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1 The Coleman-Mandula no-go theorem

1.1 Introduction

The Coleman-Mandula no-go theorem [1] is a powerful theorem that essentially states that, given some

reasonable (physical assumptions) that the only possible Lie algebra (as opposed to super-algebra or

graded Lie algebra) of symmetry generators consist of the generators Pµ and Jµν of the Poincaré group,

and internal symmetry generators who commute with the Poincaré group and act on physical states by

multiplying them with spin-independent, momentum-independent Hermitian matrices.

By a symmetry generator, we mean any Hermitian operator that commutes with the S-matrix; whose

commutators are also symmetry generators; that takes single particle states into single particle states;

and whose action on multiparticle states is a direct sum of actions on single-particle states.

Presented here is a filled out version of the proof of the theorem heavily lifted from Weinberg’s

Supersymmetry [2]. I do so as I have not been able to find any more accessible documents that discuss

the theorem in any detail. After proving the theorem, we will then see how Supersymmetry manages to

evade it by the relaxing one of the assumptions made in the theorem.

1.2 Statement of the theorem

If G is a symmetry group of the S-Matrix, and the following assumptions hold:

1. For any M there are only a finite number of particle types with mass less than M ,

2. Scattering occurs at almost all energies (except for perhaps some isolated set of energies),

3. The amplitudes for elastic two-body scattering are analytic functions of the scattering angle at

almost all energies and angles,

then the generators of G consist of only the generators of the Poincaré group P, and the generators of

internal symmetries.
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1.3 The Bα subalgebra spanned by generators that commute with Pµ

Define the subalgebra of G to be generated by the symmetry generators Bα who commute with the

four-momentum operator Pµ

[Bα, Pµ] = 0. (1)

Let Bα have a momentum-dependent matrix representation bα when acting upon single particle states

Bα|pm〉 =
∑
m′

(
bα(p)

)
m′m
|pm′〉. (2)

m is a discrete index labelling spin z-components and particle type for particles of a definite mass
√
pµpµ.

Now, if the generators Bα obey a Lie algebra

[Bα, Bβ] = i
∑
γ

Cγ
αβBγ, (3)

then their matrix representations obey the same Lie algebra, since

[Bα, Bβ]|pm〉 =
∑
m′,m′′

[(
bα(p)

)
m′m′′

(
bβ(p)

)
m′′m
− (α↔ β)

]
|pm′〉

=
∑
m′

[(
bα(p)bβ(p)

)
m′m
− (α↔ β)

]
|pm′〉

=
∑
m′

[bα(p), bβ(p)]m′m |pm
′〉

= i
∑
γ

Cγ
αβBγ|pm〉

= i
∑
γ

∑
m′

Cγ
αβ

(
bγ(p)

)
m′m
|pm′〉.

Rearranging the above gives

∑
m′

(
[bα(p), bβ(p)]m′m − i

∑
γ

Cγ
αβ (bγ(p))m′m

)
|pm′〉 = 0,

and since |pm′〉 6= 0, then

[bα(p), bβ(p)]m′m = i
∑
γ

Cγ
αβ

(
bγ(p)

)
m′m

,

and so

[bα(p), bβ(p)] = i
∑
γ

Cγ
αβbγ(p).

I will be honest, I’m not sure how to get rid of the sum over m′. My guess would be having to make

each element of a new sum a modulus squared by perhaps considering the hermitian square of the above

expression. Then instead of just the sum over m′ being zero, each element of the sum would also be

zero. Perhaps look at this again at some point.
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As the operators Bα and the matrices bα(p) share commutation relations, there is a homeomorphism

between Bα and bα(p). A homeomorphism is a mapping between two sets that preserves some mathe-

matical structure. What we would really like is for there to be an isomorphism between Bα and bα(p),

i.e. a one-to-one correspondence between the elements Bα and bα(p). This would be a bijective homeo-

morphism. Group theory aside, why should we want to do this? A powerful theorem proved in Section

15.2 of Weinberg’s Applications [3] states that any Lie algebra of finite Hermitian matrices (like bα(p))

must be a direct sum of a semi-simple Lie algebra and U(1) algebras. If we would show an isomorphism

between Bα and bα(p), then the Bα algebra would also have to be a direct sum of a semi-simple Lie

algebra and U(1) algebras.

1.4 Finding the isomorphism

Näıvely, since for a given four-momentum p, Bα acting on a state |p〉 is represented by the matrix bα(p),

it is expected that there are the same number N of matrices Bα as there are bα(p). Therefore, you might

expect that the mapping

B1 −→ b1(p)

B2 −→ b2(p)

...
...

BN −→ bN(p)

is an isomorphism. Issues can arise however, if e.g. the b(k) are degenerate. Consider the action of B1

and B2 on a one-particle state of four-momentum p

B1|p〉 = b1(p)|p〉
B2|p〉 = b2(p)|p〉.

Now imagine there is a degeneracy in the b(k) such that

b1(p) = b2(p).

We can work with a different set of matrices who are linear combinations of bα(p). For convenience,

we will just use a new set where b̃1 = b1, b̃2 = 0, and b̃i = bi for i = 3, 4 . . . N . For this choice of

four-momentum p, we would then have a mapping

B1, B2 −→ b̃1(p)

B3 −→ b̃3(p)

...
...

BN −→ b̃N(p),
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which is not an isomorphism, since it is not bijective; given b̃1(p) we cannot tell whether B1 or B2

acted on the state |p〉 to produce it. We could fix this problem, however, if we could show that if any

degeneracy occured in the bα(p), then the Bα shared such a degeneracy. This would mean that, if for

some four-momentum p, then such that if there are some coefficients cα such that∑
α

cαbα(p) = 0, (4)

that is, the bα(p) are not linearly independant, then for the same set of coefficients cα, then∑
α

cαBα = 0, (5)

i.e. theBα are not linearly independant in the same way. Showing
∑

α c
αbα(k) = 0 for all four-momentum

k, is equivalent to the condition
∑

α c
αBα = 0. Therefore, if we can show that whenever

∑
α c

αbα(p) = 0

for some coefficients cα and four-momentum p, and it is is also true that
∑

α c
αbα(k) = 0 for any four-

momentum k, then bα(p) and Bα share the same degeneracies. Back to the example we considered, this

would imply that if b1(p) = b2(p), then this would be the same as saying e.g. c1 = 1, c2 − 1, ci = 0 for

i = 3, 4, . . . N , and therefore B1 = B2. Then, using the same linear combinations as before, we would

have the mapping (dropping tildes)

B1 −→ b1(p)

B3 −→ b3(p)

...
...

BN −→ bN(p),

which is an isomorphism. This is all very lovely, but what we need to show for this to be true is that

whenever
∑

α c
αbα(p) = 0 for some coefficients cα and four-momentum p, and it is is also true that∑

α c
αbα(k) = 0 for any four-momentum k, which is what we shall do now.

Consider the action of Bα on two-particle states

Bα|pm, q n〉 =
∑
m′

(
bα(p)

)
m′m
|pm′, q n〉+

∑
n′

(
bα(p)

)
n′n
|pm, q n′〉. (6)

We can then define a matrix representation bα(p, q) of the action of Bα on two-particle states

Bα|pm, q n〉 =
∑
m′n′

(
bα(p, q)

)
m′n′,mn

|pm′, q n′〉, (7)

where (
bα(p, q)

)
m′n′,mn

=
(
bα(p)

)
m′m

δn′n +
(
bα(q)

)
n′n
δm′m. (8)

Now we need to consider the invariance of the S-Matrix S for elastic or quasi-elastic scattering for two-

particle states into two-particle states. Before we do that, we shall quickly review what we mean by the
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scattering and the S-Matrix.

In scattering, we consider physical states to be asymptotic in the sense that states in the distant

past (t → −∞) are denoted |in〉 states, and states in the distant future (t → −∞) are denoted |out〉
states. We can choose our physical states to be in an orthonormal

〈m, in|n, in〉 = 〈m, out|n, out〉 = δmn. (9)

They also form a complete set of states∑
m

|m, in〉〈m, in| =
∑
m

|m, out〉〈m, out| = 1. (10)

The matrix elements of S give the overlap between configurations of in and out states, and defines a

unitary operator on states

S(ψ → φ) = 〈φ, out|ψ, in〉 = 〈φ, out|S|ψ, out〉 = 〈φ, in|S|ψ, in〉, (11)

so S satisfies the relation

S =
∑
m

|m, in〉〈m, out| (12)

S† =
∑
m

|m, out〉〈m, in|, (13)

and then it is easy to see that

S†S = SS† = 1. (14)

Now, to isolate the interesting part of the S-Matrix, i.e. the connected part, it is usual to define the

T-matrix

S = 1 + iT, (15)

where the 1 corresponds to particle states not interacting. T is also known as the connected part of the

S-matrix.

If we consider the scattering of particles with four-momenta p and q into particles with four-momenta

p′ and q′ with masses
√
pµpµ =

√
p′µp

′µ and
√
qµqµ =

√
q′µq
′µ, then the connected part of the S-matrix

can be written

S(pm, q n→ p′m′, q′ n′)connected = 〈p′m′, q′ n′; out|pm, q n; in〉connected

= 〈p′m′, q′ n′|S|pm, q n〉connected

= 〈p′m′, q′ n′|iT |pm, q n〉.

It is then convinient to extract the momentum conserving delta function from S (and T ) to define the
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invariant matrix element M

〈p′m′, q′ n′|iT |pm, q n〉 = (2π)4δ(4)(p′ + q′ − p− q)i
(
M(p′, q′; p, q)

)
m′n′,mn

,

and so ignoring numerical prefactors,

S(pm, q n→ p′m′, q′ n′)connected = δ(4)(p′ + q′ − p− q)
(
M(p′, q′; p, q)

)
m′n′,mn

, (16)

in agreement with Eq. 24.B.6 in Weinberg. Now, if the Bα are symmetry generators, they must commute

with the S-matrix

[Bα, S] = 0. (17)

It follows that for the scattering situation above,

〈p′m′, q′ n′|[Bα, S]|pm, q n〉 = 0. (18)

Rearranging gives

〈p′m′, q′ n′|BαS|pm, q n〉 = 〈p′m′, q′ n′|SBα|pm, q n〉.

