

LHC-LC Meeting 5 July 2002

Squark and gluino mass determinations

Massimiliano Chiorboli & Alessia Tricomi CMS Collaboration Dipartimento di Fisica and INFN Catania

Mass reach @ 14 TeV vs 28 TeV

- Expected squark-gluino mass reach with CMS
 - 1.5 1.8 TeV with 10 fb⁻¹
 - 2.3 2.5 TeV with 100 fb⁻¹
 - 3.7 4.2 Tev with 100 fb⁻¹ @28 TeV
 - 2.6 3.0 Tev with 300 fb⁻¹
 - 2.8 3.2 TeV with 1000 fb⁻¹

Sparticle's reconstruction

 Look at a particular decay chain and try to reconstruct sparticles for some set of mSUGRA parameters

Proposed Post-LEP Benchmarks for Supersymmetry (hep-ph/0106204)

- \geq 2 isolated leptons, \textbf{p}_{T} >15 GeV, $|\eta|$ <2.4
- \geq 2 b-jets, p_{T} >20 GeV, $|\eta|$ <2

SM bkg: tt, Z+jet, W+jet, ZZ, WW, ZW

Point B spectra

$m_{1} = 250 sign(u) - +$		g	595.1	† _L	392.9
$m_{1/2} = 230$ $3ign(\mu) = +$		Ь _L	496.0	† _R	575.9
$m_0 = 100$ $A_0 = 0$		b _R	524.0	χ4 ⁰	361.1
tan $\beta = 10$		q L	559	χ₃ ⁰	339.9
Daint D		q _R	520	χ2 ⁰	174.4
POINT B		IL.	196.5	χ2 [±]	361.6
$\sigma_{susy}^{TOT} = 57.77 \text{ pb}$		I _R	136.2	X1 [±]	173.8
				$\chi_1^0 = LSP$	95.6

 $pp \rightarrow \widetilde{g} \rightarrow \widetilde{b}b (17\% b_{L}, 10\% b_{R})$ $\rightarrow \widetilde{\chi}_{2}^{0}b (37\% b_{L}, 25\% b_{R})$ $\rightarrow \widetilde{\chi}_{1}^{0}\ell^{+}\ell^{-} (0.04\%)$ $\rightarrow \widetilde{\ell}^{\pm}\ell^{\mp} \rightarrow \widetilde{\chi}_{1}^{0}\ell^{+}\ell^{-} (16.4\%)$ $\rightarrow \widetilde{\tau}^{\pm}\tau^{\mp} \rightarrow \widetilde{\chi}_{1}^{0}\tau^{+}\tau^{-} (83.2\%)$

ISAJET 7.58 PYTHIA 6.152

CN

ATLAS Note Phys-109 (Hinchliffe, Paige...)

Combination of the dilepton pair with all the b-jets in the event

LHC-LC Meeting, 5 July 2002

INFN

Istituto Nazionale di Fisica Nucleare

Sbottom reconstruction

Chose the most energetic b-jet $\vec{p}_{\widetilde{\chi}^0_2} =$

$$= \left(1 + \underbrace{M_{\widetilde{\chi}_{1}^{0}}}_{M_{\ell^{+}\ell^{-}}}\right) \vec{p}_{\ell^{+}\ell^{-}} MC \text{ true}$$

Combinatorial suppression

Gluino reconstruction

Gluino mass

 $\begin{array}{l} \mbox{Result of fit:} \\ M(\widetilde{\chi}^{0}_{2}bb) = 585.1 \pm 11.1 \ \mbox{GeV} \\ \mbox{\sigma} = 50.1 \end{array}$

Generated mass:

$$M(\widetilde{g}) = 595.1 \text{ GeV}$$

Dependance on $M(\chi_1^0)$

We assume $M(\chi_1^0)$ known but... we cannot detect the neutralinos!

Dependance on $M(\chi_1^0)$: a more realistic situation...

$M(\tilde{g}) - M(\tilde{b})$ estimation

Dependance on M(II)

CN

Results for 60 fb⁻¹

 $75 \ GeV < M_{_{\ell^+\ell^-}} < 81 \ GeV$

Alessia Tricomi

LHC-LC Meeting, 5 July 2002

Detector resolution seems to prevent sbottom separation

Full detailed simulation needed!

 $M(\tilde{g}) - M(\tilde{b})$ for 60 fb⁻¹

60 fb⁻¹

NFN

Istituto Nazionale di Fisica Nucleare

Result of fit:

$$M(\widetilde{\chi}_2^0bb) - M(\widetilde{\chi}_2^0b) = 83.1 \pm 2.4$$
 GeV
 $\sigma = 19.8$

Generated values:

$$M(\tilde{g}) - M(\tilde{b}_{L}) = 99.1 \text{ GeV}$$

 $M(\tilde{g}) - M(\tilde{b}_{R}) = 71.1 \text{ GeV}$

 $M(\tilde{g}) - M(\tilde{b})$ for 300 fb⁻¹

300 fb⁻¹

NFN

Istituto Nazionale di Fisica Nucleare

Result of fit:

$$M(\tilde{\chi}_2^0bb) - M(\tilde{\chi}_2^0b) = 86.4 \pm 1.0$$
 GeV
 $\sigma = 22.7$

