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Abstract: With the expected increase in statistics provided by the LHC in the
coming years it will enable experiments to explore a wider range of phase space then
at present. Some of these regions require special treatment since the cross section
induces large logarithms which lead to a breakdown of the perturbative series. In
particular at large partonic energies the cross section of QCD processes is sensitive
to BFKL–like logarithms of log |ŝ/̂t|. The Monte Carlo generator High Energy Jets
(HEJ) resums log |ŝ/̂t| through an expansion of the matrix element and a numerical
integration of the phase space.

This thesis will develop a completely new matching of HEJ with leading-order calcu-
lations, which allows matching higher multiplicities while simultaneously decreasing
the computational costs. This required a full rewrite of the source code, leading to a
new, version 2 release of HEJ. The matching shown can be applied to any multi-jet
process in QCD for which the matrix element in HEJ are known. In this thesis we
use Higgs boson plus dijet production from gluon fusion as our first proof-of-concept
for this matching.

In Higgs boson production one typically wants to isolate the weak-boson fusion
production channel. Common cuts therefore require large invariant masses of the
jets. Thus predictions become not only sensitive to hard emissions, but also to
high-energy logarithms. Additionally even at leading order, gluon-fusion includes
a massive quark loop, meaning that the process is particularly hard to accurately
model. We will show how finite quark masses can be included in HEJ to all orders,
and all multiplicities. The resulting simulations are some of the most accurate
predictions of Higgs boson production through gluon fusion at parton colliders.
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Chapter 1

Introduction to the Standard
Model

With the discovery of a Higgs boson in 2012 by ATLAS [6] and CMS [7] at the Large
Hadron Collider (LHC) in CERN the venture of finding all particles in the Standard
Model (SM) of particle physics is completed. This discovery required enormous
development, experimentally and theoretically, since the proposal of the Higgs bosons
in 1964 [8–10]. Prior to the LHC, the largest ever build electron-position collider—
creatively named the Large Electron–Positron Collider (LEP)—managed to exclude
masses of the Higgs boson for up to 114 GeV [11–14], just 11 GeV short of the later
measured Higgs mass of 125 GeV (for a review on LEP searches see ref. 15). Moreover
indirect constrained from electroweak precision data excluded Higgs boson masses
above 157 GeV [16, 17]. Still LEP was not powerful enough, and instead its 27 km-
tunnel got recommissioned for the LHC. After construction the LHC quickly reached
record centre of mass energies of first 7 TeV in 2011 and 8 TeV in 2012, which finally
lead to the discovery. In the following years the LHC got upgraded even further with
an expected energy of 14 TeV in the upcoming run. Beside this massive construction
task, preprocessing, storing and analysing the collected data itself also requires a
huge infrastructure—both the ATLAS and CMS detector recorded an integrated
luminosity of approximately 10 fb−1 alone for the Higgs discovery.1 For example the
Worldwide LHC Computing Grid is the world biggest computing grid, running on
over 170 local clusters in 41 countries [18]. To manage all of these tasks both the
ATLAS and CMS collaborations counted around 2900 members each in 2012.

Parallel to the experimental advancement, new theoretical tools were invented. Not-
ably in Quantum chromodynamics (QCD) the formulation of the Dokshitzer–Gribov–

1The LHC hosts seven experiments, which share most of the infrastructure. Though only
ATLAS and CMS are general-purpose detectors.
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Lipatov–Altarelli–Parisi (DGLAP) equations [19–21] for soft and collinear emissions,
and the Balitsky–Fadin–Kuraev–Lipatov (BFKL) equation [22–25] for high energy
physics, gave insights into the scattering of hadrons. The first led to the formalism of
parton showers, which are a centre piece of any general-purpose event generator (for
a review see ref. 26). At least one of the “big Three”—Herwig [27], Pythia [28] and
Sherpa [29]—is almost always used in any experimental study by ATLAS and CMS.
Additionally, in particular regions more specialised calculations are needed for accur-
ate simulations, e.g. at large rapidity separations between jets BFKL resummation
becomes important, which are implemented in High Energy Jets (HEJ) [1, 3, 30–34].

More conceptually the development of the spinor-helicity formalism [35] enable a
more efficient organisation of calculations, while subtraction methods allowed for
cancellation of poles for numerical integration (see section 1.4.2). Which lead to
fixed-order calculations at next-to-leading order or higher. Often these results can
then be combined with parton showers, to further improve the predictions.

Even after this immense effort, the fundamental theory did not change, making the
Standard Model one of the best tested theories in history. Many extensions have been
proposed, but to date none was experimentally confirmed.2 Inventing new models
for unknown physics is still necessary to eventually overcome the shortcomings of
the SM—like not explaining dark matter and gravity—but without experimental
signals there is no guidance for these theoretical efforts. On the other hand, searches
for beyond the Standard Model phenomena always require an accurate estimate of
the “Standard Model background”. The simulations of SM processes itself are not
a “solved problem”, but an active area of research. In particular after the high
luminosity upgrade, the LHC aims to produce ten times more events than with the
current design [38]. This will require pushing the “theoretical uncertainty” further
down to match experimental statistics. Furthermore, it will be possible to explore
regions in phase space that where so far at best partially accessible. Naturally the
production of Higgs bosons and its interactions with other particles will be especially
interesting, to verify that the discovered Higgs boson is the one predicted by the
SM.

This thesis focuses on exactly such a process, which is currently not yet measured;
Higgs boson production in association with two jets. An accurate prediction of this
processes requires a precise modelling of QCD at large energies, which is in general
not achieved in general-purpose event generators. Instead we use the resummation
from HEJ, which we explain in chapter 2. To further increase the accuracy of HEJ a

2Depending on the chosen definition, one might or might not count neutrino oscillation through
the Pontecorvo–Maki–Nakagawa–Sakata matrix [36, 37] as part of the SM. Though, this extension
can neatly be incorporated into the existing theory, and at collider energies neutrinos are effectively
massless.
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new matching with fixed order is introduced in chapter 3. This required a full rewrite
of the C++ source code of HEJ (see ref. 3–5), but allows a higher accuracy while
also significantly decreasing the computational cost of simulations. Even though the
new code is only presented here for Higgs boson production with jets, the general
framework allows to also incorporate other QCD processes, some of which are in
active development. In chapter 4 we extend HEJ to simulate Higgs plus multijet
events, while keeping the full top-mass dependence in the loop induced gluon to
Higgs coupling.

To begin we review the general concept of the Standard Model in this chapter.
Section 1.1 starts with a brief overview of quantum field theory (QFT). The generation
of a Higgs boson from electroweak symmetry breaking is explained in section 1.2.
Afterwards we will be able to build the full SM Lagrangian for the dynamics and
interaction of fields. How these fields can be measured in a particle collider is
described in section 1.3. At the end of this chapter (section 1.4) we take a closer
look at challenges that arise in the strong interaction. In particular, we will consider
at both the high energy, ultraviolet, (section 1.4.1) and the small energy, infrared,
limit (section 1.4.2). The latter is particularly important when we introduce parton
showers in section 1.4.3.

1.1 Quantum field theory

Many equations of motion in classical field theory have an analogous equation in
quantum field theory. For example the classical Euler-Lagrange equations

∂L(xi, dxi/dt)
∂xi

= d
dt

(
∂L(xi, dxi/dt)
∂ (dxi/dt)

)
(1.1.1)

describes the motion of some objects at xi given by the Lagrangian L. Equivalently

∂L(φi, ∂µφi)
∂φi

= ∂µ

∂L(φi, ∂µφi)
∂
(
∂µφi

)
 , (1.1.2)

is the evolution of fields φi(x) in four dimensions µ = 0, . . . 3. Notably the Lag-
rangian L3 itself is also a field. In both cases the Euler-Lagrange equations are
derived by extremising the action

S ≡
∫

d4xL(φi(x), ∂µφi(x)). (1.1.3)

Here and in the following we choose natural units ~ = c = 1.
3Technically L is the Lagrangian density. We will use Lagrangian L and Lagrangian density L

interchangeably.
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The main difference lies in the interpretation of xi and φi. In a classical system
xi is a measurable property, like the position of some object in space. In QFT
however, operators, φi, L, etc., cannot be measured directly. Instead they transform
a state |s〉 into another state |s′〉 = φ |s〉. Measurements are eigenvalues of Hermitian
operators φ, i.e. the expectation value of finding the original state s after applying φ
is ∣∣∣〈s|s′〉∣∣∣2 = |〈s|φ|s〉|2 . (1.1.4)

We further want to construct a relativistic theory, and thus the Lagrangian to be
invariant under Poincaré symmetry, equivalent to invariance under Galilean trans-
formation in classical mechanics. It follows from Noether’s theorem that Poincaré
invariance implies the conservation of four-momentum and angular momentum. The
invariant Lagrangian for spin-1

2 particles ψ, fermions, is then

Lfermi = ψ̄(x)
(
i/∂ −m

)
ψ(x), (1.1.5)

where we used the short-hand Feynman slash notation /∂ ≡ γµ∂µ and conjugated
field

ψ̄(x) = ψ†γ0. (1.1.6)

The γµ matrices fulfil the Clifford algebra

{γµ, γν} = 2gµν14. (1.1.7)

The fermion ψ transforms like a spinor under Lorentz transformations Λ. Thus,
eq. (1.1.5) is an equation in spinor space, where each term forms a Lorentz scalar.

Applying the Euler-Lagrange equation (1.1.2) to the conjugated field yields the Dirac
equation (

i/∂ −m
)
ψ(x) = 0, (1.1.8)

which is solved by ψ(x) = u(p)e−ip·x with the four-momentum pµ = (E, ~p). Further
for the conjugated field we find a second, linearly independent solution ψ̄(x) =
v(p)e+ip·x. The particle solution u propagates forward in time, while the antiparticle v
propagates backwards.

Equation (1.1.7) is not enough to uniquely define γµ, thus for explicitly solving
eq. (1.1.8) we have to choose a representation. We will use the Weyl basis in which

γµ =
 0 σµ

σ̄µ 0

 , (1.1.9)
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with σµ = (1, ~σ), σ̄µ = (1,−~σ), and σi are the Pauli matrices. In this representation
eq. (1.1.8) simplifies to (

/p−m
)
u(p) = 0, (1.1.10)(

/p+m
)
v(p) = 0, (1.1.11)

giving two solutions each

us(p) =
√p · σ ξs√

p · σ̄ ξs

 , (1.1.12)

vs(p) =
 √p · σ ηs
−
√
p · σ̄ ηs

 . (1.1.13)

We are using the notation from ref. 39, where the root √p · σ implies diagonalising
p · σ, such that we can take the root of each component, e.g. with pµ aligned along
the z-axis

√
p · σ =

√E − pz 0
0

√
E + pz

 . (1.1.14)

ξs and ηs are unit basis vectors in the two-component spinor space, where s = 1, 2 is
the spin of the fermions. We can further define the chirality through the projection

PL/R = 1∓ γ5

2 , (1.1.15)

with

γ5 = iγ0γ1γ2γ3 =
−12 0

0 12

 . (1.1.16)

Thus each spinor decomposes into two Weyl-spinors, or, equivalently, their left- and
right-handed components u = (uL uR)T .

The Standard Model is a QFT based on Yang-Mills theory; each force corresponds
to an (local) gauge symmetry SU(N), which at once transforms N fermions

~ψ → U ~ψ, (1.1.17)

where U = exp (iαaT a) is an unitary N × N matrix, and T a are the generators of
the symmetry group. However, the Lagrangian eq. (1.1.5) is only invariant under
this transformation

L → L′ = ψ̄iU
−1
ij

(
i/∂ −m

)
Ujkψk (1.1.18)

= ψ̄i
(
i/∂ −m

)
ψi + iψ̄iU−1

ij /∂Ujkψk , (1.1.19)
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if U is a global symmetry.

To restore local gauge symmetry, we need to modify the Lagrangian for fermions,
such that it cancels the last term from eq. (1.1.19). Thus, we replace the partial
derivative ∂µ by the covariant derivative Dµ

∂µ → Dµ = ∂µ − igAaµ(x)T a, (1.1.20)

with the coupling strength g being a free parameter. We further introduce N2 − 1
new fields Aaµ, which transform like vectors under Lorentz transformation. Thus we
have added new bosons, call gauge bosons, to our theory. The resulting covariant
derivative transforms like a field ψ

Dµψ → U ·Dµψ (1.1.21)

⇔ AaµT
a → UAaµT

aU−1 − i

g

(
∂µU

)
U−1. (1.1.22)

By construction the fermionic Lagrangian eq. (1.1.5) is therefore invariant under
local gauge symmetry.

Plugging the covariant derivative eq. (1.1.20) into the fermionic Lagrangian eq. (1.1.5)
gives a new term

Lint = gT aijψ̄i /A
a
ψj , (1.1.23)

in which the gauge bosons Aµ couple to the fermions ψi and ψj. T aij acts as the charge
of the fermions. Since the new term is strictly necessary by gauge transformation,
the interaction of fermions with the gauge boson is fundamental in the theory. Thus
one can produce bosons.

