▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

QCD & Monte Carlo Event Generators

Frank Krauss

Institute for Particle Physics Phenomenology Durham University

Maria Laach, September 2016

Content of lectures

- Introduction: QCD Basics
- Simulating Perturbative QCD
 - Parton Level Event Generation
 - Parton Showers
- Precision Monte Carlo
 - NLO Matching
 - Multijet Merging
- Soft Stuff

イロト イヨト イヨト イヨト

INTRODUCTION

EVENT GENERATORS

F. Krauss QCD & Monte Carlo Event Generators IPPP

Strategy of event generator

principle: divide et impera

• hard process: fixed order perturbation theory

traditionally: Born-approximation

- bremsstrahlung: resummed perturbation theory
- hadronisation: phenomenological models
- hadron decays: effective theories, data
- "underlying event": phenomenological models

... and possible improvements possible strategies:

- improving the phenomenological models:
 - "tuning" (fitting parameters to data)
 - replacing by better models, based on more physics

(my hot candidate: "minimum bias" and "underlying event" simulation)

- improving the perturbative description:
 - inclusion of higher order exact matrix elements and correct connection to resummation in the parton shower:

"NLO-Matching" & "Multijet-Merging"

• systematic improvement of the parton shower: next-to leading (or higher) logs & colours

Example: QCD precision in Higgs physics

- after discovery: time for precision studies of the newly found boson
 - precision determinartion of Yukawa couplings
 - finding or constraining "Higgs portal" (e.g. to Dark Matter)
 - maybe new particles in loops?
- Higgs signals suffers from different backgrounds, depending on production and decay channel considered in the analysis
- decomposing in bins of different jet multiplicities yields
 - different signal composition (e.g. WBF vs. ggF)
 - different backgrounds (e.g. $t\overline{t}$ in WW final states)
- to this end: must understand Standard Model in detail name of the game: uncertainties and their control

despite far-reaching claims: analytic resummation and fixed-order calculations will not be sufficient

イロト イヨト イヨト

• same reasoning also true for new resonances/phenomena

イロト イヨト イヨト イヨト

QCD BASICS

SCALES & KINEMATICS

F. Krauss QCD & Monte Carlo Event Generators IPPP

イロト イポト イヨト イヨト

Factorization: an electromagnetic analogy

• consider a charge Z moving at constant velocity v

at v = 0: radial E field only
at v = c: B field emerges: E ⊥ B, B ⊥ v, E ⊥ v, energy flow ~ Poynting vector S ~ E × B, || v
approximate classical fields by "equivalent quanta": photons

イロト イヨト イヨト

• spectrum of photons:

(in dependence on energy ω and transverse distance b_{\perp})

$$\mathrm{d}\mathbf{n}_{\gamma} = \frac{Z^{2}\alpha}{\pi} \cdot \frac{\mathrm{d}\omega}{\omega} \cdot \frac{\mathrm{d}\mathbf{b}_{\perp}^{2}}{\mathbf{b}_{\perp}^{2}} \xrightarrow{\mathrm{electron}(Z=1)} \frac{\alpha}{\pi} \cdot \frac{\mathrm{d}\omega}{\omega} \cdot \frac{\mathrm{d}\mathbf{b}_{\perp}^{2}}{\mathbf{b}_{\perp}^{2}}$$

• Fourier transform to transverse momenta k_{\perp} :

$$\mathrm{d}\boldsymbol{n}_{\gamma} = \frac{\alpha}{\pi} \cdot \frac{\mathrm{d}\omega}{\omega} \cdot \frac{\mathrm{d}\boldsymbol{k}_{\perp}^2}{\boldsymbol{k}_{\perp}^2}$$

note: divergences for $k_{\perp} \rightarrow 0$ (collinear) and $\omega \rightarrow 0$ (soft) • therefore: Fock state for lepton = superposition (coherent):

$$|e\rangle_{\rm phys} = |e\rangle + |e\gamma\rangle + |e\gamma\gamma\rangle + |e\gamma\gamma\gamma\rangle + \dots$$

photon fluctuations will "recombine"

Introduction		Simulating Soft QCD	

- lifetime of electron–photon fluctuations: $e(P) \rightarrow e(p) + \gamma(k)$
- estimate: use uncertainty relation and Lorentz time dilation
 - $P^2 = (p + k)^2 = M_{\rm virt}^2$ the virtual mass of the incident electron
 - life time = life time in rest frame \cdot time dilation

$$au \sim rac{1}{M_{
m virt}} \cdot rac{E}{M_{
m virt}} = rac{E}{(p+k)^2} \sim rac{E}{2Ek(1-\cos heta)} pprox rac{k}{k^2\sin^2 heta/2} pprox rac{\omega}{k_{\perp}^2}$$

• lifetime larger with smaller transverse momentum

(i.e. with larger transverse distance)

イロト イポト イヨト イヨト

QED Initial and Final State Radiation

- physical interpretation: equivalent quanta = quantum manifestation of accompanying fields
- in absence of interaction: recombination enforced by coherence
- but: hard interaction possibly "kicks out" quantum
 - \longrightarrow coherence broken
 - \longrightarrow equivalent (virtual) quanta become real
 - \longrightarrow emission pattern unravels

• alternative idea:

initial state radiation of photons off incident electron

- consider final state radiation in $\gamma^* \rightarrow \ell \bar{\ell}$ (electron velocities/momenta labelled as v and v'/p and p')
- classical electromagnetic spectrum from radiation function:

(this is from Jackson or any other reasonable book on ED)

・ロト ・同ト ・ヨト ・ヨ

$$\frac{\mathrm{d}^2 I}{\mathrm{d}\omega \mathrm{d}\Omega} \; = \; \frac{e^2}{4\pi^2} \left| \vec{\epsilon}^{\,*} \cdot \left(\frac{\vec{v}}{1-\vec{v}\cdot\vec{n}} - \frac{\vec{v}'}{1-\vec{v}'\cdot\vec{n}} \right) \right|^2 \, ,$$

with ϵ the polarisation vector and $\vec{n}(\Omega)$ the direction of the radiation • recast with four-momenta, equivalent photon spectrum:

$$dN = \frac{d^3k}{(2\pi)^3 2k_0} \frac{\alpha}{\pi} \left| \epsilon^*_{\mu} \left(\frac{p^{\mu}}{p \cdot k} - \frac{p'^{\mu}}{p' \cdot k} \right) \right|^2$$
$$= \frac{d^3k}{(2\pi)^3 2k_0} \frac{\alpha}{\pi} \left| W_{pp';k} \right|^2$$

with the eikonal $W_{pp';k}$

• repeat exercise in QFT, Feynman diagrams:

$$\mathcal{M}_{X \to e^+ e^- \gamma} = e \bar{u}(p) \left[\Gamma \frac{\not{p}' - \not{k}}{(p'-k)^2} \gamma^{\mu} - \gamma^{\mu} \frac{\not{p} + \not{k}}{(p+k)^2} \Gamma \right] u(p') \epsilon^*_{\mu}(k)$$

$$\xrightarrow{\text{soft}} e \epsilon^*_{\mu}(k) \left[\frac{p^{\mu}}{p \cdot k} - \frac{p'^{\mu}}{p' \cdot k} \right] \bar{u}(p') \Gamma u(p) = e \mathcal{M}_{X \to e^+ e^- \gamma} \cdot W_{pp';k}$$

 manifestation of Low's theorem: soft radiation independent of spin (→ classical)

(radiation decomposes into soft, classical part with logs - i.e. dominant - and hard collinear part)

<ロ> <同> <同> <同> <同> <同

DGLAP equations for QED

(Dokshitser-Gribov-Lipatov-Altarelli-Parisi Equations)

< ロ > < 同 > < 三 > < 三 :

• define probability to find electron or photon in electron:

at LO in
$$\alpha$$
(noemission) : $\ell(x, k_{\perp}^2) = \delta(1-x)$
and $\gamma(x, k_{\perp}^2) = 0$

(introduced x = energy fraction w.r.t. physical state)

- including emissions:
 - probabilities change
 - energy fraction ξ of lepton parton w.r.t. the physical lepton object reduced by some fraction $z = x/\xi$
 - reminder: differential of photon number w.r.t. k_{\perp}^2 :

$$\mathrm{d}n_{\gamma} = \frac{\alpha}{\pi} \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} \frac{\mathrm{d}\omega}{\omega} \iff \frac{\mathrm{d}n_{\gamma}}{\mathrm{d}\log k_{\perp}^2} = \frac{\alpha}{\pi} \frac{\mathrm{d}x}{x}$$

