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Solutions to previous control questions

7.1 Inserting the expressions for x̂ and p̂ as functions of â±:〈
E0

∣∣∣x̂2∣∣∣E0

〉
=

〈
E0

∣∣∣∣[ ~
2mω

(
â2+ + â+â− + â−â+ + â2−

)]∣∣∣∣E0

〉
=

〈
E0

∣∣∣∣ ~
2mω

(â−â+)

∣∣∣∣E0

〉
=

~
2mω〈

E0

∣∣∣p̂2∣∣∣E0

〉
=

〈
E0

∣∣∣∣[−~mω
2

(
â2+ − â+â− − â−â+ + â2−

)]∣∣∣∣E0

〉
=

~mω
2

〈
E0

∣∣∣∣~mω2
(â−â+)

∣∣∣∣E0

〉
=

~mω
2

,

where we have used that

〈E0| â+ = â− |E0〉 = 0 and â−â+ = − [â+, â−] + â+â− = 1̂ + â+â− .
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7.1 Continued: The virial theorem states that, in average, kinetic and
potential energy are equal, 〈T 〉 = 〈V 〉. In the ground state, they are

〈T 〉 =
1

2m

〈
E0

∣∣∣p̂2∣∣∣E0

〉
=

~ω
4

〈V 〉 =
mω2

2

〈
E0

∣∣∣x̂2∣∣∣E0

〉
=

~ω
4

confirming its validity for the ground state of the one-dimensional
harmonic oscillator in quantum mechanics:

〈E 〉 =
~ω
2

= 〈T 〉+ 〈V 〉 =
〈T 〉

2
+
〈V 〉

2
.
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7.2 Completing the square yields

mω2

2
x̂2 + eE x̂ =

mω2

2

(
x̂ +

eE

mω2

)2

− (eE )2

2mω2
=

mω2

2
x̂ ′2 − x20

and therefore the Hamiltonian can be rewritten as

Ĥ =
1

2m
p̂2x +

mω2

2
x̂ ′2 − x20

As before, but with x̂ → x̂ ′, the raising and lowering operators are:

â′± =
1√

2~mω

[
mωx̂ ′ ∓ i p̂x

]
,

and they enjoy the same commutation relations as before.
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7.2 Continued: This allows to introduce, as before, the number operator
N̂ ′ = â′+â

′
− + â′−â

′
+. Therefore the Hamiltonian reads

Ĥ = N̂ ′ +
1

2
− x20 .

This implies a shift of the ground state and all other energies,
lowering them by x20 :

E ′n =

(
n +

1

2

)
~ω − x20 =

(
n +

1

2

)
~ω − (eE )2

2mω2
.
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7.3 A little bit of care has to be taken due to the anticommutators.

(a) Hermiticity:

N̂† =
[
b̂†b̂
]†

= b̂†
(
b̂†
)†

= b̂†b̂.

Direct calculation:

N̂2 = b̂†b̂b̂†b̂ = b̂†
[
1− b̂†b̂

]
b̂ = b̂†b̂ = N̂ .

(b) Because of that, the eigenvalues λ must satisfy λ2 = λ, therefore
λ = 0, 1. As a consequence there are two eigenstates, |0〉 and |1〉.

(c) Again, brute force:

[
N̂, b̂(†)

]
= b̂†b̂b̂(†) − b̂(†)b̂†b̂ =

 0−
(

1− b̂†b̂
)
b̂ = −b̂

b̂†
(

1− b̂†b̂
)
− 0 = b̂†
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7.3 Continued:

(c) Now check the effect of b̂(†) on the state |0〉:

N̂
(
b̂†|0〉

)
=

([
N̂, b̂†

]
+ b̂†N̂

)
|0〉 = (n0 + 1)

(
b̂†|0〉

)
=
(
b̂†|0〉

)
N̂
(
b̂|0〉

)
= b̂†b̂b̂|0〉 = 0 .

