
YETI Tutorial on CMB anisotropies computation and parameter inferencea

January 8, 2015

I. CLASS

For this tutorial we will be using the virtual box that you downloaded from the School website. However, once
you’re ready to use it in the real world, CLASS can be obtained at http://class-code.net. The website also
includes detailed information on the required packages and installation, as well as links to a week’s worth of lectures1

(from which these notes are partially condensed) and relevant publications about the code.
CLASS, stands for Cosmic Linear Anisotropy Solving System. It is the latest of many “Boltzmann codes”, the

most well-known being CAMB2, which has been maintained and updated since 1999. I’ve chosen CLASS because its
logical structure makes it a bit more approachable and (in my opinion) easier to modify.

Given a set of cosmological parameters, the CLASS code computes:

1. The background cosmology evolution

2. The matter power spectrum & transfer functions

3. The CMB anisotropy spectra

4. Lensing potential spectra

5. Thermal history since recombination

The main reasons to use CLASS then would be to analyze new data, look for new observables, or make
predictions based on new physics.

A. The CLASS modules

CLASS is written in C. It is composed of 10 “modules” located in the source/ directory. The main program
class.c file just runs each of these modules in turn. Each module puts together a tabulated “structure” containing
the observables and parameters needed either for subsequent modules or for output. For example, the thermodynamics
structure is named th, referenced by the pointer pth. If you want the free electron fraction xe, for instance, you’ll just
write pth->xe. Most variables follow this basic structure, so it’s normally a question of determining which module
computes the parameter you want, and finding its name within that module’s header (.h) file.

Here is a quick rundown of the modules, with their associated structure fields

background: (pba-> ...) This is where the background cosmology (i.e. Friedmann equations) is computed. Note
that all the units are in Mpcn: times and distances in Mpc, rates (like H) are in Mpc−1, densities and
pressures are in Mpc−2: ρ = 8πG/3ρphysical. The background module also contains background functions that
compute e.g. ρ, p, H without the need to solve any differential equations. Note that the time variable is τ , the
proper time (normally denoted by η).

thermodynamics: (pth-> ...) This is where CLASS computes the free electron fraction xe ≡ nfree electrons/np, the
optical depth κ and the visibility function g, in order to solve the recombination and reionisation equations.
Can choose between different recombination algorithms: accurate (many energy levels), RECFAST (Peebles
two-level model with fudge factors), as well as HyRec and CosmoRec.

perturbations: (ppt-> ...) This module integrates the Boltzmann equations in order to obtain the source functions
Si(k, τ). Here the linear scalar and tensor perturbation equations are solved, following the Ma & Bertschinger3

formalism. Both synchronous and Newtonian4 gauges are implemented in perturbations.c: the gauge is

a Prepared by Aaron Vincent (aaron.vincent@durham.ac.uk) with help from Ryan Wilkinson (ryan.wilkinson@durham.ac.uk)
1 specifically, here: http://lesgourg.web.cern.ch/lesgourg/class-tour/class-tour.html
2 http://camb.info
3 http://arxiv.org/abs/astro-ph/9506072
4 Only the sychronous gauge is used in CAMB. This can be a problem, e.g. when looking at models of interacting dark matter, since the

DM velocity perturbation θDM = 0 in synchronous gauge.

http://class-code.net
http://lesgourg.web.cern.ch/lesgourg/class-tour/class-tour.html
http://camb.info
http://arxiv.org/abs/astro-ph/9506072

2

specified in the .ini file, so if you are modifying the perturbation routine, it is important to check that you are
in the right gauge!

This is also where the approximation schemes are implemented – see figure. These are described in detail in Ma
& Bertschinger.

primordial: (ppm->...) This is where the primordial perturbations are introduced. It allows various specifications
for the primordial power spectra P(k), including the simple As + ns, or more involved parametrisations with
running. Alternatively you may specify a model of inflation.

nonlinear: (pnl->...) Optional: compute nonlinear correction RNL(k, τ) = δNLm /δLm using HALOFIT, and multiply
the source functions.

transfer: Where the transfer functions, ∆X
l (q) (i.e. projection of the source functions onto Bessels) are computed,

where X = T,E, ...:

∆X
l (q) =

∫
dτSX(k, τ)φXl (q, (τ0 − τ) (1)

for both CMB and LSS.

spectra: (psp->...)Where the spectra are finally computed:

PL(k, z) = (δm(k, τ(z)))
2 P(k) (2)

and

CXYl = 4π
∑
i,j

∫
dk

k
∆X
l (k)∆Y

l (k)P(k) (3)

for all combinations of T (temperature) E (E-mode polarization) B (B-mode) P (CMB lensing) Ni (galaxy
number in ith bin) and Li (galaxy lensing in ith bin).

