# SUSY parameter determination with SFITTER

Remi Lafaye, Tilman Plehn, Dirk Zerwas

LAPP Annecy, CERN, LAL Orsay

LHC/LC Study Group meeting at CERN

February 27, 2004

- Introduction
- SFITTER
- MSUGRA in SPS1a
- MSSM in SPS1a
- Conclusions and Perspectives

# Introduction

SFITTER is designed to be a tool to determine SUSY parameters from experimental measurements

Started in the GDR and as a project in Les Houches 2003

Languages used: C++, C and Fortran

Different approaches used:

- analytical calculations (J.-L. Kneur et al., J. Kalinowski et al.)
- calculating model sets and interpolating (G. Polesello)
- fitting: FITTINO (P. Bechtle and P. Wienemann)

Difficulties:

- many parameters, e.g. MSSM
- $\rightarrow$  not so good for a GRID (CPU-time), slightly better for fit
  - starting point dependence of fit
- $\rightarrow$  fit by starting values could be confined to a "wrong" region or biased to the "right region", GRID is less biased

SFITTER uses both approaches and allows to combine them

Complete use:

- 1. GRID (subset of parameters with subset of measurements) others fixed
- 2. GRID parameters fixed and non-GRID parameters fit
- 3. fit of all parameters

Caveat: for the GRID separable subset of parameters and measurements, e.g. in the MSSM neutralino and chargino masses for M1, M2,  $\mu$ , tan  $\beta$ 

### SFITTER

Backbone of SFITTER are

- SUSPECT for the mass calculations
- MSMlib for branching ratios and  $\mathrm{e^+e^-}$  cross sections
- Prospino2.0 NLO for pp cross sections
- MINUIT

Long term: be able to use different calculations/tools such a SDECAY, SoftSUSY, etc

In practice driven by sfit\_params.in

// Select model : MSUGRA GMSB AMSB pMSSM pMSSM-HighScale MODEL = MSUGRA // pre-fit/SCAN GRID = 0 //Parameters for MSUGRA - Only sign of MU matters M0 = 500. [G/M] STEP=20. LOW=0. HIGH=1000. GRID=10 M1/2 = 500. [G/M] STEP=50. LOW=0. HIGH=1000. GRID=10 TANB = 50. [G/M] STEP=20. LOW=0. HIGH=100. GRID=10 A0 = 0. [G/M] STEP=200. LOW=-1000. HIGH=1000. GRID=20 SGNMU = 1. [-/-] STEP=0 LOW=1. HIGH=1.

and sfit\_data.in

// Automatically set data error to 0.5%
DATA\_ERR = 0.005
// Automatically smear data measurements with a gaussian
SMEAR = 0
// Higgs masses
m\_h = 111.6 +/- 11.16 [-/M]
// neutralino masses
m\_chi+\_1 = 182.3 +/- 18.23 [G/M]
m\_chi0\_1 = 97.03 +/- 97.03 [G/M]
// Correlations
//CORR(m\_chi+\_1,m\_chi+\_2) = 0.03

### Data Sets SPS1a by G. Blair, G. Polesello et al.

Scope of the analysis: central value of all masses of SPS1a MSUGRA by SUSPECT theoretical errors zero no correlations between measurements