Therefore b̂ annihilates the ground state, and b̂†|0〉 = |1〉. Obviously,
now,

b̂†|1〉 = b̂†b̂†|0〉 = 0 ,

indicating that |1〉 is the only state other than the ground state.
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Time evolution of a system

Describing a system by the time-dependent state vector |ψ(t)〉, its
time-evolution is governed by

Postulate 7: The time evolution of a system is determined
by the time-dependent Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 ,

where Ĥ is the Hamiltonian operator of the system, also
called the total energy operator.
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Some example Hamiltonians

N-particle system with potential V :

Ĥ =
N∑
i=1

(
p̂2
i

2mi

)
+ V̂ (r̂1, r̂2, . . . , r̂N , t) ;

Particle with mass m and charge q moving in a vector potential A
and scalar potential φ:

Ĥ =
1

2m

[
p̂ − qÂ(r̂ , t)

]2
+ qφ̂(r̂ , t)

=
p̂2

2m
+

q

2m

(
Â · p̂ + p̂ · Â

)
+

q2

2m
Â
2

+ qφ̂ ,

where operator products have been symmetrised to guarantee
Hermiticity of the Hamiltonian.
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Time evolution operator: Definition

The structure of the Schrødinger equation indicates that ψ(t) is
determined for all times t, once it is defined at some time t0. This
allows to introduce a time evolution operator Û(t, t0) such that

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 with Û(t0, t0) = 1̂ .

In addition the time evolution operator fulfils

Û(t, t0) = Û(t, t ′)Û(t ′, t0)

Û−1(t, t0) = Û(t0, t) ,

indicating the non-Abelian group property of time evolution.
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Time evolution operator: Construction

Substituting the definition |ψ(t)〉 = Û(t, t0) |ψ(t0)〉 into the
Schrödinger equation yields a differential equation for the time
evolution operator:

i~
∂

∂t
Û(t, t0) = ĤÛ(t, t0)

A general solution is given by:

Û(t, t0) = exp

− i

~

t∫
t0

dt ′Ĥ(t ′)

 time-indep.−→ exp

[
− i

~
Ĥ(t − t0)

]
,

where the right expression relates to time-independent Hamiltonians.
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Unitarity of the time evolution operator

Conservation of probability (a.k.a. “unitarity”) demands

〈ψ(t0)|ψ(t0)〉 = 〈ψ(t)|ψ(t)〉 =
〈
Û(t, t0)ψ(t0)|Û(t, t0)ψ(t0)

〉
=

〈
ψ(t0)

∣∣∣Û†(t, t0)Û(t, t0)
∣∣∣ψ(t0)

〉
−→ Û†(t, t0)Û(t, t0) = 1̂ ,

and therefore Û must be unitary.
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Infinitesimal time translations

This property is related to the Hermiticity of the Hamiltonian, made
explicit by considering infinitesimal time evolution:

i~
[
Û(t0 + δt, t0)− Û(t0, t0)

]
= Ĥ(t0)δt

and therefore

Û(t0 + δt, t0) = Û(t0, t0)− i

~
Ĥ(t0)δt

= 1̂− i

~
Ĥ(t0)δt

allowing to interpret the Hamiltonian as generator of infinitesimal
time translations.
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Expectation values

Clearly, expectation values of observables A with respect to states
|ψ(t)〉 will vary, with a rate of change given by

d

dt
〈A〉|ψ(t)〉 =

d

dt

〈
ψ(t)

∣∣∣Â∣∣∣ψ(t)
〉

=

〈
d

dt
ψ(t)

∣∣∣∣Â∣∣∣∣ψ(t)

〉
+

〈
ψ(t)

∣∣∣∣ ∂∂t Â
∣∣∣∣ψ(t)

〉
+

〈
ψ(t)

∣∣∣∣Â∣∣∣∣ d

dt
ψ(t)

〉
=

i

~

[〈
Ĥψ(t)

∣∣∣Â∣∣∣ψ(t)
〉
−
〈
ψ(t)

∣∣∣Â∣∣∣ Ĥψ(t)
〉]

+

〈
ψ(t)

∣∣∣∣∣∂Â∂t
∣∣∣∣∣ψ(t)

〉

=
i

~

〈
ψ(t)

∣∣∣∣[Ĥ, Â] ∣∣∣∣ψ(t)

〉
+

〈
ψ(t)

∣∣∣∣∣∂Â∂t
∣∣∣∣∣ψ(t)

〉
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Therefore

d

dt

〈
Â

〉
=

i

h

〈[
Ĥ, Â

]〉
+

〈
∂Â

∂t

〉

If Â is not explicitly time-dependent, then ∂Â/∂t = 0:

d

dt

〈
Â

〉
=

i

h

〈[
Ĥ, Â

]〉
If, in addition, Â commutes with the Hamilton operator, its
expectation value (and, of course, that of the observable A) do not
vary with time, and A is a constant of motion.
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Energy conservation

As an example, consider a time-independent Hamiltonian, related to
the total energy E of the system as observable:

d

dt

〈
E
〉

=
d

dt

〈
Ĥ

〉
=

i

h

〈[
Ĥ, Ĥ

]〉
= 0 ,

which thus becomes a constant.