・ロト ・聞ト ・ヨト ・ヨト

evolution equations (trivialised)

$$\frac{\mathrm{d}\ell(x, \, k_{\perp}^2)}{\mathrm{d}\log k_{\perp}^2} = \frac{\alpha(k_{\perp}^2)}{2\pi} \int_x^1 \frac{\mathrm{d}\xi}{\xi} \mathcal{P}_{\ell\ell}\left(\frac{x}{\xi}, \, \alpha(k_{\perp}^2)\right) \ell(\xi, \, k_{\perp}^2)$$
$$\frac{\mathrm{d}\gamma(x, \, k_{\perp}^2)}{\mathrm{d}\log k_{\perp}^2} = \frac{\alpha(k_{\perp}^2)}{2\pi} \int_x^1 \frac{\mathrm{d}\xi}{\xi} \mathcal{P}_{\gamma\ell}\left(\frac{x}{\xi}, \, \alpha(k_{\perp}^2)\right) \ell(\xi, \, k_{\perp}^2) \,.$$

- k_{\perp}^2 plays the role of "resolution parameter"
- the $\mathcal{P}_{ab}(z)$ are the splitting functions, encoding quantum mechanics of the "splitting cross section", for example (at LO)

$$\mathcal{P}_{\ell\ell}(z) = \left(rac{1+z^2}{1-z}
ight)_+ + rac{3}{2}\delta(1-z)$$

• if $\gamma \to \ell \bar{\ell}$ splittings included, have to add entries/splitting functions into evolution equations above

Running of $\alpha_{\rm s}$ and bound states

- quantum effect due to loops: couplings change with scale
- running driven by β -function

$$\beta(\alpha_{s}) = \mu_{R}^{2} \frac{\partial \alpha_{s}(\mu_{R}^{2})}{\partial \mu_{R}^{2}}$$
$$= \frac{\beta_{0}}{4\pi} \alpha_{s}^{2} + \frac{\beta_{1}}{(4\pi)^{2}} \alpha_{s}^{3} + \dots$$

with

$$\beta_0 = \frac{11}{3} C_A - \frac{4}{3} T_R n_f$$

$$\beta_1 = \frac{34}{3} C_A^2 - \frac{20}{3} C_A T_R n_f - 4 C_F T_R n_f$$

- < ロ > < 回 > < 画 > < 画 > < 画 > 、 画 - の < @

F. Krauss QCD & Monte Carlo Event Generators

・ロト ・同ト ・ヨト ・ヨ

• Casimir operators in the fundamental and adjoint representation:

$$C_F = \frac{N_c^2 - 1}{2N_c}$$
 and $C_A = N_c$

with $N_c = 3$ colours and $T_R = 1/2$.

- n_f = the number of (quark) flavours
- the Casimirs correspond to quark and gluon colour charges
- explicit expression for strong coupling

$$\alpha_{\rm s}(\mu_R^2) \equiv \frac{g_{\rm s}^2(\mu_R^2)}{4\pi} = \frac{1}{\frac{\beta_0}{4\pi}\log\frac{\mu_R^2}{\Lambda_{\rm OCD}^2}}$$

with $\Lambda_{\rm QCD}$ the Landau pole of QCD, $\Lambda_{\rm QCD}\approx 250{\rm MeV}.$

(日) (同) (三) (三)

Hadrons in initial state: DGLAP equations of QCD

 similar to QED case: define probabilities (at LO) to find a parton q – quark or gluon – in hadron h at energy fraction x and resolution parameter/scale Q: parton distribution function (PDF) f_{q/h}(x, Q²)

• scale-evolution of PDFs: DGLAP equations

$$\begin{split} \frac{\partial}{\partial \log Q^2} \begin{pmatrix} f_{q/h}(x, Q^2) \\ f_{g/h}(x, Q^2) \end{pmatrix} \\ &= \frac{\alpha_{\rm s}(Q^2)}{2\pi} \int_{x}^{1} \frac{\mathrm{d}z}{z} \begin{pmatrix} \mathcal{P}_{qq}\left(\frac{x}{z}\right) & \mathcal{P}_{qg}\left(\frac{x}{z}\right) \\ \mathcal{P}_{gq}\left(\frac{x}{z}\right) & \mathcal{P}_{gg}\left(\frac{x}{z}\right) \end{pmatrix} \begin{pmatrix} f_{q/h}(z, Q^2) \\ f_{g/h}(z, Q^2) \end{pmatrix}, \end{split}$$

• QCD splitting functions:

$$\begin{split} \mathcal{P}_{qq}^{(1)}(x) &= C_F \left[\frac{1+x^2}{(1-x)_+} + \frac{3}{2} \delta(1-x) \right] = \left[P_{qq}^{(1)}(x) \right]_+ + \gamma_q^{(1)} \delta(1-x) \\ \mathcal{P}_{qg}^{(1)}(x) &= T_R \left[x^2 + (1-x)^2 \right] = P_{qg}^{(1)}(x) \\ \mathcal{P}_{gq}^{(1)}(x) &= C_F \left[\frac{1+(1-x)^2}{x} \right] = P_{gq}^{(1)}(x) \\ \mathcal{P}_{gg}^{(1)}(x) &= 2C_A \left[\frac{x}{(1-x)_+} + \frac{1-x}{x} + x(1-x) \right] \\ &+ \frac{11C_A - 4n_f T_R}{6} \delta(1-x) = \left[P_{gg}^{(1)}(x) \right]_+ + \gamma_g^{(1)} \delta(1-x) \,. \end{split}$$

• remark: IR regularisation by +-prescription & terms $\sim \delta(1-x)$ from physical conditions on splitting functions

(flavour conservation for $q\,
ightarrow\, qg$ and momentum conservation for $g\,
ightarrow\, gg,\, q\bar{q})$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

(日) (同) (三) (三)

Hadron production: Scales

- consider QCD final state radiation
- pattern for $q \rightarrow qg$ similar to $\ell \rightarrow \ell \gamma$ in QED:

$$\mathrm{d}w^{q \to qg} = \frac{\alpha_{\mathsf{s}}(k_{\perp}^2)}{2\pi} C_F \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} \frac{\mathrm{d}\omega}{\omega} \left[1 + \left(1 - \frac{\omega}{E} \right)^2 \right]$$

$$\overset{\omega = E(1-z)}{=} \frac{\alpha_{\mathsf{s}}(k_{\perp}^2)}{2\pi} C_F \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} \mathrm{d}z \frac{1+z^2}{1-z} = \frac{\alpha_{\mathsf{s}}(k_{\perp}^2)}{2\pi} C_F \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} \mathrm{d}z P_{qg}^{(1)}(z) \,.$$

- divergent structures for:
 - $z \to 1$ (soft divergence) \longleftrightarrow infrared/soft logarithms $k_{\perp}^2 \to 0$ (collinear/mass divergence) \longleftrightarrow collinear logarithms
- cut regularise with cut-off $k_{\perp,{
 m min}} \sim 1{
 m GeV} > \Lambda_{\sf QCD}$

Introduction		Simulating Soft QCD	

- find two perturbative regimes:
 - a regime of jet production, where $k_{\perp} \sim k_{\parallel} \sim \omega \gg k_{\perp,\min}$ and emission probabilities scale like $w \sim \alpha_{\rm s}(k_{\perp}) \ll 1$; and
 - a regime of jet evolution, where $k_{\perp,\min} \leq k_{\perp} \ll k_{\parallel} \leq \omega$ and therefore emission probabilities scale like $w \sim \alpha_s(k_{\perp}) \log^2 k_{\perp}^2 \stackrel{>}{\sim} 1$.
- in jet production: standard fixed-order perturbation theory
- in jet evolution regime, perturbative parameter not α_s any more but rather towers of exp [α_s log k²_⊥ log k_{||}]
- induces counting of leading logarithms (LL), $\alpha_s L^{2n}$, next-to leading logarithms (NLL), $\alpha_s L^{2n-1}$, etc.

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶

イロト イヨト イヨト イヨト

MONTE CARLO FOR

PARTON LEVEL

F. Krauss QCD & Monte Carlo Event G<u>enerators</u> IPPP

э

Simulating hard processes (signals & backgrounds)

• Simple example: $t \to bW^+ \to b\bar{l}\nu_l$:

$$|\mathcal{M}|^2 = \frac{1}{2} \left(\frac{8\pi\alpha}{\sin^2\theta_W}\right)^2 \frac{p_t \cdot p_\nu \ p_b \cdot p_l}{(p_W^2 - M_W^2)^2 + \Gamma_W^2 M_W^2}$$

• Phase space integration (5-dim):

$$\Gamma = \frac{1}{2m_t} \frac{1}{128\pi^3} \int \mathrm{d}p_W^2 \frac{\mathrm{d}^2 \Omega_W}{4\pi} \frac{\mathrm{d}^2 \Omega}{4\pi} \left(1 - \frac{p_W^2}{m_t^2}\right) |\mathcal{M}|^2$$

- 5 random numbers \implies four-momenta \implies "events".
- Apply smearing and/or arbitrary cuts.
- Simply histogram any quantity of interest no new calculation for each observable

Calculating matrix elements efficiently

- stating the problem(s):
 - multi-particle final states for signals & backgrounds.
 - need to evaluate $d\sigma_N$:

$$\int_{\text{cuts}} \left[\prod_{i=1}^{N} \frac{\mathrm{d}^{3} q_{i}}{(2\pi)^{3} 2 E_{i}} \right] \delta^{4} \left(p_{1} + p_{2} - \sum_{i} q_{i} \right) \left| \mathcal{M}_{p_{1} p_{2} \rightarrow N} \right|^{2}$$

- problem 1: factorial growth of number of amplitudes.
- problem 2: complicated phase-space structure.
- solutions: numerical methods.

