinostrahlung from nucleons.

If the mean free path of the neutralino is of order the
core size (⇠ 10 km), the neutralinos can e�ciently cool
the supernova. We know neutrinos escaped for about 10
seconds from the explosion of SN1987a. If the neutrali-
nos are too e�cient at carrying away energy, they can
significantly reduce this time.

First, consider the case when the mean free path is
larger than the core size. In order that the energy carried
away is smaller than the Ra↵elt criteria, we require the
selectron mass to be larger than 1.2 TeV (bounds to not

apply to smuon or stau) and squark mass to be larger
than 360 GeV. The other case to consider is when the
mean free path is smaller than the core size. This occurs
if both the selectron and squark masses are smaller than
300 GeV. This case is a little more complicated as the
neutralinos now di↵use out of the supernova. Detailed
simulations have not been performed however, it seems
safe to assume this case is OK.

(What we will consider is perhaps a little more compli-
cated as we will introduce a large interaction between the
neutralino and neutrino. If the neutralinos are present
in the thermal bath inside the core, the neutrino mean
free path could be significantly reduced. As a result, the
cooling time could be significantly extended. However, I
don’t see a thermal population of neutralinos will be cre-
ated if they have a very small interaction with electrons
and nucleons (which happens when the mean free path
is larger than the core mass) as they will just free stream
out. Potentially, if they are slowly di↵using out, the neu-
trinos that are produced could be held up increasing their
mean free path and leading to a more slowly cooling su-
pernova. Needs a little more thought.

C. Sneutrino sector

The Ai terms induce mixing between left and right
sneutrinos. Give bare bones here and we’ll ignore the B-
terms. More detail can be found elsewhere. The lightest
mass eigenstate is

⌫̃i = � sin ✓i ⌫̃Li + cos ✓i ñ?
i (10)

with mass

m2
⌫̃i

=
M2

Ri cos2 ✓i �M2
Li sin2 ✓i

cos 2✓i
. (11)

Here

tan 2✓i =
2Aiv sin �

M2
Li �M2

Ri

, (12)

where v = 174 GeV, M2
Li

= m̃2
Li

+ 1
2 cos(2�)M2

Z and
M2

Ri
= M2

Ni
+m2

ñi
. Thus we see that with a mild tuning,

it is possible to have a cancellation and have a light mass
state. We’ll assume that one species is light. Perhaps
from the stau, as its soft mass isn’t as constrained from
the supernova (recall that m̃Le is excluded in the range
from ⇠ 300� 1200 GeV).

III. Z AND HIGGS WIDTH

The Higgs can couple to di↵erent neutralinos. There-
fore if we assume the next to lightest neutralino is heav-
ier than the Higgs mass (this isn’t too unreasonable if we
take the limit that M2, µ � MZ), then we only have to
worry about decay to two lightest neutralinos a↵ecting
the Higgs branching fractions. Do the calculations!

2

As usual, the lightest neutralino is a superposition of
bino, neutral wino and higginos. We define

�̃1 = N11B̃ + N12W̃
0 + N13h̃

0
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0
u . (4)

In the limit M2, µ�MZ , M1, we have (at tree level)

m�̃1 ⇡
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|N13| ⇡ sin �
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We see that in this limit, the lightest neutralino is almost
entirely bino. There is a small component that will couple
to the Z-boson. We also see that to have a keV or MeV
mass without a large fine tuning, we need a small M1 and
large µ (ignoring the fact that having a large hierarchy
in the gaugino masses may require a large fine tuning!).

B. Constraints on a light neutralino

Various bounds are summarised in 0901.3485. There
are some bounds from LEP, dipole moments, rare me-
son decays that are easily satisfied. The most inter-
esting bounds are from the Z-width constraint and su-
pernova. We’ll deal with the supernova bound now and
consider the Z-width constraint later. The relevant pa-
per is 0304289. During core collapse of a supernova, the
core temperature is O(30 MeV). Particles of this mass
or smaller can in principal be produced, for example,
through electron-positron annihilation to two neutrali-
nos (assuming t-channel slepton exchange dominates) or
through neutralinostrahlung from nucleons.

