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Solutions to previous control questions

10.1 (a) Using
[
Ŝi , Ŝj

]
= i~εijk Ŝk and Ĥ = ωŜz , the E.o.M. are given by

dŜx

dt
= − i

~

[
Ŝx , Ĥ

]
= − iω

~

[
Ŝx , Ŝz

]
= −ω Ŝy ,

dŜy

dt
= − i

~

[
Ŝy , Ĥ

]
= − iω

~

[
Ŝy , Ŝz

]
= ω Ŝx ,

dŜz

dt
= − i

~

[
Ŝz , Ĥ

]
= − iω

~

[
Ŝz , Ŝz

]
= 0 ,

This yields as solutions:

Ŝx(t) = cos(ωt)Ŝx(0)− sin(ωt)Ŝy (0)

Ŝy (t) = cos(ωt)Ŝy (0) + sin(ωt)Ŝx(0)

Ŝz(t) = Ŝz(0)
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(b) Time evolution of state kets through application of

Û(t) = exp
[
− i

~ Ĥt
]
:

|ψ1(t)〉 = exp

[
− i

~
Ĥt

]
|↑〉 = exp

[
− iωt

2

]
|↑〉

|ψ±(t)〉 =
1√
2
exp

[
− i

~
Ĥt

] [
|↑〉 ± |↓〉

]
=

1√
2

[
exp

(
− iωt

2

)
|↑〉 ± exp

(
iωt

2

)
|↓〉
]
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(c) Heisenberg picture:

〈Sz(t)〉|ψ1〉 =
〈
ψ1

∣∣∣Ŝz

∣∣∣ψ1

〉
=

~
2
,

〈Sz(t)〉|ψ±〉 =
1

2
(〈↑| ± 〈↓|) Ŝz (|↑〉 ± |↓〉)

=
~
4

(〈
↑
∣∣∣Ŝz

∣∣∣ ↑〉+
〈
↓
∣∣∣Ŝz

∣∣∣ ↓〉) = 0 ;

〈Sx(t)〉|ψ1〉 = cos(ωt)
〈
ψ1

∣∣∣Ŝx

∣∣∣ψ1

〉
− sin(ωt)

〈
ψ1

∣∣∣Ŝy

∣∣∣ψ1

〉
= 0 ;

〈Sx(t)〉|ψ±〉 = ±1

2
cos(ωt)

[〈
↑
∣∣∣Ŝx

∣∣∣ ↓〉+
〈
↓
∣∣∣Ŝx

∣∣∣ ↑〉]
∓1

2
sin(ωt)

[〈
↑
∣∣∣Ŝy

∣∣∣ ↓〉+
〈
↓
∣∣∣Ŝy

∣∣∣ ↑〉]
= ±~

4
cos(ωt) (1 + 1)∓ ~

4
sin(ωt) (−i + i)

= ±~
2
cos(ωt) .
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(c) Schrödinger picture:

〈Sz〉|ψ1〉(t) =
〈
↑
∣∣∣Ŝz

∣∣∣ ↑〉 =
~
2
,

〈Sz〉|ψ±(t)〉 =
1

2

(
e iωt/2 〈↑| ± e−iωt/2 〈↓|

)
Ŝz

(
e−iωt/2 |↑〉 ± e iωt/2 |↓〉

)
=

~
4

(〈
↑
∣∣∣Ŝz

∣∣∣ ↑〉+
〈
↓
∣∣∣Ŝz

∣∣∣ ↓〉) = 0 ;

〈Sx〉|ψ1〉(t) =
〈
↑
∣∣∣Ŝx

∣∣∣ ↑〉 = 0 ;

〈Sx〉|ψ±(t)〉 =
1

2

(
e iωt/2 〈↑| ± e−iωt/2 〈↓|

)
Ŝx

(
e−iωt/2 |↑〉 ± e iωt/2 |↓〉

)
= ±~

4

(
e iωt

〈
↑
∣∣∣Ŝx

∣∣∣ ↓〉+ e−iωt
〈
↓
∣∣∣Ŝx

∣∣∣ ↑〉)
= ±~

4

(
e iωt + e−iωt

)
= ±~

2
cos(ωt) .
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Reminder: Infinitesimal time translations

In lecture 6 we have seen that the time evolution operator for an
infinitesimally small time step δt assumes the form

Û(t0 + δt, t0) = Û(t0, t0)− i

~
Ĥ(t0)Û(t0, t0)δt

= 1̂− i

~
Ĥ(t0)δt

allowing to interpret the Hamiltonian as the operator that generates
such infinitesimal time steps.