Including higher order corrections

• obtained from adding diagrams with additional:

loops (virtual corrections) or legs (real corrections)

- effect: reducing the dependence on μ_R & μ_F NLO allows for meaningful estimate of uncertainties
- additional difficulties when going NLO:

ultraviolet divergences in virtual correction infrared divergences in real and virtual correction

enforce

UV regularisation & renormalisation IR regularisation & cancellation

(Kinoshita-Lee-Nauenberg-Theorem)

(日) (同) (三) (三)

• general structure of NLO calculation for N-body production

$$\begin{split} \mathrm{d}\sigma &= \mathrm{d}\Phi_{\mathcal{B}}\mathcal{B}_{\mathcal{N}}(\Phi_{\mathcal{B}}) + \mathrm{d}\Phi_{\mathcal{B}}\mathcal{V}_{\mathcal{N}}(\Phi_{\mathcal{B}}) + \mathrm{d}\Phi_{\mathcal{R}}\mathcal{R}_{\mathcal{N}}(\Phi_{\mathcal{R}}) \\ &= \mathrm{d}\Phi_{\mathcal{B}}\,\left(\mathcal{B}_{\mathcal{N}} + \mathcal{V}_{\mathcal{N}} + \mathcal{I}_{\mathcal{N}}^{(\mathcal{S})}\right) + \mathrm{d}\Phi_{\mathcal{R}}\,\left(\mathcal{R}_{\mathcal{N}} - \mathcal{S}_{\mathcal{N}}\right) \end{split}$$

• phase space factorisation assumed here $(\Phi_{\mathcal{R}}=\Phi_{\mathcal{B}}\otimes\Phi_1)$

$$\int \mathrm{d} \Phi_1 \mathcal{S}_{\mathcal{N}}(\Phi_\mathcal{B} \otimes \Phi_1) \, = \, \mathcal{I}^{(\mathcal{S})}_{\mathcal{N}}(\Phi_\mathcal{B})$$

process independent, universal subtraction kernels

$$\begin{split} \mathcal{S}_{\mathcal{N}}(\Phi_{\mathcal{B}}\otimes\Phi_{1}) &= \mathcal{B}_{\mathcal{N}}(\Phi_{\mathcal{B}}) \,\otimes\, \mathcal{S}_{1}(\Phi_{\mathcal{B}}\otimes\Phi_{1}) \\ \mathcal{I}_{\mathcal{N}}^{(\mathcal{S})}(\Phi_{\mathcal{B}}\otimes\Phi_{1}) &= \mathcal{B}_{\mathcal{N}}(\Phi_{\mathcal{B}}) \,\otimes\, \mathcal{I}_{1}^{(\mathcal{S})}(\Phi_{\mathcal{B}}) \,, \end{split}$$

and invertible phase space mapping (e.g. Catani-Seymour)

$$\Phi_{\mathcal{R}} \ \longleftrightarrow \ \Phi_{\mathcal{B}} \otimes \Phi_1$$

<ロ> <同> <同> <同> <同> <同

Aside: choices ...

- common lore: NLO calculations reduce scale uncertainties
- this is, in general, true. however: unphysical scale choices will yield unphysical results

• more ways of botching it at higher orders

Availability of exact calculations (hadron colliders)

- fixed order matrix elements ("parton level") are exact to a given perturbative order. (and often quite a pain!)
- important to understand limitations: only tree-level and one-loop level fully automated, beyond: prototyping

E. Krauss

GOING MONTE CARLO

PARTON SHOWERS – THE BASICS

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● □ ● ● ● ●

F. Krauss QCD & Monte Carlo Event Generators IPPP

An analogy: Radioactive decays

 $\bullet\,$ consider radioactive decay of an unstable isotope with half-life $\tau.$

(and ignore factors of ln 2.)

• "survival" probability after time t is given by

$$\mathcal{S}(t) = \mathcal{P}_{ ext{nodec}}(t) = \exp[-t/ au]$$

(note "unitarity relation": $\mathcal{P}_{\mathrm{dec}}(t) = 1 - \mathcal{P}_{\mathrm{nodec}}(t)$.)

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

• probability for an isotope to decay at time t:

$$rac{\mathrm{d}\mathcal{P}_{\mathrm{dec}}(t)}{\mathrm{d}t} = -rac{\mathrm{d}\mathcal{P}_{\mathrm{nodec}}(t)}{\mathrm{d}t} = rac{1}{ au} \exp(-t/ au)$$

- now: connect half-life with width $\Gamma = 1/\tau$.
- probability for the isotope to decay at any fixed time t determined by Γ .

- spice things up now: add time-dependence, $\Gamma = \Gamma(t')$
- rewrite

• decay-probability at a given time t is given by

$$\frac{\mathrm{d}\mathcal{P}_{\mathrm{dec}}(t)}{\mathrm{d}t} = \Gamma(t) \exp\left[-\int_{0}^{t} \mathrm{d}t' \Gamma(t')\right] = \Gamma(t) \mathcal{P}_{\mathrm{nodec}}(t)$$

(unitarity strikes again: $d\mathcal{P}_{dec}(t)/dt = -d\mathcal{P}_{nodec}(t)/dt$.)

《曰》 《圖》 《臣》 《臣》

- interpretation of l.h.s.:
 - first term is for the actual decay to happen.
 - second term is to ensure that no decay before t
 - \implies conservation of probabilities.

the exponential is - of course - called the Sudakov form factor.

Perturbative Monte Carlo	Simulating Soft QCD	

ullet differential cross section for gluon emission in $e^+e^- \to {
m jets}$

$$\frac{\mathrm{d}\sigma_{ee\rightarrow 3j}}{\mathrm{d}x_1\mathrm{d}x_2} = \sigma_{ee\rightarrow 2j}\frac{C_F\alpha_s}{\pi}\frac{x_1^2 + x_2^2}{(1-x_1)(1-x_2)}$$

singular for $x_{1,2} \rightarrow 1$.

• rewrite with opening angle θ_{qg} and gluon energy fraction $x_3 = 2E_g/E_{\rm c.m.}$:

$$\frac{\mathrm{d}\sigma_{ee\to 3j}}{\mathrm{d}\cos\theta_{qg}\mathrm{d}x_3} = \sigma_{ee\to 2j}\frac{C_F\alpha_s}{\pi}\left[\frac{2}{\sin^2\theta_{qg}}\frac{1+(1-x_3)^2}{x_3} - x_3\right]$$

singular for $x_3 \rightarrow 0$ ("soft"), sin $\theta_{qg} \rightarrow 0$ ("collinear").

Perturbative Monte Carlo	Simulating Soft QCD	

• re-express collinear singularities

$$\begin{aligned} \frac{2\mathrm{d}\cos\theta_{qg}}{\sin^2\theta_{qg}} &= \frac{\mathrm{d}\cos\theta_{qg}}{1-\cos\theta_{qg}} + \frac{\mathrm{d}\cos\theta_{qg}}{1+\cos\theta_{qg}} \\ &= \frac{\mathrm{d}\cos\theta_{qg}}{1-\cos\theta_{qg}} + \frac{\mathrm{d}\cos\theta_{\bar{q}g}}{1-\cos\theta_{\bar{q}g}} \approx \frac{\mathrm{d}\theta_{qg}^2}{\theta_{qg}^2} + \frac{\mathrm{d}\theta_{\bar{q}g}^2}{\theta_{\bar{q}g}^2} \end{aligned}$$

• independent evolution of two jets $(q \text{ and } \bar{q})$

$$\mathrm{d}\sigma_{ee \to 3j} \approx \sigma_{ee \to 2j} \sum_{j \in \{q, \bar{q}\}} \frac{C_F \alpha_s}{2\pi} \frac{\mathrm{d}\theta_{jg}^2}{\theta_{jg}^2} P(z) \; ,$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

- note: same form for any $t \propto \theta^2$:
- transverse momentum $k_{\perp}^2 pprox z^2 (1-z)^2 E^2 heta^2$
- invariant mass $q^2 pprox z(1-z) E^2 heta^2$

$$rac{\mathrm{d} heta^2}{ heta^2}pprox rac{\mathrm{d}k_\perp^2}{k_\perp^2}pprox rac{\mathrm{d}q^2}{q^2}$$

- parametrisation-independent observation: (logarithmically) divergent expression for $t \rightarrow 0$.
- practical solution: cut-off Q_0^2 . \implies divergence will manifest itself as log Q_0^2 .
- similar for P(z): divergence for $z \rightarrow 0$ cured by cut-off.

