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Experimental foundation: c is constant

Idea: Check existence of ether. Use earth’s velocity orbiting around
the sun. Leads to different relative velocities.

Send coherent light along two directions,
check for shifts in interference pattern due
to different run times:

t‖ = 2L
c(1−v2

E
/c2)

and t‖ = 2L

c

√
1−v2

E
/c2

.

But: No variation seen.

Conclusion: Speed of light is a constant,
verified by a number of similar experiments.

Recently, a neutrino experiment (Opera)
hinted at neutrinos being faster than c

This is not confirmed by other experiments
(neutrinos from supernovae etc.), still under
discussion.
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Lorentz transformations

Basic idea: Space and time are connected.

Consequence: Relative velocities between reference frames affect
both space and time coordinates.

x → x ′ =
x − ut
√

1− u2

c2

and t → t ′ =
t − ux

c2
√

1− u2

c2

.

From now on: Will set c = 1 :

x → x ′ =
x − ut
√

1− u2
and t → t ′ =

t − ux
√

1− u2
.
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Adding velocities

Consequence of this: Velocities are always below c and can never

add up to a result larger than c :

v
tot

=
v1 + v2

1 + v1 · v2

.

Remark: This limits the maximal transmission velocity of
information to c , therefore a perfectly rigid body cannot exist.

Remark: Space-time is divided into regions that are either

causally connected, “time-like distances”,
∆12 = (t1 − t2)

2
− (x1 − x2)

2
> 0 or

disconnected, “space-like distances”,
∆12 = (t1 − t2)

2
− (x1 − x2)

2
< 0
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Manifest Lorentz-invariance: Four-vectors

Since time and space on identical footing: Introduce “four-vectors”

xµ = (t, x) and pµ = (E , p).

Introduce Lorentz-invariant norms

x2 = t2 − x2 and p2 = E 2 − p2 .

and scalar products

x1 · x2 = x
µ
1 x2µ = x1µx

µ
2 = x

µ
1 x

ν
2 gµν = t1t2 − x1 · x2

Achieved through a metric (metric tensor)

gµν = gµν =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









Remark: Gravity acts by distorting the metric gµν .
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Lorentz transformations, once more

Rewrite z-component of

x → x ′ =
x − ut
√

1− u2
and t → t ′ =

t − ux
√

1− u2

in matrix form – acting on vector (t, x):

M̂uz
=









cosh η 0 0 − sinh η
0 1 0 0
0 0 1 0

− sinh η 0 0 cosh η









with tanh η = uz for a “boost” in z-direction.
(Remember cosh x = 1/

√

1 − tanh2 x and sinh x =

√

tanh2 x/(1 − tanh2 x).)

Note the similarity to a rotation in space!
(Gets even better when you remember cos(iη) = cosh η and sin(iη) = i sinh η.)
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Mass, momentum and energy

Demand conservation of mass, momentum and energy to be
invariant under Lorentz transformations:

For mass: m(v) =
m0√
1− v2

= m0 +m0
v2

2
+ . . . .

This is the original reason for the identification E = mc2 -
the second term in the expansion is just the kinetic energy.

Using p = mv therefore E 2 = m2
0 + p2.

This implies that for particles with no rest mass E/|p| = 1.

From now on: will only call the rest mass the mass of a particle.

F. Krauss

Foundations of Physics IIIQuantum and Particle PhysicsLecture 1



Review of special relativity Relativistic kinematics Learning outcomes

Relativistic two-body decay

Consider the decay of a massive particle into two lighter ones, such
that rest masses satisfy M > m1 +m2.

To calculate energies and momenta of decay products use:
Rest frame of decaying particle: E = M, P = 0;
Energy conservation: E = E1 + E2;
Momentum conservation: P = p

1
+ p

2
=⇒ |p

1
| = |p

2
|;

Energy-momentum relation: E 2
i
= m2

i
+ p2

i
.

Case 1: m1 = m2 = 0

E1 = p1 = p2 = E2 = M/2

Case 2: Arbitrary masses, m1 6= 0, m2 6= 0:

E1,2 =
M2 ± (m2

1 −m2
2)

2M
and p1,2 =

√

(M2 −m2
1 −m2

2)
2 − 4m2

1m
2
2

2M
.

F. Krauss

Foundations of Physics IIIQuantum and Particle PhysicsLecture 1



Review of special relativity Relativistic kinematics Learning outcomes

Relativistic two-body reactions

Central reaction type in particle physics:
2-body scattering: a+ b → c + d

Convenient frame of inertia for description:
centre-of momentum frame,

characterised by p
a
+ p

b
= p

c
+ p

d
= 0

a

b d

c

Calculate Lorentz-invariant mass (energy) from:

s = M2
inv

= (Ea + Eb)
2 − (p

a
+ p

b
)2

= (Ec + Ed )
2 − (p

c
+ p

d
)2 .

This is the energy squared in the c.m.-frame: s = E 2
c.m..
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Relativistic two-body reactions (cont’d)

Can also calculate the (Lorentz-invariant) momentum transfer from
a to c , called t and from a to d , called u:

t = (Ea − Ec)
2 − (p

a
− p

c
)2 = (Eb − Ed)

2 − (p
b
− p

d
)2

u = (Ea − Ed)
2 − (p

a
− p

d
)2 = (Eb − Ec)

2 − (p
b
− p

c
)2 .

Properties:

s > 0, and t, u ≤ 0
s + t + u = m

2
a +m

2
b +m

2
c +m

2
d .

Therefore, for massless particles s + t + u = 0.

In the c.m.-frame, and for massless particles:

t = −E 2
c.m.

2
(1− cos θac) and u = −E 2

c.m.

2
(1 + cos θac) .

θac is called the “scattering angle”.
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Particle creation and decay

Consider a special case of 2 → 2-scattering:
Production of intermediate particle:

a+ b → M → c + d

Energy and momentum of M in c.m.-frame:
E = Ea + Eb, P = 0

a

b d

c

M

We will see that the probability for this process “resonates”, if
s = E 2

c.m. = M2 (resonance production).
The production cross section will yield a peak.

Note: Cross section is a way to quantify the probability for a process
to happen, more on this in Lecture 3.
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Example for resonance production: e+e− → hadrons
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Learning outcomes

Lorentz transformations: time dilation, length contraction.
Very examinable!

Will use a system of units where c = 1 (please, get used to it)

Four vectors (not examinable)

Energy-momentum mass relation E 2 − p2 = m2, mass in the
following always the rest mass.

Kinematics of two-body decays and two-body reactions.
Very examinable!
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