3

lensing: This module takes the unlensed spectra CTT,TE,...l and uses the lensing potential CPPl to compute the lensed

spectra C̃TT,TE,...l . This is the final piece of physics.

output: Exactly what it says. Depending on the flags in your .ini file, will generate the output based on the structures
stored by the previous modules.

B. The .ini file

The .ini file is the basic input for CLASS. The file explanatory.ini contains the full structure, with optional commands
commented out (#). It’s recommended to leave it as is, and make a copy to play with:

$ cp explanatory . i n i yourname . i n i

You should skim through your copy of explanatory.ini to get an understanding of how CLASS inputs operate. For
the most part, this is the only portion that you’ll be modifying. However, if you want to do something more fancy,
you’ll need to play with the code.

C. Running CLASS

To run CLASS, simply type, from the class v2.4.1/ directory:

$. / c l a s s yourname . i n i

D. The Outputs

Outputs go into the output/ directory, and are named yourname## observable.dat. Where yourname is whatever
you called your .ini file, ## is a counter to avoid overwriting previous runs.

1. Plotting the output

CLASS comes with a python plotting utility called CPU. To see the options, type

$ python CPU. py −−help

There is also a Matlab script, plot CLASS output.m which does essentially the same. You can of course use whatever
program you prefer.

E. Exercises

1. The ΛCDM model relies on six parameters: {Ωb, ΩCDM , H0, ns, As, zreio}. To get familiar with class and its
outputs, try varying these. What are the effects on the CMB CTTl ?

2. By default the neutrinos are treated as massless (ultrarelativistic) species, with NUR = 3.046. To add a massive
neutrino, change this to N ur = 2.0328, and change the number of “non-CDM” species N ncdm = 1. Now give
it a mass m ncdm = 1. (eV), and a temperature T ncdm = 0.71611. Plot the (lensed) TT spectrum. Now
try a new run with the default massless neutrinos, but this time changing the Hubble parameter to h = 0.74.
You’ll see that the peaks now line up with your massive neutrino case. We’ve found a degeneracy. Try plotting
the lensing potential spectrum. There should be a large difference at high multipoles: this shows how new
observables can resolve this type of degeneracy.

4

3. Reproduce the lines in the following plot:

Note that to get the right units in the output, you must set format = CAMB.

4. You can plot the time evolution of perturbations at various scales. Add k output values = 0.01,0.1,1 and
plot the evolution of the different components (i.e. δb, δcdm, ...).

5. Adding write thermodynamics = yes to the ini file writes the thermodynamics data. Plot the ionisation
fraction xe vs redshift.

(a) Try a few reionisation models (camb, none, bins tanh) and compare their effects on xe(z).

(b) Dark matter annihilation can inject energy into the IGM plasma after recombination, leaving a larger
amount of residual ionization. This is parametrized by pann ≡ 〈σv〉ann/mχ. It is implemented in CLASS
with the annihilation parameter, in units of kg m−3 s−1. Try a few values (current limit is around 10−6)
and look at the effect on xe and CTTl .

6. Time to modify the code. To get a feeling for the procedure, try adding a new component χ to the cosmological
background, with equation of state pχ = wχρχ with constant wχ.

(a) You will need to add two new variables: the abundance Ωχ and the equation of state parameter wχ. Open
background.h, and add double Omega0 chi; and double w chi; to the background structure. These
can now be referenced via pba-> Omega0 chi and pba-> w chi.

(b) You will also have to add an index in background.h: int index bg rho chi; around line 166. This will
tell us where the density values are stored for our species in the background array.

(c) input.c now needs to be modified. Look at how Omega0 cdm, for example, is added (around line 800). Try
to replicate this for Omega0 chi and w chi.

(d) If the user does not specify a default value, these parameters need to be defined. Have a look around line
2600 of input.c and add defaults for your two new parameters.