So far, the Euler-Lagrange equation for Aµ from eq. (1.1.23) implies ψ̄ψ = 0. To
remedy this, we have to add kinematic terms for the bosons. We construct the field
strength tensors Fµν from the commutator of the covariant derivatives

F a
µνT

a = i
g

[
Dµ, Dν

]
(1.1.24)

⇒ F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν , (1.1.25)

where the structure constants of the generators fabc are defined as[
T a, T b

]
= ifabcT c. (1.1.26)

For abelian groups the generators commute, and fabc = 0.
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The Lorentz contraction of F a
µν with itself lead to a gauge invariant Lagrangian4

Lgauge = −1
4F

a
µνF

a,µν (1.1.27)

=− 1
4
(
∂µA

a
ν − ∂νAaµ

)2
− gfabc(∂µAaν)Ab,µAc,ν

− g2

4 f
abcAbµA

c
νf

adeAd,µAe,ν . (1.1.28)

The first term describes the kinematic of massless bosons, while the last two terms,
proportional to fabc, only appear in non-abelian gauge symmetries. For the abelian
U(1) symmetry, the resulting Euler-Lagrange equations in the Lorenz gauge ∂µAµ =
0 are wave equations, similar to classical electrodynamics. Contrary to this, for
non-abelian gauge symmetries these extra terms correspond to gauge boson self-
interaction, between three or four bosons.

The Standard Model of particle physics has three fundamental symmetries, U(1)Y ⊗
SU(2)L ⊗ SU(3)C , leading to 12 gauge bosons; one boson Bµ from U(1)Y , three
bosons W a

µ from SU(2) and eight gluons from SU(3). Before electroweak symmetry
breaking (see next section), the charge of U(1)Y is the hypercharge, while SU(2)
has two weak isospins. Quantum chromodynamics SU(3)C has three charges, called
colours— red, green and blue—in analogy to the three primary colours.

1.2 Higgs mechanism

In the previous section we introduced gauge bosons to restore local gauge invariance.
To avoid breaking gauge symmetry, the resulting bosons had to be massless. However,
experimentally we know that in nature the weak bosons are massive; the electroweak
symmetry has to be broken through the so-called Higgs mechanism [8–10]. We start
by introducing a new complex SU(2) doublet, the Higgs multiplet,

h = 1√
2

φ1 + iφ2

φ3 + iφ4

 , (1.2.1)

with hypercharge Y = 1
2 , and four degrees of freedom corresponding to the four real

scalars φi. The Lagrangian

Lh =
(
Dµh

)†
Dµh + µ2h†h − λ

(
h†h

)2
, (1.2.2)

4There is a second gauge invariant term εµνξoF aµνF
a
ξo = 2εµνξo∂µ

(
AaνF

a
ξo

)
, which is a total

derivative. Hence, this term changes the action only on the boundaries, without affecting the
equations of motions. So it does not contribute in perturbative theories.
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is then invariant under SU(2)L ⊗ U(1)Y when using the corresponding covariant
derivative

Dµ = ∂µ − igW a
µτ

a − 1
2ig′Bµ . (1.2.3)

µ and λ are free parameters of the Higgs potential eq. (1.2.2). If µ2 > 0 the minimum
of the Higgs potential is at |h| 6= 0. We arbitrary choose the minimum to be in the
second component, such that the vacuum expectation value is

〈h〉 = 1√
2

0
v

 , (1.2.4)

where

v =
√
µ2

λ
. (1.2.5)

We can expand h around eq. (1.2.4). In the unitary gauge5 all but one real scalar—i.e.
all the Goldstone bosons—vanish, such that

h = 1√
2

 0
v + H

 . (1.2.6)

Thus the Higgs mechanism leads to one new scalar boson H , the Higgs boson.

Substituting eq. (1.2.6) into the kinetic term of the Higgs multiplet
(
Dµh

)†
Dµh = 1

2
(
∂µH

)2
+ 1

8 (v + H )2
[
g2
(
W 1

µ + iW 2
µ

) (
W 1

µ − iW 2
µ

)
+
(
gW 3

µ − g′Bµ

)2
]
,

(1.2.7)

give rise to terms proportional to v2, which almost look like boson masses, but with
a non-diagonal mass matrix. Thus we have to linearly combine different bosons to
diagonalise the masses

W±
µ = 1√

2
(
W 1

µ ∓W 2
µ

)
, Zµ = cos θWW 3

µ − sin θWBµ . (1.2.8)

Each of these new bosons then have their respective masses

mW = g
v

2 , mZ =
√
g2 + g′

2v

2 =
mW

cos θW
. (1.2.9)

Consequently, the Z boson has to be heavier then the W± bosons, where the ratio
5For the corresponding equations without gauge fixing see, for example, ref. 40.



1.2. Higgs mechanism 29

Is coloured? Electric charge Generation

Yes, quarks +2/3 up charm top
−1/3 down strange bottom

No, leptons −1 e− µ− τ−

0 νe νµ ντ

Table 1.1: Fermion content of the Standard Model.

of their masses is the Weinberg angle6

tan θW = g′

g
. (1.2.10)

Since the mass eigenstates are not identical to the gauge eigenstates the electroweak
symmetry is broken.

The rotation in U(1)Y × SU(2)L orthogonal to the Z boson is the massless photon

Aµ = sin θWW 3
µ + cos θWBµ . (1.2.11)

It is the gauge boson of quantum electrodynamics (QED), an unbroken electromag-
netic symmetry U(1)EM with coupling strength e = g′ cos θW . The photon directly
interacts with the W± bosons, which have an electromagnetic charge of ±1 (hence
their names).

The remaining terms of eq. (1.2.7) describe the kinematics of the Higgs boson, and
the coupling of up to two Higgs bosons with two Z or two W± bosons respectively.
The Higgs mass follows from eq. (1.2.2)

mH =
√

2µ ≈ 125 GeV. (1.2.12)

To couple the Higgs boson to fermions we introduce the Yukawa couplings, i.e. the
left-handed SU(2) doublet

L =
νL

eL

 (1.2.13)

interacts with the right handed singlet eR and a Higgs boson

LYuk = −yeL̄heR + h.c. (1.2.14)

6More generally eq. (1.2.9) is a consequence of a residual, global SU(2) symmetry, called custodial
symmetry [41, 42]. After radiative corrections the mass ratio derivatives slightly from eq. (1.2.9),
which can be used to constrain the free parameters of the standard model through electroweak
precision data.
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Similarly to the bosons, the Higgs mechanism then generates the fermion masses7

me =
ye√

2
v. (1.2.15)

The coupling strength of the Higgs boson to fermion interaction is therefore pro-
portional to the fermion mass. The particle content of the SM after electroweak
symmetry breaking is summarised in table 1.1.

With this we constructed all the pieces required for the Lagrangian of the Standard
Model. Each local gauge symmetry required the introduction of new gauge bosons.
These bosons then mediate their respective forces, either strong, electromagnetic or
weak. Through electroweak symmetry breaking we generated mass terms for the
weak bosons (and fermions). Thereby this also introduced a new scalar particle, the
Higgs boson, with a new Yukawa interaction.

1.3 Scattering cross section

So far we derived terms for the kinematics and interaction of fields but, as stated
earlier, we can not measure fields directly. Instead we measure the expectation
value for the interference between states (cf. eq. (1.1.4)). In the Heisenberg picture
that means we are interested in the transition operator S, which transforms an
(asymptotic) incoming to an (asymptotic) outgoing state

〈out|in〉 = lim
t→∞

〈
ki
∣∣∣S(t)

∣∣∣pj〉 , (1.3.1)

(1.3.2)

pi and kj are the states of the incoming and outgoing particles respectively. The
S-matrix is unitary (S†S = 1), we can split off its trivial part

S = 1 + iT . (1.3.3)

The remaining transfer matrix T includes all state changes. We further factor out
energy-momentum conservation

T = (2π)4δ4(
∑
i

pµi +
∑
j

kµj )M, (1.3.4)

to end up with the (Lorentz invariant) amplitude M.

To compactly write down amplitudes in perturbative QFT one can use Feynman

7In general the mass and flavour basis of fermions are different as well. Up- and down-type
quarks mix via the Cabibbo–Kobayashi–Maskawa [43, 44] matrix when interacting with a W±.
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diagrams, which express complex mathematical terms through symbolic diagrams,
with simple construction rules. Each interaction of the SM Lagrangian acts as an
vertex connecting different particles. These connections come from the kinematics of
the particles. Internal lines describe virtual fields, that only propagate an interaction,
while external lines are real, on-shell emissions. A complete set of Feynman rules
for all possible particles of the SM can be found in any related textbook—e.g.
ref. 39, 40,42—and will not be repeated here.

Scatterings are measured through the cross section

σ =
number of scattered particles/time

density of particles in overlapping beams/time
, (1.3.5)

which, geometrically, corresponds to an area of interaction. We can directly relate
the cross section to the transition probability in QFT, and therefore to the amplitude.
For a 2→ n scattering process at partonic invariant mass ŝ in a collider experiment
this gives the cross section

σ(O) =
∫ ∏

j

d3~kj
(2π)3

1
2Ej

(2π)4δ4(pµa + pµb +
∑
j

kµj )F(pa, pb)
ŝ2

O({kj})
∣∣∣M(papb → {kj})

∣∣∣2 ,
(1.3.6)

which depends on an arbitrary observable O({kj}). For example O can include
specific cuts required by the experiment, or by specific measurements. The total
cross section σ follows from the fully inclusiveO = 1. Here pa and pb are the incoming,
and kj the outgoing momenta respectively. The first term in eq. (1.3.6) is the Lorentz-
invariant phase space, followed by a δ function for momentum conservation and a
flux F . The flux is the likelihood of finding the incoming particles inside the beam.
Thus calculations in QFT break down to calculating the amplitude square |M|2,
also called matrix element, and integrating it over the desired region.

For example in a fixed-order calculations one expandsM in the (strong) coupling
strength αs, to get a cross section

dσNnLO =
n∑
i=0

αl+is dσi, (1.3.7)

where l is the minimal order at which the process is possible, and σi is the cross
section at order n. For a long time in QCD only leading order (LO), or Born-level,
calculations were available for most processes, but with the development of general
subtraction methods (e.g. [45–47]), the automation of loop calculations [48–53], and
the increase in computing power next-to-leading order (NLO) became the de-facto
standard [29,54,55]. More recently, some processes with up to five external particles
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Figure 1.1: Visualisation of (a) resummation and (b) fixed order.
Each dot represents one term in the all-order matrix
element. Full dots are included, while empty ones are
missing in the calculation. n and m = n − l are the
powers of the strong coupling αs and the logarithm
respectively. The resummation is shown up to next-to-
leading logarithmic accuracy l = 1. From ref. 26.

where computed at N2LO or even N3LO (for an overview see the list in ref. 56).

Expanding in αs will break down if some common logarithm L = log x for any
observable x in all dσi becomes large, i.e. αs log x ∼ 1 for all orders i. These
logarithms then have to be resummed; instead of expanding in αs one sums αns logn−l x
for all n at a fixed (logarithmic) order l. A resummation therefore includes infinitely
many powers of αs (see fig. 1.1). As a downside resummations are limited to their
respective regions of phase space where log x� 1, which might not be dominant or
even accessible in experiments. Most commonly resummations are used in the soft
and collinear limit through parton showers, which is briefly reviewed in section 1.4.3.
Section 2.3 introduces a different framework to resum high energy logarithms, which
is basis for the rest this thesis.

To improve resummations away from their strict limits one can match and merge
them with fixed-order calculations. The first few orders in αs are therefore taken
from fixed order. Afterwards resummation describes the higher αs order terms. This
will be explicitly shown for the high energy region in chapter 3.

1.4 Quantum chromodynamics

The strong force is the dominant interaction for hadrons, and thus also dominates
LHC processes. As such a precise modelling of Quantum Chromodynamics is required
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for almost every measurement from ATLAS and CMS—either to measure QCD
directly or to estimate the QCD background. QCD is also the only non-abelian,
unbroken gauge symmetry in the Standard Model. In this section we will highlight
two key features; asymptotic freedom, coming from the running of the strong coupling,
and infrared (IR) divergences with confinement, leading to parton showers. QCD
describes the interaction of coloured particles; namely the interaction between the
gauge bosons, called gluons, and a subset of all SM fermions, called quarks. Unlike
photons in QED, gluons carry two (colour) charges, thus they interact directly
with each other. Consequently, keeping track of the correct charges is much more
complicated in QCD compared to QED. It is therefore often useful to (almost)
independently consider colour flow and the kinematics (see appendix A).

We begin with definitions of common factors, which we will use throughout this
thesis. As we saw before, QCD has NC = 3 colours leading to N2

C − 1 = 8 generators
ta of SU(3), and hence 8 gluons. These generators fulfil the usual commutation
relations eq. (1.1.26) with the conventional normalisation

T aijT
b
ji = δabTR ≡ δab

1
2 . (1.4.1)

Often an explicit representation for T a is unnecessary, since the common terms
reappear regularly; most prominently the Casimirs, also called colour factors

T aijT
a
jk = δikCF = δik

N2
C − 1
2NC

, (1.4.2)

fabcfabd = δcdCA = δcdNC (1.4.3)

of the fundamental and adjoint group representation respectively. For example
summing over all colours in quark-gluon vertices gives CF , while pure gluon vertices
lead to CA. We further assume that most quarks are light enough to ignore their
masses, thus the number of light quarks, nf , is 4 or 5, dependent on whether we
consider both top- and bottom-quarks or only the top-quark to be massive. Together
with the gluon, the light quarks are sometimes referred to as partons.

