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Classical determinism

Measurements can in principle be performed such that they do not
change the state of the system.

All information can in principle be retrieved – measured –
simultaneously, and with infinite precision.

Exact knowledge of state of a system at time t0 (e.g. for a mass
point: its position r and momentum p) yields precise knowledge of
the state of the system at any other time
(aka Laplace’s demon).
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Quantum Mechanical probabilities

Measurements typically will change the dynamical state of a system.

The uncertainty principle prevents a simultaneous measurement of
arbitrary observables with infinite precision.

Quantum Mechanics (QM) can only predict the probabilities for
certain outcomes of a measurement.

Measurements performed over a statistical ensemble of systems yield
averages as outcomes - the expectation value.

For this to be realised, QM rests on a number of postulates.

Postulate 1: A wave (state) function can be associated to
an ensemble of systems, containing all information that can
be known. This function in general is complex, multiplying
it with an arbitrary complex number (∈ C) does not change
its physical significance.

F. Krauss

Theoretical Physics II B – Quantum Mechanics[1cm] Lecture 1



A simple example

Consider a structureless (= no internal degrees of freedom) single
particle in a potential V (r).

In classical physics: Can calculate trajectory r(t) with arbitrary
precision, if r(t0) and p(t0) are exactly known.

In QM: Have wave function ψ(r , t) in configuration (position) space.
It is called square integrable, if

I =

∫
dr |ψ(r , t)|2 =

∫
dr ψ∗(r , t)ψ(r , t) = finite.

Since a norm can be extracted, can normalise such that I = 1.
Then |ψ(r , t)|2 is a probability density to find the particle at time t
at position r .

Note 1: This is invariant under ψ(r , t) −→ ψ′(r , t) = e iα ψ(r , t)
(phase invariance)

Note 2: Generalised for N particles: ψ = ψ(r1, r2, . . . , rN , t).
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The superposition principle

Postulate 2: The superposition principle holds true.

Superposition principle in QM: The state vectors of quantum
systems can be written as linear superpositions, i.e. can decompose
ψ:

ψ(r , t) = c1 ψ1(r , t) + c2 ψ2(r , t)

with constants c1,2 ∈ C (relative phase matters: calculate |ψ|2!).

ψ1,2 are wave functions for the system to be in states 1 and 2.

If ψ1 and ψ2 are orthogonal∫
drψ∗2 (r , t)ψ1(r , t) =

∫
drψ∗1 (r , t)ψ2(r , t)

!
= 0

then the probability to measure the system to be in state 1 (2) is
proportional to |c1|2 (|c2|2).
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Momentum space

Instead of position space can use momentum space for
wave-functions:

ψ = ψ(p, t) :

∫
dr |ψ(r , t)|2 = 1←→

∫
dr |ψ(p, t)|2 = 1

In this case |ψ(p, t)|2 is probability density to find system with
momentum p at time t.

Relation through Fourier Transform (FT):

ψ(p, t) =
1√

(2π~)3

∫
dr exp

(
− i

~
p · r

)
ψ(r , t) .

Remember: In QM p = −i~∇ .
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Why state vectors?

Up to now, used the concept of wave (state) functions as
mathematical representations for the state of a system.

To further analyse properties, need many theorems from the theory
of (complex) functions and integral transformations.

Can formulate these theorems in terminology of vectors and vector
calculus. Allows for simple interpretation of many properties of QM
in n- or ∞-dimensional vector space.

Caveat: This vector space is purely abstract and has nothing in
common with position space of three real dimensions.

However: Will try and represent ideas through sketches in
2-dimensional real space, where possible.
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Ket-space as vector space

Denote vectors by: |φ〉, |χ〉, . . . , |↑〉, |↓〉, . . . , |r〉,
∣∣p〉, . . . .

(use quantum numbers etc. to label them)

Kets form a complex vector space V under addition,
if ∀ |φ〉, |χ〉, |ψ〉 ,. . .∈ V the following properties are fulfilled:

Closure: |φ〉+ |χ〉 ∈ V.
Commutativity: |φ〉+ |χ〉 = |χ〉+ |φ〉
Associativity: |(φ+ χ)〉+ |ψ〉 = |φ〉+ |(χ+ ψ)〉.
Multiplication with a complex number c ∈ C: c |φ〉 = |(cφ)〉

is “parallel” with |φ〉: |φ〉 ‖ |(cφ)〉

Distributive law: c |(φ+ χ)〉 = c |φ〉+ c |χ〉.
Introduce a dual space 〈φ|, 〈χ|, . . . , 〈↑|, 〈↓|, . . . , 〈r |,

〈
p
∣∣, . . .

to define scalar products of vectors: 〈φ|χ〉.
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Learning outcomes

Reminder of classical vs. quantum physics:
deterministic vs. probabilistic

Measurements in classical and quantum physics

Kets and bras as vectors in a vector space
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Control questions

At the end of each lecture, there will be some control questions. Try to
solve them as part of your preparation for the next lecture.

1.1 Name the properties of a complex vector space

1.2 With z = a + bi , z∗ = a− bi and a, b ∈ R, real numbers, show that

(a) zz∗ = |z |2, with |z | the length of z ,
(b) z + z∗ ∈ R,
(c) (z1 + z2)

∗ = z∗1 + z∗2 ,
(d) (z1z2)

∗ = z∗1 z
∗
2 ,

(e) |z1z2| = |z1||z2|.
1.3 When are vectors linearly independent? Are the vectors
|a〉 = (1− i , 1, 0)T , |b〉 = (1 + i , 1, 0)T and |c〉 = (0, 0, 1)T

linearly independent? What, if |b〉 = (1 + i , i , 0)T ?
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