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Solutions to previous control questions

5.1 (a) Normalisation (with 〈ψ1|ψ2〉 = 0):

〈ψ|ψ〉 = |c1|2 〈ψ1|ψ1〉+ |c2|2 〈ψ2|ψ2〉 −→ |c1|2 + |c2|2
!

= 1

(b) Possilbe energies: E1 = ~ω or E2 = 2~ω with probabilities

P(E1) = |c1|2 and P(E2) = |c2|2 = 1− |c1|2 .

(c) Expectation values:〈
ψ
∣∣∣Ĥ∣∣∣ψ〉 = ~ω

(
|c1|2 + 2|c2|2

)
= ~ω

(
1 + |c2|2

)
〈
ψ
∣∣∣Ô∣∣∣ψ〉 = µ (c∗1 c2 + c∗2 c1) = 2µRe(c1c

∗
2 ) ,

where Re(x) denotes the real part of the complex number x .

5.2 Goes by direct calculation. Please check yourself.
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Definitions and properties of commutators

Definition:
[
L̂, M̂

]
= −

[
M̂, L̂

]
≡ L̂M̂ − M̂L̂.

If two operators commute, then the commutator vanishes when
acting on any wave function.

Some properties of commutators have been listed in lecture 5.

Here, some properties relating to operator functions are added:

(a)
[
L̂, M̂

]
= 0 −→

[
L̂, F(M̂)

]
= 0, if F can be Taylor expanded.

(b) e L̂ M̂e−L̂ =
∞∑
n=0

1
n!

[
L̂, M̂

]
(n)
, where[

L̂, M̂
]

(0)
= M̂,

[
L̂, M̂

]
(1)

=
[
L̂, M̂

]
,
[
L̂, M̂

]
(2)

=
[
L̂,
[
L̂, M̂

]]
, and

in general, by a recursive definition
[
L̂, M̂

]
(n)

=

[
L̂,
[
L̂, M̂

]
(n−1)

]
.

(c) e L̂+M̂ = e L̂eM̂e[L̂, M̂] if
[
L̂
[
L̂, M̂

]]
=
[
M̂
[
L̂, M̂

]]
= 0.
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The operators related to position and momentum do not commute
in general, in particular

[x̂ , p̂x ] = [ŷ , p̂y ] = [ẑ , p̂z ] = i~ ,

while all other pairs of operators commute:

[r̂j , p̂k ] = i~δjk .
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Defining uncertainties

Before discussing the uncertainty relations, a strict mathematical
definition of uncertainties must be given. In the following we use the
shorthand below for the expectation value of a measurement/an
operator with respect to a certain state:

〈A〉|ψ〉 ≡ 〈A〉 ≡ 〈Â〉 =

〈
ψ
∣∣∣Â∣∣∣ψ〉
〈ψ|ψ〉

.

Then we define the unceratinty of this measurement through the
squre root of the mean-square deviation, or the variance:

∆A =

√〈
(A− 〈A〉)2

〉
←→ (∆A)2 = 〈A2〉 − 〈A〉2 .
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Some helpers

Introduce Hermitean operators A ≡ Â− 〈A〉 1̂ also known as the

dispersion operator corresponding to Â, for which 〈A2〉 = (∆A)2.

Introduce three lemma’s:

Lemma 1: Schwarz inequality 〈α|α〉 〈β|β〉 ≥ | 〈α|β〉 |2.
(aka triangle inequality)

Proof: ∀λ ∈ C : (〈α|+ λ∗ 〈β|) (|α〉+ λ |β〉) ≥ 0
because all kets have non-negative length: 〈ψ|ψ〉 ≥ 0 ∀ |ψ〉.
Identify λ = −〈β|α〉 / 〈β|β〉 to complete the proof.

Lemma 2: The expecation value of a Hermitean operator is real.
Proof: Remember that the expecation value is a weighted average
of eigenvalues of the respective operator.

Lemma 2: The expecation value of an anti-Hermitean operator,
defined by Ĉ = −Ĉ †, is imaginary.
Proof follows from its eigenvalues being purely imaginary.
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General form of Heisenberg uncertainty relation

Heisenberg uncertainty relation for two aribtrary observables:

〈∆A〉〈∆B〉 ≥ 1

2

∣∣∣〈[Â, B̂]〉∣∣∣
Example:

〈∆X〉〈∆Px〉 ≥
1

2
|〈[x̂ , p̂x ]〉| =

∣∣∣∣ i~2
∣∣∣∣ =

~
2

,

so in principle, there is no way to simultaenously measure x-position
and x-momentum of a particle arbitrarily precise.
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Proof
Use lemma 1 above and apply it to the kets |α〉 = A |〉 and
|β〉 = B |〉, where |〉 denotes any ket. Then

〈A2〉〈B2〉 ≥
∣∣〈A · B〉∣∣2

From its definition, any operator product can be expressed as

L̂M̂ = 1
2

[
L̂, M̂

]
+ 1

2

{
L̂, M̂

}
Note that the commutator of two Hermitean operators is
anti-Hermitean, while its anticommutator is Hermitean, then the
expectation value of the first term above is purely imaginary, and of
the second term it is purely real.