1.4.1 Renormalisation & running coupling

When treated perturbatively, QFTs inherently experience corrections from higher
order loop diagrams. These loops lead to high energy, ultraviolet (UV) divergences,
which have to be regularised. Any observable O then picks up a dependency on an
unphysical renormalisation scale µr. Measurable observables have to be independent
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of this scale, which is expressed through the Renormalisation Group Equations

0 = µ2
r

d
dµ2

r

O
(

log q
2

µ2
r

, αs(µ2
r)
)

(1.4.4)

=
[

∂

∂ log(q2/µ2
r)

+ β(αs)∂αs

]
O
(

log q
2

µ2
r

, αs(µ2
r)
)
, (1.4.5)

where

β(αs) = µ2
r

∂αs(µ2
r)

∂µ2
r

, (1.4.6)

and αs = g
2
s/4π is the strong coupling constant. The µr-dependence is therefore moved

from the observable to the coupling, and—not shown here—the particle masses. As
such a running coupling is predicted from the QFT alone, without external input. It
can even be measured to test the SM at high precision over many different scales [57].

We expand eq. (1.4.6) around 0 for αs � 1

β(αs) = −α
2
s

4π
∑
i=0

βi

(
αs
4π

)i
. (1.4.7)

At leading order this is solved analytically

αs(µ2
r) = 2π

β0 ln µ
2
r

Λ2

. (1.4.8)

For QCD the β-function is know for up to five-loops [58–60], with the leading term

β0 = 11CA − 4TRnf
3 > 0. (1.4.9)

Hence with increasing scale the coupling decreases; QCD is asymptotically free. Only
at infinite energies can a quark or gluon be observed as a free particle. At small
energies they always interact with each other, making a direct observation of coloured
final states impossible. Contrary in QED, βQED

0 < 0, this leads to the electric charge
vanishing in the low energy, infrared limit. The weak interaction on the other hand
also has β0 > 0, but it is suppressed below the W±- and Z -boson mass thresholds.
Consequently, soft physics is dominated by the strong force.

For µr = Λ = O (0.2 GeV) the strong coupling diverges. This coincides with colour-
confinement; partons always group into colour-neutral (white) hadrons. Importantly
Λ sets a lower bound on perturbative calculations. As one gets close to αs ∼ 1 other
methods have to be used, e.g. lattice QCD. In perturbative QCD the cross section
factorises into one perturbative and one non-perturbative part, i.e. a factorisation
of large and small energy effects respectively.

In the latter case we model a hadron as a collection of many particles. Each
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(1− z)E

Figure 1.2: Kinematics for the splitting of one quark into a quark
and gluon.

hadron beam picks up a flux factor, called a Parton Distribution Functions (PDF),
which gives the probability of finding one specific parton with some fraction x of
the hadronic energy at some factorisation scale µf . PDFs are universal, process-
independent, thus they can be fitted from data directly. The evolution from one
scale to another is possible in perturbative QCD via the DGLAP equations [19–21].
For the rest of the thesis we will focus on perturbative calculations, and ignore the
finer details of PDFs. For numerical simulations we will take them as an input from
the standard library LHAPDF [61].

Both µr and µf are not physical quantities, but merely “mathematical tricks”; all
order calculations are independent of them. At fixed order on the other hand, chan-
ging the scale does give a subleading effect. Consequently higher-order calculations
are generally more stable under scale variation. We can exploit such variation to get
an estimate of the neglected subleading effects. Typically this is done by varying
µr and µf by factors between 0.5 and 2. This is only a convention, and one could
also decide on a larger or smaller range. Furthermore scale variations should not
be confused with probabilistic uncertainties; they only illustrate the perturbative
stability of calculations. One should therefore be careful when selection a scale, to
not artificially tune predictions to observables. We will discuss scale choice again in
the later chapters when showing results from actual simulations.

1.4.2 IR divergences

In the previous section we only considered UV divergences. At the infrared end soft
and collinear divergences appear, which we will describe in the following. As an
example we consider the quark propagator for the q → qg branching from fig. 1.2 in
the massless limit

/pq + /pg
(pµq + pµg )2 =

/pq + /pg
2EqEg(1− cos θ) (1.4.10)



36 Chapter 1. Introduction to the Standard Model

=
/pq + /pg

2E2z(1− z)(1− cos θ)
, (1.4.11)

where θ is the angle between the outgoing quark and gluon, and z = Eg/E is the
energy fraction of the gluon. When either the gluon (z → 0) or the quark (z → 1)
is soft, or both are collinear (θ → 0) the propagator diverges.

Physically we can not observe arbitrarily soft partons, since every detector will
have a finite energy threshold. Neither will we be able to resolve two partons with
arbitrarily small angles, eventually two close particles will be indistinguishable from
one particle with the combined momenta. To circumvent such miss interpretations,
one has to use a IR safe definition of measured particles, called jets, which we will
define in the next section. In such observables we integrate over the unresolved, soft
region. The resulting phase space has the same multiplicity as the virtual correction
with one extra loop, and contributes at the same order in αs. It was proven in the
KLN theorem [62–64] that both the real and virtual terms in the matrix element
have the same pole structure for any order in αs, but with opposite signs. The
resulting cross section only picks up finite corrections, without divergences.

In numerical implementations these divergences are challenging since the poles lie in
different phase spaces. It is therefore common to introduce a counter-term to cancel
the divergences. For example at NLO we expand

σNLO =
∫

dΦN

[
Bn + Vn + In +

∫
dΦ1 (Rn+1 − Cn+1)

]
, (1.4.12)

where Bn is the LO contribution. The subtraction term Cn+1 has to be chosen, such
that its difference to the real emission Rn+1 − Cn+1 is finite, while still being simple
enough to be integrated analytically to calculate In from∫

dΦN

(
In −

∫
dΦ1Cn+1

)
= 0. (1.4.13)

Since the pole structure of the virtual correction and the real emission are identical,
this implies that the sum of the virtual and integrated subtraction terms Vn + In is
also finite. Equation (1.4.12) is generic and there are multiple subtraction schemes
with different choices for Cn+1 [45–47].

In general, even after subtraction, NLO (or higher) calculations pick up negative
weights in Monte Carlo integrations (see section 2.4). Consequently, they require
higher statistics, on top of an already more complicated integrand, which increases
the considerable computational cost [65,66].
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1.4.3 Parton showers

Instead of treating the IR poles order by order in the strong coupling, one can also
factorise the matrix element and treat the IR limit at all orders. To illustrate this
we again consider the q → qg splitting from fig. 1.2. When the outgoing gluon goes
soft both quarks go on-shell. We can therefore repeat the branching, by attaching
another (soft) gluon to the outgoing quark. Each of these splittings only depends
on the previous state

dσn+1 → dσn
dt
t

dz αs2πPq→qg(z) ≡ dσndt dzPq→qg(t, z), (1.4.14)

where Pq→qg is the splitting kernels as appearing in the DGLAP equations, and t is
the evolution parameter [67]. For the other QCD splittings, g → gg and g → qq̄, one
would find the same expression with different kernels Pa→bc. The exact definition of
t can vary between different implementations, as long as it evolves the shower from
some high scale down to the IR limit [26]. For example Pythia [28] and Sherpa [29]
use (different) p⊥ based definitions, while Herwig [27] uses angular ordering.

Equation (1.4.14) gives the probability of one emission. The virtual correction follows
from unitarity, i.e. the chance of having no splitting in the infinitesimal region dt is
1− dtP . Equivalently, the chance of having the first splitting at scale t is

d∆(t0, t)
dt = ∆(t0, t)

∫ zmax

zmin

dzP(t, z), (1.4.15)

where ∆(t0, t) is the probability of having no splitting between scales t0 and t. In
general the soft regulation cuts zmin and zmax can depend on t and t0. Solving
eq. (1.4.15) implies that the no-splitting probabilities are Sudakov form factors

∆(t0, t1) = exp
(
−
∫ t0

t1

dt
∫ zmax

zmin

P(t, z)
)
. (1.4.16)

When multiple splittings are possible, e.g. g → gq and g → qq̄, they are added for
the branching or multiplied for the no-branching probabilities respectively.

To numerically solve eq. (1.4.15) one uses parton showers. A parton shower produces
different splittings at scales ti with ti ≤ ti+1. The initial scale t0 follows from a fixed
order matrix element, while the final scale tN is the resolution parameter. Smaller
tN explore softer regions, leading to more emissions. For sufficiently small values of
tN , IR safe observables must not be sensitive to it. Again we cannot measure only
one parton, but we have to consider all partons inside the soft and collinear cascade.
One of these cascades has to be clustered together to form one jet.
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Reference 68 provides an excellent review of different jet definitions, all of which
are implemented in the standard library FastJet [69]. At the LHC the anti-kt
algorithm [70] is almost exclusively used, since it produces—experimentally desired—
rounder, more regular shaped jets compared to other sequential clustering algorithms.
The idea is to undo parton shower by repeatedly combining two particles i and j
together in one jet, to get closer to the hard process. At each step, particle i and j
are chosen such that they have the minimal distance

dij = min
(
p−2
i⊥ , p

−2
j⊥

) ∆R2
ji

R2 (1.4.17)

of all possible pairs, with the jet radius

∆R2
ij = (yi − yj)2 + (φi − φj)2, (1.4.18)

azimuthal angle φi and rapidity

yi = 1
2 ln

(
Ei + pzi
Ei − pzi

)
. (1.4.19)

If any (clustered) jet falls below the beam distance diB = p−2
i⊥ it is removed from the

list of jets before the next iteration. The jet radius R acts as an collinear cut; with
small R more and softer jets are produced.

Compared to fixed order calculations, parton showers are not limited by the number
of emissions. Instead eq. (1.4.16) includes infinitely many powers of αs, at the
cost of assuming every emission to be in the IR limit. As such parton showers
resum the leading soft and collinear logarithms. Current shower implementations
are at least leading-logarithm accurate with full NLL in active development [71–75].
Parton showers are also key in Monte Carlo simulation to interpolate between hard
and non-perturbative physics. As such they take the inclusive cross section and
the general kinematics from fixed-order calculations—for example by matching with
NLO [76,77]—and distribute the momenta over many partons. At the lower cut tN =
tcut, hadronisation takes over to generate and decay hadrons, which are observable
particles.



Chapter 2

Resummation in QCD

In the previous section we discussed how general kinematics are well described by
fixed-order calculations. We further saw how soft and collinear logarithms require
a resummation from parton showers, which originated from the DGLAP equations.
Similarly to capture the dependence on the cross-section the jet radius R a resum-
mation of αns lnn 1/R is required [78,79]. Both examples act in the IR limit, though
resummation itself is more general and can be required in various regions of phase
space. In the following chapter we will introduce the high energy limit, where
logarithms log |ŝ/̂t| become large. They can be resummed, using e.g. the BFKL
equation [22–25]. We will focus on the formalism of High Energy Jets. HEJ is a
Monte Carlo generator, which also includes the BFKL logarithms, but unlike BFKL
the expansion is done on a matrix element level, not the phase-space.

2.1 High energy limit

When we consider the high energy limit, we formally take the multi-Regge kinematic
(MRK) limit [80]

yi � yi+1 ∧ |pi⊥| ∼ p⊥ ∀i (2.1.1)
⇔ ŝ� ŝij � p⊥ ∀i, j (2.1.2)

for 2 → n QCD processes. Here and throughout the rest of this thesis we always
label all particles according to their rapidity such that yi ≤ yi+1. In the MRK limit
the Mandelstam variables simplify to

ŝij = −ûij = p2
⊥ exp

∣∣∣∆yij∣∣∣ (2.1.3)

t̂ij = −p2
⊥. (2.1.4)
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Figure 2.1: Representative LO Feynman diagrams for the produc-
tion of qQ→ qHQ through weak-boson (left) and gluon
fusion (right).

Thus requiring high partonic energies is equivalent to requiring large rapidity separa-
tions between every final state parton. Similarly to the soft/collinear limit we pick up
large logarithms log |ŝ/̂t| → log ŝ/p2

⊥ ∼ ∆y. Therefore any observable which depends
on a large rapidity separations between jets is sensitive to high energy logarithms.

An example of an observable where these logarithmic sensitivities occur is the Higgs
boson plus dijet process. Typically one wants to distinguish the two production
channels, electroweak production from weak-boson fusion (also called vector-boson
fusion, VBF) and the QCD production from gluon fusion (GF). In gluon fusion the
Higgs boson couples to a heavy quark (i.e. top) loop to the gluon, thus at Born-
level it contributes to order α4

s. On the other hand VBF comes from a tree level
Feynman diagram, but is suppressed with the weak coupling α2

w. Even though both
channels can produce the same final state with only quarks (see fig. 2.1), quantum
interference between them is negligible [81–83]. It is therefore reasonable to study
the two processes independently.

Naively one might expect both processes to be equally likely, since α2
s ∼ αw. But

in reality at the LHC gluon fusion is twice as likely as VBF, due to the proton
PDF being dominated by low-energy gluons. Hence to measure the electroweak
production, one has cut away the low energy region, commonly by a cut on the
invariant mass of the hardest two jets [85–87]

m2
12 = ŝ12 = 2p1⊥p2⊥ [cosh (y1 − y2)− cos (φ1 − φ2)] , (2.1.5)

where we ignored the masses of the jets, i.e. eq. (2.1.5) is the LO approximation.
The cross section from gluon fusion is highly peaked at small m12 comparably to the
(almost) flat distribution from VBF (see fig. 2.2). After requiring m12 > 400 GeV
and |y1 − y2| > 2.8 their relative contributions flip; VBF becomes at least twice as
likely.