イロト イポト イヨト イヨト

		Simulating Sole Geb	
			1

- what is a parton? collinear pair/soft parton recombine!
- introduce resolution criterion $k_{\perp} > Q_0$.

-1

< = > < = > < = >

• combine virtual contributions with unresolvable emissions: cancels infrared divergences \implies finite at $\mathcal{O}(\alpha_s)$

(Kinoshita-Lee-Nauenberg, Bloch-Nordsieck theorems)

unitarity: probabilities add up to one
 \$\mathcal{P}\$(resolved) + \$\mathcal{P}\$(unresolved) = 1.

F. Krauss

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

- the Sudakov form factor, once more
- differential probability for emission between q^2 and $q^2 + dq^2$:

$$\mathrm{d}\mathcal{P} = \frac{\alpha_s}{2\pi} \frac{\mathrm{d}q^2}{q^2} \int_{z_{\min}}^{z_{\max}} \mathrm{d}z P(z) =: \mathrm{d}q^2 \, \Gamma(q^2)$$

• from radioactive example: evolution equation for Δ

$$-\frac{\mathrm{d}\Delta(Q^2, q^2)}{\mathrm{d}q^2} = \Delta(Q^2, q^2)\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}q^2} = \Delta(Q^2, q^2)\Gamma(q^2)$$
$$\implies \Delta(Q^2, q^2) = \exp\left[-\int_{q^2}^{Q^2} \mathrm{d}k^2\Gamma(k^2)\right]$$
- maximal logs if emissions ordered
- impacts on radiation pattern: in each emission t becomes smaller

(日) (同) (三) (三)

Quantum improvements

- improvement: inclusion of various quantum effects
- trivial: effect of summing up higher orders (loops) $\alpha_s \rightarrow \alpha_s(k_\perp^2)$

- much faster parton proliferation, especially for small k_{\perp}^2 .
- avoid Landau pole: $k_{\perp}^2 > Q_0^2 \gg \Lambda_{\rm QCD}^2 \Longrightarrow Q_0^2 = physical parameter.$

Perturbative Monte Carlo	Simulating Soft QCD	

- soft limit for single emission also universal
- problem: soft gluons come from all over (not collinear!) quantum interference? still independent evolution?
- answer: not quite independent.
- consider case in QED

Perturbative Monte Carlo	Simulating Soft QCD	

- assume photon into e^+e^- at θ_{ee} and photon off electron at θ photon momentum denoted as k
- energy imbalance at vertex: $k_{\perp}^{\gamma} \sim k_{\parallel}\theta$, hence $\Delta E \sim k_{\perp}^2/k_{\parallel} \sim k_{\parallel}\theta^2$.
- formation time for photon emission: $\Delta t \sim 1/\Delta E \sim k_{\parallel}/k_{\perp}^2 \sim 1/(k_{\parallel}\theta^2).$
- *ee*-separation: $\Delta b \sim heta_{ee} \Delta t$
- must be larger than transverse wavelength of photon: $\theta_{ee}/(k_{\parallel}\theta^2)>1/k_{\perp}=1/(k_{\parallel}\theta)$
- thus: $\theta_{ee} > \theta$ must be satisfied for photon to form
- angular ordering as manifestation of quantum coherence

▲日▼ ▲圖▼ ▲国▼ ▲国▼

Perturbative Monte Carlo	Simulating Soft QCD	

• pictorially:

gluons at large angle from combined colour charge!

• experimental manifestation:

 ΔR of 2nd & 3rd jet in multi-jet events in pp-collisions

Parametric precision

- analyse connection to Q_T resummation formalism
- consider standard Collins-Soper-Sterman formalism (CSS):

$$\frac{\mathrm{d}\sigma_{AB\to X}}{\mathrm{d}y\mathrm{d}Q_{\perp}^{2}} = \mathrm{d}\Phi_{X} \mathcal{B}_{ij}(\Phi_{X}) \cdot \underbrace{\int \frac{\mathrm{d}^{2}b_{\perp}}{(2\pi)^{2}} \exp(i\vec{b}_{\perp}\cdot\vec{Q}_{\perp})\tilde{W}_{ij}(b;\Phi_{X})}_{\text{guarantee 4-mom conservation higher orders}}$$

with

$$\tilde{W}_{ij}(b; \Phi_X) = \underbrace{C_i(b; \Phi_X, \alpha_s) C_j(b; \Phi_X, \alpha_s) H_{ij}(\alpha_s)}_{\text{exp} \left[-\int_{1/b_{\perp}^2}^{Q_X^2} \frac{dk_{\perp}^2}{k_{\perp}^2} \left(A(\alpha_s(k_{\perp}^2)) \log \frac{Q_X^2}{k_{\perp}^2} + B(\alpha_s(k_{\perp}^2)) \right) \right]}_{\text{Sudakov form factor, } A, B \text{ expanded in powers of } \alpha_s}$$

- analyse structure of emissions above
- logarithmic accuracy in log $\frac{\mu_N}{k_\perp}$ (a la CSS) possibly up to next-to leading log,
 - ${\scriptstyle \bullet}\,$ if evolution parameter \sim transverse momentum,
 - if argument in $lpha_{\sf s}$ is $\propto \, {\it k}_{\perp}$ of splitting,
 - if $K_{ij,k} \rightarrow$ terms $A_{1,2}$ and B_1 upon integration

(OK, if soft gluon correction is included, and if $K_{ij,k} \rightarrow$ AP splitting kernels)

・ロト ・同ト ・ヨト ・ヨ

- in CSS k_⊥ typically is the transverse momentum of produced system, in parton shower of course related to the cumulative effect of explicit multiple emissions
- resummation scale μ_N ≈ μ_F given by (Born) kinematics simple for cases like qq̄' → V, gg → H, ... tricky for more complicated cases

Example: achievable precision of shower alone in DY

- * ロ > * @ > * 注 > * 注 > ・ 注 ・ の & @

Higher logarithms in parton showering (?)

• start including higher orders/log $(A_3 \& B_2)$ – see below

(for NNLO the "natural" accuracy is NNLL)

• example below: different orders in DY

(a snapshot from ongoing work within SHERPA)

▲ ロ ト ▲ 聞 ト ▲ 臣 ト ▲ 臣 ト → 臣 - → ○ Q ()

イロト イヨト イヨト イヨト

FIRST IMPROVEMENTS:

ME CORRECTIONS

F. Krauss QCD & Monte Carlo Event Generators IPPP

イロト イポト イヨト イヨト

NLO calculations, in a nutshell

• remember structure of NLO calculation for N-body production

$$\begin{split} \mathrm{d}\sigma &= \mathrm{d}\Phi_{\mathcal{B}}\mathcal{B}_{N}(\Phi_{\mathcal{B}}) + \mathrm{d}\Phi_{\mathcal{B}}\mathcal{V}_{N}(\Phi_{\mathcal{B}}) + \mathrm{d}\Phi_{\mathcal{R}}\mathcal{R}_{N}(\Phi_{\mathcal{R}}) \\ &= \mathrm{d}\Phi_{\mathcal{B}}\,\left(\mathcal{B}_{N} + \mathcal{V}_{N} + \mathcal{I}_{N}^{(\mathcal{S})}\right) + \mathrm{d}\Phi_{\mathcal{R}}\,\left(\mathcal{R}_{N} - \mathcal{S}_{N}\right) \end{split}$$

• phase space factorisation assumed here $\left(\Phi_{\mathcal{R}}=\Phi_{\mathcal{B}}\otimes\Phi_{1}\right)$

$$\int \mathrm{d} \Phi_1 \mathcal{S}_{\mathcal{N}}(\Phi_{\mathcal{B}}\otimes \Phi_1) \,=\, \mathcal{I}_{\mathcal{N}}^{(\mathcal{S})}(\Phi_{\mathcal{B}})$$

process independent subtraction kernels

.