Inserting a complete set of states, noting the relativistic one-particle identity operator

(1)1−particle =

∫
d3p

(2π)3
|p〉 1

2Ep
〈p| (19)

we find (this needs to be updated to include the factor of 1/2Ep), althought the overall result does not

depend on this)

∑
m′′n′′

∫
d3p′′

(2π)3

∫
d3q′′

(2π)3
〈p′m′, q′ n′|Bα|p′′m′′, q′′n′′〉〈p′′m′′, q′′n′′|S|pm, q n〉

=
∑
m′′n′′

∫
d3p′′

(2π)3

∫
d3q′′

(2π)3
〈p′m′, q′ n′|S|p′′m′′, q′′n′′〉〈p′′m′′, q′′n′′|Bα|pm, q n〉.

Now using the matrix representation of Bα acting on two-particle states in Eq. (7),

∑
m̂n̂

∑
m′′n′′

∫
d3p′′

(2π)3

∫
d3q′′

(2π)3
〈p′m′, q′ n′|

(
bα(p′′, q′′)

)
m̂n̂,m′′n′′

|p′′m̂, q′′n̂〉〈p′′m′′, q′′n′′|S|pm, q n〉

=
∑
m̂n̂

∑
m′′n′′

∫
d3p′′

(2π)3

∫
d3q′′

(2π)3
〈p′m′, q′ n′|S|p′′m′′, q′′n′′〉〈p′′m′′, q′′n′′|

(
bα(p, q)

)
m̂n̂,mn

|p m̂, q n̂〉.

The matrices bα are a set of summed coefficients, and so in the usual way, states can be moved past
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them inside a sum∑
m̂n̂

∑
m′′n′′

∫
d3p′′

(2π)3

∫
d3q′′

(2π)3

(
bα(p′′, q′′)

)
m̂n̂,m′′n′′

〈p′m′, q′ n′|p′′m̂, q′′n̂〉〈p′′m′′, q′′n′′|S|pm, q n〉

=
∑
m̂n̂

∑
m′′n′′

∫
d3p′′

(2π)3

∫
d3q′′

(2π)3
〈p′m′, q′ n′|S|p′′m′′, q′′n′′〉

(
bα(p, q)

)
m̂n̂,mn

〈p′′m′′, q′′n′′|p m̂, q n̂〉. (20)

Now, the relativistic normalisation of two-particle states is (see Peskin and Schröeder page 109, Eq.

4.91)

〈p′q′|pq〉 = 2Ep2Eq(2π)3
(
δ(3)(p− p′)δ(3)(q− q′) + δ(3)(p− q′)δ(3)(q− p′)

)
, (21)

where

Ep = p0 =
√
p2 +m2. (22)

The addition of particle type orthonormality gives

〈p′m′, q′ n′|p′′m̂, q′′n̂〉 =2Ep′′2Eq′′(2π)6
(
δ(3)(p′′ − p′)δ(3)(q′′ − q′)δm′m̂δn′n̂+

δ(3)(p′′ − q′)δ(3)(q′′ − p′)δm′n̂δn′m̂

)
(23)

〈p′′m′′, q′′n′′|p m̂, q n̂〉 =2Ep2Eq(2π)6
(
δ(3)(p− p′′)δ(3)(q− q′′)δm′′m̂δn′′n̂+

δ(3)(p− q′′)δ(3)(q− p′′)δm′′n̂δn′′m̂

)
. (24)

Evaluating the S-Matrix elements gives (up to constant numerical prefactors)

〈p′′m′′, q′′n′′|S|pm, q n〉 = δ(4)
(
(p′′ + q′′)− (p+ q)

)(
M(p′′, q′′; p, q)

)
m′′n′′,mn

(25)

〈p′m′, q′ n′|S|p′′m′′, q′′n′′〉 = δ(4)
(
(p′′ + q′′)− (p′ + q′)

)(
M(p′, q′; p′′, q′′)

)
m′n′,m′′n′′

. (26)

Now looking at the form of the delta functions in (23) and (24), the delta function in (26) becomes

redundant when inserted into (20). In addition, the factors of 2Ep′′2Eq′′ and 2Ep2Eq will cancel due

when inserted into (20) due to the

p→ p′′, q → q′′ and

p→ q′′, q → p′′

symmetry of the parts of Eq. (24). Putting this all into (20) and ignoring mentioned cancelling prefactors
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yields

∑
m̂n̂

∑
m′′n′′

∫
d3p′′

∫
d3q′′

(
bα(p′′, q′′)

)
m̂n̂,m′′n′′

(
δ(3)(p′′ − p′)δ(3)(q′′ − q′)δm′m̂δn′n̂+

δ(3)(p′′ − q′)δ(3)(q′′ − p′)δm′n̂δn′m̂

)(
M(p′′, q′′; p, q)

)
m′′n′′,mn

=
∑
m̂n̂

∑
m′′n′′

∫
d3p′′

∫
d3q′′

(
M(p′, q′; p′′, q′′)

)
m′n′,m′′n′′

(
bα(p, q)

)
m̂n̂,mn

×(
δ(3)(p− p′′)δ(3)(q− q′′)δm′′m̂δn′′n̂ + δ(3)(p− q′′)δ(3)(q− p′′)δm′′n̂δn′′m̂

)
.

Now perform the sums over the ‘hat’ indices, as well as the integrals over momentum space

∑
m′′n′′

((
bα(p′, q′)

)
m′n′,m′′n′′

(
M(p′, q′; p, q)

)
m′′n′′,mn

+
(
bα(q′, p′)

)
n′m′,m′′n′′

(
M(q′, p′; p, q)

)
m′′n′′,mn

)

=
∑
m′′n′′

((
M(p′, q′; p, q)

)
m′n′,m′′n′′

(
bα(p, q)

)
m′′n′′,mn

+

(
M(p′, q′; q, p)

)
m′n′,m′′n′′

(
bα(p, q)

)
n′′m′′,mn

)
.

(27)

Okay, now we need to deal with these indices. Let’s look a bit more closely at the symmetry of(
bα(p, q)

)
m′n′,mn

under indice and arguement interchange.(
bα(p, q)

)
m′n′,mn

is the matrix representation of Bα acting on two-particle states

Bα|pm, qn〉 =
∑
m′

(
bα(p)

)
m′,m
|pm′, qn〉+

∑
m′

(
bα(q)

)
n′,n
|pm, qn′〉

=
∑
m′

∑
n′

[(
bα(p)

)
m′,m

δn′n +
(
bα(q)

)
n′,n

δm′m

]
|pm′, qn′〉 (28)

=
∑
n′

∑
m′

[(
bα(p)

)
n′,m

δm′n +
(
bα(q)

)
m′,n

δn′m

]
|pn′, qm′〉, (29)

where from the second to third line we have just relabelled the free indices. Now using the definition in

Eq. (7), we can relate the sums (28) and (29) in terms of bα(p, q)∑
m′n′

(
bα(p, q)

)
m′n′,mn

|pm′, qn′〉 =
∑
n′m′

(
bα(p, q)

)
n′m′,mn

|pn′, qm′〉 (30)

=
∑
m′n′

(
bα(p, q)

)
n′m′,mn

|pn′, qm′〉, (31)

where we can reorder the sums over nm to over mn as we have assumed particle finiteness. Now

consider the action of Bα on the same state, but then use the symmetries of of the state to get some
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more information

Bα|pm, qn〉 = (−1)spinBα|qn, pm〉 (32)

= (−1)spin
∑
m′n′

(
bα(q, p)

)
n′m′,nm

|qn′, pm′〉 (33)

= (−1)spin
∑
m′n′

(
bα(q, p)

)
m′n′,nm

|qm′, pn′〉. (34)

Now, for ‘nice’ behaviour, I will make the assumption that, since Bα|pm, qn〉 is a spin-preserving sym-

metry generator (unlike the supersymmetry generators we will meet later), then each summed state

|qm′, pn′〉 possesses the same spin-symmetries as the initial state |pm, qn〉. Therefore

(−1)spin
∑
m′n′

(
bα(q, p)

)
m′n′,nm

|qm′, pn′〉 =
(
(−1)spin

)2
∑
m′n′

(
bα(q, p)

)
m′n′,nm

|pn′, qm′〉 (35)

=
∑
m′n′

(
bα(q, p)

)
m′n′,nm

|pn′, qm′〉. (36)

Putting Eqs. (36) and (31) together

Bα|pm, qn〉 =
∑
m′n′

(
bα(p, q)

)
n′m′,mn

|pn′, qm′〉 (37)

=
∑
m′n′

(
bα(q, p)

)
m′n′,nm

|pn′, qm′〉. (38)

We can then replace
(
bα(q′, p′)

)
n′m′,m′′n′′

in Eq. (27) (when they acted on a state)

∑
m′n′

(
bα(q′, p′)

)
n′m′,m′′n′′

→
∑
m′n′

(
bα(p′, q′)

)
m′n′,n′′m′′

, (39)

and so Eq. (27) becomes

∑
m′′n′′

((
bα(p′, q′)

)
m′n′,m′′n′′

(
M(p′, q′; p, q)

)
m′′n′′,mn

+
(
bα(p′, q′)

)
m′n′,n′′m′′

(
M(q′, p′; p, q)

)
m′′n′′,mn

)

=
∑
m′′n′′

((
M(p′, q′; p, q)

)
m′n′,m′′n′′

(
bα(p, q)

)
m′′n′′,mn

+

(
M(p′, q′; q, p)

)
m′n′,m′′n′′

(
bα(p, q)

)
n′′m′′,mn

)
.

(40)

Finally, se need to deal with the elements of the connected S-Matrix elements under particle interchange.

The non-trivial part of the S-matrix can be written

iM(2π)4δ(4)(p′ + q′ − p− q) =

(
sum of all connected, amputated Feynman

diagrams with p, q incoming, p′, q′ outgoing

)
. (41)

This means that the matrix element between two states is given by the sum of all possible processes
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between them, and will be independent of the state ordering

S(pm, q n→ p′m′, q′ n′) = S(pm, q n→ q′ n′, p′m′). (42)

and so, ignoring the trivial part of the S-Matrix

S(pm, q n→ p′m′, q′ n′)connected = δ(4)(p′ + q′ − p− q)
(
M(p′, q′; p, q)

)
m′n′,mn

(43)

= δ(4)(q′ + p′ − p− q)
(
M(q′, p′; p, q)

)
n′m′,mn

. (44)

Finally, we find the relation between connected S-Matrix elements(
M(q′, p′; p, q)

)
n′m′,mn

=
(
M(p′, q′; p, q)

)
m′n′,mn

. (45)

Similarly, (
M(p′, q′; q, p)

)
m′n′,nm

=
(
M(p′, q′; p, q)

)
m′n′,mn

. (46)

Substituting these relations into Eq. (40) we find

∑
m′′n′′

((
bα(p′, q′)

)
m′n′,m′′n′′

(
M(p′, q′; p, q)

)
m′′n′′,mn

+
(
bα(p′, q′)

)
m′n′,n′′m′′

(
M(p′, q′; p, q)

)
n′′m′′,mn

)

=
∑
m′′n′′

((
M(p′, q′; p, q)

)
m′n′,m′′n′′

(
bα(p, q)

)
m′′n′′,mn

+

(
M(p′, q′; p, q)

)
m′n′,n′′m′′

(
bα(p, q)

)
n′′m′′,mn

)
.