These cuts are used more generally even for multijet production together with a
Z [88] and W boson [89]. Yet m12 is affected by multiple logarithms—soft/collinear,
coming from p⊥, and high energy, from ∆y—which makes it hard to accurately
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Figure 2.2: Invariant mass between the hardest jets at NLO for
QCD (blue, dashed) and electroweak (green, dash-
dotted) Higgs boson plus dijet production. The NLO
results where generated with MCFM [54, 84]. From
ref. 85.

predict the differential cross section dσ/dm12. In ref. 88 modelling m12 only with
parton showers lead to an 11% systematic uncertainty (out of a total 17%) for the
measurement of electroweak Z -boson production. Similarly, for the production of
a single W boson alongside multiple jets at 7 TeV, ATLAS observed a large spread
between the predictions of different parton showers at large rapidity separations [90].
Controlling the high energy logarithms, via a resummation in the MRK limit, can
stabilise the predictions and reduce the theoretical uncertainty.

More direct measurements of the perturbative corrections in the high energy limit
were done by the D0 Collaboration for W -boson plus dijet production at a centre
of mass energy of 1.96 TeV [91]. They measured the probability of emitting an
additional jet depending on the rapidity separations between different jet pairs (see
left of fig. 2.3). The emission probability grows as the maximal rapidity span of the
jets, ∆yfb, increases. Partially this is explained by opening up the phase space, since
there is little room for the third jet at ∆yfb = 0. Therefore up to rapidity separations
of 3.5 the parton shower result from Sherpa [92] increases. Afterwards the phase
space is large enough to include all collinear emissions, thus Sherpa predicts no
further increase. The measured probability on the other hand keeps on rising linearly
up to the maximal range ∆yfb = 6. This clearly shows an enhancement of radiation
with ∆yfb.

Conversely if we look at the same observable, but for the two hardest jets and
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Figure 2.3: Measurement of the third jet emission rates for W with
two jets at the D0 detector. Left: Emission probabil-
ity dependent on the rapidity separation between the
forward and backwards (boxes), and the hardest jets
(circles). Additionally the emission of a third jet inside
the hardest emission is shown (triangles). Right: Aver-
age number of jets dependent on the rapidity between
the extremal jets. From ref. 91

allow the third jet to be anywhere in phase space, the probability distribution is flat
(circles). Extra emissions are not enhanced, but evenly distributed as expected for
soft or collinear emissions. If we only look at the jets in the rapidity gap the linear
increase is visible again (triangles), though the total separation is smaller and high
energy effects less prominent.

The NLO calculations from BlackHat+Sherpa [48] do catch the rise of the probabil-
ity with ∆y better then Sherpa alone. However, when compare the average number
of jets against ∆yfb (right side of fig. 2.3) NLO does not reach the required multipli-
city, and thus, like parton showers, underestimates the number of jets. The linear
growth of the number of jets with ∆y is characteristic for BFKL evolution [93]. Sim-
ilar measurements were performed by the ATLAS collaboration for pure jets [94,95].
Only when the high energy BFKL logs are included in predictions, as is the case for
the HEJ program, is the data described well over the full range of ∆y.

2.2 Regge theory

These experimental observations can be explained theoretically through Regge theory.
In the following we give a heuristic overview, a more detailed introduction can for
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example be found in ref. 96. Historically Regge theory was used to describe hadron–
hadron interactions, even predating QCD. It predicts that a scattering amplitude
scales as [80]

M∼ γ
∏
i

s
αi
i,i+1, (2.2.1)

where αi is the spin of the Reggeons i, and γ some residue depending only on
transverse momenta. Reggeons are effectively t-channel exchange particles. Each
additional emission i gives an enhancement proportional to its energy transfer si,i+1

for yi ≤ yi+1.
Most remarkably, eq. (2.2.1) can also be derived in QCD [97], where instead of a
Reggeon we have t-channel quark or gluon exchange. Explicitly for a Higgs-boson
production with two jets at rapidities y1 and y2, and a rapidity hierarchy between
the jets and the Higgs boson (y1 � yH � y2), we get [98]

M∼ s
α1
1Hs

α2
H2γ

(
t1, t2,

s12

s1HsH2

)
, (2.2.2)

where ti is the momentum squared flowing through the t-channel after particle i.
The dominant contribution is the exchange of one t-channel gluon (spin-1 exchange),
as the exchange of a quark would be suppressed by √sqH . In particular the general
pattern of eqs. (2.2.1) and (2.2.2) holds for arbitrarily high multiplicities, giving a
relation between a rapidity ordering and the scaling of an scattering amplitude.
As an example, we consider the production of two quarks, one Higgs boson and one
gluon (see fig. 2.4). In the dominant configuration both quarks are the most forward
and backwards particles (rapidity ordering qQ → qgHQ), which we can represent
as a non-crossing, planar t-channel gluon exchange where all partons are sorted
according to their rapidity. This matrix element scales like |M1|2 ∼ s2

12s
2
2Hs

2
H3γ1,

where as before γ1 only depends on the transverse momenta. Hence |M1|2 /s2

becomes constant in the high energy region (red line on the left of fig. 2.4). We call
this the Fadin–Kuraev–Lipatov configuration. At leading logarithmic accuracy there
is no other rapidity ordering.
If we change one of the quarks with the gluon (M2, blue line in fig. 2.4) we get an
unordered gluon emission. A planar pure t-channel diagram now requires a quark
(spin-1

2) between the gluon and the backward quark. The amplitude squared |M2|2 ∼
s12s

2
2Hs

2
H3γ2 is suppressed by one power of s12 compared to |M1|2, or equivalently

exponentially suppressed in ∆y12. This is the first subleading contribution. We can
explicitly multiply with s12 to reconstruct the flattening of M2 (see right side of
fig. 2.4).
At last we also swap the Higgs boson with the first quark jets (qQ→ gH qQ). The
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Figure 2.4: High energy limit of leading order matrix element for
different rapidity ordering of the qgHQ final state.
Both quarks q and Q have different flavour to uniquely
identify them. The Feynman diagrams shown on the left
correspond to the rapidity ordering, i.e. qQ → qgHQ
(red), qQ→ gqHQ (blue) and qQ→ gH qQ (green). On
the right the subleading matrix elements qQ→ gqHQ
and qQ→ gH qQ are multiplied by the invariant mass
between the gluon and the first quark. From ref. 98

matrix element then scales like |M3|2 ∼ s1HsH2s
2
23γ3 (green in fig. 2.4). This ordering

is now suppressed by both s1H and sH2. According to eq. (2.1.3) this is equivalent
to a suppression with s12. Consequently M3 also contributes at next to leading
logarithmic order.1 In fact we could have ignored the Higgs boson in the discussion
above, by only considering the colour connection between final state partons. As
the Higgs boson is colour-neutral it does not affect the colour exchange. We always
either have a colour-octet or colour-singlet, corresponding to the gluon or quark
exchange respectively.

At leading colour every colour-flow that can be represented by two-sided plots con-
tributes to the MRK limit, as long as the colour and rapidity order coincide [100].
In the first row of fig. 2.5 we illustrate multiple allowed leading-colour connections
for three FKL processes. Incoming partons are shown at the top or bottom, and
outgoing on the left or right. The outside arrows represent the (anti-)colour flow.
Each gluon can couple to any of the two sides. In particular figs. 2.5a and 2.5b
represent two (equally likely) colour flows for gg → ggg, where gluon 2 is connected
either to the colour or anti-colour of the exchanged gluon. Such crossings are allowed

1This actually depends on the definition of the resummation. We assume a large rapidity gaps
between partons y1 � y2. Hence here we only count s12. One could take s1H and s2H separately
when requiring y1 � yH � y2, which would make M3 contribute to N2LL. Obviously the first
approach is more general.
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Figure 2.5: Different colour configurations for multi-jet processes in
the MRK limit. Incoming partons a and b are shown
on the top and bottom, and outgoing partons on the
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Figure 2.6: Illustration of a subleading-colour configuration. The
crossing between 2 and 3 can only be resolved by break-
ing the rapidity order. From ref. 99.

as long as they do not break the rapidity ordering. In contrast crossings like fig. 2.6
are forbidden, since the flow can only be untangled by swapping 2 and 3 vertically,
which violates the rapidity order.

Any process that cannot be represented by only colour-octet exchanges is subleading.
At NLL up to one colour-singlet exchange is allowed (see second row of fig. 2.5).
We already saw the unordered emission in fig. 2.4, which is now shown in fig. 2.5d.
However there are two more diagrams; containing a qq̄ pair either extremal or central
in rapidity, corresponding to figs. 2.5e and 2.5f respectively. Extremal qq̄ pair are
related to unordered emissions by exchanging the incoming quark with the unordered
gluon. Central qq̄ pair on the other hand is a radiative correction to the extremal qq̄
pair, only contributing at four or more partons. Subleading contributions correspond
to the quasi-MRK limit [101]

y1 � · · · � yi−1 � yi, yi+1 � yi+2 � · · · � yn . (2.2.3)

Compared to the strict MRK limit eq. (2.1.2), two partons i and i+ 1 can be close
in rapidity. The qq̄ pairs acts as a single “blob”, which couples to the t-channel
gluon. Consequently the colour ordering within that blob does not matter. Both the
t- and u-channel exchange in the qq̄ pair shown on the figs. 2.5e and 2.5f respectively
contribute. There is one more subleading configuration where two gluons are close
to each other. We do not show this processes here, the possible colour configuration
are similar to the FKL configurations up to an additional u-channel exchange.

The identification between t-channel exchange and colour structure connects MRK
to the Parke-Taylor formula [102]. To leading order in the high energy limit each
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Lipatov vertex (grey boxes). From ref. 98.

additional gluon emission then picks up a factor [98, 103,104]

|Mn+1|
2 → 16παsCA

p2
i⊥

· |Mn|
2
. (2.2.4)

Through this factorisation we can build up the matrix element recursively. Any n+1
emission is a radiative correction to the n-parton base-process. Integrating over the
extra emission phase space leads to

∫ yi+1

yi−1

dyi
4π

∫ d2p⊥
(2π)2

16παsCA
p2
⊥

= 4αsCA∆yi−1,i+1

∫ d2p⊥
(2π)2

1
p2
⊥
. (2.2.5)

The last integral diverges in the soft limit p⊥ → 0, which we already saw in sec-
tion 1.4.2. In section 2.3.3 we will explicitly show how this IR pole cancels when
we include virtual corrections. Important here is that the matrix element became
independent of the rapidity, which leads to an enhancement of the cross section with
∆y ∼ log |ŝ/̂t|.

2.3 High Energy Jets

In the previous section we saw the high energy logarithms appearing in QCD. We
concluded with a factorisation of the matrix element. Higher multiplicity matrix
elements can therefore be constructed from “simple” building blocks. In this section
we will introduce the framework of High Energy Jets to resum logarithms of the
form log |ŝ/̂t|. In HEJ the resummation is done by explicitly integrating over the
phase space with the exclusive matrix element for each multiplicity, and adding all
of these terms together. All approximations are applied to the matrix element itself;
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the phase space has to be integrated numerically. We will only describe the HEJ
matrix element here, while postponing the phase space integration to chapter 3.

We start with a generic 2→ 2 (pure-QCD) matrix element in the MRK limit [98]

∣∣∣Mfa(pa)fb(pa)→f1(p1)f2(p2)

∣∣∣2 → ŝ2 |C(pa, p1)|
(pa − p1)2

|C(pb, p2)|
(pb − p2)2 , (2.3.1)

where the fi represent the flavour of the external particle at leg i. As before all
outgoing particles are numbered according to their rapidity (yi < yi+1); a and b

are the incoming partons with negative and positive pz respectively. Each impact
factor C(pi, pj) only depends on the momentum of one leg in a t-channel diagram.
At leading logarithm we do not have a particle change at the impact factors, fa = f1

and fb = fn.

Using factorisation, we can write matrix element for 2→ 3 processes as

∣∣∣Mfafb→f1f2f3

∣∣∣2 → ŝ2 |C(pa, p1)|
(pa − p1)2

|VL(p2)|2

(pa − p1)2 (pb − p3)2
|C(pb, p3)|
(pb − p3)2 (2.3.2)

= ŝ2 |C(pa, p1)|
t1

|VL(p2)|2

t1t2

|C(pb, p3)|
t2

, (2.3.3)

where the emission of an extra parton is done through the Lipatov vertex VL [105,106].
In the MRK limit the second parton has to be a gluon (f2 = g). Hence the Lipatov
vertex is an effective term for the emission of one gluon from a reggeised, t-channel
gluon. According to eq. (2.2.4) in the high energy limit

|VL(p2)|2

t1t2
→ 4

p2
2⊥
. (2.3.4)

We can generalise eq. (2.3.3) for arbitrary many gluons, which gives the ansatz for
the generic, colour and spin averaged matrix element for HEJ at tree-level

∣∣∣MHEJ,tree
fafb→f1g···gfn

∣∣∣2 = 1
4 (N2

C − 1)
∥∥∥Sfafb→f1fn

∥∥∥2
(
g2
s Kf1

1
t1

)(
g2
s Kfn

1
tn−1

)

·
n−2∏
i=1

(
−g2

sCA
titi+1

V µ
L (qi, qi+1)VLµ(qi, qi+1)

)
,

(2.3.5)

where the impact factors are grouped together in Sfafb→f1fn , the double bars indicate
a sum over all spins. Kfi

are the appropriate colour factors for the coupling of the
t-channel gluon to the impact factors. We use the momenta flowing in and out along
the gluon exchange qi−1 and qi as arguments of the Lipatov vertices (see fig. 2.7)

q1 = pa − p1, qi+1 = qi − pi+1 . (2.3.6)

This choice does not affect the limit in eq. (2.3.4) since q2
i = ti.
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2.3.1 Simplest HEJ current

Sfafb→f1fn is the only process-specific term of eq. (2.3.5); it represents the 2 → 2
amplitude. For example the resummation for gg → gg and qQ → qQ only differ
in Sgg→gg and SqQ→qQ. Furthermore we already saw in eq. (2.3.1) that the matrix
elements factorise into impact factors, or currents.

