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Solutions to previous control questions
15.1 To see how this works, consider first the commutation relations

[Lk, >A</} = g €ijkXibj, Xi| = E eijk [Xibj, i)

y )

= Zfijk (%i [y, %] + [%i, %] By) = —fﬁz €ijkOjXi = ihz Eikl X -
- 7 -

)

(a) This implies that

%] = 0
[Z % ] tilkp, — {Z +1 j:i)?)} P (%t ise)
y X1, = s ) = =3
3 1,2 2,1 3 \/i 1 2 2 1 2
[21,27 ;(3:| = :FI.h;Q’l — [IA_l + izz, )?3:| = :Fh()?l + I)?z) s

as demanded, identifying Ry; = 75 (71 £ i%) and Ly =1 +il,.
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Solutions to previous control questions

(b) Use the results above to write
[[j» Bﬂ =|L, wa?k = Z [Zj, ?kﬁk]
P P
= Z ()?k [[j, >“<k] + [Zj, &k] >A<k) = ihZEUk (XX + %i%) =0,
P

ki

because we multiply the antisymmetric Levi-Civita tensor €jx with
the symmetric operator product (XX + XiXk).

Note: Similar equations can be shown to hold true for corresponding commutators with the components of the
momentum operator, i.e.

[C 8] = in > ejubk and  [L, p2] =o0.
k

This renders the position and the momentum operators components of a vector operator, i.e. of an operator
that transforms like an “ordinary vector” under rotations. Clearly, we would have suspected that anyway, but
this was the proof.
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15.2 Check the first two identities by writing the orbital angular
momentum operators as, e.g., L, = yp, — 2p,. To apply them, use

identities such as
X X 8 X 0
(2))=25|(2)) =z (1)) =-m|(3))
z z 32 z 1

and, after that, rewrite the components of the position kets in
spherical coordinates.

N ,5¢,\ rsin 6 cos ¢ rsin 0 cos ¢
- —1L, rsin0sin ¢ = r(sin @sin ¢ — cos 05¢)
h rcos 0 r(cos 6 + sin 0 sin pd )
0
—rcos 6
rsin@sin ¢

= ih (— sin ¢% — cot 6 cos ¢aa¢> |x)

Y Pz

— Lx)=in

yielding the desired result.
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Repeating the same exercise for Zy yields
r(sin 6 cos ¢ 4 cos 05 ¢)
rsin @sin ¢

in 6 cos ¢
i) (55 ) -
h rcos 6 r(cos 6 — sin 6 cos p5¢p)
rcos@
( —rsm9cos¢ )>
0

= ih<c05¢acot95|n¢ ¢)|>

— Le|x)=ih

00

This also proves the form of [, given by

x|y ) = —ihet’® :I:/3 —cot9 (x]v) .
00 O
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A2 N PN A A
Using that L = [2 + % <L+L, + L L+) leaves us to calculate

N o2
2 _ 209
L = h 952
Ll »[,(.0 0 N, 9
> = —3 _e ( 20 cotﬂ&b)} {e f/%fcotﬂa—(b
= —hj —872+;872—c0t0 _9 /g+cot02
N 2 {962 sin?0 0009 O¢ 0¢
LI, K[ _,( .0 0 io 0 0
5 = 5 _e ( /% cotH&b)} [e /% cotﬁa—d)
= —h—z 8—2 - 4872 cot 6 8 — cotf— 4
B 2 100%  sin®0000¢ 8(]5 0¢
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Summing them yields

22— 2wy L9 9
L = h[(l cot 0)8¢2+892+c0t089

_ el 10 (L0
- h[sin298¢2+sin089 0% )]
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Definition of spherical harmonics

@ The Hamiltonian of a spin-less particle in a spherically symmetric
potential reads

H==—+V(r)

2m

and the energy eigenfunctions are labelled by the energy levels n and
the angular quantum numbers / and m, |nlm). In position space

they can be decomposed as (with x given by the distance r and the
angles 6 and ¢)

(x|Im) = Rn(r) Yim(8, &)
In other words, with the unit vector X in the direction of x:

Yim(0, ¢) = (X[Im)
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Properties: Normalisation

@ The orthonormality of the |/m) translates to

2w
{m|lI'm"y = 1S = /dcos@/d¢Y,m (0, 0)Yrm (09)
Z1
using the completeness relation
4 1 27
12/ :X:/ cos /dqﬁ\x
0 -1 0
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Further properties

@ From last lectures we know that

2 |Im) hm |Im)
Im

lmy = B2+ 1) |Im) .

I~ r~

@ When sandwiched with a position-bra the first operator becomes
< 0
X

Llw) = —ihos (i)
which leads to the differential equation

2]

—fha%v,m(e, 6) = MhYim(0, 6) —  Yim(6, 6) ox 6.
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o In addition, for the f—identity we find

1 9 9 1 9
Pl— = (sin0= |+ ———= + (I +1)| Yim —0.
f Lin@ 00 (Sm989> + Sin29 a¢2 + ( + ) / (97 (b)
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Constructing the spherical harmonics

e To find the form of the Y;,(6, ¢), start with L, acting on |//):

Loly=0 — —ihe™ {i(i) - cotecib] Yi(6, ¢) =0.