If the mean free path of the neutralino is of order the
core size (⇠ 10 km), the neutralinos can e�ciently cool
the supernova. We know neutrinos escaped for about 10
seconds from the explosion of SN1987a. If the neutrali-
nos are too e�cient at carrying away energy, they can
significantly reduce this time.

First, consider the case when the mean free path is
larger than the core size. In order that the energy carried
away is smaller than the Ra↵elt criteria, we require the
selectron mass to be larger than 1.2 TeV (bounds to not

apply to smuon or stau) and squark mass to be larger
than 360 GeV. The other case to consider is when the
mean free path is smaller than the core size. This occurs
if both the selectron and squark masses are smaller than
300 GeV. This case is a little more complicated as the
neutralinos now di↵use out of the supernova. Detailed
simulations have not been performed however, it seems
safe to assume this case is OK.

(What we will consider is perhaps a little more compli-
cated as we will introduce a large interaction between the
neutralino and neutrino. If the neutralinos are present
in the thermal bath inside the core, the neutrino mean
free path could be significantly reduced. As a result, the
cooling time could be significantly extended. However, I
don’t see a thermal population of neutralinos will be cre-
ated if they have a very small interaction with electrons
and nucleons (which happens when the mean free path
is larger than the core mass) as they will just free stream
out. Potentially, if they are slowly di↵using out, the neu-
trinos that are produced could be held up increasing their
mean free path and leading to a more slowly cooling su-
pernova. Needs a little more thought.

C. Sneutrino sector

The Ai terms induce mixing between left and right
sneutrinos. Give bare bones here and we’ll ignore the B-
terms. More detail can be found elsewhere. The lightest
mass eigenstate is

⌫̃i = � sin ✓i ⌫̃Li + cos ✓i ñ?
i (10)

with mass

m2
⌫̃i

=
M2

Ri cos2 ✓i �M2
Li sin2 ✓i

cos 2✓i
. (11)

Here

tan 2✓i =
2Aiv sin �

M2
Li �M2

Ri

, (12)

where v = 174 GeV, M2
Li

= m̃2
Li

+ 1
2 cos(2�)M2

Z and
M2

Ri
= M2

Ni
+m2

ñi
. Thus we see that with a mild tuning,

it is possible to have a cancellation and have a light mass
state. We’ll assume that one species is light. Perhaps
from the stau, as its soft mass isn’t as constrained from
the supernova (recall that m̃Le is excluded in the range
from ⇠ 300� 1200 GeV).

III. Z AND HIGGS WIDTH

The Higgs can couple to di↵erent neutralinos. There-
fore if we assume the next to lightest neutralino is heav-
ier than the Higgs mass (this isn’t too unreasonable if we
take the limit that M2, µ � MZ), then we only have to
worry about decay to two lightest neutralinos a↵ecting
the Higgs branching fractions. Do the calculations!

sin ✓ . 0.1



Model: relic density	  
•  Sneutrino keeps neutralino in equilibrium with 

neutrinos"
•  Can get the right relic density"

•  Neutralino remains in equilibrium until "
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FIG. 4: Upper panel: The value of m⌫̃ sin ✓ required to obtain
the correct relic density for a given value of m�̃1 . Lower panel:
The value of xf at which �̃1 freezes out.

We can then use the standard formulae found for instance
in Kolb and Turner. We find

Y1 =
3.79 · 2 · x2

f g
1/2
?

g?s mplm�̃1 �0
, (44)

where

�0 =
1

32⇡

g4
Y |N11|4 sin4 ✓

m4
⌫̃

m2
�̃1

. (45)

The number density at a temperature T after decoupling
is n(T ) = s Y1, where s = 2⇡2

45 g?sT
3. We take g? = 3.93,

g?s = 4.48 and s(today) = 3310 cm�3.
It should be clear from Eq. (45) that it is only the com-

bination of m⌫̃ sin ✓ that enters all calculations. There-
fore, the upper panel of Fig. 5 shows the value of m⌫̃/ sin ✓
required to obtain the correct relic density for a given
value of m�̃1 . The lower panel of Fig. 5 shows the value
of xf at which �̃1 freezes out.