(e) Open background.c and have a look around line 300. This is where the pressure and densities are com-
puted. Once you’ve figured out what’s going on with baryons, CDM and so forth, try adding the contribu-
tion of your new species. Build the code using $ make, and see if you can plot the background evolution
for a few cases of wχ and Ωχ.

5

II. BAYESIAN INFERENCE WITH MONTEPYTHON

Parameter inference5 is the process of determining the best model parameters θi given data x, where i = 1, ..., n.
Your model gives you L(x|θi) (the likelihood of observing these data given these parameters), but you really want
L(θi|x) (the likelihood of each parameter set being true, given the observed data). Bayes theorem allows us to find
this:

L(θi|x)
L(x|θi)L(θi)∫
dnθiL(x|θi)L(θi)

(4)

The left-hand side is called the posterior distribution. L(x|θi) is the sampling distribution, and L(θi) is the prior
likelihood, which reflects our degree of belief in the model before looking at the data x. This is sometimes used
to indicate an extra constraint on a given parameter: it is information known independent of the data x. The
denominator is called the Bayesian evidence, and represents the likelihood summed over all realizations of the model:
it is crucial in model comparison, but is not useful for parameter inference within a given model. The marginal
posterior represents the posterior likelihood of a given parameter θj , and it is what we are really after:

L(θj) ∝
∫
dn−1θi 6=jL(θi|x). (5)

Evaluating this integral analytically is impossible in most cases, and for n larger than a few, numerical evaluation
of (5) is prohibitively expensive. To get around this we use a Markov Chain Monte Carlo (MCMC) search6. An
MCMC can be seen as a point jumping stochastically through the parameter space with the probability of each
jump proportional to the likelihood.7 After enough iterations, the chain of samples {θ̃i} taken by the point will be

distributed according to the posterior likelihood. Eq. (5) is then just a histogram of {θ̃j}.

A. MontePython

MontePython is an MCMC suite that is specially tailored to CLASS (although it can be used beyond CLASS). It
can be used for creating and analyzing MCMC chains with likelihoods given by CLASS, and also allows for different
sampling algorithms including MultiNest and CosmoHammer.

MontePython is available for download at http://montepython.net. The site has extensive documentation includ-
ing installation instructions (non-trivial) and instructions to install and use the Planck likelihoods (highly non-trivial).

From the base montepython/ directory, there are several important files and directories:

1. the .param file

The basic structure of the .param file can be seen in base.param. The line

data . exper iments =[’ P lanck high l ’ , ’ Planck lowl ’ , ’ l ow l ike ’]

tells MP which likelihoods to use (these are described in the next section). The model parameters θi are given with:

data . parameters [c l a s s name] = [mean , min , max , 1−sigma , sca l e , r o l e]
− i f min max i r r e l e v an t , put to −1
− i f f i x ed , put 1−sigma to 0
− i f s c a l e i r r e l e v an t , put to 1 , o the rw i s e to the appropr ia t e f a c t o r
− r o l e i s e i t h e r ’ cosmo ’ or ’ nuisance ’

“cosmo” means that the parameter is passed to CLASS for each evaluation; nuisance parameters go directly to the
likelihood computation, and are normally associated with a given experiment. Other cosmological parameters that
you wish to specify can be written like:

data . cosmo arguments [’ N ef f ’] = 2.03351

5 This is a ridiculously brief introduction. There are many references on Bayesian inference in cosmology, as well as the different tools
of the trade. Here is a good start: http://arxiv.org/pdf/0803.4089v1.pdf for the theory side; to better understand how it works in
practice, the CosmoMC paper http://arxiv.org/pdf/astro-ph/0205436v3.pdf is a good reference.

6 There are other algorithms, such nested sampling, differential evolution and genetic algorithms which use different methods to reach
this goal.

7 The jumps are found by picking a point inside the proposal distribution Q(θiN , θiN+1). If nothing is known about the distribution, an
n-dimensional Gaussian is a rational choice for Q. If degeneracies between parameters are known via a covariance matrix, a judicious
choice of proposal distribution can significantly speed up your exploration by favouring long jumps in degenerate directions and shorter
jumps in steeper directions.

http://montepython.net
http://arxiv.org/pdf/0803.4089v1.pdf
http://arxiv.org/pdf/astro-ph/0205436v3.pdf

6

2. Likelihoods

Likelihood functions are located in the montepython/likelihoods/ directory. They can contain the data itself,
point to data in the data directory, or to more complex likelihood functions like the WMAP and Planck clik libraries,
which must be installed separately.

