Search for Z' Present and Future

The LHC/LC Study group meeting CERN

Introduction

At Saint Malo 2 examples of LHC/LC complementarity were given:

• Assume that a mass peak is observed at LHC in I⁺I⁻ : is it a Z' ? of which type ? is it a KK of Z/γ ?

 Assume that LHC finds a Higgs mass incompatible with LEP/Tevatron prediction

 \Rightarrow Can FLC solve the puzzle?

 \Rightarrow Could this new input have an impact on LHC or Super-LHC ?

 In this talk, I will illustrate these ideas starting from LEP/SLD data TeV ND>4 γ +Z A'=-1.08 V'=-1.81 For leptons

F. Richard St MALO April 2002

J.L.Hewett et al hep/0203091

Figure 10: Plots of the $\sin^2\theta_{eff}$ versus M_W plane (top) and $\sin^2\theta_{eff}$ versus R_b plane (bottom) showing current and future sensitivities, SM predictions, and RS model predictions. The diamonds show the current measured values. The large solid and dashed ellipses represent respectively the 68% and 95% CL regions from current sensitivities, while the smaller solid ellipses anticipate the same after operation of GigaZ. The black dashed times show the SM

LEP1 SLD results

- With LEP1/SLD leptonic asymmetries
 MH ~40 GeV
- Same is true from W mass
- Correlated effects through m_t
 - \rightarrow <2 σ significance
- Speculative studies going on, e.g.
 G. Altarelli et al. SUSY
 V.A. Novikov New generation
- What about a Z' ?
- A^b_{FB} gives MH ~600 GeV 3σ effect
 ⇒New physics or experimental bias ? Discussion postponed but from now on this result is ignored.

A Z' Scenario

- Extended GUT groups like E6 'superstring inspired' or SO(10) predict $Z'_{\psi/\chi}$ or $Z_R W_R$
- Several other motivations like

 VR, LR symmetry, µ problem...
 No definite mass predictions: SB in steps, at GUT scale, with some subgroups possibly unbroken down to 1TeV

 Also true e.g. in D-brane string models (Ibanez et al hpo205083)

 A Z' at 1TeV allows for a heavy Higgs boson (Peskin and Wells)
 Seems ideally suited to explain an apparent light H at LEP1/SLD F. Richard LAL July 2002

$$m^{2} = \begin{pmatrix} m^{2} & \gamma m_{Z}^{2} \\ \gamma m_{Z}^{2} & M^{2} \end{pmatrix}, \qquad \delta = \gamma^{2} \frac{m_{Z}^{2}}{M^{2}}, \qquad \xi = \gamma \frac{m_{Z}^{2}}{M^{2}}$$
$$\Delta m_{W} = 57. \, \delta \quad (\text{GeV})$$
$$\Delta \sin^{2} \theta_{w}^{\text{eff}} = -0.33 \, \delta + 0.22 \, q_{L} \xi + 0.26 \, q_{R} \xi$$
$$\Delta \Gamma_{\ell} = 100 \, \delta - 170 \, q_{L} \xi + 150 \, q_{R} \xi \quad (\text{MeV})$$

Complementary observables

$$q_{L} = \cos \theta \frac{3}{2\sqrt{6}} + \sin \theta \frac{1}{6} \sqrt{\frac{5}{2}} \qquad \theta = 0 \qquad Z\chi$$
$$q_{R} = \cos \theta \frac{1}{2\sqrt{6}} - \sin \theta \frac{1}{6} \sqrt{\frac{5}{2}}, \qquad \theta = \pi/2 \qquad Z\psi \text{ axial}$$

$$\gamma = 2s\sin^2\beta(\cos\theta\frac{1}{\sqrt{6}} - \sin\theta\sqrt{\frac{5}{18}}) + 2s\cos^2\beta(\cos\theta\frac{1}{\sqrt{6}} + \sin\theta\sqrt{\frac{5}{18}})$$

\rightarrow Mixing in most cases

 $M_w \, GeV$

F. Richard July 2002

M_w GeV

F. Richard July 2002

 $M_w \, GeV$

F. Richard July 2002

M_w GeV

Z' at LEP1/SLD

Using combined LEP1/SLD data: $m_{Z'} = 1.3 \text{TeV}$ and ψ_d

- → Perfect agreement LEP1/SLD
- \rightarrow No contradiction with LEP2 et al.
- Not yet significant but shows the potential of a GIGAZ
- Significance could improve with m_t and M_W at FNAL (also with $\alpha(M_Z)$)
- The agreement is lost for a heavy Higgs at 500GeV
- Similar agreement with Z'_R at 1.9TeV

Model	χ	Ψ	L-R
LEP2	630	510	950
FNAL	595	590	630
Atomic	730	-	790
Parity			

95% confidence level lower limit on the Z' mass

M_w GeV

F. Richard July 2002

F. Richard July 2002

From LEP/SLD to FLC

- FLC+LHC could give a very precise determination of Z' parameters:
- $\rightarrow m_W$ gives γ and ξ using $m_{Z'}$ from LHC $\rightarrow sin^2 \theta_W$ then gives θ
- \rightarrow from $\gamma + \theta$ one can determine $\cos 2\beta$
- From GIGAZ one expects
- \rightarrow Mixing Z-Z' ξ at %
- \rightarrow Mixing $\chi \psi \theta$ to 0.1 rad
- \rightarrow Symmetry breaking cos2 β to 0.1
- Unique opportunity to fully elucidate the origin of this Z'
- Works for m_Z up to 3-5TeV
- FLC at high energy +LHC allow to solve ambiguities (e.g. Z_{ψ}/Z_{R})

F. Richard LAL July 2002

A^b_{FR}?

Discrepancy LEP/SLD ?

 A^b_{FB}=0.0990(17)
 LEP1
 A^b_{FB}=3/4A_bA_l=0.1038(25)
 SLD
 A^b_{FB}=0.1036(08)
 SM

 E₆ model has D_L and D_R fermions which can mix with b quarks but there is no way to reconcile these effects

with a standard R_b

 Other schemes are possible with unusual charges (D. Chang, E. Ma hep/9805273) or mirror fermions (D. Choudhury et al. hep/0109097)

GIGAZ with polar to remeasure
 A_b A₁ at per mil level

Conclusions

- A TeV Z' could explain the apparent light Higgs suggested by LEP1/SLD data (Z'_{\u03c4} 1.3TeV or Z_R 1.9TeV)
- This scenario illustrates how FLC can unambiguously determine the origin of a mass peak observed at LHC
- A similar game can be played with a KK recurrence of a Z for masses up to 10 TeV
- Presumably, knowing the origin of this effect, one can orient further searches at LHC/LC related to the underlying physics