(47)

Noting that the order of summation is not important (again from particle finiteness), we can rewrite

this as∑
m′′n′′

(
bα(p′, q′)

)
m′n′,m′′n′′

(
M(p′, q′; p, q)

)
m′′n′′,mn

=
∑
m′′n′′

(
M(p′, q′; p, q)

)
m′n′,m′′n′′

(
bα(p, q)

)
m′′n′′,mn

,

(48)

which in matrix notation is

bα(p′, q′)M(p′, q′; p, q) =M(p′, q′; p, q)bα(p, q), (49)

and is in agreement with Weinberg Eq. 24.B.5.

This is interesting, as it says that for two-particle scattering that conserves total four-momentum

p′+q′ = p+q, then the matrix representations of Bα acting on two-particle in and out states are similar,

i.e. related by the similarity transformation

bα(p′, q′) = S(p′, q′; p, q)bα(p, q)S−1(p′, q′; p, q). (50)

This is useful for trying to find the isomorphism between Bα and bα(p, q), since if I can find a set of

10



coefficients cα and four-momenta p, q such that∑
α

cαbα(p, q) = 0, (51)

I can then conclude that, for any four momenta p′, q′ on the same mass shells that satisfy p′+ q′ = p+ q

(for the similarity transformation to exist) then∑
α

cαbα(p′, q′) =
∑
α

cαS(p′, q′; p, q)bα(p, q)S−1(p′, q′; p, q) (52)

= S(p′, q′; p, q)

(∑
α

cαbα(p, q)

)
S−1(p′, q′; p, q) (53)

= 0. (54)

This does not, however, tell us that
∑
cαbα(p′) =

∑
cαbα(q′) = 0, which would be our condition for an

isomorphism. Instead, this tells us that

∑
α

cαbα(p′, q′) =
∑
α

cα
((

bα(p′)
)
m′,m

δn′n +
(
bα(q′)

)
n′,n

δm′m

)
= 0, (55)

and so ∑
α

cα
(
bα(p′)

)
m′,m

δn′n = −
∑
α

cα
(
bα(q′)

)
n′,n

δm′m. (56)

Therefore,
∑
cαbα(p′) and

∑
cαbα(q′) are both proportional to the identity matrix, but have opposite

coefficients. We’re not quite there yet. Let’s consider just the traceless parts of the matrices bα(p) and

bα(p, q).

Now, similar matrices have the same trace, and so bα(p, q) and bα(p′, q′) have the same trace if the

similarity transformation (50) exists (i.e. if there is four-momentum conserving scattering). This is easy

to see

Tr [bα(p′, q′)] = Tr
[
S(p′, q′; p, q)bα(p, q)S−1(p′, q′; p, q)

]
= Tr

[
S−1(p′, q′; p, q)S(p′, q′; p, q)bα(p, q)

]
(57)

= Tr [bα(p, q)] .

Now, using the definition for bα(p, q) in Eq. (8), we can use the trace properties of bα(p, q) and

bα(p′, q′) to relate the traces of bα(p), bα(q), bα(p′), and bα(q′)

Tr

[(
bα(p, q)

)
m′n′,mn

]
= Tr

[(
bα(p)

)
m′m

δn′n +
(
bα(p)

)
n′n
δm′m

]
= tr

[(
bα(p)

)
m′m

]
tr [δn′n] + tr

[(
bα(p)

)
n′n

]
tr [δm′m]

= N(
√
qµqµ)tr

[(
bα(p)

)
m′m

]
+N(

√
pµpµ)tr

[(
bα(p)

)
n′n

]
,

11



where we have used the trace of a tensor product of two matrices is the product of the traces of the

individual matrices. N(m) is the multiplicity of particles with mass m. The lower case ‘tr’ indicates a

trace over one particle labels, and upper case ‘Tr’ indicates a trace over two-particle labels. Now using

the trace relation (57), we can write

N(
√
qµqµ) tr bα(p′) +N(

√
pµpµ) tr bα(q′) = N(

√
qµqµ) tr bα(p) +N(

√
pµpµ) tr bα(q),

which rearranged gives

tr bα(p′)

N(
√
pµpµ)

+
tr bα(q′)

N(
√
qµqµ)

=
tr bα(p)

N(
√
pµpµ)

+
tr bα(q)

N(
√
qµqµ)

. (58)

This relation needs to be satisfied for almost all mass-shell four-momenta for which p′+ q′ = p+ q. This

is satisfied by having tr bα(p)/N(
√
pµpµ) linear in p, that is

tr bα(p)

N(
√
pµpµ)

= aµα pµ, (59)

where aµα 6= aµα(p). Now let us define new symmetry generators by subtracting terms linear in the

momentum operator Pµ

B]
α := Bα − aµαPµ. (60)

The action of B]
α on single particle states is

B]
α|pm〉 = (Bα − aµαPµ) |pm〉

=
∑
m′

((
bα(p)

)
m′,m
− aµαpµ δm′m

)
|pm′〉.

Now if our scattering satisfies four-momentum conservation, then we can substitute Eq. (59) to give

∑
m′

((
bα(p)

)
m′,m
− aµαpµ δm′m

)
|pm′〉 =

∑
m′

((
bα(p)

)
m′,m
− tr bα(p)

N(
√
pµpµ)

δm′m

)
|pm′〉

=
∑
m′

(
b]α(p)

)
m′,m
|pm′〉,

where the b]α(p) are traceless matrices

tr

[(
b]α(p)

)
m′,m

]
= tr

[(
bα(p)

)
m′,m
− tr bα(p)

N(
√
pµpµ)

δm′m

]
= tr

[(
bα(p)

)
m′,m

]
− tr bα(p)

N(
√
pµpµ)

tr [δm′m]

= tr bα(p)− tr bα(p)

N(
√
pµpµ)

N(
√
pµpµ)

= 0,
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and represent the action of B]
α on single partice states. Now, as Pµ commutes with Bα, then it also

commutes with B]
α as the identity matrix commutes with everything

[Pµ, B
]
α] = 0. (61)

It follows that the commutators of B]
α are the same as those of Bα. Using the Lie algebra in Eq. (3) we

can write

[B]
α, B

]
β] = i

∑
γ

Cγ
αβBγ = i

∑
γ

Cγ
αβ

(
B]
γ + aµγPµ

)
. (62)

Similarly, the commutators of b]α(p) are the same as those of bα(p), and so

[b]α(p), b]β(p)] = i
∑
γ

Cγ
αβbγ(b) = i

∑
γ

Cγ
αβ

(
b]γ(p) + aµγpµ

)
. (63)

Since b]α(p) are finite matrices, the trace of their commutators is zero. Consequently

tr [b]α(p), b]β(p)] = i tr
∑
γ

Cγ
αβ

(
b]γ(p) + aµγpµ

)
= iN(

√
pµpµ)

∑
γ

Cγ
αβa

µ
γpµ

= 0.

For non-zero particle multiplicity and arbitrary four-momenta, this reduces to∑
γ

Cγ
αβa

µ
γ = 0, (64)

and implies that the B]
α obey a Lie algebra

[B]
α, B

]
β] = i

∑
γ

Cγ
αβB

]
γ, (65)

and are therefore also generators of a symmetry

〈p′m′, q′ n′|[B]
α, S]|pm, q n〉 = 0. (66)

Consequently, the b]α(p′, q′) are related to b]α(p, q) by a similarity transformation for four-momentum

conserving scattering

b]α(p′, q′) = S(p′, q′; p, q)b]α(p, q)S−1(p′, q′; p, q). (67)

in the same way as in (50) for the bα(p). b]α(p′, q′) are matrices representing B]
α acting on two-particle

states

B]
α|pm, qn〉 =

∑
m′n′

(
b]α(p, q)

)
m′n′,mn

|pm′, qn′〉, (68)
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where (
b]α(p, q)

)
m′n′,mn

=
(
b]α(p)

)
m′,m

δn′n +
(
b]α(q)

)
n′,n

δm′m. (69)

The b]α(p, q) also obey the same commutation relations as B]
α

1

[b]α(p, q), b]β(p, q)] = i
∑
γ

Cγ
αβb

]
γ(p, q). (70)

So why are we dealing with two-particle states instead of single particle states? As M(p′, q′; p, q) is

a non-singular matrix (as we have asserted it is analytic), then if we can find some coefficients cα such

that ∑
α

cαb]α(p, q) = 0,

for some fixed mass-shell momenta p and q, then∑
α

cαb]α(p′, q′) = 0

for almost all p′ and q′ on the same respective mass shells and also satisfy p′ + q′ = p+ q such that the

similarity transformation (67) exists. Again, this tells us that

∑
α

cαb]α(p′, q′) =
∑
α

cα
((

b]α(p′)
)
m′,m

δn′n +
(
b]α(q′)

)
n′,n

δm′m

)
= 0, (71)

and rearranged gives ∑
α

cα
(
b]α(p′)

)
m′,m

δn′n = −
∑
α

cα
(
b]α(q′)

)
n′,n

δm′m. (72)

The matrices
∑

α c
αb]α(p′) and

∑
α c

αb]α(q′) are again proportional to the identity matrix with opposite

coefficients. However, we know that the b]α(p) are traceless, and so∑
α

cαb]α(p′) =
∑
α

cαb]α(q′) = 0. (73)

Just to quickly summarise what we have just found. If some set of coefficients cα can be found, such that∑
α c

αb]α(p, q) = 0 for some fixed mass shell four-momenta p and q, then
∑

α c
αb]α(p′) =

∑
α c

αb]α(q′) = 0

for all p′ and q′ on the same respective mass shells that satisfy four-momentum conservation p′+q′ = p+q.

