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Solutions to previous control questions

12.1 (a) Use the definition of the Levi-Civita tensor to obtain

εijk =


1 : {ijk} = {123, 231, 312}
−1 : {ijk} = {132, 213, 321}
0 : else.

and therefore

G1=i~


0 0 0
0 0 −1
0 1 0

 , G2=i~


0 0 1
0 0 0
−1 0 0

 , G3=i~


0 −1 0
1 0 0
0 0 0



Note that they can be identified with Ĝ1,2,3 = R̂x,y,z(i~).
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Solutions to previous control questions

(b) Obviously, the commutators could be calculated directly or by just
looking up the commutator relations from lecture 10. Here, we do
something else instead; using

εijkεklm = δilδjm − δimδjl

we find, e.g.

(Ĝ)jk =
[
Ĝ1, Ĝ2

]
= −~2(ε1jlε2lk − ε2jlε1lk)

= −~2(δ1kδj2 − δ12δjk − δ2kδj1 + δ21δjk)

= ~2
 0 1 0
−1 0 0
0 0 0

 = i~Ĝ3 ,

and similarly for the other pairs, such that[
Ĝi , Ĝj

]
= i~εijk Ĝk .
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12.2 Use L̂i = εijk x̂j p̂k yields[
L̂1, L̂2

]
= [x̂2p̂3 − p̂2x̂3, x̂3p̂1 − p̂3x̂1]

= [x̂2p̂3, x̂3p̂1]− [p̂2x̂3, x̂3p̂1]− [x̂2p̂3, p̂3x̂1] + [p̂2x̂3, p̂3x̂1]

= [x̂2p̂3, x̂3p̂1] + [p̂2x̂3, p̂3x̂1] = x̂2 [p̂3, x̂3] p̂1 + p̂2 [x̂3, p̂3] x̂1

= −i~ (x̂2p̂1 − p̂2x̂1) = i~ [x̂1, p̂2] = i~L̂3 .

and similarly for the other commutators such that indeed[
L̂i , L̂j

]
= i~εijk L̂k .

Note that on the way we used that commuting operators can be
pushed outside the commutaotr bracket and that [x̂i , p̂j ] = i~δij .
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Reminder: properties of Ĵ

Remember, from lecture 10, that we have identified a generalised
form of angular momentum as the generator for rotations.

In particular, introducing three operators Ĵx,y ,z forming a vector Ĵ,
rotations around an axis n with an infinitesimal angle dφ have been
written as

R̂(dφ) = 1− i Ĵ · n
~

dφ .

The three generators enjoy the commutation relation[
Ĵi , Ĵj

]
= i~εijk Ĵk .
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Invariant operator Ĵ
2

Define an operator

Ĵ
2

= Ĵx Ĵx + Ĵy Ĵy + Ĵz Ĵz

which commutes with any of the three Ĵi :[
Ĵ
2
, Ĵk
]

= 0 ∀ k ∈ {1, 2, 3} .

Because all Ĵk commute with Ĵ
2
, but do not commute with each

other, one can pick one to be diagonalised together with Ĵ
2
.

By convention, Ĵz is picked.
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Joint eigenvalues and eigenvectors of Ĵ
2
and Ĵz

We define eigenvalues a and b of Ĵ
2

and Ĵz , respectively:

Ĵ
2
|a, b〉 = a |a, b〉

Ĵz |a, b〉 = b |a, b〉

Of course we denote the joint eigenkets with both eigenvalues, and
we also note that they will be demanded to span a basis for all kets
in rotation space.
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Ladder operators

Introduce ladder operators (remember the harmonic oscillator!)

Ĵ± = Ĵx ± i Ĵy

with commutation relations[
Ĵ+, Ĵ−

]
= 2~Ĵz ,

[
Ĵz , Ĵ±

]
= ±~Ĵ± and

[
Ĵ±, Ĵ

2
]

= 0 .

Obviously,

Ĵz
(
Ĵ± |a, b〉

)
=

(
Ĵ±Ĵz +

[
Ĵz , Ĵ±

])
|a, b〉 = (b ± ~) Ĵ± |a, b〉

Ĵ
2
(
Ĵ± |a, b〉

)
= Ĵ±Ĵ

2
|a, b〉 = aĴ± |a, b〉 .
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So, applying the ladder operator to an Ĵz -eigenket results in another
Ĵz -eigenket, but with corresponding Ĵz -eigenvalue shifted by ~, while

the Ĵ
2
-eigenvalue remains the same:

Ĵ± |a, b〉 = c± |a, b ± ~〉

So for each set of eigenvalues and eigenkets with respect to Ĵz but

to the same Ĵ
2
-eigenvalue, this is very similar to the action of the

ladder operators on the eigenkets of the number operator N̂ for the
harmonic oscillator!

This means that there will only be a limited set of such different Ĵz
states for each value a.
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Eigenvalues of Ĵ
2
and Ĵz

Explicit calculation shows that

Ĵ
2
− Ĵ2z =

1

2

(
Ĵ+Ĵ− + Ĵ−Ĵ+

)
=

1

2

(
Ĵ+Ĵ

†
+ + Ĵ†+Ĵ+

)
.

Ĵ+Ĵ
†
+ and Ĵ†+Ĵ+ must have non-negative expectation values, because

〈a, b| Ĵ†+ =
(
Ĵ+ |a, b〉

)†
and 〈a, b| Ĵ+ =

(
Ĵ†+ |a, b〉

)†
.