| Particle       | mass  | DATA SetLHC | DATA Set LC | DATA Set LHCLC |
|----------------|-------|-------------|-------------|----------------|
| h              | 111.6 | 0.1         | 0.05        | 0.05           |
| А              | 399.1 |             | 1.5         | 1.5            |
| Н              | 399.6 |             | 1.5         | 1.5            |
| H+             | 407.1 |             | 1.5         | 1.5            |
| $\chi_1$       | 97.03 | 4.8         | 0.05        | 0.05           |
| $\chi_2$       | 182.9 | 4.7         | 1.2         | 0.08           |
| $\chi_4$       | 370.3 | 5.1         |             | 2.3            |
| $\chi_1^{\pm}$ | 182.3 |             | 0.55        | 0.55           |
| $\chi_2^{\pm}$ | 370.6 |             | 3.0         | 3.0            |
| $\tilde{g}$    | 615.7 | 8.0         |             | 6.4            |
| $\tilde{t}_1$  | 411.8 |             | 2.0         | 2.0            |
| ${	ilde b}_1$  | 520.8 | 7.5         |             | 5.7            |
| ${	ilde b}_2$  | 550.4 | 7.9         |             | 6.2            |
| $\tilde{c}_1$  | 551.0 | 23.6        |             | 23.6           |
| $\tilde{c}_2$  | 570.8 | 17.4        |             | 9.8            |
| $	ilde{u}_1$   | 551.0 | 23.6        |             | 23.6           |
| $	ilde{u}_2$   | 570.8 | 17.4        |             | 9.8            |
| ${	ilde s}_1$  | 549.9 | 23.6        |             | 23.6           |
| ${	ilde s}_2$  | 576.4 | 17.4        |             | 9.8            |
| $	ilde{d}_1$   | 549.9 | 23.6        |             | 23.6           |
| $	ilde{d}_2$   | 576.4 | 17.4        |             | 9.8            |
| $	ilde{	au}_1$ | 135.5 | 8.6         | 0.3         | 0.3            |
| $	ilde{	au}_2$ | 207.9 |             | 1.1         | 1.1            |
| $	ilde{\mu}_1$ | 144.9 | 4.8         | 0.2         | 0.2            |
| $	ilde{\mu}_2$ | 204.2 | 5.0         | 0.5         | 0.5            |
| $	ilde{e}_1$   | 144.9 | 4.8         | 0.05        | 0.05           |
| $	ilde{e}_2$   | 204.2 | 5.0         | 0.2         | 0.2            |
| $\tilde{ u}_e$ | 188.2 |             | 0.7         | 0.7            |

LC strong on Higgs and Sleptons plus stop

LHC strong on gluinos and squarks

B. Gjelsten et al: use of LC  $\chi_1$  mass in LHC analyses improves

MIA:  $\chi_3$  (LHCLC),  $\chi_2^{\pm}$  (LHC),  $\tilde{t}_2$  (LHCLC) e.g.  $\chi_3 \rightarrow Z^0 + X$ , but BR $(\tilde{q}_L \rightarrow \chi_3 q) \sim 0.12\%$ 



• infinite statistics and no background: doable

but need to calibrate average (or slope if fit)

 $\rightarrow p_T$  of  $Z^0$  depends on other SUSY masses....

- 4 or more jets
- $p_{T,jet1} > 150 \text{GeV}, p_{T,jet2} > 100 \text{GeV}, p_{T,jet3} > 50 \text{GeV}$
- $M_{\text{eff}}$  (sum pt of 4 jets,  $E_T^{\text{miss}}$ ) > 600GeV
- $E_T^{\text{miss}} > \max(100 \text{GeV}, 0.2 M_{\text{eff}})$
- two and only two isolated OS-SF electrons or muons
- $89 \text{GeV} < M_{\text{ee}} \text{ or } M_{\mu\mu} < 93 \text{GeV}$
- $\tilde{q}_L \tilde{g} \to \chi_3 + Y \to Z^0 + X$ , efficiency excluding branching ratios  $\epsilon = 5\%$