Our goal is still to show an isomorphism from finite Hermitian matrices to Bα. This would require that

we show
∑

α c
αb]α(k) = 0 for all mass-shell momenta k to have the mapping taking Bα into bα(p, q) to

be an isomorphism. Do not fret, we are almost there.

Currently we have only shown that ∑
α

cαb]α(p′) = 0

1This isn’t obvious from an explicit calculation using the form of b]α(p, q) in terms of single particle actions. Something
along the lines done earlier for bα(p) is fairly convincing, however.
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for four-momenta p′ and q′ satisfying

q′ = p+ q − p′,

where p′ and q′ are on mass shells. Now we will use the clever trick that Coleman and Mandula noted.

If it is true that ∑
α

cαb]α(p, q) =
∑
α

cαb]α(p′, q′) = 0,

then we know ∑
α

cαb]α(p) =
∑
α

cαb]α(q) =
∑
α

cαb]α(p′) =
∑
α

cαb]α(q′)

under the circumstances mentioned. Using the expansion of b]α(p, q) in terms of single-particle matrices

(69), we can write (
b]α(p, q′)

)
m′n′,mn

=
(
b]α(p)

)
m′,m

δn′n +
(
b]α(q′)

)
n′,n

δm′m

and so ∑
α

cαb]α(p, q′) = 0. (74)

The similarity transformation (67) will take Eq. (74) to a similar relation for matrices b]α effectively

acting on states of total momentum p+ q′. Eq. (74) then implies∑
α

cαb]α(k, p+ q′ − k) = 0 (75)

noting that the above appears to be a state of the required total momenta. The similarity transformation

only exists for mass-shell four-momenta k where both k and p + q′ − k are on the mass shell. Both q′

and p′ = p+ q − q′ need to also be on the mass shell. This means

m1 = p′µp
′µ = (p+ q − q′)µ(p+ q − q′)µ

m2 = q′µq
′µ,

and removes two degrees of freedom in q′, leaving two. The requirement that both k and q′ are on the

mass shell

m1 = kµk
µ

m2 = q′µq
′µ

removes one degree of freedom from k and one degree of freedom from q′. Finally, the requirement that

p+ q′ − k also be on the mass shell

m2 = (p+ q′ − k)µ(p+ q′ − k)µ

removes one degree of freedom from q′ and leaves us enough freedom to choose k to be anything we

want within a finite volume of momentum space. This volume can be increased by making p and q
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sufficiently large. So now, what have we shown? If∑
α

cαb]α(p, q) = 0

for some fixed mass-shell four momenta, then∑
α

cαb]α(k) = 0 (76)

for almost all mass-shell four-momenta k. Note, this statement is now unconstrained by the four-

momentum conservation requirement, since k has nothing directly to do with the scattering kinematics.

Okay, we’re almost there. Now suppose I find for some mass-shell four-momenta p and q that∑
α c

αb]α(p, q) = 0. What happens if for some k0 that
∑

α c
αb]α(k0) 6= 0? If this were the case, a scattering

process where particles with four-momenta k0 and k scatter into particles of four-momenta k′ and k′′ will

be forbidden by the symmetry generated by
∑

α c
αB]

α, since if the symmetry allowed such a scattering

process, a similarity transform would exist between b]α(k0, k) and b]α(p, q), where
∑

α c
αb]α(p, q) = 0. One

of our initial assumptions what that the scattering amplitude is an analytic functions of the scattering

angle at almost all energies and angles. The scattering amplitude to a particle with momentum k0

could not just jump to zero under the symmetry imposed by B]
α in an analytic way, so the existence

of such a state is in contradiction with one of our assumptions. We must therefore conclude that if∑
α c

αb]α(p, q) = for some fixed mass-shell four-momentum p and q, then∑
α

cαb]α(k) = 0 (77)

for all k, and consequently ∑
α

cαBα = 0. (78)

The mapping that takes Bα into b]α(p, q) is therefore an isomorpism. A consequence of this is that, since

matrix representation of the action of B]
α on two particle states is(

b]α(p, q)
)
m′n′,mn

=
(
b]α(p)

)
m′,m

δn′n +
(
b]α(q)

)
n′,n

δm′m, (79)

then for a given mn, b]α(p, q) is a column vector with N(
√
pµpµ)N(

√
qµqµ) entries. Therefore, the number

of independant b]α(p, q) cannot exceed N(
√
pµpµ)N(

√
qµqµ). Due to the isomorphism between Bα and

b]α(p, q), this means there is at most, a finite number of independent symmetry generators Bα. This was

not one of our assumptions, we have actually shown that Bα must be finite-dimensional. We can now

move on to applying the theorem for finite Hermitian matrices to the generators Bα.

1.5 Dealing with the U(1) algebras

So, a theorem from Weinberg (which I may prove at some point) states that a Lie algebra of finite

Hermitian matrices like bα(p, q) for fixed p and q is at most the direct sum of a semi-simple compact Lie
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algebra and some number of U(1) Lie algebras. Since the Lie algebra of b]α(p, q) and B]
α are isomorphic

(as we have shown), then the B]
α must also span the direct sum of at most a compact semi-simple Lie

algebra and U(1) Lie algebras.

Let us first deal with the U(1) algebras. If p and q are any mass-shell four-momenta, then we can

always find a Lorentz generator J that leaves both p and q invariant. There are two main situations to

consider

1. If p and q are both lightlike and parallel then choose J to generate spatial rotations around the

common direction of p and q. E.g. if p and q are both in the z-direction, then let pµ = qµ =

(1, 0, 0, 1)µ. J is then chosen to generate spatial rotations in the x − y plane (i.e. around the

z-axis).

2. Otherwise, p + q is timelike, and we can take J to be the generator of spatial directions around

the common direction of p and q in the centre of momentum frame (p + q = 0). This would

mean jumping to the frame where the particles look like they are colliding head-on. J would then

generate rotations about the axis of collision.

Since the J have been chosen to generate spatial rotations, they are Hermitian. Let us be in the basis

of two-particle states that diagonalise J such that

J |pm, qn〉 = σ(m,n)|pm, qn〉. (80)

We already know that [Pµ, B
]
α] = 0. From the Lorentz algebra we know that

[J, Pµ] ∼ (linear combination of Pµ) . (81)

Using the Jacobi identity, we know that

[Pµ, [J,B
]
α]] + [J, [B]

α, Pµ]] + [B]
α, [Pµ, J ]] = 0,

and therefore

[Pµ, [J,B
]
α]] = 0. (82)

Since we have defined all generators that commute with Pµ consists of generators Bα, it follows that

[J,B]
α] must then be a linear combination of Bα. We know more, however. Since the trace of the

commutator of finite matrices is zero, then the trace of this linear combination of Bα must also be zero,

and hence [J,B]
α] must be a linear combination of B]

α

[J,B]
α] =

∑
β

cβαB
]
β. (83)

Now, call the generators of the U(1) Lie algebra B]
i (and take these to be Hermitian) in the algebra of

B]
α. These generators must commute with all of the B]

α, since a U(1) subalgebra of G is one with just

a single generator that commutes with the whole of the algebra G. If this is the case, then Bi must
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commute with [J,B]
i ]

[B]
i , [J,B

]
i ]] = 0. (84)

In the two-particle basis where J is diagonal, the expectation value of this double commutator is

〈pm, qn| [B]
i , [J,B

]
i ]] |pm, qn〉 = 〈pm, qn|

(
2B]

iJB
]
i −B

]
iB

]
iJ − JB

]
iB

]
i

)
|pm, qn〉 = 0

Now since our choice of J is just spatial rotations, the generators of J are hermitian, and so we can

rewrite the above as

2〈pm, qn|
(
B]
iJB

]
i −B

]
iB

]
iJ
)
|pm, qn〉 = 0.

Now inserting a complete set of states

0 =
∑
m′′n′′

∫
d3p′′

(2π)3

∫
d3q′′

(2π)3

[
〈pm, qn|B]

i |p′′m′′, q′′n′′〉〈p′′m′′, q′′n′′|JB
]
i |pm, qn〉

− 〈pm, qn|B]
i |p′′m′′, q′′n′′〉〈p′′m′′, q′′n′′|B

]
iJ |pm, qn〉

]
=
∑
m′′,n′′

∫
d3p′′

(2π)3

∫
d3q′′

(2π)3

[(
σ(m′′, n′′)− σ(m,n)

) ∣∣∣〈pm, qn|B]
i |p′′m′′, q′′n′′〉

∣∣∣2 ].
Now using the matrix representations of B]

i acting on two-particle states

0 =
∑
m′n′

∑
m′′n′′

∫
d3p′′

(2π)3

∫
d3q′′

(2π)3

[(
σ(m′′, n′′)− σ(m,n)

)
×

∣∣∣〈pm, qn|(b]i(p′′, q′′))
m′n′,m′′n′′

|p′′m′, q′′n′〉
∣∣∣2]

Again moving the states past the matrix coefficients

0 =
∑
m′n′

∑
m′′n′′

∫
d3p′′

(2π)3

∫
d3q′′

(2π)3

[(
σ(m′′, n′′)− σ(m,n)

)
×

∣∣∣(b]i(p′′, q′′))
m′n′,m′′n′′

〈pm, qn|p′′m′, q′′n′〉
∣∣∣2],

and using the state normalisation in Eq. (21) and dividing out coefficients

0 =
∑
m′n′

∑
m′′n′′

∫
d3p′′

∫
d3q′′

[(
σ(m′′, n′′)− σ(m,n)

)
×

∣∣∣(b]i(p′′, q′′))
m′n′,m′′n′′

(
δ(3)(p′′ − p)δ(3)(q′′ − q)δm′mδn′n + δ(3)(p′′ − q)δ(3)(q′′ − p)δm′nδn′m

)∣∣∣2].
Evaulating the momentum integrals

0 =
∑
m′n′

∑
m′′n′′

[(
σ(m′′, n′′)− σ(m,n)

)
×
∣∣∣(b]i(p, q))

m′n′,m′′n′′
δm′mδn′n +

(
b]i(q, p)

)
m′n′,m′′n′′

δm′nδn′m

)∣∣∣2].
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and so performing the sum over m′n′ gives

0 =
∑
m′′n′′

[(
σ(m′′, n′′)− σ(m,n)

)
×
∣∣∣(b]i(p, q))

mn,m′′n′′
+
(
b]i(q, p)