The simplest process in HEJ is the scattering of two different-favoured quarks qQ→
qQ, where only one t-channel diagram contributes. This amplitude is built from two
terms (see eqs. (A.1.18) and (A.1.20))

MqQ→ qQ = 1
4t

∑
h1,h2∈{+,−}

jh1
µ (pa, p1)jh2 µ(pb, pn), (2.3.7)

where we defined the two currents

j−µ (p, q) ≡ 〈p|µ|q] ≡ j+
µ (q, p). (2.3.8)

Comparing eq. (2.3.7) with eq. (2.3.5) we can read off the (contracted) HEJ currents
for qQ→ qQ

∥∥∥SqQ→ qQ

∥∥∥2
≡ 4t1tn−1

∣∣∣MqQ→ qQ

∣∣∣2 (2.3.9)

=
∑

h1,h2∈{+,−}

[
jh1
µ (pa, p1)jh2 µ(pb, pn)

]2
. (2.3.10)

We wrote t1 and tn−1 in expectation of generalising this result to arbitrary multipli-
cities, obviously for 2→ 2 processes t1 = tn−1 = t. The same calculation also holds
for anti-quark currents. The colour factors are

Kq = Kq̄ = CF . (2.3.11)

Each current only depends on the two momenta at one side of the t-channel diagram,
without any s- or u-crossing2. In the MRK limit this is guaranteed by eq. (2.3.1). Con-
sequently even for the scattering of two same-flavoured quarks we can use eq. (2.3.10),
i.e. Sqq→qq = SqQ→qQ. This approximation only includes some parts of the full LO
result, which is allowed as long as we catch the right LL behaviour. In section 3.1
we will detail the method of matching HEJ with fixed-order calculations to get both
LO and LL correct results.

In the high energy limit the only difference between external gluons and quarks
2In this context t- and u-channel “diagrams” refers to the colour flow from the previous section.

They should not be confused with Feynman diagrams. To calculate matrix elements we always
include all possible Feynman diagrams; statements about individual Feynman diagrams are, in
general, not gauge invariant.
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is their colour factor Kg = CA [32]. We can use the same equations as before for
the gluon currents. As shown in ref. 33 for helicity conserving amplitudes, like
q−g+ → q−g+, we recover the full matrix element by using the Colour Acceleration
Multiplier (CAM)

Kg

(
p−2 , p

−
b

)
= 1

2

(
CA −

1
CA

)(
p−b
p−2

+ p−2
p−b

)
+ 1
CA
→ CA , (2.3.12)

where p− = E − pz is the negative light-cone momentum with p−b → p−2 in the MRK
limit. Amplitudes with a helicity flip, like q−g− → q−g+, have an extra term with a
u- or s-channel pole. These poles are suppressed at high energies, thus we neglect
them and instead use eq. (2.3.12) for all gluon currents. Explicitly, the tree-level
HEJ matrix element for gg → gg is

∣∣∣MHEJ,tree
gg→gg

∣∣∣2 = 1
4 (N2

C − 1)
g4
s

t2

∥∥∥SqQ→qQ∥∥∥2
Kg(p−1 , p−a )Kg(p−2 , p−b ), (2.3.13)

which can be extended to arbitrary multiplicity through eq. (2.3.5).

So far we only considered 2 → 2 processes. We can expand our list of currents to
also include the production of (one) weak boson. Flavour changing W bosons can
only couple to one of the quarks, which means we only need to replace one current

Sud→dνl l̄d = jµW (pa, p1, pν , pl̄)jµ(pb, p2). (2.3.14)

The full equation for jµW can be found in ref. 107.

Since the W boson changes the quark flavour it allows for an identification of the
emitting leg. For Z -boson or photon production on the other hand both legs are
identical, leading to an interference between them (and between Z and γ) [108]

SqQ→qll̄Q = jµZ/γ(pa, p1, pl, pl̄)jµ(pb, p2) + jµ(pa, p1)jµZ/γ(pb, p2, pl, pl̄). (2.3.15)

The dominant production channel of Higgs bosons is gluon fusion, where the Higgs
boson couples to any gluons via a top-quark loop. In the Higgs Effective Field Theory
(HEFT) one assumes infinite top-mass, such that the top-loop induced coupling
between a Higgs and a gluon (or photon) reduces to a single vertex. Hence, in HEJ
we get a current with the Higgs-boson coupling to the t-channel gluon [98]

SqQ→qHQ = jµ(pa, p1)V µν
H (q1, q2)jν(pb, p2), (2.3.16)

with the tensor

V µν
H (qi, qj) = αs

3πv
(
gµνqi · qj − qµj qνi

)
, (2.3.17)
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where v is the vacuum expectation value. Equation (2.3.17) is the HEFT equivalent
for triangle top-quark loops. The 1/mt pole in the loop thereby cancels with the
mt dependence in the Higgs coupling to give the effective coupling eq. (2.3.17) at
mt →∞. V µν

H is a correction to the reggeised gluon, whereas the W , Z or photon
cases above only changed the impact factors. For extremal gluons we get additional
box diagrams, which lead to new impact factors when using the full top-quark
loop [109]. We will present the amplitudes for Higgs-boson production with finite
top-mass in chapter 4.

Since our ansatz is general enough to allow arbitrary 1→ 2 currents, we can exploit
this further by including NLL configurations. As discussed in eq. (2.2.3) in the
quasi-MRK limit we allow two partons to be close in rapidity. This leads to two new
currents (unordered and extremal qq̄), one vertex with a central qq̄ pair (see fig. 2.5),
and, in principle, both a vertex and an impact factor for two gluons close in rapidity.
As first subleading corrections, the unordered emissions were calculated in ref. 98

SqQ→gqQ = jµuno(pa, p1, p2)jµ(pb, p3), (2.3.18)

with yg < yq. The remaining two quark terms, central and extremal qq̄ pair, for pure
jets and W bosons plus jets will be published soon [110]. This does not yet lead
to full NLL accuracy in HEJ. But these currents are universal, such that we can
combine them to include more complex configurations in the resummation3, e.g.

SqQ→gqHQ = juno µ(pa, p1, p2)V µν
H (q2, q3)jν(pb, p3). (2.3.19)

In conclusion we only need a small set of currents to describe a wide range of
processes.

2.3.2 Lipatov vertex

Following our general recipe in eq. (2.3.5) we now continue with the gluon emission
vertices. These are key for reaching arbitrary multiplicities. Since we already saw
that quarks and gluons are similar in the MRK limit, we only have to consider the
process qQ → qgQ which is a radiative correction to qQ → qQ. Each gluon can
either be emitted from the external legsMg or from the reggeised gluonMg (see

3Not all subleading configurations can trivially be built this way. For example qQ → gHqQ
requires a special q → gHq current jµuno,H , which includes both an unordered gluon and a Higgs
boson.
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Figure 2.8: All five Feynman diagrams for the coupling of one gluon
to qQ→ qQ as included in the Lipatov vertex, each ex-
ternal gluon represents one possible diagram. The four
diagrams in red are gluon emissions from the different
quark legs, and the one in blue comes from the gluon-
gluon vertex in the t-channel exchange.

fig. 2.8). The latter case is a pure t-channel exchange, as such it factorises to

Mg =fabcT ci1iaT
b
i3ib

−g3
s

t1t2
jµ(pa, p1)jν(pb, p3)ε∗ρ

· ((q1 + q2)ρgµν + (p2 − q2)µgνρ − (q1 + p2)νgµρ) .
(2.3.20)

In the high energy limit this simplifies further

Mg → fabcT ci1iaT
b
i3ib

g3
sSqQ→qQ
t1t2

ε∗µ

(
2pµa

s23

ŝ
− 2pµb

s12

ŝ
− (q1 + q2)µ

)
. (2.3.21)

For the emissions of the gluon from the external legs we assume the gluon to be soft,
which gives

Mq = −ig3
sMqQ→qQε

∗
µ

(
T ai1iT

b
iia
T bi3ib

pµ1
p1 · p2

− T bi1iT
a
iia
T bi3ib

pµa
pa · p2

+T bi1iaT
a
i3iT

b
iib

pµ3
p3 · p2

− T bi1iaT
b
i3iT

a
iib

pµb
pb · p2

)
,

(2.3.22)

where we used the Eikonal approximation to the emission from the quark legs.
Together with the MRK limit pa → p1 and pb → p3 we get

Mq → −fabcT ci1iaT
b
i3ib

g3
sSqQ→qQ
t1t2

ε∗µ

(
q2

1
pµ1

p1 · p2
− q2

2
pµ3

p2 · p3

)
. (2.3.23)

Adding together eq. (2.3.23) and eq. (2.3.22) leads to the Lipatov vertex as used in
the BFKL equation [106,111]. To capture more of the kinematic behaviour, we do
not use the identification pa/b → p1/3; instead we apply eq. (2.3.22) directly. The
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full amplitude is then

MqQ→qgQ = fabcT ci1iaT
b
i3ib

g3
sSqQ→qQ
t1t2

ε∗µV
µ
L (q1, q2), (2.3.24)

with the Lipatov vertex for a gluon emission at position i+ 1

V µ
L (qi, qi+1) =− (qi + qi+1)µ

+ pµa
2

(
q2
i

pi+1 · pa
+ pi+1 · pb

pa · pb
+ pi+1 · pn

pa · pn

)
+ pa ↔ p1

− pµb
2

(
q2
i+1

pi+1 · pb
+ pi+1 · pa

pb · pa
+ pi+1 · p1

pb · p1

)
− pb ↔ pn .

(2.3.25)

As desired, eq. (2.3.25) is gauge invariant—which can explicitly be checked through
the Ward identity, pi+1 · VL = 0—and fulfils the limit in eq. (2.3.4). With this we
conclude the derivation of every building block we needed in eq. (2.3.5) to calculate
HEJ matrix elements for arbitrary multiplicities at tree-level. So far we have only
considered real emissions, which themselves contain IR singularities in soft limit. In
the following section we will add virtual corrections to cancel these divergences.

2.3.3 Virtual corrections

In the MRK limit the virtual corrections can be included through the Lipatov
ansatz [23]; each propagator in eq. (2.3.5) gets replaced with

1
ti
→ 1

ti
exp[α̂(qi⊥)(yi+1 − yi)], (2.3.26)

where yi+1 and yi are the (ordered) rapidities of the emissions connected by the
propagator ti. When doing dimensional regularisation, in D = 4− 2ε dimensions,

α̂(qi) = − 2g2
sCA

(4π)2+ε
Γ(1− ε)

ε

(
q2
i⊥

µ2

)ε
(2.3.27)

contains infrared divergences as ε → 0. This prescription correctly describes the
leading and even next-to-leading logarithmic terms, which has been verified up to
N2LO [112].

In eq. (2.2.4) we already saw the limit in which gluon i became soft. Equivalent
to eq. (2.2.5) we can explicitly integrate over the soft region pi⊥ < λ, with an IR
cut-off λ,

∫ yi+1

yi−1

dyi
4π

∫ λ

0

d2+2εpi⊥

(2π)2+2ε µ2ε
4g2

sCA
p2
i⊥

= 4g2
sCA

(4π)2+ε∆yi−1,i+1
1

εΓ(1 + ε)

(
λ2

µ2

)ε
. (2.3.28)
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Plugging in eq. (2.3.26) in eq. (2.3.5) gives a factor exp(2∆yα̂). Expanding to first
order in αs and adding eq. (2.3.28) the ε-pole cancels

4g2
sCA

(4π)2+ε∆yi−1,i+1
1

εµ2ε

[
λ2ε 1

Γ(1 + ε) − q
2ε
i⊥Γ(1− ε)

]
→ −∆yi−1,i+1CA

αs
π

ln q
2
i⊥

λ2 .

(2.3.29)

Equivalent to the general subtraction procedure in fixed order eq. (1.4.12), we can
explicitly subtract the pole from the real

V µ
L VLµ → V µ

L VLµ −
4
p2
⊥
θ (λ− p⊥) , (2.3.30)

and add it to the virtual term. The remaining virtual correction is then similar to
eq. (2.3.26)

1
ti
→ 1

ti
exp[ω0(qi⊥)(yi+1 − yi)], (2.3.31)

but now it only includes the finite remainder

ω0(qi⊥) = −CA
αs
π

ln q
2
i⊥

λ2 . (2.3.32)

For p⊥ below 0.1 GeV eq. (2.3.30) can become numerically unstable. In practice
integrating down to p⊥ > κ = 0.2 GeV is already enough to cancel the Lipatov
vertex with its subtraction [98]. Furthermore if we choose to only subtract terms in
the region of analytical integration, i.e. setting λ = κ, the matrix element is always
positive.4 Thus the integration does not need numerical cancellations, which speeds
up convergence.