For time-independent Hamiltonians, the energy eigenkets |ψE (t)〉
have a time evolution which is just a rotation in complex space:

|ψE (t)〉 = exp

[
− iEt

~

]
|ψE 〉
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The virial theorem

Consider a particle in a potential V , with Hamiltonian

Ĥ =
p̂2

2m
+ V̂ (r)

and consider the observable Â = r̂ · p̂. Its time evolution is given by
the expectation value of the commutator with the Hamiltonian:[

r̂ · p̂, Ĥ
]

=

[
(x̂ p̂x + ŷ p̂y + ẑ p̂z),

1

2m

(
p̂2x + p̂2y + p̂2z

)
+ V̂ (x̂ , ŷ , ẑ)

]
=

i~
m

(
p̂2x + p̂2y + p̂2z

)
− i~

(
x̂∂V̂

∂x̂
+

ŷ∂V̂

∂ŷ
+

ẑ∂V̂

∂ẑ

)
= 2i~T̂ − i~

(
r̂ · ∇V̂

)
,

where T is the kinetic energy of the particle.
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Therefore, if d〈r̂ · p̂〉/dt = 0,

2
〈
T̂
〉

=
〈
r̂ · ∇V̂

〉
and for central potentials of the form V (r) = rn

2 〈T 〉 = n 〈V〉 .
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Classical Hamiltonian
As you know, the classical two-particle Hamiltonian

H =
p2
1

2m1
+

p2
2

2m2
+ V (r1 − r2)

can effectively be cast into a one-particle Hamiltonian

H =
P2

2M
+

p2

2µ
+ V (r)

by introducing total and relative coordinates

r = r1 − r2 R =
m1r1 + m2r2
m1 + m2

p =
m1p1 −m2p2
m1 + m2

P = p
1

+ p
2

M = m1 + m2 µ =
m1m2

m1 + m2
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Structure of the solution

When analysing the equations of motion it becomes quickly
apparent that the total system moves with constant momentum,
while the relative motion of the two particles w.r.t each other and to
the centre-of-mass system decouples.
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Structure of the solution
The same procedure can be applied in quantum mechanics - there
just all dynamical quantities – positions and momenta – become
operators. Expressed in energy eigenvalues this allows to write a
state ket, which separates total and relative momenta and positions:

|Ψ〉 = |Φ〉 |ψ〉 ,
where

P̂
2

2M
|Φ〉 = Ecm |Φ〉 and

[
p̂2

2µ
− V (r̂)

]
|ψ〉 = Erel |ψ〉 .

Expressed through position space wave functions this becomes

Ψ(R, r , t) = Φ(R)ψ(r) exp

[
− i(Ecm + Erel)t

~

]
with[
~2

2M
∇̂

2

R + Ecm

]
Φ(R) = 0 and

[
~2

2µ
∇̂

2

r + Erel − V (r)

]
ψ(r) = 0
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Learning outcomes

Schrödinger equation for kets

Formal solution through unitary time evolution operator and its
explicit form as given by the Hamiltonian

Hamiltonian as generator of infinitesimal time translations
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Control questions

9.1 Consider a spin- 12 particle with magnetic moment µ = e~/(2mc) in
a magnetic field B = Bez oriented along the z-axis. The
Hamiltonian is given by

Ĥ = −µσ̂ · B = − eB

mc
Ŝz = ωŜz .

Here Ŝi = ~
2σi , with σ̂i the Pauli matrices satisfying σ̂2

i = 1̂,
[σ̂i , σ̂j ] = 2iεijk σ̂k , and in explicit representation

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
.
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For this system:

(a) Determine eigenvalues and normalised eigenkets of this Hamiltonian.
(b) Construct the time evolution operator Û(t, t0) of the system and

apply it to a state ket |ψ〉 expressed as linear combination of the two
eigenkets.

(c) Calculate the time evolution of the expectation value of the energy
(through the Hamilton operator), and of the spin in z-direction
(through the operator Ŝz).

(d) What is the time evolution of the spin in x- and in y -direction for a
system given by a ket |ψ0〉 that at some inital time t0 = 0 is defined
as linear combination of the two energy eigenkets

|ψ0〉 =
1√
2

[|e+〉+ |e−〉] ?
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