$$\begin{array}{l} \mathcal{S}_{\mathcal{N}}(\Phi_{\mathcal{B}}\otimes\Phi_{1}) \ = \mathcal{B}_{\mathcal{N}}(\Phi_{\mathcal{B}}) \ \otimes \ \mathcal{S}_{1}(\Phi_{\mathcal{B}}\otimes\Phi_{1}) \\ \mathcal{I}_{\mathcal{N}}^{(\mathcal{S})}(\Phi_{\mathcal{B}}\otimes\Phi_{1}) \ = \mathcal{B}_{\mathcal{N}}(\Phi_{\mathcal{B}}) \ \otimes \ \mathcal{I}_{1}^{(\mathcal{S})}(\Phi_{\mathcal{B}}) \end{array}$$

with universal $\mathcal{S}_1(\Phi_\mathcal{B}\otimes \Phi_1)$ and $\mathcal{I}_1^{(\mathcal{S})}(\Phi_\mathcal{B})$

Parton showers, compact notation

• Sudakov form factor (no-decay probability)

$$\Delta_{ij,k}^{(\mathcal{K})}(t,t_0) = \exp\left[-\int_{t_0}^t \frac{\mathrm{d}t}{t} \frac{\alpha_{\mathsf{s}}}{2\pi} \int \mathrm{d}z \frac{\mathrm{d}\phi}{2\pi} - \underbrace{\mathcal{K}_{ij,k}(t,z,\phi)}_{\text{splitting kernel for}}\right]$$

• evolution parameter t defined by kinematics

generalised angle (HERWIG ++) or transverse momentum (PYTHIA, SHERPA)

• will replace
$$\frac{\mathrm{d}t}{t}\mathrm{d}z\frac{\mathrm{d}\phi}{2\pi}\longrightarrow\mathrm{d}\Phi_1$$

• scale choice for strong coupling: $\alpha_{s}(k_{\perp}^{2})$

resums classes of higher logarithms

< □ > < □ > < □ > < □ > < □ >

• regularisation through cut-off t₀

(日) (同) (三) (三)

"compound" splitting kernels K_n and Sudakov form factors Δ^(K)_n for emission off n-particle final state:

$$\mathcal{K}_{n}(\Phi_{1}) = \frac{\alpha_{s}}{2\pi} \sum_{\text{all } \{ij,k\}} \mathcal{K}_{ij,k}(\Phi_{ij,k}), \quad \Delta_{n}^{(\mathcal{K})}(t,t_{0}) = \exp\left[-\int_{t_{0}}^{t} \mathrm{d}\Phi_{1} \mathcal{K}_{n}(\Phi_{1})\right]$$

• consider first emission only off Born configuration

$$d\sigma_{B} = d\Phi_{N} \mathcal{B}_{N}(\Phi_{N})$$

$$\cdot \underbrace{\left\{ \Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2}, t_{0}) + \int_{t_{0}}^{\mu_{N}^{2}} d\Phi_{1} \Big[\mathcal{K}_{N}(\Phi_{1}) \Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2}, t(\Phi_{1})) \Big] \right\}}_{\text{integrates to unity} \longrightarrow \text{"unitarity" of parton shower}}$$

• further emissions by recursion with $Q^2 = t$ of previous emission

Matrix element corrections

- parton shower ignores interferences typically present in matrix elements
- pictorially

 $\begin{array}{c} \mathsf{ME} & : & \left| \sim \sqrt{\mathsf{v}}^{\mathsf{v}}^{\mathsf{v}} & + & \sim \mathsf{v}^{\mathsf{a}}_{\mathsf{a}}_{\mathsf{a}} \right|^{2} \\ \mathsf{PS} & : & \left| \sim \sqrt{\mathsf{v}}^{\mathsf{v}}^{\mathsf{v}}^{\mathsf{v}} \right|^{2} + \left| \sim \mathsf{v}^{\mathsf{a}}_{\mathsf{a}}_{\mathsf{a}}_{\mathsf{a}} \right|^{2} \end{array}$

イロト イヨト イヨト

- form many processes $\mathcal{R}_N < \mathcal{B}_N \times \mathcal{K}_N$
- typical processes: $qar{q}' o V$, $e^-e^+ o qar{q}$, t o bW
- practical implementation: shower with usual algorithm, but reject first/hardest emissions with probability $\mathcal{P} = \mathcal{R}_N / (\mathcal{B}_N \times \mathcal{K}_N)$

• analyse first emission, given by

$$\mathrm{d}\sigma_{B} = \mathrm{d}\Phi_{N} \,\mathcal{B}_{N}(\Phi_{N})$$

$$\cdot \underbrace{\left\{ \Delta_{N}^{(\mathcal{R}/\mathcal{B})}(\mu_{N}^{2}, t_{0}) + \int_{t_{0}}^{\mu_{N}^{2}} \mathrm{d}\Phi_{1} \Big[\frac{\mathcal{R}_{N}(\Phi_{N} \times \Phi_{1})}{\mathcal{B}_{N}(\Phi_{N})} \Delta_{N}^{(\mathcal{R}/\mathcal{B})}(\mu_{N}^{2}, t(\Phi_{1})) \Big] \right\}}$$

once more: integrates to unity \longrightarrow "unitarity" of parton shower

• radiation given by \mathcal{R}_N (correct at $\mathcal{O}(\alpha_s)$)

(but modified by logs of higher order in α_{s} from $\Delta_{N}^{(\mathcal{R}/\mathcal{B})}$)

- emission phase space constrained by μ_N
- also known as "soft ME correction" hard ME correction fills missing phase space
- used for "power shower": $\mu_N \rightarrow E_{pp}$ and apply ME correction

PRECISION MONTE CARLO

NLO MATCHING

▲日 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ●

F. Krauss QCD & Monte Carlo Event Generators IPPF

NLO matching: Basic idea

- parton shower resums logarithms fair description of collinear/soft emissions jet evolution (where the logs are large)
- matrix elements exact at given order fair description of hard/large-angle emissions jet production (where the logs are small)
- adjust ("match") terms:
 - cross section at NLO accuracy & correct hardest emission in PS to exactly reproduce ME at order α_s (\mathcal{R} -part of the NLO calculation)

(this is relatively trivial)

• maintain (N)LL-accuracy of parton shower

(this is not so simple to see)

PowHeg

• reminder: $\mathcal{K}_{ij,k}$ reproduces process-independent behaviour of $\mathcal{R}_N/\mathcal{B}_N$ in soft/collinear regions of phase space

$$\mathrm{d}\Phi_1 \frac{\mathcal{R}_N(\Phi_{N+1})}{\mathcal{B}_N(\Phi_N)} \xrightarrow{\mathsf{IR}} \mathrm{d}\Phi_1 \frac{\alpha_{\mathsf{s}}}{2\pi} \mathcal{K}_{ij,k}(\Phi_1)$$

• define modified Sudakov form factor (as in ME correction)

$$\Delta_{N}^{(\mathcal{R}/\mathcal{B})}(\mu_{N}^{2},t_{0}) = \exp\left[-\int_{t_{0}}^{\mu_{N}^{2}} \mathrm{d}\Phi_{1} \, \frac{\mathcal{R}_{N}(\Phi_{N+1})}{\mathcal{B}_{N}(\Phi_{N})}\right] \,,$$

• assumes factorisation of phase space: $\Phi_{N+1} = \Phi_N \otimes \Phi_1$

 \bullet typically will adjust scale of $\alpha_{\rm s}$ to parton shower scale

・ロト ・同ト ・ヨト ・ヨ

- define local K-factors
- start from Born configuration Φ_N with NLO weight:

("local K-factor")

$$\begin{split} \mathrm{d}\sigma_{N}^{(\mathrm{NLO})} &= \mathrm{d}\Phi_{N}\,\bar{\mathcal{B}}(\Phi_{N}) \\ &= \mathrm{d}\Phi_{N}\left\{\mathcal{B}_{N}(\Phi_{N}) + \underbrace{\mathcal{V}_{N}(\Phi_{N}) + \mathcal{B}_{N}(\Phi_{N})\otimes \mathcal{S}}_{\tilde{\mathcal{V}}_{N}(\Phi_{N})} \right. \\ &+ \int \mathrm{d}\Phi_{1}\left[\mathcal{R}_{N}(\Phi_{N}\otimes\Phi_{1}) - \mathcal{B}_{N}(\Phi_{N})\otimes \mathrm{d}S(\Phi_{1})\right]\right\} \end{split}$$

• by construction: exactly reproduce cross section at NLO accuracy

• note: second term vanishes if $\mathcal{R}_N \equiv \mathcal{B}_N \otimes \mathrm{d}S$

(relevant for MC@NLO)

・ロト ・同ト ・ヨト ・ヨ

- analyse accuracy of radiation pattern
- generate emissions with $\Delta_N^{(\mathcal{R}/\mathcal{B})}(\mu_N^2, t_0)$:

$$d\sigma_{N}^{(\text{NLO})} = d\Phi_{N} \,\bar{\mathcal{B}}(\Phi_{N}) \\ \times \underbrace{\left\{ \Delta_{N}^{(\mathcal{R}/\mathcal{B})}(\mu_{N}^{2}, t_{0}) + \int_{t_{0}}^{\mu_{N}^{2}} d\Phi_{1} \frac{\mathcal{R}_{N}(\Phi_{N} \otimes \Phi_{1})}{\mathcal{B}_{N}(\Phi_{N})} \Delta_{N}^{(\mathcal{R}/\mathcal{B})}(\mu_{N}^{2}, k_{\perp}^{2}(\Phi_{1})) \right\}}$$

integrating to yield 1 - "unitarity of parton shower"

- radiation pattern like in ME correction
- pitfall, again: choice of upper scale μ_N^2

- (this is vanilla POWHEG!)
- apart from logs: which configurations enhanced by local K-factor

(K-factor for inclusive production of X adequate for X+ jet at large p | ?)