To conclude this section we collect all pieces and write down the full HEJ matrix
element
∣∣∣MHEJ

fafb→f1g···gfn

∣∣∣2 = 1
4 (N2

C − 1)
∥∥∥Sfafb→f1fn

∥∥∥2
(
g2
s Kf1

1
t1

)(
g2
s Kfn

1
tn−1

)

·
n−2∏
i=1

[
−g2

sCA
titi+1

(
V µ
L (qi, qi+1)VLµ(qi, qi+1)− 4

p2
i⊥
θ (λ− pi⊥)

)]

·
n−1∏
j=1

exp
[
ω0(qj⊥)(yj+1 − yj)

]
.

(2.3.33)

As promised we clearly see the different building pieces. All low multiplicity terms
are hidden inside the currents Sfafb→f1fn , from which higher orders can be build up.

4In the following we will implicitly choose this convention without specifying the subtraction
term eq. (2.3.30) at all.
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2.4 Monte Carlo methods

Thus far we constructed matrix elements without worrying about the phase-space. In
performing the phase-space integrals is rarely ever possible analytically, and instead
one resorts to numerical methods. We will review the most common integration
techniques for high energy physics in the following section. Typically the dimension
of the phase space is high—for n outgoing particles it has D = 3n− 2 dimensions5—
while also including complex cuts from observables, IR regularisations, jet clustering,
detector geometry, etc.

The easiest numerical integration is a more or less sophisticated slicing of the integ-
ration region into bins. The height of each bin is then set according to the function
value (somewhere) in that bin. Thus the integral is approximated by a step function,
with a trivial integral corresponding to total volume of all bins (Riemann sum).
The shape of the bins can be further optimised to increase convergence, e.g. as a
trapezoid or parabola (Simpson’s rule). In all of these cases the total number of
function calls is proportional to the total number of bins N = MD, where M is the
number of bins in one dimension. Increasing the accuracy would require adding more
bins. Hence the runtime of such algorithm scales exponentially with the number of
dimensions, which becomes quickly unfeasible for higher dimensions. For example
when using Simpson’s rule the error scale like M−4 = N−4/D.

In particle physics almost always random number based, so called Monte Carlo,
integrations are used. Instead of slicing the phase space, N random points ri are
picked uniformly from anywhere in the integration region Ω. The target function f
is then evaluated at these points. The mean value gives an estimate for the integral

EN = 1
N

N∑
i=0

f(ri)
N→∞−−−→ 〈f〉 = 1

Vol(Ω)

∫
Ω

dxf(x), (2.4.1)

where Vol(Ω) is the volume of Ω. One can estimate the sampling uncertainty sN
through the variance of the sampling

s2
N = VN

N − 1 = 1
N(N − 1)

N∑
i=1

(f(ri)− EN)2 (2.4.2)

N→∞−−−→ 〈f
2〉 − 〈f〉2

N
= V (f)

N
. (2.4.3)

The uncertainty falls with every new point like 1/
√
N, independent of the dimension-

5For each outgoing particle we integrate over their four-momenta, while keeping them on-shell.
Additionally we have one overall energy-momentum conserving delta function, and for hadron
colliders we also integrate over the energy fraction of the incoming partons xa/b. Thus in total we
integrate over D = (4− 1)n− 4 + 2 = 3n− 2 dimensions.
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accept

reject

reject

accept

Figure 2.9: Illustration of hit-or-miss integration. Every point in-
side the upper, red region is rejected, and every point in
the lower, green is accepted. For the naive sampling on
the left random point are taken from the full integration
region, while with a smarter over-estimator on the right
no points are generated in the white region.

ality D. Hence when integrating more then 8 dimensions (or 3 final-states particles)
Monte Carlo methods scale better with the number of function calls then Simpson’s
rule.

A concrete example of Monte Carlo implementation is the hit-or-miss technique.
Both xi ∈ Ω and yi are randomly selected, where minx f(x) ≤ yi ≤ maxx f(x). If
for a given xi the corresponding yi ≤ f(xi), we accept the point (hit), else we reject
it (miss) (see left of fig. 2.9). The ratio of hits to misses is then the estimator for
the integral

Vol(Ω)
[
max
x∈Ω

f(x)−min
x∈Ω

f(x)
]
Nhit

Ntotal

N→∞−−−→
∫

Ω
dxf(x). (2.4.4)

Mathematically hit-or-miss is equivalent to the general method eq. (2.4.1) for the
auxiliary function

f̃(x, y) =

1 f(x) ≤ y

0 otherwise
. (2.4.5)

To further improve the sampling one has to reduce the variance of f in eq. (2.4.3). In
the hit-or-miss scenario one tries to avoid misses, by using a suitable over-estimator
g(x) and only selecting yi in the range [minx f(x), g(xi)] (see right of fig. 2.9). The
total integration volume changes from Vol(Ω) to Vol(Ωg) =

∫
dxg(x), which has to

be known analytically. The improvement is therefore limited by the amount of a
priori information of f put into g.

Instead of only limiting the generation of y, importance sampling more generally
biases the x-distribution directly, by selecting x according to a distributionG =

∫
dxg.
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Formally this is a variable transformation∫
dxf(x) =

∫
dxdG(x)

dx
f(x)
dG(x)

dx

=
∫

dG(x)f(x)
g(x) . (2.4.6)

This introduces a weight 1/g to undo the sampling bias.6 The resulting variance is
then reduced to the variance of f/g. Again the closer g mimics f the quicker the
convergence, with the obvious perfect case of zero variance at g = f .

We need to generate x according to G. Hence, g has to be a probability density,
i.e. any function with g(x) ≥ 0,∀x ∈ Ω and

∫
Ω dxg(x) = 1. It is no longer required

that g(x) ≥ f(x). But if g → 0 for f 6= 0 this region will be under-sampled. With
finite statistics under-sampling can mean that some strongly suppressed values are
missed, even if g(x) > 0. This can create artificial holes in the phase space, resulting
in a wrong value without an increased variance as indication. In any case under-
sampling, as in general any “bad” sampling, will increase the variance. Making
incorrect assumptions about f can be worse then making no assumptions at all.

Additionally we have to be able to generate x according to G, either directly through
a (black box) pseudo-random number generator, or by converting a flat distribution
of r to a g-distribution of x. For the latter we use the ansatz∫ x

xmin

dx′g(x′) = r
∫ xmax

xmin

dx′g(x′), (2.4.7)

which we can solve for x

x = G−1 (r [G(xmax)−G(xmin)] +G(xmin)) . (2.4.8)

Thus we have to know the inverse G−1, which limits the choice of g even further.

One trick to find a suitable g is to build it up from multiple channels

g(x) =
∑
i

nigi(x), (2.4.9)

where each gi catches some characteristic of f . Each of these functions is then
weighted with some relative weight ni > 0, such that ∑ni = 1. For example in
QCD each gi could account for one IR pole. One can also use a step function for gi,
similar to the slicing in a Riemann sum. In particular, it is possible to adjust the
steps automatically to reduce the variance, without prior knowledge of f , as done
in the Vegas algorithm [113].

6Note that for multi-dimensional integrals 1/g is the Jacobian det(dx/dG).





Chapter 3

Matching HEJ with fixed order

The standard procedure to suppress Higgs production through gluon fusion compared
to that from weak-boson fusion is to cut away the low energetic gluons. However the
impact of the radiative corrections to each process is rather different; in particular,
the t-channel colour octet exchange in the gluon-fusion process leads to increased
jet-activity [114], which allows for a distinction of the production mechanism within
the phase space populated by weak boson fusion. The two jets in weak boson
fusion are often separated by a large invariant mass and rapidity span. This is the
phase-space region where the perturbative corrections for the QCD processes contain
logarithms of log |ŝ/̂t| from BFKL [22–25]. As we saw before these logarithms are
contained within the formalism of High Energy Jets, where a systematic treatment
is obtained by a power-expansion of the scattering matrix element in ŝ/̂t. The first
sub-leading corrections were presented for the production of a Higgs boson with
dijets in ref. 98 by calculating the leading behaviour of certain sub-leading processes.
This constitutes control of a well-defined set of NLL BFKL logarithms within HEJ.
These logarithms drive the pattern of further emissions from the QCD process [114],
which allows for a better discrimination between the GF and VBF processes than
what could be performed by investigating the dynamics of just two jets in the event.

As discussed in section 2.3, the formalism of HEJ captures leading logarithmic terms
to processes with at least two jets at large partonic centre-of-mass energy of the
form αks log |ŝ/̂t|k ' αks∆ykjf jb , where ∆yjf jb is the rapidity-difference between the
jets forward and backward in rapidity. The systematic treatment of these terms
is based on a logarithmic all-order expansion point-by-point in phase space of the
leading virtual corrections to all orders, combined with a power-expansion in ŝ/̂t

of the square of the tree-level amplitudes, again point-by-point in the n-particle
phase space. Upon integration, the leading power-expansion of the square of the
amplitudes ensure the appropriate logarithmic accuracy of cross sections. Through
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the numerical integration HEJ generates fully differential events, allowing for detailed
jet clustering and event analyses.

Within the formalism of HEJ, the m-jet rates entering each prediction are matched
to LO accuracy point-by-point in phase space by the following procedure for mapping
the n-parton resummation phase space point into a m-parton tree-level phase space
point, described in more detail in ref. 34 and section 3.1:

1. cluster the n-parton phase space point into jets with a chosen jet algorithm
and jet p⊥-threshold (e.g. anti-kt clustering, with a threshold of 30 GeV),

2. remove the partons not clustered into the jets from the event, and distribute
the sum of their transverse momenta onto the hard jets,

3. adjust the energy and longitudinal, momentum of each jet such that it is
on-shell, while keeping their rapidities fixed

4. adjust the momenta of the incoming partons such that energy and momentum
conservation is restored.

The result of this procedure is a set of momenta for which the on-shell m-jet tree-
level matrix element can be evaluated. This in turn allows for the weight of the
generated event to be reweighted to full tree-level m-jet accuracy, thus obtaining full
tree-level accuracy up to the multiplicity for which the tree-level matrix elements can
be evaluated in reasonable time. This method for matching the all-order results to
fixed-order high-multiplicity matrix elements has been used for matching all results
obtained with HEJ: jets, and γ/Z , W plus at least two jets with matching up to 4
jets, and H with at least two jets, with matching up to 3 jets.

The matching procedure described here can thus be viewed as merging the res-
ults of fixed-order calculations by use of the power-expanded matrix elements of
HEJ coupled with the logarithmic virtual corrections, similar to the CKKW-L–
method [115,116] of using the logarithmic accuracy of a shower-algorithm to merge
fixed-order cross sections of varying multiplicity. This chapter will present a com-
plete reformulation of the procedure for merging and all-order summation. With the
same input (as in use of the same matrix elements to the same order), the results
are unchanged, but the new procedure for obtaining the all-order results and the
merging will allow for merging results beyond tree-level, whilst being computation-
ally much more efficient. Additionally, in the future the algorithm presented here
can potentially be generalised to NLO to give LL + NLO correct results, leading to
reduced scale variations.



3.1. Matching 61

In section 3.1 we describe the original mechanism for matching leading-order samples
within HEJ before a detailed discussion of the new formulation. This includes
both analytical aspects and practical aspects of implementation. In section 3.2 we
study the results obtained in the new formalism in the context of Higgs boson plus
dijets in three studies. Firstly we confirm that matching to fixed-order samples is
limited to a maximum of three jets, we find consistent results with the previous
formalism. Secondly, we study the impact of increasing the multiplicity in the fixed-
order samples, now possible for the first time. Thirdly, we compare the matched
all-order results of HEJ with those obtained at next-to-leading order accuracy. We
conclude in section section 3.3 with a final discussion. The matching presented here
is publicly available in HEJ version 2.

3.1 Matching

In the original formulation, the cross sections within HEJ are calculated by explicitly
constructing the all-order result. We therefore first generated a 2→ n+ l kinematic
point for each number of partons n = 2, . . . , N , where N is chosen sufficiently large
(in practice around 22), and l describes the non-partonic particles produced, e.g.
Z , W , H or their decay products. In order to simplify the notation we will only
discuss the purely partonic case l = 0. Likewise, we will restrict our discussion to the
leading-logarithmic contribution. Note that all our arguments apply equally to the
more general scenario. We demonstrate this by showing results for the production of
a Higgs boson in association with at least two jets, including computed sub-leading
corrections [98].

The high-energy limit is dominated by FKL configurations, where two partons scatter
in such a way that there is no radiation outside the rapidity range spanned by the
scattering partons and only gluons are emitted inside this range. To ensure the high-
energy limit applied is valid, it is required that the extremal (in rapidity) partons
are perturbative (hard in terms of transverse momentum), and are members of the
extremal jets. The transverse momenta of the remaining partons are all generated
down to effectively 0 GeV. The matching to LO accuracy for all m-jet rates, m ≤ n,
is then obtained by first projecting the kinematics of the generated all-order events
into Born kinematics according to the number of hard jets as described in the
previous section. The event weight is multiplied with a ratio of the square of the
full Born-level amplitude to the HEJ approximation of the same. The cross section
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(and kinematic distributions) is then obtained through the formula1

σresum,match
2j =

∑
f1,f2

∞∑
n=2

∫ p1⊥=∞

p1⊥=pmin⊥

d2p1⊥

(2π)3

∫ pn⊥=∞

pn⊥=pmin⊥

d2pn⊥
(2π)3

n−1∏
i=2

∫ pi⊥=∞

pi⊥=λ

d2pi⊥
(2π)3

× Ty

n∏
i=1

(∫ dyi
2

)
× |M

reg
HEJ({pi})|

2

ŝ2 ×
∑
m

Oemj({pi}) wLO
m−jet

× xafa,f1(xa, Qa) xbfb,f2(xb, Qb) (2π)4 δ2
(

n∑
i=1

pi⊥
)
,

(3.1.1)

where |Mreg
HEJ({pi})|2 is the square of the regularised all-order matrix element within

HEJ for the 2→ n phase space point, and

wLO
m−jet ≡

∣∣∣Mf1f2→f1g...gf2
LO

({
pBJl({pi})

})∣∣∣2∣∣∣Mf1f2→f1g...gf2
LO,HEJ

({
pBJl({pi})

})∣∣∣2 (3.1.2)

is the ratio between the matrix element evaluated at full tree-level accuracy and
within HEJ for the state projected to tree-level 2→ m kinematics described by the
jet momenta

{
pBJl({pi})

}
. Ty indicates rapidity ordering, while Oemj({pi}) is the

exclusive m-jet measure applied to the generated event kinematics, i.e.