Generated values:

$$M(\tilde{g}) - M(\tilde{b}_{L}) = 99.1 \text{ GeV}$$

 $M(\tilde{g}) - M(\tilde{b}_{R}) = 71.1 \text{ GeV}$

 $M(\tilde{g}) - M(\tilde{b})$ for 300 fb⁻¹

300 fb⁻¹

Result of fit:

$$M(\tilde{\chi}_2^0bb) - M(\tilde{\chi}_2^0b) = 85.7 \pm 2.4$$
 GeV
 $\sigma = 20.4$

Generated values: $M(\tilde{g}) - M(\tilde{b}_{L}) = 99.1 \text{ GeV}$ $M(\tilde{g}) - M(\tilde{b}_{R}) = 71.1 \text{ GeV}$

INFN Istituto Nazionala di Fisica Nuclear

Summary of results @ Point B

- Sbottom and gluino reconstruction possible even at low integrated luminosity (10 fb⁻¹) with
 - Resolution <10%
 - Errors on mass determination of 1-2% (if we assume $M(\chi_1^0)$ known)
 - Errors ~ 5-6% if we approximate $M(\chi_1^0) \sim M(II_{max})$ (this approximation is valid only in a mSUGRA scenario for which $M(\chi_2^0) \sim 2M(\chi_1^0)$, if we want a model independent analysis, we have to find other solutions)
- At 60 fb⁻¹ improvements of ~ few percent but still no sbottom separation
 - Maybe detector resolution prevents it
 - Detailed simulation needed at higher integrated luminosity to understand if possible
- At 300 fb⁻¹ and assuming $M(\chi_1^{\ 0})$ measured from a LC, we can have errors of ~ 0.5%

Point G

Dilepton edge

Istituto Nazionale di Fisica Nucleare

Dilepton edge

LHC-LC Meeting, 5 July 2002

tituto Naziona di Fisica Nucleare

Sbottom & gluino mass reconstruction

Point G for 300 fb⁻¹

Squark reconstruction

· ≥2 isolated leptons, p_T>15 GeV, $|\eta| < 2.4$ · ≥ 2 jets (not b), p_T>20 GeV, $|\eta| < 2.4$ anti b-tag · b-jet veto $\sigma_{ip} < 1$

No SM bkg: 2 leptons + high E_t^{miss} cut

Squark reconstruction

Istituto Nazionale di Fisica Nucleare

Results at point B and G

Point	Luminosity (fb ⁻¹)	$ \begin{array}{c} M(\widetilde{b})(\chi_{1 \text{ true}}^{0}) \\ \mathbf{GeV} \\ \widetilde{c} \\ \mathbf{V} \\ $	σ (GeV)	$\begin{array}{c} M(\widetilde{g})(\chi_{1 \text{ true}}^{0})\\ GeV\\ GeV\\$	σ (GeV)	M(ĝ)-M(ĥ) GeV	σ (GeV)
		$M(b)(\chi_{1}^{\circ} = M_{\ell^{+}\ell^{-}})$		$M(g)(\chi_1^{\circ} = M_{\ell^+\ell^-})$			
В	10	480.5 ±5.4	43.3	587.1±11.3	41.4	86.7±4.7	20.5
		467.8		559.3			
	60	501.1 ±5.5	32.6	581.9±7.5	48.4	83.1±2.4	19.8
	300	512.0±1.4	34.7	594.2±5.1	39.5	85.7±2.4	20.4
G	60	-	-	-	-		-
	300	744.2±17.7	54.2	921.1±12.3	67.1	150.3±6.5	54.1
	Alessia Tricomi						

LHC-LC Meeting, 5 July 2002

Conclusions

@ POINT B

- Sbottom and gluino reconstruction possible even at low integrated luminosity (10 fb⁻¹) with
 - Resolution <10%
 - Errors on mass determination of 1-2% (if we assume $M(\chi_1^0)$ known)
 - Errors ~ 5-6% if we approximate $M(\chi_1^0) \sim M(II_{max})$ (this approximation is valid only in a mSUGRA scenario for which $M(\chi_2^0) \sim 2M(\chi_1^0)$, if we want a model independent analysis, we have to find other solutions)
- At 60 fb⁻¹ improvements of ~few percent but still no sbottom separation
 - Maybe detector resolution prevents it
 - Detailed simulation needed at higher luminosity to understand if possible
- At 300 fb $^{-1}$ and assuming M($\chi_1{}^0$) measured from a LC, we can have errors of $\sim 0.5\%$

@ POINT G

- Sbottom and gluino reconstruction possible only at high luminosity
- At 300 fb⁻¹ we can reconstruct sbottoms and gluino with resolution $\sim 7\%$, errors 1-2%, assuming M(χ_1) known from a LC
- First attempt to reconstruct other squarks look promising but...

More work in progress...

Still many things to be understood and many tools to be developed and tuned before LHC starts!