Phrased in other words:
The Hamiltonian is the generator of translation in time

We will see how this generalises to spatial translations.
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Detour: Position eigenkets and position measurements

Eigenkets of the position operator satisfy x̂ |x〉 = x |x〉.
The eigenket |x〉 in fact is a simulataneous eigenket of x̂ , ŷ , and ẑ .
Denoting them as x̂i they satisfy [x̂i , x̂j ] = 0.

Since position is continous, one may only measure the particle to be
in an interval of size ∆x around some central position X , and thus

|ψ〉 =

∫
d3x |x〉 〈x |ψ〉 measurement−→

X+∆x∫
X−∆x

d3x |x〉 〈x |ψ〉

F. Krauss

Theoretical Physics II B – Quantum Mechanics[1cm] Lecture 11



Solutions to previous control questions Infinitesimal translations More symmetries Learning outcomes & control questions

Translation operator: Definition

We define the operator T̂ (dx) that generates infinitesimal
translations, i.e. shifts a state at |x〉 to be at |x + dx〉:

T̂ (dx) |x〉 = |x + dx〉 .

Note that while |x〉 and |x + dx〉 are eigenvectors of x̂ , they are not
eigenkets of T̂ . Therefore, shifting an arbitrary state |ψ〉 yields

|ψ〉 T−→ |ψ′〉 = T̂ (dx) |ψ〉 = T̂ (dx)

∫
d3x |x〉 〈x |ψ〉

=

∫
d3x |x + dx〉 〈x |ψ〉

=

∫
d3x |x〉 〈x − dx |ψ〉 .

The last line holds true because the integration is over all space.
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Translation operator: Definition

Unitarity: Demanding that an infinitesimal translation does not
change the norm of the ket yields

〈ψ|ψ〉 =
〈
ψ
∣∣∣T̂ †(dx)T̂ (dx)

∣∣∣ψ〉 ←→ T̂ †(dx)T̂ (dx) = 1̂ ,

and therefore the translation operator must be unitary.

Composition: T̂ (dx1)T̂ (dx2) = T̂ (dx1 + dx2).

Inverse given by reverse translation: T̂ (−dx) = T̂−1(dx) = T̂ †(dx).

Identity as limit: lim
dx→0

T̂ (dx) = 1̂.

Represent translation operator through Hermitean operators K̂ as

T̂ (dx) = 1̂− i K̂ · dx .
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Commutators
Consider[

x̂ , T̂ (dx)
]
|x〉 = x̂ |x + dx〉 − T̂ (dx) · x |x〉 = dx |x + dx〉

indicating that[
x̂ , T̂ (dx)

]
= −i

[
x̂ , K̂

]
· dx = dx ←→

[
x̂i , K̂j

]
= iδij 1̂ .

At the same time, it is simple to see that[
T̂ (dx1), T̂ (dx2)

]
|x〉 = 0 ←→

[
K̂i , K̂j

]
= 0 .

This motivates to identify the Hermitean operators K̂ with the
momentum operators p̂ (the generators of spatial translation)

K̂ =
p̂

~
= −i∇̂
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Eigenkets of the translation operator

Since the generators of infinitesimal translations, the momentum
operators, commute, the corresponding group is called Abelian.

Using the fact that p̂
∣∣p〉 = p

∣∣p〉 allows to write

T̂ (dx)
∣∣p〉 =

[
1̂−

idx · p̂
~

] ∣∣p〉 =

[
1
idx · p

~

] ∣∣p〉 ,
and we see that the eigenkets of T̂ are the momnetum eigenkets.
The eigenvalues, though, are complex; acting with an infinitesimal
translation on a momentum eigenket generates a phase.
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Symmetries and conservation laws
Consider now a general continuous symmetry operation S.

Following the example of spatial translations below, it does not seem
to far fetched, to construct a corresponding operator Ŝ , which
represents an infinitesimal version of S, parametrised by ε:

Ŝ(ε) = 1̂− iε

~
Ĝ .

Here Ĝ is the generator related to the symmetry.

Demanding invariance of the Hamiltonian under this operation, i.e.

Ŝ†ĤŜ = Ĥ yields
[
Ĝ , Ĥ

]
= 0.

Using Heisenberg’s equation of motion we find that

dĜ (H)

dt
=

1

i~

[
G (H), Ĥ

]
.

Ĝ represents a conserved quantity, if it generates an invariance of Ĥ.