Oemj({pi}) =

1 all particles {pi} are clustered into exactly m jets

0 otherwise
(3.1.3)

selects the number of jets m for each momenta configuration {pi}.

The limits of the integral over the transverse momentum of the extremal partons
combined with the two-jet measure is set to guarantee that the extremal partons
carry the dominant momentum of the extremal jets. We choose a cut-off pmin⊥

corresponding to 90% of the transverse momentum of the respective extremal jet.2

We use here the phrase ‘kinematics of the generated all-order event’ to mean the
n-parton kinematic point of the resummation event sampled in eq. (3.1.1). In order
to match each m-jet rate to tree-level accuracy, each generated event in the all-order
phase-space is mapped to a m-jet tree-level kinematic point, where each jet contains
exactly one parton, and requires an evaluation of the full m-parton matrix element.

The scale-variation of the normalisation of the cross sections is determined by the
LO matrix elements, and mostly unchanged by the leading logarithmic high-energy

1To not clutter the notation, we omit the integrals over the incoming kinematics xa/b and Qa/b.
2This is a slightly more sophisticated cut than that investigated in ref. 34, 98, 107, 108, and

ensures that the soft divergence which would be regulated at next-to-leading logarithmic accuracy
of the extremal currents does not impact the result obtained with the leading-logarithmic currents
even for jets at large transverse momentum.
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resummation implemented in HEJ. This could be reduced by extending the reweight-
ing factor wm−jet to next-to-leading order accuracy. However, in order to do this, one
would have to integrate over all m+ 1 parton real emission phase space resulting in
a specific m-jet Born-level kinematics. This would be prohibitively time-consuming.
An alternative approach is to begin with fixed-order samples of exclusive jet rates
and then merge these using HEJ to generate all-order results. We demonstrate how
to do this in the next subsection and find significant benefits even at tree level. In
particular, each phase space point used for the tree-level matrix element maps into
all the relevant resummation phase space points which leads to fewer evaluations of
the tree-level matrix elements. This in turn allows for matching to higher multiplicity
with a given CPU envelope.

3.1.1 Supplementing fixed order samples with HEJ
resummation

The reformulation of the resummation and matching should reproduce the results of
eq. (3.1.1). Starting from this equation, we introduce a δ-functional and an integra-
tion over the Born-level kinematics of the on-shell, reshuffled jets {jiB} reconstructed
from the resummed kinematics. Equation (3.1.1) is rewritten to

σresum,match
2j =

∑
f1,f2

∑
m

m∏
j=1

(∫ p
B
j⊥=∞

p
B
j⊥=0

d2pBj⊥
(2π)3

∫ dyBj
2

)
(2π)4 δ(2)

(
m∑
k=1

pBk⊥
)

× xBa fa,f1(xBa , QB
a ) xBb fb,f2(xBb , QB

b )

∣∣∣Mf1f2→f1g...gf2
LO

({
pBj
})∣∣∣2

(ŝB)2

× wm−jet∣∣∣Mf1f2→f1g...gf2
LO

({
pBj
})∣∣∣2 (2π)−4+3m 2m

×
∞∑
n=2

∫ p1⊥=∞

p1⊥=pmin⊥

d2p1⊥

(2π)3

∫ pn⊥=∞

pn⊥=pmin⊥

d2pn⊥
(2π)3

×
n−1∏
i=2

(∫ pi⊥=∞

pi⊥=λ

d2pi⊥
(2π)3

)
Ty

n∏
i=1

(∫ dyi
2

)
(2π)4 δ(2)

(
n∑
k=1

pk⊥
)

× xafa,f1(xa, Qa) xbfb,f2(xb, Qb)

∣∣∣Mf1f2→f1g...gf2
HEJ ({pi})

∣∣∣2
ŝ2

×Oemj
(
m−1∏
l=1

δ(2)(pBJl⊥ − jl⊥)
) (

m∏
l=1

δ(yBJl − yJl)
)

× (ŝB)2

xBa fa,f1(xBa , QB
a ) xBb fb,f2(xBb , QB

b )
.

(3.1.4)
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The first two lines are now the phase space integration over the LO matrix element,
which can be represented in terms of (potentially weighted) tree-level events. Obvi-
ously, the Born-level partonic momenta are identical to the Born-level jet momenta,
i.e. pBi ≡ pBJi , so that

wm−jet∣∣∣Mf1f2→f1g...gf2
LO

({
pBj
})∣∣∣2 =

∣∣∣Mf1f2→f1g...gf2
LO,HEJ

({
pBj
})∣∣∣−2

(3.1.5)

only depends on the Born-level HEJ approximation to the matrix element. Lines 4
to 6 preform the integration of the HEJ matrix elements over all of the resummation
phase space. The last line removes the factors introduced in the first line of eq. (3.1.4)
compared to eq. (3.1.1) in order to write the matching in terms of a standard phase
space integration over fixed-order PDFs and matrix elements.

The δ-functionals of the second of last line in eq. (3.1.4) connect the reconstructed
Born-level kinematics with the kinematics of the jets arising from the resummation.
The algorithm devised for projecting the jet momenta of the resummation onto
Born-level kinematics gives [34]

pBJl⊥ = jl⊥ ≡ pJl⊥ + q⊥
|pJl⊥|
P⊥

, (3.1.6)

plus the constraint that the rapidities of the jets are kept fixed. Here pBJl is the
momentum of the fixed-order, matching level jet, and P⊥ is the scalar sum of the jet
transverse momenta after resummation P⊥ = ∑m

j=1 |pJj⊥|. The sum of the transverse
momenta of partons outside jets q⊥ equals minus the transverse momentum of the
jets after resummation q⊥ = −∑m

j=1 pJj⊥.

This algorithm can be straightforwardly applied when the resummation event has
been constructed, and had a jet-clustering applied. If, however, we want to start
from fixed-order generated events, the algorithm needs to be inverted, such that all
resummation-momenta on the right-hand side of eq. (3.1.6) are explored for a given
Born-level kinematic point. This inversion has to be done numerically, which makes
it computationally expensive. To circumvent this one can construct an “alternative
reshuffling”

pJl⊥ = jBl⊥ ≡ pBJl⊥ − q⊥
|pBJl⊥|
PB
⊥

, (3.1.7)

which is linear in the resummation momenta.3 The difference between both mappings
is subleading, and in practice negligibly small. To match the previous implementation

3This corresponds to a variable transformation pBJl⊥
→ pJl⊥

in eq. (3.1.4). Thus we get an
extra Jacobian

∣∣∂ jB

l
′⊥
/∂ pB

Jl⊥

∣∣.
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Figure 3.1: Distribution of the minimal transverse energy of the
jets before resummation, pBmin⊥, contributing for gener-
ating jets after resummation with HEJ for Higgs boson
plus dijet production. After resummation we require
a jet transverse momentum of at least 30 GeV, below
this scale the distribution falls off quickly. Hence the
resummation phase space with a given minimum jet
transverse momentum is covered by a fixed-order gen-
eration with a slightly smaller requirement on the jet
transverse momentum. For example, a generation of
fixed-order events with a minimum jet transverse mo-
mentum of 20 GeV is sufficient for an analysis requiring
a transverse momentum of at least 30 GeV.

of HEJ from ref. 34, we use eq. (3.1.6) for this chapter. The numerical inversion is
done by GLS routines [117]. Contrary, in chapter 4 we choose eq. (3.1.7), which also
became the new default in HEJ 2.

While eq. (3.1.4) is mathematically equivalent to eq. (3.1.1), it does not prove that
the approach is viable. The first challenge is to ensure that in fact, the integra-
tion over the matching, or fixed-order phase space, in the first line of eq. (3.1.4)
does not actually extend to zero transverse momentum of the matching jets. This
would lead to a divergence in the fixed-order cross section and invalidate the whole
procedure. In fig. 3.1 we investigate the minimum transverse momentum of jets
used in the matching for the evaluation of fixed-order matrix elements. The plot
shows dσ/dpBmin⊥, where pBmin⊥ is the minimum jet transverse momentum used in the
merging with matrix elements—i.e. the minimum transverse momentum in the res-
ulting on-shell Born-level kinematics after reshuffling—for Higgs-boson production
in association with at least two jets with transverse momentum of at least 30 GeV.
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One sees that the matrix element sample needs to include events with a minimum
jet transverse momentum below the final analysis scale, but not “too far” below. It
is observed that this distribution gets broader, and that the weight for small pBmin⊥

is relatively important, both for larger rapidity spans, and if more hard jets are
required (obviously these two requirements are linked).

The next challenge is to generate all resummation kinematics corresponding to a
specific fixed-order or matching kinematics. This is not an obvious switch to make:
substituting a requirement on LO kinematics to result in a given Born-level jet
configuration with that of the full resummation event resulting in a given Born-level
jet kinematics. However, the formalism will offer a number of benefits. Statistical
convergence can be controlled at a more fine-grained level. Stability can be ensured
first at the fixed-order stage before attempting resummation, and each jet multiplicity
can be considered separately. We are free to choose whichever generators we find
most suitable for producing fixed-order events. A further improvement is that the
fixed-order matrix element is evaluated only once for each fixed-order kinematic point,
generating a significant enhancement to the computational efficiency, especially for
high jet multiplicities.

3.1.2 Phase space generation

In order to perform the resummation, we are tasked with the numerical evaluation of
the last five lines of eq. (3.1.4). In principle, we have to integrate over the phase space
of arbitrarily many further real emissions. This is made feasible by the fact that for
a given fixed-order configuration with finite rapidity span, only a limited number of
additional gluons actually lead to a non-negligible contribution in the resummation.
Still, the typical multiplicities in the interesting region of large rapidity separations
will be quite high and we are required to inspect the corresponding high-dimensional
phase space carefully for an efficient integration. In the following section, we discuss
how to construct an efficient importance sampling.

Gluon multiplicity

The typical number of extra emissions depends strongly on the rapidity span of the
underlying fixed-order event. Let us, for example, consider a fixed-order FKL-type
multi-jet configuration with rapidities yjf , yjb of the most forward and backward
jets, respectively. By construction in the matching algorithm of ref. 34, the jet
multiplicity and the rapidity of each jet are conserved when adding resummation.
This implies that additional hard radiation is restricted to rapidities y within a
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Figure 3.2: Average number of additional gluon emissions ng as a
function of the rapidity span between the extremal jets.
The black histogram shows the predicted numbers in the
production of a Higgs boson in association with at least
two jets. The blue, dashed line is the fitted function
used for the phase space generation.

region yjb . y . yjf . Within HEJ, we require the most forward and most backward
emissions to be hard in order to avoid divergences [34], so this constraint in fact
applies to all additional radiation.

To simplify the remaining discussion, let us remove the FKL rapidity ordering

Ty

n∏
i=1

∫ dyi
2 = 1

n!

n∏
i=1

∫ dyi
2 , (3.1.8)

where all rapidity integrals now cover a region which is approximately bounded by
yjb and yjf . Each of the m jets has to contain at least one parton; selecting random
emissions we can rewrite the phase space integrals as

1
n!

n∏
i=1

∫
[dpi] =

(
m∏
i=1

∫
[dpi] Ji(pi)

)
1
ng!

m+ng∏
i=m+1

∫
[dpi] (3.1.9)

with jet selection functions

Ji(p) =

1 p clustered into jet i

0 otherwise
(3.1.10)

and the number of extra gluon emission ng ≡ n−m. Here and in the following we
use the short-hand notation [dpi] to denote the phase-space measure for parton i. As
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Figure 3.3: Number of additional gluon emissions ng for two dif-
ferent rapidity spans between the extremal jets for
∆yjf jb = 1.75 (left) and ∆yjf jb = 5.75 (right). The
estimates in blue are based on Poisson distributions
with mean values taken from the fit function in fig. 3.2,
and in black are the observed values after integration.

is evident from eq. (3.1.9), adding an extra emission ng + 1 introduces a suppression
factor 1

ng+1 . However, the additional phase space integral also results in an enhance-
ment proportional to ∆yjf jb = yjf −yjb . This is a result of the rapidity-independence
of the MRK limit of the integrand, consisting of the matrix elements divided by
the flux factor. Indeed, we observe that the typical number of gluon emissions is to
a good approximation proportional to the rapidity separation and the phase space
integral is dominated by events with ng ≈ ∆yjf jb (see fig. 3.2).

For the actual phase space sampling, we assume a Poisson distribution and extract
the mean number of gluon emissions in different rapidity bins and fit the results to a
linear function in ∆yjf jb , finding a coefficient of 0.975 for the inclusive production of
a Higgs boson with two jets. In figs. 3.2 and 3.3 we compare the fit with the actual
outcome.