# Standard Model background

| Process | decay                             | events     | σ                           | $BR \cdot \sigma$       | $\sigma_B$ |
|---------|-----------------------------------|------------|-----------------------------|-------------------------|------------|
| fZ      | $Z^0 \to \ell \ell$               | 1M         | $3.8 \cdot 10^6$ fb         | $2.2 \cdot 10^5$ fb     | 0          |
| gZ      | $Z^0 \to \ell \ell$               | 1 <b>M</b> | $4 \cdot 10^6 \text{ fb}$   | $2.4\cdot 10^5~{ m fb}$ | 0          |
| ZZ      |                                   | 1 <b>M</b> | $1.1 \cdot 10^4 \text{ fb}$ |                         | 0 (?)      |
| ZW      | $Z^0 \to \ell\ell, W \to \ell\nu$ | 1M         | $2.7 \cdot 10^4 \text{ fb}$ | 500 fb                  | 0.002fb    |
| ZW      | $Z^0 \to \ell\ell, W \to had$     | 1 <b>M</b> | $2.7 \cdot 10^4 \text{ fb}$ | 1100 fb                 | 0          |

- $E_T^{\text{miss}}$  ZW:  $W \to \ell \nu$
- $E_T^{\text{miss}}$  ZZ:  $Z \to \nu \nu$
- but that's not enough: more hard jets
- $\rightarrow$  ZZjjj with MadEvent and Pythia+ATLFAST

ZZjjj with  $p_T$ -jets> 50 GeV

Signal



- hard jets from ZZjjj matrix element (PYTHIA not correct for jet-cuts)
- jet- $p_T$ -shape above 50GeV identical for signal and background

| Process | decay                              | events    | σ       | $BR \cdot \sigma$ | $\sigma_B$          |
|---------|------------------------------------|-----------|---------|-------------------|---------------------|
| ZZj     | $Z^0 \to \ell\ell, Z^0 \to \nu\nu$ | -         | 2500 fb | 66 fb             |                     |
| ZZjj    | $Z^0 \to \ell\ell, Z^0 \to \nu\nu$ | 100 kEvts | 1100 fb | 30 fb             |                     |
| ZZjjj   | $Z^0 \to \ell\ell, Z^0 \to \nu\nu$ | 100 kEvts | 560 fb  | 14.7 fb           | $\sim 0.54 { m fb}$ |

 $p_{T,jet} > 50 \text{GeV}$ , No  $\alpha_S$  series!

# Supersymmetric decays to $Z^0$

|                                                 | $\chi_3$            | $\chi_4$            | $\chi^{\pm}_2$                                | ${	ilde t}_2$                               |
|-------------------------------------------------|---------------------|---------------------|-----------------------------------------------|---------------------------------------------|
| Production                                      | $	ilde q_L 	ilde g$ | $	ilde q_L 	ilde g$ | ${\widetilde q}_L {\widetilde g}$             | ${	ilde t}_2{	ilde t}_2$                    |
| $\sigma$                                        | 15.4 pb             | 15.4 pb             | 15.4 pb                                       | 275 fb                                      |
| $BR(\tilde{q}_L \rightarrow \text{jet} + \chi)$ | 0.12%               | 1.2%                | 2.6%                                          | -                                           |
| $BR(\chi, \tilde{t} \to Z^0 + X)$               | 20%                 | 3.8%                | 24%                                           | 22%                                         |
| X-Decay                                         |                     |                     | $BR(\chi_1^{\pm} \to \tilde{\tau}\nu) = 98\%$ | $BR(\tilde{t}_1 \to \chi_1^{\pm} b) = 73\%$ |
| $BRs \cdot \epsilon \cdot \sigma$               | 0.019fb             | 0.023fb             | 0.32fb                                        | 0.31fb                                      |
| $300 fb^{-1}$                                   | 5.9                 | 6.9                 | 95                                            | 90                                          |

 $\sigma^{NLO}$  from Prospino2.0 (http://pheno.physics.wisc.edu/ plehn)

- $S/\sqrt{B} \sim 15$
- $\rightarrow$  Sum of MIAs  $\chi_2^{\pm}$ ,  $\chi_3$ ,  $\tilde{t}_2$  promising
  - numbers indicative for one process, e.g.  $\tilde{b}_2$  important for  $\chi_3$
  - combinatorial background is a big worry.....
  - disentangling the relative contributions looks daunting......