As a consequence,〈
a, b

∣∣∣(Ĵ2 − Ĵ2z

)∣∣∣ a, b〉 ≥ 0 ,

implying that a ≥ b2, and therefore, there must be a maximal,
a-dependent b, which will be deonted as bmax.
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For this bmax we copy a trick from the harmonic oscillator, namely

Ĵ+ |a, bmax〉 = 0 and, of course Ĵ−Ĵ+ |a, bmax〉 = 0 .

Re-expressing this through Ĵ
2

and ~Ĵz yields

Ĵ−Ĵ+ = Ĵ2x + Ĵ2y − i
(
Ĵy Ĵx − Ĵx Ĵy

)
= Ĵ

2
− Ĵ2z − ~Ĵz ,

implying that(
Ĵ
2
− Ĵ2z − ~Ĵz

)
|a, bmax〉 =

(
a− b2max − ~bmax

)
|a, bmax〉 = 0 .

Therefore

a = bmax (bmax + ~)
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Similarly, there must also be a bmin such that

Ĵ− |a, bmin〉 = 0 and, of course Ĵ+Ĵ− |a, bmin〉 = 0 .

Repeating the same steps as before results in

a = bmin (bmin − ~) and bmin = −bmax
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Therefore, for positive bmax we have a costraint for b:

b ∈ [−bmax, bmax] .

Since the ladder operators add integer multiples to the b value,
there must be n steps between bmin and bmax,

bmax = bmin + n~ ←→ bmax =
n~
2
≡ j~ .

This means that for m ∈ {−j , −j + 1, −j + 2, dots, j − 1, j}:

a = j(j + 1)~2 and b = m~
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Eigenkets |j , m〉 and their matrix elements

Labelling the eigenkets with j and m yields

Ĵ
2
|j , m〉 = j(j + 1)~2 |j , m〉

Ĵz |j , m〉 = m~ |j , m〉

with j being an integer or half-integer.

Since these states form an orthonormal base,

〈j ′, m′| Ĵ
2
|j , m〉 = j(j + 1)~2δjj′δmm′

〈j ′, m′| Ĵz |j , m〉 = m~δjj′δmm′
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Use the equations for the ladder operators

Ĵ± |j , m〉 = c±,jm |j , m + 1〉

to obtain, for c+,jm,

|c+,jm|2 〈j , m|j , m〉 =
〈
j , m

∣∣∣Ĵ†+Ĵ+∣∣∣ j , m〉
=

〈
j , m

∣∣∣[Ĵ2 − Ĵ2z − ~Ĵz
]∣∣∣ j , m〉

= ~2 [j(j + 1)−m(m + 1)] 〈j , m|j , m〉

and therefore

|c+,jm|2 = ~2 [j(j + 1)−m(m + 1)] = ~2(j −m)(j + m + 1) .
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Choosing c+,jm to be real and positive, we arrive at

Ĵ+ |j , m〉 =
√

(j −m)(j + m + 1) ~ |j , m + 1〉

and, similarly,

Ĵ− |j , m〉 =
√

(j + m)(j −m + 1) ~ |j , m − 1〉

leading to〈
j ′, m′

∣∣∣Ĵ±∣∣∣ j , m〉 =
√

(j ∓m)(j ±m + 1) ~δj′jδm′m±1 .
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Learning outcomes

[
Ĵ2, Ĵk

]
= 0 and construction of eigenstates as simultaneous

eigenstates of Ĵ
2

and Ĵz :

Ĵ
2
|j , m〉 = ~2j(j + 1) |j , m〉 and Ĵz |j , m〉 = m~ |j , m〉.

Ladder operators Ĵ± and their commutators:[
Ĵ+, Ĵ−

]
= 2~Ĵz ,

[
Ĵ±, Ĵz

]
= ±~Ĵ±,

[
Ĵ±, Ĵ

2
]

= 0.

Range of eigenvalues:

j (all positive integers or half-integers) and
m ∈ {−j , −j + 1, . . . , j − 1, j}.
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Control questions

13.1 (a) Check the following commutator relations from the lecture:[
Ĵ2, Ĵk

]
= 0 ,[

Ĵ+, Ĵ−
]

= 2~Ĵz ,[
Ĵ±, Ĵz

]
=

[
Ĵz , Ĵ±

]
= ∓~Ĵ± ,[

Ĵ±, Ĵ
2
]

= 0 .

(b) Check that

Ĵ
2

= Ĵ2
z + Ĵ+Ĵ− − ~Ĵz

and derive |c−,jm|2 from

Ĵ− |j , m〉 = c−,jm |j , m − 1〉
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13.2 The algebra obtained in this lecture is also valid for the orbital
angular momentum, i.e. for the identification Ĵ → L̂.
Suppose a spin-less particle in a spherically symmetric potential is

known to be in an eigenstate of L̂
2

and L̂z , |ψ〉 = |lm〉 with
eigenvalues ~2l(l + 1) and ~m, respectively. Show that the
expectation values with respect to this state satisfy

〈Lx〉|lm〉 = 〈Ly 〉|lm〉 = 0 and
〈
L2
x

〉
|lm〉 =

〈
L2
y

〉
|lm〉 =

l(l + 1)−m2

2
~2 .

Hint: Express the operators L̂x,y through the ladder operators L̂±.
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