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Solutions to previous control questions
13.1 (a) Commutators:

3
. ~ _ I\?I\ _ A /\2 _ I\'2/\ _ A~ I\'2
(2 0] =57 (%3 - 27) §1 (93— 37)

i=1 i=1, ik

. iu 3]+ 3033}
- (o

= Z ihei; {.7.74—.7].7,} =0

=1, i,j#k,i#j

because the Levi-Civita symbol is anti-symmetric under the direct
exchange of i/ and j:

€ikj = —Ejki -
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[L, Jl] - [jx +idy, - ijy] =i [J}, Jy] +i [J}, JX] =21l .
[J;, Jz] - [L +i),, Jz] = —itd, F ) = Fh (JX + Jy) = Fhls

[J;:, iz} = [jX7 iﬂ +i [jy7 iz} =0.
(b) The solution follows from rearranging the result of

JI =L+ +i (Jij - Jxﬁy) =7 -2 +nl.
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Using that J_ |j, m) = c_ jm |j, m — 1) we find
le_mP Gy m—1j, m—1) = <j7 m—1 ’(le) j, m>
<j, m—l’(_7+j_)‘j, m> - <j, m—l‘(f—jf—i—hjz)

= WL +1)—m(m=1]G, m—1]j, m—1)

jm)

and therefore

e ml® = B[ +1) = m(m = 1)] = B(j = m+1)(j + m).
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13.2 Express ix,y through Zi:
A 1 /4 A A 1 /- N
LX:E(L++L_) and Ly:E(L+—L_) .
Use the matrix elements of the ladder operators

</'m'

to realise that their expectation value vanishes, since in this case we
want to have </m ‘L;‘ /m> and thus m = m# m+ 1.

Zi’ /m> = h\/(/ F m)(/ +m+ 1) 01110 m’ m+1
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On the other hand,

A 1 /4 ~ PO PN A ~ ~ A
o (B0l +1 1) =y (B +12 4ol - 202)

e

and similarly

~ ~

1 /4 ~ A A ~ 1 /4 N A2 ~
2 _ = 2 2 _ _ _ = 2 2 2
Bo-g(B+2-Ll -0 0)=-3(B+02 -2l +202)
yields

</m

2, im) = % (im (2* = 12) | im) = h2w.
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Reminder: Commutation relations etc.
@ Remember the commutation relations
[J“,-, J}] = ihepJi [}, J“k} —0
and the ladder operators J=J + i.A/y with
[J; f,} = 2hJ, [J fi} — +h)y and [f, J;} - 0.
@ Eigenvalues and eigenkets read
5 jm) = jj + 1) jm) and  J, |jm) = mh |jm) .
@ j and m are non-negative are integers or half-integers, and
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Matrix elements of angular momentum operators

@ The eigenkets |jm) form an orthonormal base: (j'm’|jm) = ;i mpny

@ Operator sandwiches:

<j/ m/

@ Action of ladder operators:

i ljm) = VG F m)(G£m+1) h [j(m+1))

iz’jm> =j(j + 1)h?6j/0mm and <j’m’

i2’1m> = mhdjj/dmm/
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Angular momentum operators for spin—%

e Eigenvalue j also called the spin.
@ Angular momentum operators for j = % proportional to Pauli's:

with

. (01 . (0 —i . (1 0
G1=\1 0 ) 2=\ o) % \o0o -1 )"

@ Easy to check: S; have same algebra as Ji.
e Additional identities for &;:

[(f,‘, OA'j] = 2i€ijka'k s {OA','7 Ol'\j} = 25,'J'i s 1ol
0?2 = 1, det(6))=-1, Tr(d)=0.

1
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1

Finite rotations for spin-3

e Consider now a two-component ket |a) to be rotated by rotation R
(around z-axis by ¢), of course generated by S,:

o) 75 |a'>=“£5’(¢)|a>=exp<’5,;¢> o)

o Check for rotation: Calculate <§X)|a> before and after rotation.

<o/ o/> = <a exp (?) S exp <—i§g¢> ‘ a>
<a S a> cos ¢ — <a ’5}‘ a> sing.

(To see this use the identity for exp(L)M exp(—L1) from lecture 4.)
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Rotating the kets in spin—% representation

@ When applied on expectation values, the rotations generated by the
angular momentum matrices deliver the correct behaviour.

o Now let's see what happens when acting on a ket alone.
Decompose |a) into the two eigenkets of S, [1) and |):

) = ar [1) +a [} -

@ Be ready for a surprise! Rotate by 27:

@) = exp (—ZZSZ) ) = exp (~i76,) o)
= exp(—im)as 1) + expl(im)ay [1) = —aq [1) — ay 1) = — |a) .