### Next steps:

- complete SM model background study
- complete signal and background estimate
- all production channels
- all decay channels

# End of Digression: Back to SFITTER

## MSUGRA in SPS1a

all parameters correlated in MSUGRA

 $\rightarrow$  fit from an unbiased starting point (GRID would be full set of parameters)

| Parameter | SPS1a | Starting point |
|-----------|-------|----------------|
| $m_0$     | 100   | 500            |
| $m_{1/2}$ | 250   | 500            |
| aneta     | 10    | 50             |
| $A_0$     | -100  | 0              |
| $\mu$     | +     | +              |

#### Results:

| Parameter     | LHC        | $\Delta$ LHC | LC         | $\Delta LC$ | LHCLC      | $\Delta$ LHCLC |
|---------------|------------|--------------|------------|-------------|------------|----------------|
| M0            | 100.08     | 4.1          | 100.03     | 0.08        | 100.04     | 0.08           |
| M1/2          | 249.95     | 1.8          | 250.02     | 0.13        | 250.01     | 0.10           |
| aneta         | 9.87       | 1.0          | 9.98       | 0.15        | 9.98       | 0.14           |
| A0            | -99.00     | 30.8         | -98.24     | 4.56        | -98.21     | 4.23           |
| $\chi^2$ /dof | 0.00291/16 |              | 0.68719/12 |             | 0.71148/24 |                |

- central values ok  $\rightarrow$  good chi2 for all fits
- LC is more precise by a least a factor 10 on all parameters
- the errors for LHCLC are improved slightly over LC alone
- the errors for LHCLC are improved significantly over LHC

Correlation Matrix for the LHC measurement

|       | M0       | M1/2     | aneta    | A0       |
|-------|----------|----------|----------|----------|
| M0    | 1.00000  | -0.40043 | -0.02132 | -0.14219 |
| M1/2  | -0.40043 | 1.00000  | 0.16614  | 0.43014  |
| aneta | -0.02132 | 0.16614  | 1.00000  | 0.88300  |
| A0    | -0.14219 | 0.43014  | 0.88300  | 1.00000  |

To be added: correlations in measurements

LC: error on  $m_h$  10 times worse  $A_0$  and  $\tan\beta$  wrong with bad  $\chi^2$ 

### MSSM

- using all sparticle and Higgs masses with 0.5% precision on all masses
- GRID in  $\mu$ , tan  $\beta$ , M1, M2 (GRID 100GeV, 10, 100GeV, 100GeV)
- GRID for chargino and neutralino masses
- other starting points: "SOLUTION"
- $\rightarrow$  unbiased in first approx only for  $\mu$ , tan  $\beta$ ,  $M_1$ ,  $M_2$