Therefore the right hand side of the inequaltiy above reads∣∣〈A · B〉∣∣2 = 1
4

∣∣∣〈[Â, B̂]〉∣∣∣2 + 1
4

∣∣∣〈{Â, B̂}〉∣∣∣2 ≥ 1
4

∣∣∣〈[Â, B̂]〉∣∣∣2,

and omitting the second term, as indicated, thus makes the
inequality even stronger.

Inserting the commutator in this inequality and taking its squareroot
finishes the proof if the Heisenberg uncertainty relation.
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Example: Minimal uncertainty wave-packet (1-dimensional)
Consider a Gaussian wave packet represented by
|ψ〉. In x-space and concentrating on one dimension only it is given by

〈x |ψ〉 ≡ ψ(x) =

[
1

(πd2)1/4

]
exp

[
ipxx −

x2

2d2

]
with d ∈ R.

Use the x-representation of the position operator, which in general〈
x ′
∣∣x̂n∣∣ x ′′〉 = x ′nδ(x ′ − x ′′), to calculate the expectation value

〈x̂〉|ψ〉 =

∞∫
−∞

dx ′dx ′′ 〈ψ|x ′〉 〈x ′ |x̂ | x ′′〉 〈x ′′|ψ〉

=

∞∫
−∞

dx ′dx ′′ ψ∗(x ′) [x ′δ(x ′ − x ′′)]ψ(x ′′)

=
1√
π d

∞∫
−∞

dx ′ x ′ exp

[
− x2

d2

]
= 0 (symmetry: odd function) ,
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Example: Minimal uncertainty wave-packet (1-dimensional)

Similarly 〈x̂2〉|ψ〉 =
1√
π d

∞∫
−∞

dx ′ x ′
2

exp

[
− x2

d2

]
=

d2

2

Therefore (∆X )2 = 〈x2〉 = 〈x̂2〉 − 〈x̂〉2 =
d2

2

To calculate 〈p̂nx 〉 remember 〈x |p̂x |ψ〉 = −i~ ∂
∂x
〈x |ψ〉.

〈p̂x〉|ψ〉 = ~px and 〈p̂2
x 〉|ψ〉 = ~2p2

x +
~2

2d2

Therefore (∆Px)2 = 〈p2
x〉 = 〈p̂2

x 〉 − 〈p̂x〉2 =
~2

2d2
and

(∆X )(∆Px) =
~
2

the minimally possible uncertainty.
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Learning outcomes

Definition and properties of commutators.

Definition of uncertainty in measurements.

Special role of commutators, especially for Heisenberg uncertainty
relations in their general form.
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Control questions

6.1 Prove that e L̂ M̂ e−L̂ =
∞∑
n=0

1
n!

[
L̂, M̂

]
(n)

.

(Cf. slide 5 for a definition of the terms
[
L̂, M̂

]
(n)

.)

To this end, consider an operator F̂ (α0) = eα0L̂ M̂ e−α0L̂ and expand
it in a Taylor series with terms F̂ (α) =

∑
n

(α−α0)n/n!dnF̂ (α0)/dαn
0.

By choosing suitable α and α0 you will finish the proof.

6.2 Consider the spin operators Ŝx,y ,z = ~
2 σ̂x,y ,z related to the Pauli

matrices σ̂x,y ,z = σ̂1,2,3. Using the commutators of the Pauli
matrices, given by [σ̂i , σ̂j ] = 2iεijkσk , calculate the commutators of
the spin operators (see also control question to lecture 5!).
With this result prove that

e
iωt
~ Ŝz Ŝxe

− iωt
~ Ŝz = cos(ωt)Ŝx − sin(ωt)Ŝy and

e
iωt
~ Ŝz Ŝye

− iωt
~ Ŝz = cos(ωt)Ŝy + sin(ωt)Ŝx .
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Control questions (cont’d)

6.3 Calculate, for the Gaussian Wave Packet, the dispersion (∆Px)2,
and in particular show by explicit calculation that

〈p̂x〉|ψ〉 = ~px and 〈p̂2
x 〉|ψ〉 = ~2p2

x + ~2

2d2

For this you will need the following integrals, already used in the
lecture when calculating (∆X )2,

∞∫
−∞

dx

{
1
x2

}
e−a

2x2

=

√
π

a

{
1

1/(2a2)

}
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