@ A rotation by 27 is just half the way around - for a full rotation of a
ket one needs to rotate by 4.
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General rotations for spin—%

@ In general, rotations can be characterised by a rotation axis n
(n®> = 1) and an angle ¢.
Therefore the rotation operator in the spin—% representation reads

R (0. 0) = RID(0) = exp (2570

@ In general,
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Euler rotations

@ From classical meachnics: General rotations of a rigid body can be
accomplished in three steps, a.k.a. Euler rotations.
They are characterised by three angles «, 3, and ~y around three
axes (z, y, and z-axis):

R( 7¢) = R(aa B, ’Y) = Rz(a)R)’(ﬁ)Rz(’y)

— TR(R) = R(a, B, 7) R()R,(B)R:(7)

@ Because P, JA,-} =0

P RR)jm) = RI(R)|jm) = j(j + )R R(R) ljm) .

This means that under rotations the j values are constant.
@ Thus: Only need j-representations of the Ji.
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Matrix elements of rotation operators

@ This implies that it makes sense to characterise the rotation
operators through matrix elements R,g,)m(R):

exp (— IQ i nqb) jm>
h

In other words the rotation matrix is given by the individual
amplitudes for a rotated state to be in state |jm’) when the original
state was |jm):

RR) Lim) = 3 lin) (jo

RY) (R) = < jm'

,‘A?‘jm> .
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Properties

@ Composition and inverse:

Z R m m//(R2) == anzn//(Rl X Rz)
RO (R7Y) = RU(R).

The R operators are unitary, since the J; are Hermitian.

o Realize that the |jm) are eigenstates of J,:

RY) (o, B, )

im’ |ex _ijzoz ex i ex i327 im
J p B p B P 7 J
. iJy B
exp [—i(m'a + m) <Jm exp ( 4 ) >
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Euler rotations for spin—% systems

e For spin—% systems therefore

i€r3a Ia'gﬂ 16'3’)/
exp —? exp —T exp | — >

R®)(a, 8, 7)

exp [f 7"(0‘;7)} cosg —exp 77'.(0‘;7)} sin g
B exp [7'.(0‘2_7)} sin g exp L‘;”} cosg

@ This is a unimodular unitary operator (more in homework question).

@ The reduced matrix elements read:

1, iJ,B\|1 [ cos’ —sing
<2m exp( h M= siné cosg
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Euler rotations for spin-1 systems

@ Missing ingredient: spin-1 representation of .7 .

o From the identity _7 J* J and the form of the ladder operators:

) ih i (9 710
Ju=t = — [6piim1) = Omimnl =— | 1 0 -1
(3) 75 Lom (o) = O] = =5 Lo
Therefore,
4 $(1+ cos B) —%sinﬁ 2(1 = cos B)
<1m’ exp (—I ;f) 1m> = %sinﬁ cos 3 —% sin 3
$(1 — cos B) %sinﬁ 2(1+ cos B)
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Learning outcomes

@ Finite rotations and Euler angles

@ Matrix representation of finite rotations through angular momentum
operators: unitary matrices.

@ Rotations do not change spin ;.

o Effective form for evaluating them:
A i
R (e, B, 7) = exp[—i(m'a + m)] <jm' exp (—hﬂ) jm>

@ How to construct representations for spin % and spin 1.
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Control questions

14.1 Some algebra.
(a) Check that the following relations hold true:

(6-a)(&-b) = a-bl+is-(axb)
(6-2° = a1

w0 (5") = des(3) ean(3) e

(b) A 2 x 2 matrix is called unimodular, if it can be written as

(—1* ai) with |af® + b2 = 1.

Y

Show that
U= [ao—&-iég][ao—@@]’l

with real numbers ap and a = (a1, a2, az) forms an unitary
unimodular matrix.
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14.2 j =1 representations.
(a) Explicitly write the 3 x 3 matrix for <(j =1)m’ ‘J}‘ (= 1)m>.
(b) By explicitly calculating powers of jﬁjzl), show that

-(=1) R ~(i=1) ~(=1) 2
exp (IJyh B) :lfijyisinﬁf <Jyh ) (1 —cosp).

h

(c) Use the findings of (a) and (b) to prove that

<1m/ exp < Ugﬁ>

N

(1 + cos B) —% sinB 1(1—cosp)
1m> = %sinﬁ lcos./B 1*%5“1[3
5(1 —cos ) ﬁsmﬁ 5(14 cos f)
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