|                    | AfterGrid | AfterFit            | SPS1a |                     | AfterGrid | AfterFit          | SPS1a  |
|--------------------|-----------|---------------------|-------|---------------------|-----------|-------------------|--------|
| aneta              | 100       | $10.02 \pm 3.4$     | 10    | $M_{\tilde{u}_R}$   | 532.1     | 532.1±2.8         | 532.1  |
| $M_1$              | 100       | $102.2 \pm 0.74$    | 102.2 | $M_{\tilde{d}_{R}}$ | 529.3     | $529.3 \pm 2.8$   | 529.3  |
| $M_2$              | 200       | $191.79 \pm 1.9$    | 191.8 | $M_{\tilde{c}_R}$   | 532.1     | $532.1 \pm 2.8$   | 532.1  |
| $M_3$              | 589.4     | $589.4 \pm 7.0$     | 589.4 | $M_{\tilde{s}_R}$   | 529.3     | $529.3 \pm 2.8$   | 529.3  |
| $\mu$              | 300       | $344.3 \pm 1.3$     | 344.3 | $M_{\tilde{t}_R}$   | 420.2     | $420.08 \pm 13.3$ | 420.2  |
| $m_A$              | 399.35    | 399.1±1.2           | 399.1 | $M_{\tilde{b}_R}$   | 525.6     | $525.5 \pm 10.1$  | 525.6  |
| $M_{\tilde{e}_R}$  | 138.2     | $138.2 {\pm} 0.76$  | 138.2 | $M_{\tilde{q}1_L}$  | 553.7     | $553.7 \pm 2.1$   | 553.7  |
| $M_{	ilde{\mu}_R}$ | 138.2     | $138.2 \pm 0.76$    | 138.2 | $M_{\tilde{q}2_L}$  | 553.7     | $553.7 \pm 2.1$   | 553.7  |
| $M_{	ilde{	au}_R}$ | 135.5     | $135.48 \pm 2.3$    | 135.5 | $M_{\tilde{q}3_L}$  | 501.3     | $501.42 \pm 10.$  | 501.3  |
| $M_{\tilde{e}_L}$  | 198.7     | $198.7 {\pm} 0.68$  | 198.7 | $A_{	ilde{	au}}$    | -253.5    | $-244.7 \pm 1428$ | -253.5 |
| $M_{	ilde{\mu}_L}$ | 198.7     | $198.7 {\pm} 0.68$  | 198.7 | $A_{	ilde{t}}$      | -504.9    | -504.62±27.       | -504.9 |
| $M_{	ilde{	au}_L}$ | 197.8     | $197.81 {\pm} 0.92$ | 197.8 | $A_{	ilde{b}}$      | -797.99   | $-825.2 \pm 2494$ | -799.4 |

- GRID: ok for  $\mu$ ,  $M_1$ ,  $M_2$ , not ok for tan  $\beta$  (secondary minimum)
- $\rightarrow$  but Higgs masses undefined in this point (info needs to be added)
  - Fit after Grid converging correctly in spite of  $\tan \beta$  problem
  - precision of 0.5% is insufficient for  $A_{\tilde{\tau}}$  and  $A_{\tilde{b}}$

- Datasets LC, LHC with all starting points: "SOLUTION" and FIT only
- Dataset LHCLC with all starting points: "SOLUTION"

| ς.            | avcent GRID | $\mu$ $M$ $M_{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tonB          | with charging | and neutralino ma | CCAC  |
|---------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|-------------------|-------|
| $\overline{}$ | CACEPI OKID | $\mu, \mu_1, \mu_2, \mu_2, \mu_2, \mu_1, \mu_2, \mu_2, \mu_2, \mu_1, \mu_2, \mu_2, \mu_2, \mu_2, \mu_2, \mu_2, \mu_2, \mu_2$ | $\rho$ $\rho$ | with chargino | and neuranno ma   | 19909 |