)
nm,m′′n′′

∣∣∣2].
Splitting up the sum

0 =
∑
m′′n′′

[(
σ(m′′, n′′)− σ(m,n)

)∣∣∣(b]i(p, q))
mn,m′′n′′

∣∣∣2]
+
∑
m′′n′′

[(
σ(m′′, n′′)− σ(m,n)

)(
b]i(q, p)

)
nm,m′′n′′

∣∣∣2].
Relabelling the free indices in the second sum

0 =
∑
m′′n′′

[(
σ(m′′, n′′)− σ(m,n)

)∣∣∣(b]i(p, q))
mn,m′′n′′

∣∣∣2]
+
∑
m′′n′′

[(
σ(n′′,m′′)− σ(m,n)

)(
b]i(q, p)

)
nm,n′′m′′

∣∣∣2],
and then using the symmetry of bα(p, q) in Eq. (39) and noting to also change the ordering of σ(p, q),

then

0 =
∑
m′′n′′

[(
σ(m′′, n′′)− σ(m,n)

)∣∣∣(b]i(p, q))
mn,m′′n′′

∣∣∣2]
+
∑
m′′n′′

[(
σ(m′′, n′′)− σ(m,n)

)(
b]i(p, q)

)
mn,m′′n′′

∣∣∣2],
implying ∑

m′′n′′

[(
σ(m′′, n′′)− σ(m,n)

)∣∣∣(b]i(p, q))
mn,m′′n′′

∣∣∣2] = 0,

and relabelling the free indices and noting that b]i(p, q) is Hermitian, then

∑
m′n′

[(
σ(m′, n′)− σ(m,n)

)∣∣∣(b]i(p, q))
m′n′,mn

∣∣∣2] = 0, (85)

and is in agreement with Weinberg Eq. 24.B.21. This equation is valid for all m,n.

Now if there is any m,n for which σ = σ(m,n), and any m′, n′ for which σ(m′, n′) = σ′ 6= σ, then

there must be a choice of m,n for which σ is smallest, i.e. a choice of m,n such that

σ(m,n) = σ ≤ σ′ ∀ m′, n′
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For this choice of m,n, the right hand side of Eq. (85) is

∑
m′n′

[(
σ(m′, n′)− σ(m,n)

)∣∣∣(b]i(p, q))
m′n′,mn

∣∣∣2] ≥ 0,

where the equality is obtained only when, for every σ(m′, n′) 6= σ(m,n),
(
b]i(p, q)

)
m′n′,mn

= 0. We

must then conclude that
(
b]i(p, q)

)
m′n′,mn

vanishes for every σ(m′, n′) 6= σ(m,n). Then, calculating the

commutator of Bi with J acting on a two particle state

[B]
i , J ]|pm, qn〉 =

(
B]
iJ − JB

]
i

)
|pm, qn〉

=
∑
m′n′

[(
σ(m,n)

(
b]i(p, q)

)
m′n′,mn

− J
(
b]i(p, q)

)
m′n′,mn

)
|pm′, qn′〉

]
.

(
b]i(p, q)

)
m′n′,mn

are just the elements of a Hermitian matrix, and so we can pass J to the right of it in

the second term ∑
m′n′

[(
σ(m,n)

(
b]i(p, q)

)
m′n′,mn

− J
(
b]i(p, q)

)
m′n′,mn

)
|pm′, qn′〉

]
=
∑
m′n′

[(
σ(m,n)

(
b]i(p, q)

)
m′n′,mn

−
(
b]i(p, q)

)
m′n′,mn

J
)
|pm′, qn′〉

]
=
∑
m′n′

[(
σ(m,n)

(
b]i(p, q)

)
m′n′,mn

− σ(m′, n′)
(
b]i(p, q)

)
m′n′,mn

)
|pm′, qn′〉

]
=
∑
m′n′

[(
σ(m,n)− σ(m′, n′)

)(
b]i(p, q)

)
m′n′,mn

|pm′, qn′〉
]
.

Since we have showed that
(
b]i(p, q)

)
m′n′,mn

vanishes for every σ(m′, n′) 6= σ(m,n), it follows that

∑
m′n′

[(
σ(m,n)− σ(m′, n′)

)(
b]i(p, q)

)
m′n′,mn

|pm′, qn′〉
]

= 0,

and so

[B]
i , J ]|pm, qn〉 = 0,

therefore

[B]
i , J ] = 0. (86)

So each of the U(1) generators B]
i commutes with J . Now, we have chosen J to be the generator that

leaves p and q invariant. If p and q are chosen to be parallel in the x-plane, then J is simply Jx = J23.

We can also make choices of p and q to be parallel along any of the other axis, and therefore conclude

that

[B]
i , J

23] = [B]
i , J

31] = [B]
i , J

12] = 0, (87)

20



i.e. B]
i commutes with all of the generators of spatial rotations. Wonderful. Now, since this is the case,

then we also know from the Lorentz algebra

iε123[B]
i , J

3] = [B]
i , [K1, K2]] = 0. (88)

Using again the Bianchi identity (and repeating similarly for J2 and J3), this tells us that

[K1, [K2, B
]
i ]]− [K2, [K1, B

]
i ]] = 0 (89)

[K2, [K3, B
]
i ]]− [K3, [K2, B

]
i ]] = 0 (90)

[K3, [K1, B
]
i ]]− [K1, [K3, B

]
i ]] = 0. (91)

Now just focussing on Eq. (89),

[K1, [K2, B
]
i ]] = [K2, [K1, B

]
i ]],

which when expanded shows

K1K2B
]
i −K1B

]
iK2 −K2B

]
iK1 +B]

iK2K1 = K2K1B
]
i −K2B

]
iK1 −K1B

]
iK2 +B]

iK1K2,

and cancelling leaves

[B]
i , K1K2] + [B]

i , K2K1] = 0,

but since

[B]
i , [K1, K2]] = 0,

then

[B]
i , K1K2] = 0. (92)

Re-expanded, we find

B]
iK1K2 = K1B

]
iK2 − [K1, B

]
i ]K2

= K1K2B
]
i −K1[K2, B

]
i ]− [K1, B

]
i ]K2

= K1K2B
]
i ,

where the final line follows from Eq. (92). Consequently

K1[K2, B
]
i ] = −[K1, B

]
i ]K2. (93)

Doing the same for Eqs. (90) and (91), and multipling on the left by the inverse of K1 (or its analogue),

we find

[K1, B
]
i ] = −K−1

3 [K3, B
]
i ]K1 (94)

[K2, B
]
i ] = −K−1

1 [K1, B
]
i ]K2 (95)

[K3, B
]
i ] = −K−1

2 [K2, B
]
i ]K3. (96)
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We can then solve this by substitution

[K3, B
]
i ] = −K−1

2 [K2, B
]
i ]K3

= K−1
2 K−1

1 [K1, B
]
i ]K2K3

= −K−1
2 K−1

1 K−1
3 [K3, B

]
i ]K1K2K3.

The left hand side of this equation is traceless. The right hand side, however, is not in general, unless

the commutator vanishes (I have not been able to show this rigorously, but it feels right). Therefore,

for consistency, we require

[K1, B
]
i ] = [K2, B

]
i ] = [K3, B

]
i ] = 0, (97)

i.e. B]
i commutes with the generators of Lorentz boosts. It then follows that B]

i commutes with all the

generators Jµν of the Lorentz group

[B]
i , Jµν ] = 0. (98)

This is critical. Since the B]
i commute with boosts, then bi(p)

]
n′n are independent of three-momentum.

Also, as the B]
i commute with rotations, then bi(p)

]
n′n act as unit matrices on spin indices. Because of

this, we conclude that the B]
i are the generators of an ordinary internal symmetry.

1.6 The remaining semi-simple compact Lie algebra

We are now left to deal with the remaining B]
α, the generators of a semi-simple compact Lie algebra.

Let’s go back to the non-traceless Bα. Now, if Bα are the generators of a semi-simple compact Lie

algebra, and if these generators commute with the four-momentum Pµ, then

[Pµ, Bβ] = i
∑
α

Cα
µβBα = 0,

and therefore

Cα
µβ = −Cα

βµ = 0. (99)

Now consider the effect of a proper Lorentz transformation

xµ → Λµ
νx

ν ,

which has a representation on the Hilbert space by the unitary operator U(Λ)

Bα → U(Λ)BαU
−1(Λ).

U(Λ)BαU
−1(Λ) is a Hermitian symmetry generator that commutes with Λµ

νPν , and since Λ is well

behaved (non-singular), then U(Λ)BαU
−1(Λ) must also commute with Pµ

[U(Λ)BαU
−1(Λ), Pµ] = 0.
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Since we have said that all symmetry generators that commute with Pµ are spanned by the generators

Bα, it follows that U(Λ)BαU
−1(Λ), Pµ is a linear combination of Bβ

U(Λ)BαU
−1(Λ) =

∑
β

Dβ
α(Λ)Bβ, (100)

where the Dβ
α(Λ) are a set of real coefficients that ‘furnish’ a representation of the homogeneous Lorentz

group

D(Λ1)D(Λ2) = D(Λ1Λ2). (101)

The U(Λ)BαU
−1(Λ) also satisfy the same commutation relations as the Bα

[U(Λ)BαU
−1(Λ), U(Λ)BβU

−1(Λ)] = U(Λ)[Bα, Bβ]U−1(Λ)

= U(Λ)i
∑
γ

Cγ
αβBγU

−1(Λ)

= i
∑
γ

Cγ
αβU(Λ)BγU

−1(Λ).