VII. NEUTRINO DECOUPLING

The neutralino freezes out when non-relativistic (in all
cases we found xf � 3) and when its number density
is Boltzmann suppressed. After freeze out, the number
density is given by s Y1. The light sneutrino allows the
neutralino and neutrino to stay in kinetic equilibrium af-
ter freeze out. However, the suppression of the neutralino
number density implies that the neutrino should decou-
ple soon after. We’ll now estimate the temperature at
which decoupling occurs.

The cross section for neutralino-neutrino scattering is

� =
1

32⇡

g4
Y |N11|4 sin4 ✓

m4
⌫̃

(s�m�̃1)2

s
(46)

⇡ 1
8⇡

g4
Y |N11|4 sin4 ✓

m4
⌫̃

E2
⌫ . (47)

The second line follows from the approximations s ⇡ m2
�̃1

and s �m2
�̃1
⇡ 2m�E⌫ . For a fermion in thermal equi-

librium hEi ' 3.15T and hE2i ' 12.939T 2. Therefore
hE2

⌫i ' 12.939T 2
⌫ ⇡ 12.939 · (0.8 T�)2.

Pulling everything together, we have that the scatter-
ing rate is

� = n�̃1h�vi (48)

⇡ 66.35
x2

f T 3

m3
�̃1

· 1.66g
1/2
?

T 2

mpl
. (49)

Equating this to the Hubble rate, we find that

x⌫�dec ' 4.05 x
2/3
f (50)

⇠ 24.6
⇣xf

15

⌘2/3
(51)

As we can see, neutrinos always decouple after the
neutralino freezes out. This is what we would expect
intuitively. The neutralino freezes out because the num-
ber density of both interacting particles becomes Boltz-
mann suppressed. When the neutrino freezes out, only
one of the interacting particles is Boltzmann suppressed,
so freeze out of the neutrino happens later.

VIII. NEUTRALINO DECOUPLING FROM
KINETIC EQUILIBRIUM

Even though the neutrinos decouple, the neutralinos
remain in kinetic equilibrium with them for a little while
longer. This is because the number density of neutrinos
has the full T 3 dependence. Thus, we now wish to calcu-
late the temperature at which the neutralinos decouple
from kinetic equilibrium. This is typically a factor of
10� 100 below the freeze out temperature.

I have followed the prescription in Ref. [13] to calculate
the decoupling temperature. In particular, their Eqn. (5)
defines the decoupling temperature. (The quantities n

T ⇠ m�
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Recall: Heating the neutrinos	  
•  Recall, conditions to reheat neutrinos:"
1.  Decouple with neutrinos at ~2.3 MeV while still relativistic"
2.  Remain in thermal equilibrium with neutrinos until non-

relativistic"

•  MeV neutralino satisfy both conditions:"
1.  Supernova constraint implies coupling to electron must be 

very small"
2.  Typically MeV neutralino gives a relic abundance that is too 

large – requirement to get correct relic abundance ensures 
the neutralino must be in equilibrium with neutrinos"

3.  Decouples from neutrinos at             , ie, while non-
relativistic "
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Conclusions	  
•  Hints for additional energy density in the early Universe from"

1.  increased helium abundance from BBN"
2.  Additional damping in the CMB power spectrum"

•  Planck will soon accurately measure damping leading to 
dramatically improved constraints"

•  Motivated MeV-mass particle in thermal equilibrium with 
neutrinos and looked at current and future constraints"

•  Suggested MeV neutralino to highlight how this MeV particle 
will arise"
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