| Parameter           | LHC                 | LC                 | LHCLC              | SPS1a  |
|---------------------|---------------------|--------------------|--------------------|--------|
| aneta               | $10.23 \pm 4.3$     | $10.26 \pm 1.6$    | $10.16 \pm 1.4$    | 10     |
| $M_1$               | $102.45 \pm 5.1$    | $102.32 \pm 0.3$   | $102.17 \pm 0.2$   | 102.2  |
| $M_2$               | $191.8 {\pm} 6.0$   | $192.52 \pm 1.2$   | $191.71 \pm 0.8$   | 191.8  |
| $M_3$               | 578.68±15.          | FIXED 500          | 589.51±15.         | 589.4  |
| $M_{	ilde{	au}_L}$  | FIXED 500           | $197.68 \pm 3.3$   | $198.62 \pm 2.9$   | 197.8  |
| $M_{	ilde{	au}_R}$  | $129.03 \pm 9.0$    | $135.66 \pm 4.4$   | $134.28 \pm 4.0$   | 135.5  |
| $M_{	ilde{\mu}_L}$  | $198.7 \pm 5.1$     | $198.7 {\pm} 0.5$  | $198.7 {\pm} 0.5$  | 198.7  |
| $M_{	ilde{\mu}_R}$  | $138.2 \pm 5.0$     | $138.2 \pm 0.2$    | $138.2 \pm 0.2$    | 138.2  |
| $M_{	ilde{e}_L}$    | $198.7 \pm 5.1$     | $198.7 {\pm} 0.2$  | $198.7 {\pm} 0.2$  | 198.7  |
| $M_{	ilde{e}_R}$    | $138.2 \pm 5.0$     | $138.2 {\pm} 0.06$ | $138.2 {\pm} 0.06$ | 138.2  |
| $M_{	ilde{q}3_L}$   | $498.1 \pm 108$     | 497.6±51.          | 499.97±32.         | 501.3  |
| $M_{\tilde{t}_B}$   | FIXED 500           | 420±24.            | 420.25±15.         | 420.2  |
| $M_{\tilde{b}_B}$   | 522.38±112          | FIXED 500          | 526.93±32.         | 525.6  |
| $M_{	ilde{q}2_L}^n$ | 550.73±13.          | FIXED 500          | $553.74 \pm 7.0$   | 553.7  |
| $M_{	ilde{c}_R}$    | $529.02 \pm 24.$    | FIXED 500          | 532.14±24.         | 532.1  |
| $M_{\tilde{s}_R}$   | 526.21±24.          | FIXED 500          | 529.34±24.         | 529.3  |
| $M_{	ilde{q}1_L}$   | 550.73±13.          | FIXED 500          | $553.74 \pm 7.1$   | 553.7  |
| $M_{	ilde{u}_R}$    | $529.02 \pm 24.$    | FIXED 500          | 532.14±24.         | 532.1  |
| $M_{	ilde{d}_R}$    | $526.2 \pm 24.$     | FIXED 500          | 529.34±24.         | 529.3  |
| $A_{	ilde{	au}}$    | FIXED 0             | $-202.7 \pm 1007$  | $118.32 \pm 1100$  | -253.5 |
| $A_{\tilde{t}}$     | -507.7±54.          | -501.95±15.        | -503.11±13.        | -504.9 |
| $A_{	ilde{b}}$      | $-741.55 \pm 35228$ | FIXED 0            | -250.7±13513       | -799.4 |
| $m_A$               | FIXED 500           | 399.1±0.9          | 399.1±0.9          | 399.1  |
| $\mu$               | $345.21 \pm 6.4$    | $344.34 \pm 3.5$   | $344.36 \pm 2.1$   | 344.3  |
| $\chi^2/dof$        | 0 / 0               | 0.00097 / 1        | 0.00058/4          |        |

- the MSSM results show better the complementarity of LHC and LC than MSUGRA
- use of cross sections and branching ratios should improve  $A_{\tau}$ ,  $A_b$
- LC and LHC with GRID as LHCLC converge on a secondary minimum with a GOOD  $\chi^2$
- $\rightarrow$  compatibility of secondary minimum to be investigated, GRID size etc

# **Conclusions and Perspectives**

### SFITTER

- MSUGRA in SPS1a
  - LHC, LC and LHCLC datasets converge correctly
  - LC may be sensitive to error on Higgs mass
  - improvement of LHC by adding LC seen in parameter errors
  - improvement of LC by LHC not obvious....

### • MSSM in SPS1a

- GRID use for subset of parameters and measurements with good convergence
- system underdetermined for LC and LHC, but ok for LHCLC
- $-A_{\tau}$  and  $A_b$  undetermined
- many parameters show the superiority LHCLC with respect to LHC and LC alone
- SUSY decays to  $Z^0$  in SPS1a
  - looking for  $\chi_3, \chi_2^{\pm}, \tilde{t}_2$
  - the sum of them may be detectable

Future:

- unbias MSSM-SPS1a further
- use correlations in measurements
- implement edge measurements
- implement the new version of SUSPECT