We can then rewrite the Lie algebra for the transformed Bα in terms of the Dβ
α(Λ)

[U(Λ)BαU
−1(Λ), U(Λ)BβU

−1(Λ)] =
∑
α′β′

Dα′
α(Λ)Dβ′

β(Λ)[Bα′ , Bβ′ ]

= i
∑
α′β′δ

Dα′
α(Λ)Dβ′

β(Λ)Cδ
α′β′Bδ

= i
∑
γ

Cγ
αβU(Λ)BγU

−1(Λ)

= i
∑
γγ′

Dγ′
γ(Λ)Cγ

αβBγ′ ,

therefore ∑
γγ′

Dγ′
γ(Λ)Cγ

αβBγ′ =
∑
α′β′δ

Dα′
α(Λ)Dβ′

β(Λ)Cδ
α′β′Bδ. (102)

It follows that

0 =
∑
γγ′

Dγ′
γ(Λ)Cγ

αβBγ′ −
∑
α′β′δ

Dα′
α(Λ)Dβ′

β(Λ)Cδ
α′β′Bδ

=
∑
δ

(∑
γ

Dδ
γ(Λ)Cγ

αβ −
∑
α′β′

Dα′
α(Λ)Dβ′

β(Λ)Cδ
α′β′

)
Bδ,

which for any Bδ implies

∑
δ

(∑
γ

Dδ
γ(Λ)Cγ

αβ −
∑
α′β′

Dα′
α(Λ)Dβ′

β(Λ)Cδ
α′β′

)
= 0. (103)
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Now multiplying by Dδ′
δ(Λ

−1), we have

0 =
∑
δ

(∑
γ

Dδ
γ(Λ)Dδ′

δ(Λ
−1)Cγ

αβ −
∑
α′β′

Dα′
α(Λ)Dβ′

β(Λ)Dδ′
δ(Λ

−1)Cδ
α′β′

)
=
∑
γ

δδ
′

γ C
γ
αβ −

∑
α′β′δ

Dα′
α(Λ)Dβ′

β(Λ)Dδ′
δ(Λ

−1)Cδ
α′β′

= Cδ′

αβ −
∑
α′β′δ

Dα′
α(Λ)Dβ′

β(Λ)Dδ′
δ(Λ

−1)Cδ
α′β′ ,

and so

Cγ
αβ =

∑
α′β′γ′

Dα′
α(Λ)Dβ′

β(Λ)Dγ
γ′(Λ

−1)Cγ′

α′β′ . (104)

This means that the structure constants of the Lie Algebra are ‘invariant tensors’ in the above sense.

Contracting the above with Cα
γδ defines the Lie algebra metric or Cartan-Killing form gβδ

gβδ :=
∑
αγ

Cγ
αβC

α
γδ =

∑
αγ

∑
α′β′γ′

∑
α′′γ′′δ′

Dα′
α(Λ)Dβ′

β(Λ)Dγ
γ′(Λ

−1)Dγ′′
γ(Λ)Dδ′

δ(Λ)Dα
α′′(Λ

−1)Cγ′

α′β′C
α′′

γ′′δ′

=
∑
αγ

∑
α′β′γ′

∑
α′′γ′′δ′

Dα′
α(Λ)Dα

α′′(Λ
−1)Dγ

γ′(Λ
−1)Dγ′′

γ(Λ)Dβ′
β(Λ)Dδ′

δ(Λ)Cγ′

α′β′C
α′′

γ′′δ′

=
∑
α′β′γ′

∑
α′′γ′′δ′

δα
′

α′′δ
γ′′

γ′ D
β′
β(Λ)Dδ′

δ(Λ)Cγ′

α′β′C
α′′

γ′′δ′

=
∑
α′γ′

∑
β′δ′

Dβ′
β(Λ)Dδ′

δ(Λ)Cγ′

α′β′C
α′

γ′δ′

=
∑
β′δ′

Dβ′
β(Λ)Dδ′

δ(Λ)gβ′δ′ ,

and so we find

gβδ =
∑
β′δ′

Dβ′
β(Λ)Dδ′

δ(Λ)gβ′δ′ . (105)

Now since Cα
µβ = −Cα

βµ = 0, it follows that

gµα = gαµ = 0 (106)

We will now alter our notation to distinguish symmetry generators other than the Pµ by using subscripts

A,B in the place of α, β etc. Now since CA
µB = −CA

Bµ = 0, it follows from the definition of the Lie algebra

metric and Eq. (106) that

gAB =
∑
CD

CD
ACC

C
BD. (107)

Now, as we have assumed that the BA span a compact semi-simple Lie algebra. Wikipedia tells me that

a real Lie algebra is called compact if the Killing form is negative definite. This contradicts Weinberg’s

statement that, for similar reasons, gAB is postive definite. If we look in Weinberg II in the footnote on

page 9, he equivalently says that a simple or semi-simple Lie algebra is said to be compact if the matrix
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−
∑

CD C
D
ACC

C
BD is positive definite. Let’s check for ourselves the ‘positiveness’ of gAB. Now there is

a basis for the Lie algebra for which the struture constants CA
BC are antisymmetric in all three indices,

and so

gAB =
∑
CD

CD
ACC

C
BD

= −
∑
CD

CC
ADC

C
BD.

For the diagonal elements gAA, we are looking at the negative of the sum of squared real elements, and so

the diagonal entries of gAB are positive or zero, and hence if gAB is definite anything, it will be negative

definite. Also, this agrees with both wikipedia and Weinberg II, where the matrix −
∑

CD C
D
ACC

C
BD

would then be positive definite, as would be true for a compact simple or semi-simple Lie algebra, as is

the case with the algebra spanned by the generators Bα.

Now, if we consider the matrices g1/2D(Λ)g−1/2, we can see from Eq. (101), that they also furnish a

representation of the homogeneous Lorentz group

g1/2D(Λ1)g−1/2g1/2D(Λ2)g−1/2 = g1/2D(Λ1)D(Λ2)g−1/2 = g1/2D(Λ1Λ2)g−1/2.

We can also show that these matrices are orthogonal(
(g1/2D(Λ)g−1/2)T (g1/2D(Λ)g−1/2)

)
βδ

=
∑
α

(
g1/2D(Λ)g−1/2)αβ

)T
(g1/2D(Λ)g−1/2)αδ

=
∑
α

∑
α′β′

∑
γ′δ′

(
g

1/2
αα′D(Λ)α′β′g

−1/2
β′β

)T
g

1/2
αγ′D(Λ)γ′δ′g

−1/2
δ′δ

=
∑
α

∑
α′β′

∑
γ′δ′

g
−1/2
ββ′ D(Λ)β′α′g

1/2
α′α g

1/2
αγ′D(Λ)γ′δ′g

−1/2
δ′δ

=
∑
α′β′

∑
γ′δ′

g
−1/2
ββ′ D(Λ)β′α′gα′γ′D(Λ)γ′δ′g

−1/2
δ′δ

=
∑
γ′δ′

g
−1/2
ββ′ gβ′δ′ g

−1/2
δ′δ

= δβδ,

therefore g1/2D(Λ)g−1/2 is an orthogonal matrix. Between lines 4 and 5, Eq. we have used (105). Since

both the DΛ and the g are real, then g1/2D(Λ)g−1/2 is an orthogonal matrix, and hence is a unitary

matrix, since

OTO = (O∗)TO = O†O = 1.

It follows that the matrices g1/2D(Λ)g−1/2 furnish a unitary, finite-dimensional representation of the

homogenous Lorentz group. The representation is finite dimensional, since the g1/2 and D(Λ) are

matrices that are finite in size, of which there are a finite number of linearly independant combinations.

However, the Lorentz group is non-compact! The only finite-dimensional representation of the
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Lorentz group is the trivial representation, i.e.

D(Λ) = 1.

And so, with D(Λ) = 1, then the generators BA commute with U(Λ) for all Λ, since

U(Λ)BαU
−1(Λ) =

∑
β

Dβ
α(Λ)Bβ

=
∑
β

δβα(Λ)Bβ

= Bα,

and so

[BA, U(Λ)] = 0.

And so we have shown that, now reverting back to our original notation, that

[Bα, U(Λ)] = 0, (108)

where Bα are the generators of the semi-simple Lie algebra of G that commute with Pµ. And so we have

shown that, both the B]
i which are the traceless U(1) generators, and the Bα, which are the generators

spanning the semi-simple Lie algebra, both commuting with the four-momentum Pµ, are either internal

symmetry generators, or linear combinations of components of Pµ.

1.7 The subalgebra spanned by generators that don’t commute with Pµ

Having dealt with the symmetry generators that commute with Pµ, let us look at the possible symmetry

generators which do not. The action of a general symmetry generator Aα on a one-particle state |p, n〉
of four-momentum p would be

Aα|p, n〉 =
∑
n′

∫
d4p′

(
Aα(p′, p)

)
n′n
|p′, n′〉, (109)

where A is the ‘kernel,’ and n and n′ are aggain discrete indices labelling both spin z-components and

particle types. The kernel must vanish unless both p and p′ are on the mass shell. Now if Aα is a

symmetry generator, then so is

Afα :=

∫
d4x exp(iP · x)Aα exp(−iP · x)f(x), (110)
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where Pµ is the four-momentum operator, and f(x) is a function of our choice. Let us now act on a

one-particle state

Afα|p, n〉 =

∫
d4x exp(iP · x)Aα exp(−iP · x)f(x)|p, n〉

=

∫
d4x exp(iP · x)Aα exp(−ip · x)f(x)|p, n〉

=
∑
n′

∫
d4x

∫
d4p′ exp(−ip · x) exp(iP · x)

(
Aα(p′, p)

)
n′n
f(x)|p′, n′〉

=
∑
n′

∫
d4x

∫
d4p′ exp(−ip · x) exp(ip′ · x)

(
Aα(p′, p)

)
n′n
f(x)|p′, n′〉

=
∑
n′

∫
d4p′

∫
d4x exp(i(p′ − p) · x)f(x)

(
Aα(p′, p)

)
n′n
|p′, n′〉

=
∑
n′

∫
d4p′f̃(p′ − p)

(
Aα(p′, p)

)
n′n
|p′, n′〉,

where f̃(k) is the Fourier transform

f̃(k) =

∫
d4x exp(ik · x)f(x). (111)

And so

Afα|p, n〉 =
∑
n′

∫
d4p′f̃(p′ − p)

(
Aα(p′, p)

)
n′n
|p′, n′〉. (112)

Now, suppose there is a pair of mass shell four-momenta p1 and p1 + ∆ with ∆ 6= 0. For a two-particle

scattering process with four-momenta satisfying p1 + q1 → p2 + q2, then in general, q1 + ∆, p2 + ∆, and

q2 + ∆ will not be mass shells. Now, since we can choose f̃(k) to be anything we want, let us choose it

to vanish outside of a sufficiently small region around k = ∆. Then, for the above scattering process

Afα|p1, n〉 =
∑
n′

∫
d4p′1f̃(p′1 − p1)

(
Aα(p′1, p1)

)
n′n
|p′1, n′〉 =

∑
n′

f̃(∆)
(
Aα(p1 + ∆, p1)

)
n′n
|p1 + ∆, n′〉

Afα|q1, n〉 =
∑
n′

∫
d4q′1f̃(q′1 − q1)

(
Aα(q′1, q1)

