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Reminder: Definition in classical mechanics
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B

χ

Consider a beam of particles, approaching a target at rest with
velocity v∞. Describe the target by a potential centered at the origo.

Particles are scattered at different solid angles Ω(χ, φ).

Define cross section dσ(Ω) = dN(Ω)/n with

dN(Ω) = number of particles scattered per unit time into an interval
of size dΩ physical units: s−1.
n = number of particles passing per unit time through a unit area
perpendiculr to the beam - physical units: m−2

s
−1

Total cross section: σtot =
∫
dσ =

∫
dΩσ(Ω).
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Formulation in Quantum Mechanics: Potential scattering

Consider a potential V (r), located at the origin
(Vanishing faster than Coulomb potential 1/r for r → ∞)

Schrödinger equation for a particle with initial momentum (E , k):

[

−
1

2m
∇2 + V (r)

]

ψk(r) = Eψk(r) .

Solution for r →∞-behaviour: (See also lecture by A.Ciavarella.)

ψk(r)
r→∞

= A

[

e ik·r + f (Ω)
e ikr

r

]

Want to interpret this in terms of a cross section. Define flux:

j(r) = −
i

2m
{ψ∗

k
(r) [∇ψk(r)]− [∇ψ∗

k
(r)]ψk(r)} .
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Analyse solution from last slide, ψk(r)
r→∞

= A

[

e ik·r + f (Ω)
e ikr

r

]

First term A exp[ik · r ]
−→ monoenergetic plane wave with unit density ρ = 1 (normalised)

j
in
= k/m

Second term Af (Ω) exp[ikr ]/r :
particles emitted radially off the scattering centre with density
ρ = |f (Ω)/r |2,

j
out

=
ke

r

m

∣

∣

∣

∣

f (Ω)

r

∣

∣

∣

∣

2

.

Cross section: σ(Ω) = |f (Ω)|2
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Partial wave analysis of f (Ω)

Assuming a centrally symmetric potential:
V (r) = V (r) −→ f (Ω) = f (cos θ, φ) −→ f (cos θ)

(Remember dΩ = d cos θdφ.)

Can expand f (θ) through Legendre polynomials as

f (θ) =

∞
∑

l=0

flPl(cos θ)

After comparing coefficients etc.: Scattering amplitudes

f (θ) =
1

k

∞
∑

l=0

[

(2l + 1)e iδl sin δlPl (cos θ)
]

with potential-dependent scattering phases δl .
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Interpretation for one partial wave (index l):

ψl =

[

(

e−ikr+i(l+1)π + e ikr
) 2l + 1

2ik
+ fle

ikr

]

Pl (cos θ)

r

No scatter (fl = 0):
Spherical incoming and outgoing waves with e−ikr+i(l+1)π/r and
e ikr/r modulated by Pl .

With scatter change of coefficient for outgoing wave:

1 −→ 1 +
2ik

2l + 1
fl

Enforcing probability conservation (unitarity): Demand

1 =

∣

∣

∣

∣

1 +
2ik

2l + 1
fl

∣

∣

∣

∣

2

= e2iδl ←→ fl =
2l + 1

k
e iδl sin δl .
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Total cross section

Write the (total) cross section as

σtot =

∫

dφd cos θ|f (θ)|2

= 2π
∑

ll′

[

(2l + 1)(2l ′ + 1)

k2
e i(δl−δ

l′
) sin δl sin δl′

∫

d cos θPl(cos θ)Pl′(cos θ)

]

= 2π
∑

ll′

[

(2l + 1)(2l ′ + 1)

k2
e i(δl−δ

l′
) sin δl sin δl′

δll′

2l + 1

]

=
∑

l

4π(2l + 1)

k2
sin δl .
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Two specific cases

Scattering off a hard sphere with radius a:

σtot = 2πa2 = 2σclassical .

Rutherford scattering off a potential α/r :

σ(Ω) =
( α

4E

)2 1

sin4 θ

2

= σclassical(Ω) .
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Learning outcomes

Cross section by summing over scattering amplitudes f (θ) and
integrating over outgoing phase space, given by Ω.

Check for/enforce probability conservation: scattering amplitudes
become merely phase shifts in spherical waves.

If potential has infinite reach (Coulomb potential), cross section
diverges. This is true in both classical and quantum physics.
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