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Anti-matter

. . . and some misconceptions
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Merging special relativity and quantum mechanics

The Schrödinger equation is non-relativistic, predicting the
correct Newtonian relationship between energy and momentum for a
particle described by ψ (identifying E = i∂/∂t and px = i∂/∂x):

E = ~p2

2m + V .

But for a Lorentz-invariant description,
rather fulfil the relativistic relation of energy and momentum

E 2 = ~p2 +m2 (for a free particle).

This leads to a quadratic equation in E (or ∂/∂t) with positive and
negative energies (or advanced and retarded waves) as solutions:

E = ±
√

~p2 +m2 (for a free particle).
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Problem of the solution

Negative energy solutions are bad:
no stable ground state!
Every state would decay further “down”, a unique source of energy.

This also contradicts the non-relativistic limit:
Harmonic oscillator in QM has minimal energy.
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The Dirac equation

Dirac realised that this is potentially problematic and
that naively spin could not be included with ψ a
simple complex number.

To get rid of the negative energies,
he linearised the equation in E (∂/∂t) -
this was possible only with ψ forced to have at least
two components.

Identify the two components with spin up and down: ψ = (ψ↑, ψ↓).
Seemingly special relativity enforces spin!

But how about the negative energy solutions?

Dirac’s suggestion: hitherto unseen anti-particles!

As a result, he finally wrote down an equation with ψ having four
components, two for the two spins of positive and two for negative
energies.
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Anti-particles

Dirac’s proposal for solutions with E < 0:
Fill the (Dirac-)“sea” of negative energy
states, (Fermi-character prevents double
fillings and therefore guarantees the
stability of the vacuum).

Can excite them with, e.g., photons.

Then anti-particles are just “holes” in the
sea: absence of negative energy looks

like net positive energy.

The related particle (the anti-particle)
must have
same mass as ordinary particles, but
opposite charge.
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Stueckelberg-Feynman interpretation

Stueckelberg-Feynman
antimatter-interpretation (1947):
Negative energy solutions are indeed
positive energy solutions of a new
particle, moving backwards in time
(advanced vs. retarded waves).

Motivation: Time evolution operator,

U(t, t0) = exp[−iE (t − t0)]

for unperturbed free particle of energy
E .

Benefit of this interpretation: treating
electrons and positrons on equal
footing (no more holes).
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Evidence for anti-particles (Andersson, 1932)

Finding a particle electron’s mass but
opposite charge: the electron’s
antiparticle, “positron”.

“On August 2 1932 during the course of

photographing cosmicray tracks

produced in a vertical Wilson chamber

(magnetic field 15,000 gauss) designed

in the summer of 1930 by Prof R A

Millikan and the writer the track

shown in fig 1 was obtained which

seemed to be interpretable only on the

basis of a particle carrying a

positive charge but having the same

mass of the same order of magnitude as

that normally possessed by a free

electron.”
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Anti-matter etc. in Quantum Field Theory (QFT)

Relativistic version of QM, represents particles as fields

(functions of position x - quantised in QM - and time t).

Wave functions of, say, individual electrons are excitations of the
electron field with a given frequency and wave vector. Summing
over these excitations in Fourier space yields the field.

While “first quantisation” recognises the wave nature of particles
and the particle nature of waves, this “second quantisation” allows
for the presence of anti-particles and, accordingly, the possibility to
create and annihilate particles.

Interpretation: Fields can be thought of as harmonic oscillators
filling the entire space, one at each position.
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Perturbative expansion

Replace the potentials with
interactions between particles .

Basic idea: Particles as carriers of force
(photon carrier of electromagnetic force)

Couplings in interactions parametrise
interaction strengths and act as small
perturbation parameter λ.

Assuming the interaction strength between
particles is small, transition amplitudes

M between particle states can be
computed perturbatively.

Each term of the perturbative amplitude
can be represented graphically:

Feynman diagrams .

Interference of
amplitudes in

e−e+-scattering

A QM effect:
Light-by-light
scattering
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Virtual particles

How about the internal lines/propagators? Total four-momentum
conservation gives them a virtual mass: E 2 − p2 = Q2 6= m2.

Go to Lorentz-frame where p = 0 and recall Heisenberg’s

uncertainty relation: ∆E∆t ≥ 1 (with ∆E ∝
√
Q2 −m2).

This allows to create unphysical
(anti-)particles with lifetime
τ ≃ ∆t ≤ 1/∆E

(diagram to the right, the photon is called virtual.)

No problem, if (local) conservation of
energy-momentum guaranteed.

Such processes are known as a virtual processes.
They typically form the intermediate states of Feynman diagrams.

But: Can also “borrow” energy from the vacuum for a time
τ ≃ 1/∆E −→ vacuum fluctuations.
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Consider the reaction e+e− → γ → µ+µ− (previous slide).

Ee+e− = E+ + E− =
√

m2 + ~p2+ +
√

m2 + ~p2− ≥ 0.

Energy-momentum conservation ensures that

Eγ = Ee+e− and ~pγ = ~p+ + ~p−.

However, due to the electron’s rest mass it is impossible to satisfy

E 2
γ − ~p2γ = m2

γ = 0,

the photon is off its mass shell! (E 2 − p2 6= 0!)

This implies that the lifetime of the photon is limited: ∆t < 1/∆E

in the centre-of-mass frame of the photon (~pγ = 0)
For a photon with Ec.m. > 2mµ ≈ 210MeV , τ ≤ 1fm/c ≈ 10−24s.

The photon cannot be observed at all - they remain intermediate.
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Renormalisation: Sketching the problem

(Not examinable)

Virtual particles also emerge by, e.g.,
an electron emitting and re-absorbing a
photon.

Then the four-momenta of the
intermediate particles is not fixed by
energy-momentum conservation: an
integration over the four-momentum
inside the loop becomes mandatory.

In the case above, this quantum correction is related to the integral
∞
∫

0

d
4k k

k2((q−k)2−m2)

and diverges - naively linearly.
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(Not examinable)

The infinities stemming from diagrams like the one above are cured
by redefining the fields and their interaction strengths to include
the quantum corrections, renormalisation.

This is done by adding counter-terms to the theory, which have
exactly the same divergence structure.

In so doing, the quantities in the theory are replaced by “bare”
quantities, including all diagrams, including the counter-terms yields
finite, physical results.

The beauty of this concept is that it can be proven to be in principle
mathematically well-defined and without ambiguities.

The catch is, though, that in practical calculations the perturbation
series is truncated, leading to residual ambiguities (see later).
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Experimental evidence: Running couplings

On of the manifestations of the
quantum corrections above is that the
couplings (interaction strengths)
become scale-dependent!

(Dependence would vanish after all perturbative orders are calculated.)

This comes from calculating an
observable to a given perturbative
order and comparing the result with
experiment to extract the coupling
strength.

In particle physics, scales are given in
units of energy (inverse lengths).

Similarly, also masses vary with scale.

Strong coupling strength
αs = g2

s /(4π)
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Learning outcomes

Dirac equation and antiparticles

Perturbative expansion, once more, and its representation by
Feynman diagrams

Internal lines and virtual particles.

F. Krauss

Foundations of Physics IIIQuantum and Particle PhysicsLecture 6


	Antimatter
	Quantum Field Theory