)
n′n
|q′1, n′〉 =

∑
n′

f̃(∆)
(
Aα(q1 + ∆, q1)

)
n′n
|q1 + ∆, n′〉,

and similarly for p2 and q2. We have established, however, that if p1 + ∆ is on the mass shell, then a

general q1 + ∆ will not be, and similarly for p2 and q2. Consequently, the action of Afα upon |p1, n〉 does

not annihilate the state, but its action upon |q1, n〉, |p2, n〉, and |q2, n〉 does

Afα|p1, n〉 6= 0 (113)

Afα|q1, n〉 = Afα|p2, n〉 = Afα|q2, n〉 = 0. (114)

This is because everywhere we have chosen f̃(k) to be non-zero, the kernel Aα(q1 + ∆, q1) vanishes due

to q1 + ∆ not being on the mass shell. This is a bit of an issue, since we assumed that scattering occurs
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at almost all energies (except for perhaps some isolated set of energies). We have just shown that if

a pair of four-momenta p1 and p1 + ∆ are on the mass shell, then an appropriate f̃(k) can be chosen

such that Afα annihilates all states with momenta q1, p2, and q2, and so the symmetry generated by Afα
forbids a process to have the kinematics p1 + q1 → p2 + q2. This would mean that scattering does not

occur at almost all energies and angles, so contradits with our assumption. This problem is averted if

Aα commutes with the four-momentum operator Pµ since

Afα|p, n〉 =

∫
d4x exp(iP · x)Aα exp(−iP · x)f(x)|p, n〉

=

(∫
d4xf(x)

)
Aα|p, n〉 ∝ Aα|p, n〉,

and so f̃(k) does not enter into the action of Afα on a one-particle state, and cannot be appropriately cho-

sen to cause problems. This option isn’t great however, since if Aα commuted with the four-momentum

operator Pµ, then the Aα would just be linear combinations of the Bα, which we have already discussed.

Instead of allowing the Aα to commute with Pµ, consider a kernel Aα(p′, p) that contains a momentum

space delta function (
Aα(p′, p)

)
n′n

= δ(4)(p′ − p)
(
a0
α(p′, p)

)
n′n
.

Then, the action of Afα on a one particle state becomes

Afα|p, n〉 =
∑
n′

∫
d4p′f̃(p′ − p)

(
Aα(p′, p)

)
n′n
|p′, n′〉

=
∑
n′

∫
d4p′f̃(p′ − p)δ(4)(p′ − p)

(
a0
α(p′, p)

)
n′n
|p′, n′〉

= f̃(0)
∑
n′

(
a0
α(p)

)
n′n
|p, n′〉.

Now, the function of our choice f̃(0) is now evaluated independant of the momentum of the state that it

acts on. Therefore, if Afα is a symmetry generator that does not annihilate a state with four-momentum

p, then it will also not annihilate a state of four-momentum p′, and so the symmetry generated by

Aα would allow a scattering process with kinematics p1 + q1 → p2 + q2 for p1, q1, p2, and q2 on the

mass shell. This is now in-line with the assumptions about scattering we made at the beginning. Now

let us consider something more general. Consider the kernels Aα(p′, p) to be distributions, that is,

contain objects proportional to δ(4)(p′ − p) as well as at most a finite number Dα of derivatives ∂/∂p′µ
of δ(4)(p′ − p). This leads to a kernel expansion(

A(p′, p)
)
n′n

=
(
a0
α(p′, p)

)
n′n
δ(4)(p′ − p) +

(
a1
α(p′, p)

)µ1
n′n

∂

∂p′µ1
δ(4)(p′ − p)

+
(
a2
α(p′, p)

)µ1µ2
n′n

∂2

∂p′µ1∂p′µ2
δ(4)(p′ − p) + · · ·

+
(
aDαα (p′, p)

)µ1µ2···µDα
n′n

∂Dα

∂p′µ1∂p′µ2 · · · ∂p′µDα
δ(4)(p′ − p). (115)
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Note, for e.g. a2, the 2 is just a label, i.e. a2 6= a× a. Now note the property of delta functions∫
d4p′

∂

∂p′µ
δ(4)(p′ − p)fµ(p′) = −

∫
d4p′δ(4)(p′ − p) ∂

∂p′µ
fµ(p′). (116)

Now let us consider the first derivative term in Eq. (115)(
a1
α(p′, p)

)µ1
n′n

∂

∂p′µ1
δ(4)(p′ − p)

in the action of Afα upon a one particle state

(
Afα|p, n〉

)
first derivative

=
∑
n′

∫
d4p′f̃(p′ − p)

(
a1
α(p′, p)

)µ1
n′n

∂

∂p′µ1
δ(4)(p′ − p)|p′, n′〉

= −
∑
n′

∫
d4p′

∂

∂p′µ1

(
f̃(p′ − p)

(
a1
α(p′, p)

)µ1
n′n

)
δ(4)(p′ − p)|p′, n′〉

= −
∑
n′

∂

∂pµ1

(
f̃(0)

(
a1
α(p)

)µ1
n′n
|p, n′〉

)
= −f̃(0)

∑
n′

∂

∂pµ1

((
a1
α(p)

)µ1
n′n
|p, n′〉

)
.

From the first two terms in Eq. (115), we therefore have

Afα|p, n〉 = f̃(0)
∑
n′

((
a0
α(p)

)
n′n
|p, n′〉 − ∂

∂pµ1

((
a1
α(p)

)µ1
n′n
|p, n′〉

))
+ higher derivatives. (117)

Expanding the first derivative term

Afα|p, n〉 = f̃(0)
∑
n′

((
a0
α(p)

)
n′n
− ∂

∂pµ1

(
a1
α(p)

)µ1
n′n
−
(
a1
α(p)

)µ1
n′n

∂

∂pµ1

)
|p, n′〉+ h.d. (118)

Then we can define (
a′

0
α(p)

)
n′n

= f̃(0)

((
a0
α(p)

)
n′n
− ∂

∂pµ1

(
a1
α(p)

)µ1
n′n

)
,

so that, expecting we can do similarly for other terms,

Afα|p, n〉 =
∑
n′

((
a′

0
α(p)

)
n′n

+
(
a′

1
α(p)

)µ1
n′n

∂

∂pµ1
+· · ·+

(
a′
Dα
α (p)

)µ1···µDα
n′n

∂Dα

∂pµ1∂pµ2 · · · ∂pµDα

)
|p, n′〉. (119)

We can see from this that if the kernels aα(p′, p) contain at most a finite number Dα of derivatives of

δ(4)(p′−p), then the action of the symmetry generator Afα, on one-particle states, is a polynomial of order

Dα in the derivatives ∂/∂pµ with matrix coefficicents a′α(p)
)
n′n

that currently depend on momentum
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and spin. This also holds for Aα, since

Aα|p, n〉 =
∑
n′

((
a0
α(p)

)
n′n

+
(
a1
α(p)

)µ1
n′n

∂

∂pµ1
+ · · ·+

(
aDαα (p)

)µ1···µDα
n′n

∂Dα

∂pµ1∂pµ2 · · · ∂pµDα

)
|p, n′〉, (120)

where we no longer write the primes on the matrix coefficients for convenience. The coefficients them-

selves are in general different to those in Afα for a given f̃(0), since Aα does not depend on the choice of

f̃(k).

Now if Aα are general symmetry generators, then they must contain the Bα as a subset (i.e. the Bα

are the subset of Aα who commute with Pµ). The Bα, as we have shown, act only as matrices on one

particle states as in Eq. (2). They do not act as a polynomial of momentum derivatives of the state as

in Eq. (120). Therefore, the Bα can in principle be formed by the Dα-fold commutator of momentum

operators with Aα

Bµ1...µDα
α := [P µ1 , [P µ2 , . . . [P µDα , Aα]] . . .]. (121)

To demonstrate, let’s consider a Aα with Dα = 1 acting on a one-particle state |p, n〉. Then

Bµ
α|p, n〉 = [P µ, Aα]|p, n〉

=
∑
n′

[P µ,
(
a0(p)

)
n′n

+
(
a1(p)

)ν
n′n

∂

∂pν
]|p, n′〉

=
∑
n′

[P µ,
(
a1(p)

)ν
n′n

∂

∂pν
]|p, n′〉

=
∑
n′

(
P µ
(
a1(p)

)ν
n′n

∂

∂pν
− ∂

∂pν
P µ
(
a1(p)

)ν
n′n
− P µ

(
a1(p)

)ν
n′n

∂

∂pν

)
|p, n′〉

= −
∑
n′

∂

∂pν
P µ
(
a1(p)

)ν
n′n
|p, n′〉

= −
∑
n′

∂

∂pν
pµ
(
a1(p)

)ν
n′n
|p, n′〉

= −
∑
n′

δµν

(
a1(p)

)ν
n′n
|p, n′〉

= −
∑
n′

(
a1(p)

)µ
n′n
|p, n′〉,

and so

Bµ
α|p, n〉 =

∑
n′

(
bα(p)

)µ
m′m
|p, n′〉 = −

∑
n′

(
a1(p)

)µ
n′n
|p, n′〉. (122)

Note that, although we have shown that the traceless b]α are momentum independent, this does not

necessarily mean that the bα(p) are.

Now, since the Bα commute with the four-momentum operator P µ, consider the commuator of

B
µ1...µDα
α with P µ between states with four-momentum p1 and p2. For simplicity, we will just consider
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the commutator of Bµ1
α with P µ, i.e. the Dα = 1 case, then consider the extension to general Dα

〈p2|[Bµ1
α , P

µ]|p1〉 = 〈p2|[[P µ1 , Aα], P µ]|p1〉
= 〈p2| (P µ1AαP

µ − AαP µ1P µ − P µP µ1Aα + P µAαP
µ1) |p1〉

= 〈p2| (pµ12 Aαp
µ
1 − Aαp

µ1
1 p

µ
1 − p

µ
2p

µ1
2 Aα + pµ2Aαp

µ1
1 ) |p1〉

= (pµ12 p
µ
1 − p

µ1
1 p

µ
1 − p

µ
2p

µ1
2 + pµ2p

µ1
1 ) 〈p2|Aα|p1〉

= − (p2 − p1)µ1 (p2 − p1)µ 〈p2|Aα|p1〉

= − (p2 − p1)µ1 (p2 − p1)µ
∫
d4p′〈p2|Aα(p′, p1)|p′〉

= − (p2 − p1)µ1 (p2 − p1)µ
∫
d4p′

(
a0
α(p′, p1)δ(4)(p′ − p1)+

a1
α(p′, p1)ν

∂

∂p′ν
δ(4)(p′ − p1)

)
〈p2|p′〉

= − (p2 − p1)µ1 (p2 − p1)µ
∫
d4p′δ(4)(p′ − p1)

[(
a0
α(p′, p1) +

∂

∂p′ν
a1
α(p′, p1)ν

)
+

a1
α(p′, p1)ν

∂

∂p′ν

]
〈p2|p′〉

= − (p2 − p1)µ1 (p2 − p1)µ
(
a′

0
α(p1) + a1

α(p1)ν
∂

∂p′ν

)
〈p2|p1〉,

where

a′
0
α(p1) = a0

α(p1) +
∂

∂p1
ν
a1
α(p1)ν .