<ロト <問ト < 注ト < 注

- large enhancement at high $p_{T,h}$
- can be traced back to large NLO correction
- ullet fortunately, NNLO correction is also large $ightarrow \sim$ agreement

- improving POWHEG
- split real-emission ME as

- can "tune" *h* to mimick NNLO or other (resummation) result
 - differential event rate up to first emission

$$d\sigma = d\Phi_B \bar{\mathcal{B}}^{(R^{(S)})} \left[\Delta^{(\mathcal{R}^{(S)}/\mathcal{B})}(s, t_0) + \int_{t_0}^s d\Phi_1 \frac{\mathcal{R}^{(S)}}{\mathcal{B}} \Delta^{(\mathcal{R}^{(S)}/\mathcal{B})}(s, k_{\perp}^2) \right] \\ + d\Phi_R \mathcal{R}^{(F)}(\Phi_R)$$

<ロ> <同> <同> <同> <同> <同

		Higher-Order Improvements	Simulating Soft QCD	
MC@N	LO			

• MC@NLO paradigm: divide \mathcal{R}_N in soft ("S") and hard ("H") part:

$$\mathcal{R}_{N} = \mathcal{R}_{N}^{(S)} + \mathcal{R}_{N}^{(H)} = \mathcal{B}_{N} \otimes \mathrm{d}\mathcal{S}_{1} + \mathcal{H}_{N}$$

• identify subtraction terms and shower kernels $\mathrm{d}\mathcal{S}_1\equiv\sum\limits_{\{ij,k\}}\mathcal{K}_{ij,k}$

(modify ${\cal K}$ in $1^{{\mbox{st}}}$ emission to account for colour)

イロト イヨト イヨト イヨト

$$d\sigma_{N} = d\Phi_{N} \underbrace{\tilde{\mathcal{B}}_{N}(\Phi_{N})}_{\mathcal{B}+\tilde{\mathcal{V}}} \left[\Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2}, t_{0}) + \int_{t_{0}}^{\mu_{N}^{2}} d\Phi_{1} \mathcal{K}_{ij,k}(\Phi_{1}) \Delta_{N}^{(\mathcal{K})}(\mu_{N}^{2}, k_{\perp}^{2}) \right] \\ + d\Phi_{N+1} \mathcal{H}_{N}$$

• effect: only resummed parts modified with local K-factor

・ロト ・同ト ・ヨト ・ヨ

• phase space effects: shower vs. fixed order

- problem: impact of subtraction terms on local K-factor (filling of phase space by parton shower)
- studied in case of $gg \rightarrow H$ above
- proper filling of available phase space by parton shower paramount

PRECISION MONTE CARLO

MULTIJET MERGING

F. Krauss QCD & Monte Carlo Event Generators ・ロト・「聞・・言・・言・ うへで

IPPP

Multijet merging: basic idea

- parton shower resums logarithms fair description of collinear/soft emissions jet evolution (where the logs are large)
- matrix elements exact at given order fair description of hard/large-angle emissions jet production (where the logs are small)
- combine ("merge") both: result: "towers" of MEs with increasing number of jets evolved with PS
 - multijet cross sections at Born accuracy
 - maintain (N)LL accuracy of parton shower

• □ ▶ • □ ▶ • □ ▶ • •

• separate regions of jet production and jet evolution with jet measure Q_J

("truncated showering" if not identical with evolution parameter)

- matrix elements populate hard regime
- parton showers populate soft domain

1

・ロ・ ・ 日・ ・ 日・ ・ 日

Why it works: jet rates with the parton shower

- consider jet production in $e^+e^- \rightarrow hadrons$ Durham jet definition: relative transverse momentum $k_\perp > Q_J$
- fixed order: one factor α_S and up to $\log^2 \frac{E_{c.m.}}{Q_i}$ per jet
- use Sudakov form factor for resummation & replace approximate fixed order by exact expression:

$$\mathcal{R}_{2}(Q_{J}) = \left[\Delta_{q}(E_{\text{c.m.}}^{2}, Q_{J}^{2})\right]^{2}$$

$$\mathcal{R}_{3}(Q_{J}) = 2\Delta_{q}(E_{\text{c.m.}}^{2}, Q_{J}^{2}) \int_{Q_{J}^{2}}^{E_{\text{c.m.}}^{2}} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} \left[\frac{\alpha_{s}(k_{\perp}^{2})}{2\pi} dz \mathcal{K}_{q}(k_{\perp}^{2}, z) \right]$$

$$\times \Delta_{q}(E_{\text{c.m.}}^{2}, k_{\perp}^{2}) \Delta_{q}(k_{\perp}^{2}, Q_{J}^{2}) \Delta_{g}(k_{\perp}^{2}, Q_{J}^{2})$$

Multijet merging at LO

• expression for first emission

$$d\sigma = d\Phi_N \mathcal{B}_N \left[\Delta_N^{(\mathcal{K})}(\mu_N^2, t_0) + \int_{t_0}^{\mu_N^2} d\Phi_1 \mathcal{K}_N \Delta_N^{(\mathcal{K})}(\mu_N^2, t_{N+1}) \Theta(Q_J - Q_N + d\Phi_{N+1} \mathcal{B}_{N+1} \Delta_N^{(\mathcal{K})}(\mu_{N+1}^2, t_{N+1}) \Theta(Q_{N+1} - Q_J) \right]$$

• note: N + 1-contribution includes also N + 2, N + 3, ...

(no Sudakov suppression below t_{n+1} , see further slides for iterated expression)

- potential occurrence of different shower start scales: $\mu_{N,N+1,...}$
- "unitarity violation" in square bracket: $\mathcal{B}_N \mathcal{K}_N \longrightarrow \mathcal{B}_{N+1}$

(cured with UMEPS formalism, L. Lonnblad & S. Prestel, JHEP 1302 (2013) 094 &

S. Platzer, arXiv:1211.5467 [hep-ph] & arXiv:1307.0774 [hep-ph])

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Di-photons @ ATLAS: $m_{\gamma\gamma}$, $p_{\perp,\gamma\gamma}$, and $\Delta \phi_{\gamma\gamma}$ in showers

(arXiv:1211.1913 [hep-ex])

- イロト (個) (注) (注) (注) 三 のへの

Aside: Comparison with higher order calculations

・ロト ・同ト ・ヨト ・ヨ

Multijet-merging at NLO: MEPS@NLO

- basic idea like at LO: towers of MEs with increasing jet multi (but this time at NLO)
- ${\ensuremath{\, \bullet }}$ combine them into one sample, remove overlap/double-counting

maintain NLO and (N)LL accuracy of ME and PS

• this effectively translates into a merging of MC@NLO simulations and can be further supplemented with LO simulations for even higher final state multiplicities

・ロト ・聞 ト ・ ヨト ・ ヨト

First emission(s), once more

$$d\sigma = d\Phi_N \tilde{\mathcal{B}}_N \left[\Delta_N^{(\mathcal{K})}(\mu_N^2, t_0) + \int_{t_0}^{\mu_N^2} d\Phi_1 \mathcal{K}_N \Delta_N^{(\mathcal{K})}(\mu_N^2, t_{N+1}) \Theta(Q_J - Q_{N+1}) \right] \\ + d\Phi_{N+1} \mathcal{H}_N \Delta_N^{(\mathcal{K})}(\mu_N^2, t_{N+1}) \Theta(Q_J - Q_{N+1})$$

$$+ \mathrm{d}\Phi_{N+1}\,\tilde{\mathcal{B}}_{N+1} \left(1 + \frac{\mathcal{B}_{N+1}}{\tilde{\mathcal{B}}_{N+1}} \int_{t_{N+1}}^{\mu_N^2} \mathrm{d}\Phi_1 \,\mathcal{K}_N \right) \Theta(Q_{N+1} - Q_J) \\ \cdot \left[\Delta_{N+1}^{(\mathcal{K})}(t_{N+1}, t_0) + \int_{t_0}^{t_{N+1}} \mathrm{d}\Phi_1 \,\mathcal{K}_{N+1} \Delta_{N+1}^{(\mathcal{K})}(t_{N+1}, t_{N+2}) \right] \\ + \mathrm{d}\Phi_{N+2} \,\mathcal{H}_{N+1} \Delta_N^{(\mathcal{K})}(\mu_N^2, t_{N+1}) \Delta_{N+1}^{(\mathcal{K})}(t_{N+1}, t_{N+2}) \Theta(Q_{N+1} - Q_J) + \dots$$