@ Since the ¢-dependence of Yj is e, this leads
Yi(0, ¢) = ce™sin' 6.

@ Applying, successively, L will yield the other Y}, i.e.:

<X Ll‘/m>
Yim-1) = N OIS
e_i(b b . 9
= h\/(/+m)(/_ m+1) <_80 +ICOt93¢> Y,m(g7 ¢)~
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@ The normalisation follows from

1

27
1= [ deost [ 40¥;(0, )Y@, ¢
i) 0
1 1
= 27T|c,|2/dcosesin2’9:27r|c,|2/dx(1—x2)’.
—1 —1

leading to

(—1) [+ 1))
R YT a0

where we used the freedom in the phase of ¢ to fix it to be (—1)/

(This guarantees to find Yjo with the same sign as the Legendre polynomial Py(cos 0), see later.)
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General form of spherical harmonics

@ In general thus

Y/m(‘ga ¢) =

(-1) [@214+1) I+ m) em d=msin? g
2 47 (I —m)! sin™ @ d(cos@)—m"’

and, by definition

Yl(fm)(97 ¢) = (_1)m [ylm(ev ¢)]* :

@ For m = 0, the spherical harmonics are given by the Legendre

polynomials
2/ +1
Yio(0, ¢) = \ Tar Pi(cos?),

defined in the maths lecture.
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Explicit expressions

@ For up to / = 2 the spherical harmonics are given by

Yoo(0, ¢)
Y10(0, ¢)
Yi11(0, ¢)
Ya0(0, ¢)
Y211(0, ¢)

Yoi2(0, @)

Ehl

cos

~
3

sinf e*’®

_H
%"\w

—— (3cos?0 — 1)

_
(eI NE,]
:i\1

—_
(6}

sin@ cos ) et’®

_H
o)
)

—_
(€]

sin? g e*t2/¢

oo
:1

327
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No half-integer spherical harmonics

@ For half-integer / (and therefore for half-integer m), the wave
function is not single-valued in position space, since €7 = —1.
In other words, a rotation by 27, which in position space brings you
back to where you started will not yield the same wave-function. To
see this consider a 27 rotation around the z-axis, generated by L

Using L =Xxp
x cos(2m)+y sin(2m)
1/J> = < y cos(27)—x sin(2m) 1/}> = <

<X o <,-zzz7r>
- h

<

)
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@ Another reason is provided by looking at some hypothetical spherical
harmonics for half-integers, for example, following the for for a
general Yy (6, ) = ce”® sin’ 0:

Y11(0, ¢) = cye Vind.

11
22

Using L_ to obtain Y1

3—

(6, ¢) would yield
e ¢ <§9 + icot 688¢> Y%%
= C%e*% cotfvsind,

1
2

Y.

1_1
272

6, ¢)=LY

11
22

(0, ¢) (0, ¢)

which is singular for # = 0 and 8 = w. Moreover, using
OE<>V< (0, qu):c’%e*%\/sinG

results in a striking inconsistency.
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Learning outcomes

@ Spherical harmonics defined as Y), (0, phi) = (X|/m) and normalised
to 1 after integration over solid angle (4).

@ Construction from differential from of orbital angular momentum
operators. In particular,

W/(e, QZ/)) = C/eil¢ Sinla
2/ +1
Yio(0, ¢) = \/:P/(cos 6)
N 0 O [T WU TR G T
Im\Y, - 211 47 (/ - m)l sin™ o d(COSO)/—m

Yl(fm)(gv QS) - (_1)m [Ylm(ev ¢)]* :
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Control questions

16.1 A rotor - a system with 6 and ¢ as the only two dynamical degrees
of freedom - has a wave function given by

PO, ¢) =N [\/§COSG+sin9cos¢>+sinﬁsin¢] ,

where N is a constant guaranteeing normalisation of the wave
function:

1 2
dcos® [ do|w(6, ¢))> =1.
[

(a) Fix the normalisation constant N.

(b) What is the expectation value of the squared orbital angular
momentum squared, £27?

(c) What is the probability to measure the z-component of the orbital

angular momentum, £, to be zero?
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16.2 Consider a particle of mass m constrained to move on a ring of
radius a.
(a) By suitably orienting the ring, show that the Hamiltonian reads

2

22
2 where | = mr-.

H — g )

(b) Find the energy eigenkets of the system. What are the corresponding
eigenfunctions of the system?

(c) Show that the expectation value of the orbital angular momentum in
z-direction is a constant.

(d) Construct the time evolution operator and confirm by explicit
calculation the finding in part (c).
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