Using the one-particle state relativistic normalization,

〈p|q〉 = 2Ep(2π)3δ(3)(p− q) (123)

and noting that the four-momenta p2 and p1 must be on the same mass shell, then

〈p2|[Bµ1
α , P

µ]|p1〉 = − (p2 − p1)µ1 (p2 − p1)µ
(
a′

0
α(p1) + a1

α(p1)ν
∂

∂p′ν

)
〈p2|p1〉

= − (p2 − p1)µ1 (p2 − p1)µ
(
a′

0
α(p1) + a1

α(p1)ν
∂

∂p′ν

)
2Ep2(2π)3δ(3)(p2 − p1)

∝ (p2 − p1)µ1 (p2 − p1)µ
(
a′

0
α(p1) + a1

α(p1)ν
∂

∂p′ν

)
δ(4)(p2 − p1),

where in the last step, we note that if p2 and p1 are on the same mass shell, then the evaluation of

the delta function δ(3)(p2 − p1) is equivalent to the evaluation of δ(4)(p2 − p1) up to some proportional

constant. We have shown for Dα = 1 that

〈p2|[Bµ1
α , P

µ]|p1〉 ∝ (p2 − p1)µ1 (p2 − p1)µ
(
a′

0
α(p1) + a1

α(p1)ν
∂

∂p′ν

)
δ(4)(p2 − p1), (124)

that is, the matrix elements of the commutators of B
µ1...µDα
α with P µ between states of four-momentum
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p2 and p1 ae proportional to Dα + 1 factors of p2 − p1 times a polynomial of order Dα in momentum

derivatives acting on δ(4)(p2 − p1). Can we motivate this as being true for general Dα? First, we can

motivative the Dα+1 factors of p2−p1 by working from the outside of the commutator inwards. Consider

now general Dα, then

〈p2|[[P µ1 , [P µ2 , . . . [P µDα , Aα]] . . .], P µ]|p1〉 = −(p2 − p1)µ〈p2|[P µ1 , [P µ2 , . . . [P µDα , Aα]] . . .]|p1〉
= −(p2 − p1)µ(p2 − p1)µ1〈p2|[P µ2 , [P µ3 , . . . [P µDα , Aα]] . . .]|p1〉
= −(p2 − p1)µ(p2 − p1)µ1 . . . (p2 − p1)µDα−1〈p2|[P µDα , Aα]|p1〉
= −(p2 − p1)µ(p2 − p1)µ1 . . . (p2 − p1)µDα 〈p2|Aα|p1〉.

So there are the Dα + 1 factors of p2− p1, for general Dα. Now what about the polynomial of order Dα

in momentum derivatives?

〈p2|Aα|p1〉 =

∫
d4p′〈p2|Aα(p′, p1)|p′〉

=

∫
d4p′

(
a0
α(p′, p1)δ(4)(p′ − p1) + a1

α(p′, p1)ν
∂

∂p′ν
δ(4)(p′ − p1)

+ aDαα (p′, p1)ν1ν2···νDα
∂Dα

∂p′ν1∂p′ν2 · · · ∂p′νDα
δ(4)(p′ − p1)

)
〈p2|p′〉.

Using another property of delta functions∫
dxδ(n)(x)f(x) = (−1)n

∫
dxδ(x)f (n)(x), (125)

where here (n) indicates the n-th derivative with respect to x, then we can see

〈p2|Aα|p1〉 =

∫
d4p′δ(4)(p′ − p1)

(
a′

0
α(p′, p1) + a′

1
α(p′, p1)ν

∂

∂p′ν

+ . . .+ a′
Dα
α (p′, p1)ν1ν2···νDα

∂Dα

∂p′ν1∂p′ν2 · · · ∂p′νDα
)
〈p2|p′〉,

where the primed coefficients have absorbed the factors of −1 and the derivatives of other coefficients

from the product rule, as seen in the Dα = 1 case. Performing the integral and using the same mass-shell

trick as before, we find that

〈p2|Aα|p1〉 ∝
(
a′

0
α(p1) + a1

α(p1)ν
∂

∂p′ν
+ . . .+ a′

Dα
α (p′, p1)ν1ν2···νDα

∂Dα

∂p′ν1∂p′ν2 · · · ∂p′νDα

)
δ(4)(p2 − p1),
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and so

〈p2|[Bµ1...µDα
α , P µ]|p1〉 ∝ (p2 − p1)µ(p2 − p1)µ1 . . . (p2 − p1)µDα

(
a′

0
α(p1) + a1

α(p1)ν
∂

∂p′ν

+ . . .+ a′
Dα
α (p′, p1)ν1ν2···νDα

∂Dα

∂p′ν1∂p′ν2 · · · ∂p′νDα

)
δ(4)(p2 − p1). (126)

We have then showed that for any Dα that the matrix elements of the commutators of B
µ1...µDα
α with

P µ between states of four-momentum p2 and p1 ae proportional to Dα + 1 factors of p2 − p1 times a

polynomial of order Dα in momentum derivatives acting on δ(4)(p2 − p1). This therefore vanishes, since

the delta functions would take p2 → p1, and the prefactors would go to zero. This is good, as then the

B
µ1...µDα
α automatically commute with the P µ, as we would like.

Now from our definition of B]
α in Eq. (60), we then know that

Bα|p, n〉 =
∑
n′

(
bα(p)

)
n′n
|p, n′〉 =

(
B]
α − aµαPµ

)
|p, n〉

=
∑
n′

[(
b]α
)
n′n

+ aµαpµδn′n
]
|p, n′〉,

and so the action of Bα on one particle states can be written(
bα(p)

)
n′n

=
(
b]α
)
n′n

+ aµαpµδn′n. (127)

It follows that for the generators B
µ1...µDα
α that(

bα(p)
)µ1...µDα
n′n

=
(
b]α
)µ1...µDα
n′n

+ aµµ1...µDαα pµδn′n, (128)

where the b]α
µ1...µDα are the momentum-independent, traceless Hermitian matrices generating an ordi-

nary internal symmetry algebra (as shown in the previous section), and the a
µµ1...µDα
α are momentum-

independent numerical constants. It is clear from Eq. (126) that Bα
µ1...µDα is symmetric in all of its

indices, and therefore bα(p)µ1...µDα must also be. b]α(p)
µ1...µDα and a

µµ1...µDα
α may also then be taken to

be symmetric in the indices µ1 · · ·µDα .

Now, although Aα does not neccessarily commute with Pµ, we have asserted in our first assumption,

that for any M , there are only a finite number of particle types with mass less than M . This means that

the mass-squared operator PµP
µ must have discrete eigenvalues, and since Aα cannot take one-particle

states off the mass shell, this means that Aα commutes with the mass-squared operator

[PµP
µ, Aα] = 0. (129)
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For Dα ≥ 1, this implies

[P µ1Pµ1 , [P
µ2 , . . . [P µDα , Aα]] . . .] = Pµ1 [P

µ1 , [P µ2 , . . . [P µDα , Aα]] + [P µ1 , [P µ2 , . . . [P µDα , Aα]]Pµ1

= Pµ1Bα
µ1...µDα +Bα

µ1...µDαPµ1

= 2Pµ1Bα
µ1...µDα

= 0,

where the last line follows from Eq. (129). This means that

pµ1b
µ1...µDα
α (p) = 0. (130)

In terms of the traceless and diagonal parts of bα(p), this means

pµ1b
µ1...µDα
α (p) = pµ1

(
b]α
µ1...µDα + aµµ1...µDαα pµ

)
= 0. (131)

If we have a theory which contains massive particles, then p can be any timelike direction we want. If

the above is to hold for all such choices of four-momentum, then, comparing coefficients

b]α
µ1...µDα = 0, (132)

and

aµµ1...µDαα = −aµ1µ...µDαα . (133)

Combined with the symmetry in the indices µ1 · · ·µDα , this implies that, for Dα ≥ 2

aµµ1µ2...µDαα = −aµ1µµ2...µDαα

= −aµ1µ2µ...µDαα

= aµ2µ1µ...µDαα

= aµ2µµ1...µDαα

= −aµµ2µ1...µDαα

= −aµµ1µ2...µDαα ,

and so for Dα ≥ 2

aµµ1µ2...µDαα = −aµµ1µ2...µDαα = 0, (134)

and therefore for Dα ≥ 2

Bµ1...µDα
α = 0. (135)

So what are we left with? For Dα = 0, we have the generators Aα who are the Bα that commute with

Pµ. There must therefore be an internal symmetry generator or some linear combination of Pµ. We are

also left with the Dα = 1, for which

Bµ
α = [P µ, Aα],

34



and

Bν
α = aµνα Pµ,

where aνµα are some numerical constants antisymmetric in µ and ν. It follows that

[P ν , Aα] = aµνα Pµ, (136)

i.e. the commutator of Aα with the four-momentum operator produces linear combinations of the four

momentum operator. Finally, it follows from the Poincaré algebra that

Aα = −1

2
iaµνα Jµν +Bα, (137)

where Jµν is the generator of proper Lorentz transformations satisfying

[P µ, Jρσ] = −iηνρP σ + iηνσP ρ, (138)

and Bα commutes with Pµ. The factors of i and 1/2 are just conventional. Since Aα and Jµν are

symmetry generators, so is Bα.

We have therefore shown that, assuming particle type finiteness, the occurence of scattering at most

energies, and the analycity of two-body scattering amplitudes, that the only possible Lie algebra of

symmetry generators consists of the generators Pµ and Jµν of translastions and homogenous Lorentz

transformations, together will possible internal symmetry generators, which commute with Pµ and Jµν .
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