3

p_{\perp}^{H} in MEPs@NLO

Transverse momentum of the Higgs boson

 first emission by MC@NLO

F. Krauss QCD & Monte Carlo Event Generators IPPP

p_{\perp}^{H} in MEPs@NLO

• first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$

- first emission by MC@NLO, restrict to Q_{n+1} < Q_{cut}
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$

▲ □ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ● ●

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$

▲□▶ ▲圖▶ ▲厘▶

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate

▲□▶ ▲圖▶ ▲厘▶

Introduction

p_{\perp}^{H} in MEPs@NLO

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate

イロト イヨト イヨト

F. Krauss QCD & Monte Carlo Event Generators

Introduction

p_{\perp}^{H} in MEPs@NLO

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate

<ロ> <同> <同> <同> <同> <同

• sum all contributions

Introduction

p_{\perp}^{H} in MEPs@NLO

- first emission by MC@NLO , restrict to $Q_{n+1} < Q_{cut}$
- MC@NLO $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- MC@NLO $pp \rightarrow h + 2jets$ for $Q_{n+2} > Q_{cut}$
- iterate
- sum all contributions
- eg. p⊥(h)>200 GeV has contributions fr. multiple topologies

Example: MEPs@NLO for W+jets

(up to two jets @ NLO, from BLACKHAT, see arXiv: 1207.5031 [hep-ex])

- 《口》 《聞》 《臣》 《臣》 三日 ぐの(の)

700 H_T [GeV]

F. Krauss QCD & Monte Carlo Event Generators IPPP

æ

イロト イヨト イヨト イヨト

SIMULATING SOFT QCD

HADRONISATION

F. Krauss QCD & Monte Carlo Event Generators IPPP

・ロト ・同ト ・ヨト ・ヨ

QCD radiation, once more

• remember QCD emission pattern

$$\mathrm{d} w^{q \to qg} = \frac{\alpha_{\rm s}(k_{\perp}^2)}{2\pi} C_F \frac{\mathrm{d} k_{\perp}^2}{k_{\perp}^2} \frac{\mathrm{d} \omega}{\omega} \left[1 + \left(1 - \frac{\omega}{E} \right) \right]$$

- spectrum cut-off at small transverse momenta and energies by onset of hadronization, at scales $R\approx 1\,{\rm fm}/\Lambda_{\rm QCD}$
- two (extreme) classes of emissions: gluons and gluers determined by relation of formation and hadronization times

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

- gluers formed at times R, with momenta $k_{\parallel}\,\sim\,k_{\perp}\,\sim\,\omega\,\stackrel{>}{\sim}\,1/R$
- assuming that hadrons follow partons,

$$dN_{\text{(hadrons)}} \sim \int_{k_{\perp}>1/R}^{Q} \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} \frac{C_{F} \alpha_{s}(k_{\perp}^{2})}{2\pi} \left[1 + \left(1 - \frac{\omega}{E}\right)\right] \frac{d\omega}{\omega}$$
$$\sim \frac{C_{F} \alpha_{s}(1/R^{2})}{\pi} \log(Q^{2}R^{2}) \frac{d\omega}{\omega}$$

or - relating their energyn with that of the gluers -

$$\mathrm{d}N_{\mathrm{(hadrons)}}/\mathrm{d}\log\epsilon = \mathrm{const.}\,,$$

a plateau in log of energy (or in rapidity)

< ロ > < 同 > < 三 > < 三 :

- impact of additional radiation
- new partons must separate before they can hadronize independently
- therefore, one more time

$$egin{array}{rcl} t^{
m form} &\sim & rac{k_{\parallel}}{k_{\perp}^2} \ t^{
m sep} &\sim & {\cal R} heta &\sim & t^{
m form}\left({\cal R}k_{\perp}
ight) \ t^{
m had} &\sim & k_{\parallel}{\cal R}^2 &\sim & t^{
m form}\left({\cal R}k_{\perp}
ight)^2 \,. \end{array}$$

- ullet for gluers ${\it Rk}_\perp pprox 1$: all times the same
- naively; new & more hadrons following new partons
- but: colour coherence primary and secondary partons not separated enough in

$$1/R \stackrel{<}{\sim} \omega_{(
m hadron)} \stackrel{<}{\sim} 1/(R\theta)$$

and therefore no independent radiation

Hadronisation: General thoughts

- confinement the striking feature of low-scale sotrng interactions
- transition from partons to their bound states, the hadrons
- the Meissner effect in QCD

	Simulating Soft QCD	

• linear QCD potential in Quarkonia - like a string

	Simulating Soft QCD	

- combine some experimental facts into a naive parameterisation
- in $e^+e^-
 ightarrow$ hadrons: exponentially decreasing p_\perp , flat plateau in y for hadrons

• try "smearing": $ho(p_{\perp}^2)\sim \exp(-p_{\perp}^2/\sigma^2)$

	Simulating Soft QCD	

• use parameterisation to "guesstimate" hadronisation effects:

$$E = \int_0^Y \mathrm{d}y \mathrm{d}p_{\perp}^2 \rho(p_{\perp}^2) p_{\perp} \cosh y = \lambda \sinh Y$$

$$P = \int_0^Y \mathrm{d}y \mathrm{d}p_{\perp}^2 \rho(p_{\perp}^2) p_{\perp} \sinh y = \lambda (\cosh Y - 1) \approx E - \lambda$$

$$\lambda = \int \mathrm{d}p_{\perp}^2 \rho(p_{\perp}^2) p_{\perp} = \langle p_{\perp} \rangle.$$

- estimate $\lambda \sim 1/R_{
 m had} pprox m_{
 m had}$, with $m_{
 m had}$ 0.1-1 GeV.
- effect: jet acquire non-perturbative mass $\sim 2\lambda E$ ($\mathcal{O}(10 \text{GeV})$ for jets with energy $\mathcal{O}(100 \text{GeV})$).

• □ ▶ • □ ▶ • □ ▶ •

Perturbative Monte Carlo	Higher-Order Improvements	Simulating Soft QCD	

- similar parametrization underlying Feynman-Field model for independent fragmentation
- recursively fragment q
 ightarrow q'+ had, where
 - transverse momentum from (fitted) Gaussian;
 - longitudinal momentum arbitrary (hence from measurements);
 - flavour from symmetry arguments + measurements.
- problems: frame dependent, "last quark", infrared safety, no direct link to perturbation theory,

イロト イ伺ト イヨト イヨト

The string model

- a simple model of mesons: yoyo strings
 - light quarks $(m_q = 0)$ connected by string, form a meson
 - area law: $m_{\rm had}^2 \propto$ area of string motion
 - L=0 mesons only have 'yo-yo' modes:

- ullet turn this into hadronisation model $e^+e^-
 ightarrow qar q$ as test case
- ignore gluon radiation: $q\bar{q}$ move away from each other, act as point-like source of string
- intense chromomagnetic field within string: more qq
 q
 pairs created by tunnelling and string break-up
- analogy with QED (Schwinger mechanism): $d\mathcal{P} \sim dx dt \exp(-\pi m_q^2/\kappa)$, $\kappa =$ "string tension".

		Simulating Soft QCD	

- string model = well motivated model, constraints on fragmentation (Lorentz-invariance, left-right symmetry, ...)
- how to deal with gluons?
- ullet interpret them as kinks on the string \Longrightarrow the string effect

• infrared-safe, advantage: smooth matching with PS.