F. Krauss

Theoretical Physics II B – Quantum Mechanics[1cm] Lecture 11



Solutions to previous control questions Infinitesimal translations More symmetries Learning outcomes & control questions

Example: Momentum conservation

As an example consider the case of spatial translations.

Assume invariance of the Hamiltonian under spatial translations,

realised by the operator T̂ (dx) = 1− idx·p̂
~ ,

Ĥ
T−→ Ĥ ′ = T̂ †(dx)ĤT̂ (dx)

!
= Ĥ ,

Expanding this up to first order in dx yields[
1 +

idx · p̂
~

]
Ĥ

[
1−

idx · p̂
~

]
=

idx

~
·
[
p̂, Ĥ

]
+O(d2x) = 0

and therefore momentum is conserved:

dp̂(H)

dt
=

1

i~

[
ˆp(H), Ĥ

]
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Discrete symmetries: Space inversion (parity)

Consider the operation of space inversion P, which transforms left-
to right-handed coordinate system, and vice versa, by reflecting all
spatial coordinates.

To see how this works, take an arbitrary state |ψ〉 and apply the
unitary parity operator π̂:

|ψ〉 P−→ |ψ′〉 = π̂ |ψ〉.
The expectation value of the position operator with respect to this
ket is required to change sign:

〈ψ′ |x̂ |ψ′〉 =
〈
ψ
∣∣π̂†x̂ π̂∣∣ψ〉 !

= −〈ψ |x̂ |ψ〉.
This is realised if π̂†x̂ π̂ = −x̂ , or x̂ π̂ = −π̂x̂ , or {π̂, x̂} = 0.
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Properties of the parity operator

Claiming that eigenkets of the position operator behave like
π̂ |x〉 = e iδ |−x〉 with δ ∈ R

results in
x̂ π̂ |x〉 = −π̂x̂ |x〉 = −x π̂ |x〉,

indicating that π̂ |x〉 is an eigenket of x̂ with eigenvalue −x , which
must be the same as a position eigenket |−x〉 up to a phase factor.

By convention, this phase factor is chosen as e iδ = 1, or δ = 0.

Substituting this back yields π̂2 = 1̂ or π̂−1 = π̂† = π̂.

In addition, the eigenvalues of π̂ can only be ±1.

To see how the momentum operator behaves under parity, one could
argue that momentum is like mdx/dt, and thus must also be odd
(have a negative eigenvalue) under parity.
A better way to see this, though, is by taking momentum as the
generator of translation and compare translation followed by
reflection with reflection followed by translation.
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Wave functions under parity

Consider the wave function of a spin-less particle, ψ(x) = 〈x |ψ〉 and
the wave function of the space-inverted state, ψ(x) = 〈x |π̂|ψ〉.
If |ψ〉 is an eigenket of the parity operator, π̂ |ψ〉 = ± |ψ〉, then

ψ(−x) = 〈x |π̂|ψ〉 = ±ψ(x),
where the + (-) sign refers to even (odd) parity.

If
[
π̂, Ĥ

]
= 0 and |n〉 is a non-degenerate eigenvector of Ĥ with

(energy-)eigenvalue En, then |n〉 is also a parity eigenket.
As an example consider the harmonic oscillator. The ground state,
|0〉, having a Gaussian wave function, has even parity, and the first
excited state, |1〉 = â+ |0〉, has odd parity, since â+ is linear in x̂ and
p̂. Conversely, the second excited state is even, and so on.
However, it is important to stress that this works only, because the
states are non-degenerate. For example, for the hydrogen atom, it is
well-known that the states are degenerate, and energy eigenkets are
not parity eigenkets.
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Learning outcomes

Intimate connection of continuous symmetries and their generators.
(Example: space translation and momentum, later: rotation and
angular momentum)

Continuous symmetries enforce conserved quantities, give by their
generators.

Special role of discrete symmetries: parity as example.
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Control questions

11.1 Check that indeed the representation T̂ (dx) = 1̂− i K̂ · dx of the
infinitesimal translation operator satisfies the demands of unitarity,
the composition property, the form of the inverse and the recovery
of the identity as the limit. You may ignore terms of order dx2

throughout.

11.2 Prove that |n〉 is a parity eigenket if
[
π̂, Ĥ

]
= 0 and |n〉 is a

non-degenerate eigenvector of Ĥ with (energy-)eigenvalue En.

To this end, first use π̂2 = 1̂ to show that 1̂±π̂
2 |n〉 is a parity

eigenket with eigenvalues ±1. Show that this state is also an energy
eigenket and determine its energy eigenvalue. What does this imply,
taking into account that |n〉 is non-degenerate?
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