3. Running MontePython

Before running MontePython, you need to point it to your CLASS installation. Copy the default.conf.template
file to default.conf. Modify the file so that path[’cosmo’] is your CLASS directory (i.e. ∼/cosmoTutorial/class v2.4.1).

To see the available run options, type:

montepython/$ python montepython/MontePython . py −−help

At the very minimum, you must specify a .param file and an output directory:

montepython/$ python montepython/MontePython . py −p base . param −o cha ins / base

If you are using likelihoods with many nuisance parameters (such as Planck), a covariance matrix can (and should!)
be included for the proposal distribution, with the flag -c covmat/mycovmat.covmat. This will greatly speed up
your runs. You can also use the covariance matrix output from a previous run. The -N flag specifies the number of
likelihood evaluations that you want. This supersedes the data.N line in the .params file.

4. Output

Outputs are stored in the directory specified after the -o flag in your run. Output files are numbered sequentially,
so you don’t have to worry about overwriting. This means that multiple chains can be launched at once, from the
same directory! The optimal running strategy, for a run using the Planck likelihood, would be to launch 10 or so
chains with data.N = 10000.

To analyze the output, use:

montepython/$ python montepython/MontePython . py − i n f o cha ins / yourcha ins

This creates figures in in the chains/yourchains/plots/ directory. Note that our VirtualBox is a bit capricious. If
you are getting Latex errors, try commenting out the following lines in analyze.py, by adding a # character in front:

matp lo t l i b . rc (’ t ex t ’ , usetex=True)

This will mess up the labels a bit, but don’t worry, on a normal machine this isn’t necessary.

B. Exercises

1. We do not have time do a full run with any serious likelihood or large number of dimensions, but we can go
through the steps. Run a chain of 1000 points using test.param and plot the results. It probably looks terrible.
Run another few thousand points to see how your contours improve.

2. Now try adding an experiment. The documentation on montepython.net gives us an example: we’ll modify the
hst likelihood to create a new one, called spitzer. Just remember that the likelihood name needs to be shared
by the directory, the class and the data:

$ mkdir l i k e l i h o o d s / s p i t z e r
$ cp l i k e l i h o o d s / hst / hst . data l i k e l i h o o d s / s p i t z e r / s p i t z e r . data
$ cp l i k e l i h o o d s / hst / i n i t . py l i k e l i h o o d s / s p i t z e r / i n i t . py

Next, change the class name in montepython/likelihoods/spitzer/ init .py, and change the entries in
spitzer.data to:

s p i t z e r . h = 0.743
s p i t z e r . sigma = 0.021

That’s it! Try running a chain with the ’spitzer’ data.

montepython.net

7

3. MontePython can vary a function of one (or more) of the cosmology parameters, rather than the parameter itself.
These “mapped” parameters are defined in the data.py module in the update cosmo arguments() function.
Have a look at how parameters here are redefined, and try to copy the syntax to create a new variable, logann,
which varies the log of the annihilation parameter in CLASS. Try to run a small chain with your new variable
with pann in the range [10−7, 10−4] kg m−3 s−1.

4. We have included some previous chains from a ΛCDM run with the Planck likelihoods in in the lcdm planck chains.zip
file. Unzip these to montepython/chains/planck and have a look at the log.param file to see how this run
was set up. You can also look through the different chains and other output files. Analyze the data using the
-info option:

$ python montepython/MontePython . py i n f o cha ins / base −−ext ra p l o t f i l e s / op t i on s ba s e . txt

The last part tells MontePython to use our customized options base.txt file in order to plot only the relevant
cosmological parameters.

	YETI Tutorial on CMB anisotropies computation and parameter inferencePrepared by Aaron Vincent (aaron.vincent@durham.ac.uk) with help from Ryan Wilkinson (ryan.wilkinson@durham.ac.uk)
	I CLASS
	A The CLASS modules
	B The .ini file
	C Running CLASS
	D The Outputs
	1 Plotting the output

	E Exercises

	II Bayesian inference with MontePython
	A MontePython
	1 the .param file
	2 Likelihoods
	3 Running MontePython
	4 Output

	B Exercises