・ロト ・同ト ・ヨト ・ヨ

The cluster model

- underlying idea: preconfinement/LPHD
 - typically, neighbouring colours will end in same hadron
 - $\bullet\,$ hadron flows follow parton flows $\longrightarrow\,$ don't produce any hadrons at places where you don't have partons
 - works well in large-N_c limit with planar graphs
- follow evolution of colour in parton showers

イロト イヨト イヨト

- paradigm of cluster model: clusters as continuum of hadron resonances
- trace colour through shower in $N_c
 ightarrow \infty$ limit
- force decay of gluons into $q\bar{q}$ or $\bar{d}d$ pairs, form colour singlets from neighbouring colours, usually close in phase space
- mass of singlets: peaked at low scales $pprox Q_0^2$
- decay heavy clusters into lighter ones or into hadrons (here, many improvements to ensure leading hadron spectrum hard enough, overall effect: cluster model becomes more string-like)
- if light enough, clusters will decay into hadrons
- naively: spin information washed out, decay determined through phase space only \rightarrow heavy hadrons suppressed (baryon/strangeness suppression)

	Simulating Soft QCD	

- self-similarity of parton shower will end with roughly the same **local** distribution of partons, with roughly the same invairant mass for colour singlets
- adjacent pairs colour connected, form colourless (white) clusters.
- clusters ("≈ excited hadrons) decay into hadrons

Practicalities

- practicalities of hadronisation models: parameters
 - kinematics of string or cluster decay: 2-5 parameters
 - must "pop" quark or diquark flavours in string or cluster decay cannot be completely democratic or driven by masses alone
 - \rightarrow suppression factors for strangeness, diquarks 2-10 parameters
 - transition to hadrons, cannot be democratic over multiplets → adjustment factors for vectors/tensors etc. 2-6 parameters
- tuned to LEP data, overall agreement satisfying
- validity for hadron data not quite clear

(beam remnant fragmentation not in LEP.)

イロト イ伺ト イヨト イヨト

• there are some issues with inclusive strangeness/baryon production

SIMULATING SOFT QCD

UNDERLYING EVENT

▲ロト ▲聞 ▶ ▲臣 ▶ ▲臣 ▶ □ 臣 = のへで

F. Krauss QCD & Monte Carlo Event Generators IPPP

Multiple parton scattering

- hadrons = extended objects!
- no guarantee for one scattering only.
- running of α_s
 - \implies preference for soft scattering.

▲□▶ ▲圖▶ ▲ 画

- first experimental evidence for double-parton scattering: events with γ + 3 jets:
 - cone jets, R = 0.7, $E_T > 5 \text{ GeV}; |\eta_j| < 1.3;$
 - "clean sample": two softest jets with E_T < 7 GeV;
- cross section for DPS

$$\sigma_{\rm DPS} = \frac{\sigma_{\gamma j} \sigma_{jj}}{\sigma_{\rm eff}}$$

$$\sigma_{
m eff} pprox 14 \pm 4$$
 mb.

		Simulating Soft QCD	
	0.12		<u> </u>
		 Wlv unfolded data,√s=7 TeV Fit distribution 	
	0.0	A+H+J particle-level template	A B
	0.08 t2		
	. <u> </u>		1 1

 W^+

- more measurements, also at LHC
- ATLAS results from *W* + 2 jets

 W^+

・ロト ・日下 ・日下

. accoreseeee

√s [GeV]

-

・ロト ・同ト ・ヨト ・ヨ

but: how to define the underlying event?

- everything apart from the hard interaction, but including IS showers, FS showers, remnant hadronisation.
- remnant-remnant interactions, soft and/or hard.
- Iesson: hard to define

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

 origin of MPS: parton-parton scattering cross section exceeds hadron-hadron total cross section

$$\sigma_{\rm hard}(p_{\perp,\rm min}) = \int_{p_{\perp,\rm min}^2}^{s/4} {\rm d}p_{\perp}^2 \frac{{\rm d}\sigma(p_{\perp}^2)}{{\rm d}p_{\perp}^2} > \sigma_{pp,\rm total}$$

for low $p_{\perp,\min}$

• remember

$$\frac{\mathrm{d}\sigma(p_{\perp}^2)}{\mathrm{d}p_{\perp}^2} = \int_0^1 \mathrm{d}x_1 \mathrm{d}x_2 f(x_1, q^2) f(x_2, q^2) \frac{\mathrm{d}\hat{\sigma}_{2 \to 2}}{\mathrm{d}p_{\perp}^2}$$

•
$$\langle \sigma_{
m hard}(\pmb{p}_{\perp,
m min})/\sigma_{\pmb{pp},
m total} \rangle \geq 1$$

• depends strongly on cut-off $p_{\perp,\min}$ (energy-dependent)!

・ロト ・同ト ・ヨト ・ヨ

Modelling the underlying event

- take the old PYTHIA model as example:
 - start with hard interaction, at scale Q_{hard}^2 .
 - select a new scale p_{\perp}^2 from

$$\exp\left[-\frac{1}{\sigma_{\rm norm}}\int\limits_{p_{\perp}^2}^{Q_{\rm hard}^2}{\rm d}p_{\perp}'^2\frac{{\rm d}\sigma(p_{\perp}^2)}{{\rm d}p_{\perp}'^2}\right]$$

with constraint $p_{\perp}^2 > p_{\perp,\min}^2$

- rescale proton momentum ("proton-parton = proton with reduced energy").
- repeat until no more allowed $2 \rightarrow 2$ scatter

< ロ > < 同 > < 三 > < 三 :

Modelling the underlying event

- possible refinements:
 - $\bullet\,$ may add impact-parameter dependence \longrightarrow more fluctuations
 - add parton showers to UE
 - "regularisation" to dampen sharp dependence on $p_{\perp,\min}$: replace $1/\hat{t}$ in MEs by $1/(t + t_0)$, also in α_s .
 - treat intrinsic k_{\perp} of partons (\rightarrow parameter)
 - model proton remnants (\rightarrow parameter)

Practicalities

- see some data comparison in Minimum Bias
- practicalities of underlying event models: parameters
 - profile in impact parameter space
 - IR cut-off at reference energy, its energy evolution, dampening paramter and normalisation cross section
 - treating colour connections to rest of event
- tuned to LHC data, overall agreement satisfying
- energy extrapolation not exactly perfect, plus other process categories such as diffraction etc..

2-3 parameters

4 parameters 2-5 parameters

・ロト ・同ト ・ヨト ・ヨ

	Simulating Soft QCD	Summary & Vision

STATE OF THE ART
イロト イヨト イヨト イヨト

State of the art: fixed order

- NLO (QCD) "revolution" consolidated:
 - lots of routinely used tools for large FS multis (4 and more)
 - incorporation in MC tools done, need comparisons, critical appraisals and a learning curve in their phenomenological use
 - to improve: description of loop-induced processes
- amazing success in NNLO (QCD) calculations:
 - $\bullet\,$ emergence of first round of 2 \rightarrow 2 calculations
 - next revolution imminent (with question marks)
 - first MC tools for simple processes ($gg \rightarrow H$, DY), more to be learnt by comparison etc. (see above)
- first N³LO calculation in $gg \rightarrow H$, more to come (?)
- attention turning to NLO (EW)
 - first benchmarks with new methods (V+3j)
 - calculational setup tricky
 - need maybe faster approximation for high-scales (EW Sudakovs)

Limitations: fixed order

- practical limitations/questions to be overcome:
 - dealing with IR divergences at NNLO: slicing vs. subtracting

(I'm not sure we have THE solution yet)

- how far can we push NNLO? are NLO automated results stable enough for NNLO at higher multiplicity?
- $\bullet\,$ users of codes: higher orders tricky \rightarrow training needed

(MC = black box attitude problematic - a new brand of pheno/experimenters needed?)

- limitations of perturbative expansion:
 - breakdown of factorisation at HO (Seymour et al.)
 - higher-twist: compare $(\alpha_{
 m s}/\pi)^n$ with $\Lambda_{
 m QCD}/M_Z$
- limitations in analytic resummation: process- and observable-dependent
 - first attempts at automation (CAESAR and some others) checks/cross-comparison necessary
- showering needs to be improved

(for NNLO the "natural" accuracy is NNLL)

・ロト ・同ト ・ヨト ・ヨ

State of the art: event generation

- Systematic improvement of event generators by including higher orders has been at the core of QCD theory and developments in the past decade:
 - multijet merging ("CKKW", "MLM")
 - NLO matching ("MC@NLO", "POWHEG")
 - MENLOPS NLO matching & merging
 - MEPS@NLO ("SHERPA", "UNLOPS", "MINLO", "FxFx")

- multijet merging an important tool for many relevant signals and backgrounds - pioneering phase at LO & NLO over
- complete automation of NLO calculations done
 - \longrightarrow must benefit from it!

(it's the precision and trustworthy & systematic uncertainty estimates!)

イロト イヨト イヨト

Vision

- we have constructed lots of tools for precision physics at LHC but we did not cross-validate them careful enough (yet) but we did not compare their theoretical foundations (yet)
- we also need unglamorous improvements:
 - systematically check advanced scale-setting schemes (MINLO)
 - automatic (re-)weighting for PDFs & scales (ME: \checkmark , PS: -)
 - scale compensation in PS is simple (implement and check)
 - PDFs: to date based on FO vs. data will we have to move to resummed/parton showered?

(reminder: LO^* was not a big hit, though)

• ... and maybe we will have to go to the "dirty" corners:

higher-twist, underlying event, hadronization, ...

(many of those driven by experiment)

< ロ > < 同 > < 三 > < 三 :

문 > 문