Number of gluons inside jets

For each of the ng gluon emissions we can split the phase-space integral into a
(disconnected) region inside the jets and a remainder

∫
[dpi] =

∫
[dpi] θ

(
m∑
j=1
Jj(pi)

)
+
∫

[dpi]
[
1− θ

(
m∑
j=1
Jj(pi)

)]
. (3.1.11)

We choose an importance sampling which is flat in the plane spanned by the azi-
muthal angle φ and the rapidity y. This is observed in BFKL and valid in the MRK
limit. Furthermore, we assume (non-overlapping) anti-kt jets, which cover an area
of πR2 [70].
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Figure 3.4: Estimated phase space areas for the emission of ex-
tra gluons for sample three-jet configurations. The left
panel shows the case of a large rapidity separation. On
the right we illustrate the estimate for a very small
rapidity span.

In principle, the total accessible area in the y-φ plane is given by 2π∆yfb, where
∆yfb ≥ ∆yjf jb is the a priori unknown rapidity separation between the most forward
and backward partons. In most cases the extremal jets consist of single partons,
so that ∆yfb = ∆yjf jb . For the less common case of two partons forming a jet we
observe a maximum distance of R between the constituents and the jet centre. In
rare cases jets have more than two constituents. Empirically, they are always within
a distance of 5

3R to the centre of the jet [118], so ∆yfb ≤ ∆yjf jb + 10
3 R. In practice,

the extremal partons are required to carry a large fraction of the jet transverse
momentum (cf. section 3.1) and will therefore be much closer to the jet axis.

In summary, for sufficiently large rapidity separations we can use the approximation
∆yfb ≈ ∆yjf jb . If there is no overlap between jets, the probability pJ ,> for an extra
gluon to end up inside a jet is then given by (cf. fig. 3.4)

pJ ,> = (m− 1)R2

2∆yjf jb
. (3.1.12)

For a very small rapidity separation, eq. (3.1.12) obviously overestimates the true
probability. The maximum phase space covered by jets in the limit of a vanishing
rapidity distance between all partons is m · 2R∆yfb. We therefore estimate the
probability for a parton to end up inside a jet as

pJ = min
(

(m− 1)R2

2∆yjf jb
,
mR

π

)
. (3.1.13)

In fig. 3.5 we compare this estimate with the actually observed fraction of additional
emissions into jets. We observe good agreement over the entire rapidity range and
for different jet multiplicities.
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Figure 3.5: Estimated probability (lines) for an extra emission to
end up inside a jet compared to the fraction observed
(histograms) in the exclusive production of a Higgs bo-
son with two (green, dotted), three (red, dashed), and
four (black, solid) jets.

Gluons outside jets and observed jet momenta

Using our estimate for the probability of a gluon to be a jet constituent, we arrive at a
number ng,J of gluons inside jets. Before integrating over their remaining phase space,
we first have to determine the momenta pJi of the observed (resummation) jets from
eq. (3.1.6). To this end, we have to determine the total transverse momentum q⊥ of
the gluons outside jets. After generating soft transverse momenta for these ng−ng,J
gluons, we invert the non-linear system eq. (3.1.6), or, in newer implementations,
the linear eq. (3.1.7). Note that we have to postpone the rapidity integration, since
at this point the rapidity span in the phase space integral is not yet known. The
most forward and backward partons have to be part of the extremal jets. Therefore,
their momenta will only be determined in the next step.

Gluons inside jets

Recall that after the first step in the phase space parametrisation, eq. (3.1.9), each
jet has exactly one constituent. We now assign each of the ng,J gluons to a random
jet. For jets with a single constituent, the parton momentum is fixed completely by
the constraints in eq. (3.1.4). In the case of two constituents, we observe that the
partons are always inside the jet cone with radius R and often very close to the jet
centre. This allows efficient integration by choosing a distance to the jet centre and
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an azimuthal angle with respect to the jet axis for one of the partons as integration
variables, which determines all momentum components of both constituents.

As is evident from fig. 3.5, jets with three or more constituents are rare and an efficient
phase-space sampling is less important. For such jets, we exploit the observation
that partons with a distance larger than Rmax = 5

3R [118] to the jet centre are never
clustered into that jet. Assuming N constituents, we choose distances, angles, and
transverse momenta for N − 1 of them and determine the momentum of the last
constituent from the requirement that the constituent momenta have to add up to
the jet momentum. Since this last momentum may lie outside the jet cone, it is
mandatory to check explicitly whether all candidates are actually clustered into the
considered jet. This is to ensure the correct coverage of phase space.

After constructing the resummation jets, we are now in the position to evaluate
the rapidity integrals for the partons outside the jets. Finally, we use FastJet [69]
to recluster all emitted partons into jets again to check whether the reshuffling
conditions imposed by eq. (3.1.4) are fulfilled. We also ensure that all partons are
assigned as intended, i.e. the ng,J designated jet constituents are indeed part of
their respective jet and all remaining partons end up outside jets.

3.1.3 Technical aspects

We have now outlined the practical steps necessary to numerically solve eq. (3.1.4).
The complete algorithm is implemented in version 2 of the C++ program High Energy
Jets, which was first publicly released in ref. 3 and can be downloaded from ref. 4,5.
Beside the complete rewrite of the integration, HEJ 2 also implemented the finite
quark mass effects for Higgs-boson production, which we will study in chapter 4. The
remaining processes, Z/γ or W boson with jets, from the old version and expanding
them to include all NLL configurations [110] will be available with the next release.

One design goal for HEJ was to make it independent of any specific Monte Carlo
generator. To achieve this, we use the Les Houches event file (LHEF) standard [119,
120] to read input events. Though LHEF is not ideal4 it is the most widely used
format in heigh energy physics and is supported by most generators. Additionally it
is similarly used by Pythia as an input, which ensures at least some compatibility.
To lift some of the restrictions from the XML based LHEF standard, with the next
release HEJ will support the format proposed in ref. 121 based on HDF5 files [122],
by using the header-only library HighFive [123]. HDF5 files are binary data files

4Just to name a few downsides: LHEF is unnecessarily bloated, uses a plain text output, and
lacks good centralised documentation, where even the existing definitions are unclear and therefore
not widely followed in the physics community.
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structured in different data sets, which are specially designed for quick read and
write access even when using multi-threading5, which is particularly important for
parallelised high-performance computing. To run HEJ on computing grids a backend
to pyHepGrid [124] was developed, which provides a common interface to run grid
jobs on both ARC [125] and DIRAC [126]

Beside the LHEF based formats, HEJ can write out the generated events in the
HepMC format version 2 [127] or 3 [128]. Alternatively events can also be directly
analysed—without explicitly being written to disk—either with a custom analysis
or through Rivet [129, 130]. Internally HEJ uses the FastJet library [69] for jet
clustering, and LHAPDF [61] for PDFs. As pseudo-random number generators
HEJ can use MIXMAX [131, 132] or RANLUX64 [133] through an interface to
CLHEP [134, 135]. All optional interfaces can be selected at runtime through a
YAML [136] configuration file, which is read via the yaml-cpp parser [137]. A
detailed guide for all settings is given in ref. 5.

HEJ 2 can not only be used as a standalone executable, but also as a C++ library.
Amongst others, this library is required for a reimplementation of the HEJ and Py-
thia merging of ref. 99 for arbitrary processes, which is currently under development.
Furthermore, one can directly access the (Born-level) HEJ matrix elements to build
a fixed-order Monte Carlo generator, called HEJ FOG. When using HEJ FOG as an
input to HEJ—as the Born event in eq. (3.1.4)—one gets the pure, unmatched HEJ
cross section. Hence, HEJ FOG is intended as an alternative for LO calculations in
the merging, when these become prohibitively slow. For example in a setup similar
to ref. 121, generating 106 (partially unweighted) events for W+ bosons with 9 jets
takes O (15 min) with HEJ FOG on a single thread of a 2.4 GHz laptop CPU, while
ref. 121 reported a total of O

(
105 h

)
for the LO result with Comix [138] on a

computer cluster.6 Spending that much time on a process with only a small impact
on the final cross-section is unnecessarily wasteful; a rough estimate is sufficient.

To further improve the speed of HEJ and to avoid code duplication, we are cur-
rently rewriting the handwritten implementation of the HEJ matrix elements in the
symbolic algebra language Form [139, 140]. In Form one can write the currents
at amplitude level, close the to the form reported throughout this thesis. The con-
traction and symbolic manipulation of these currents—by using the relations from
appendix A—are done automatically at compile time. The resulting expressions for
the matrix elements are then exported to C++ code, simplifying the runtime calcula-

5Currently HEJ is not multi-threaded, thus it does not utilise the full potential of the HDF5
format. But since the bottleneck when running HEJ is typically the fixed-order calculation, having
a file format better suited for fixed-order is still desirable.

6Clearly this is an unfair comparison, since it says nothing about the integration performance.
It should just be seen as illustration of “how much” simpler the HEJ matrix elements are.
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tions down to (a minimal number of) complex-number multiplications. In the future
this procedure may be generalised to also produce sub-subleading contributions that
can be built up from already known currents, such as qQ → gqQg which contains
two unordered currents.

HEJ calculates the cross section as the sum of weights, which differs from eq. (2.4.1)
where we assumed the average weight to be the cross section—obviously both de-
scriptions are interchangeable when knowing the number of weights. The advantage
of using the sum of weights is that we do not have to write out zero-weight events
when they fail the selection criteria. Formally the HEJ cross section is

σN =
N∑
i=1

xi

M∑
j=1

yi,j =
N∑
i=1

M∑
j=1

wi,j , (3.1.14)

where xi are the weights as produced from the fixed-order generator, and yi,j the
reweighting factors from HEJ. The full weights written out after resummation are
then wi,j. Here we takeN fixed-order events as an input and addingM trail emissions
during the resummation. We can estimate the Monte Carlo variance to be

s2
N,M = M2

N∑
i=1

(xi − x̄)2 ȳi
2 +

N∑
i=1

x2
i

M∑
j=1

(
yi,j − ȳi

)2
(3.1.15)

≤
N∑
i=1

 M∑
j=1

wi,j

2

+
N∑
i=1

M∑
j=1

(
wi,j

)2
, (3.1.16)

where x̄ and ȳi are the average values of xi and yi,j respectively. The second line gives
a strict overestimator, which only depends on the full event weight after resummation.
It is therefore not necessary to explicitly write out xi or yi,j.

Importantly eq. (3.1.15) is always bigger then the uncertainty from just fixed order
or just reweighting alone. Still, according to the first term, the total variation always
scales like O (1/

√
N). In the limit M →∞ the total standard deviation is that of the

fixed order input. ForM = 1 we exactly reconstruct the old matching where one had
one resummation point per fixed-order event. This is the worst-case scenario with
the maximal uncertainty, since the second term would be at its maximal size. For any
other M > 1 the second term decreases with (NM)−1, leading to a smaller overall
variation. This is equivalent to other Monte Carlo methods, which do not affect the
fundamental scaling of the convergence with N , but give a smaller pre-factor.

Thus we have to choose an optimal M which balances the time spent between
integrating LO and resummation. In fig. 3.6 we find this value to be at around
M = 100 trial emission per fixed order event.7 At lower values one sees artefacts

7In principle one could choose different M for different fixed-order events, to further optimise
the integration
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Figure 3.6: Scaling of the estimated standard derivation with in-
creasing number of fixed-order events for H + jj pro-
duction. As the number of trials increases (from yellow
to violet) one gets closer to the fixed order uncertainty
(black line).

from hitting phase space region that is difficult to sample in the resummation (jumps
in fig. 3.6). Higher values of M show diminishing returns; with M = 100 we spend
roughly 6% of the total CPU time on generating the resummation for H + 2j, thus
increasing M to 1000 leads to ∼ 50% increased total runtime.

3.2 Results

In this section we discuss the results obtained with the new formalism in the key
process of Higgs-boson production in association with at least two jets. Firstly we
confirm that if we limit ourselves to matching with fixed-order samples with up to
three jets that we reproduce the results obtained with the previous formalism, but
now with a much higher efficiency. We will then show and discuss the impact of
being able to increase the multiplicity in the fixed-order samples and also compare
our results to NLO predictions.

The matching procedure described in this work is significantly more efficient and
flexible than the approach used in previous versions of HEJ. To illustrate this,
we present new results for the production of a Higgs boson in association with at
least two jets matched to LO events with up to four jets. Previously, matching of
HEJ to just three jets was achieved for this process, while using significantly more
CPU resources than necessary with the current approach. In its new formulation,
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the matching is in practice only limited by the capabilities of the underlying fixed-
order generator. For instance, the generation of one set of 1000 unweighted LO
events for the production of a Higgs boson with four jets typically took a few
CPU days using MadGraph5_aMC@NLO [55]. It is then just a few additional CPU
seconds to generate 100 weighted resummation events from each of the fixed-order
4-jet events, so 100 000 weighted trial resummation configurations in total. In the
previous matching approach, generating 100 000 resummation configurations would
require the same number of computationally expensive fixed-order matrix element
evaluations.8 Since the resummation is not followed by any computationally intensive
steps, we only consider the generation of weighted events here. Nonetheless, we also
observe a marked improvement in a short test simulation with unweighted events.

This section will present the results obtained with the new procedure for matching
and resummation. Section 3.2.1 describes the cuts and analysis used. Section 3.2.2
compares new results with matching up to three jets with those obtained previously,
and demonstrates that the two methods yield equivalent results. Section 3.2.3
investigates the stability of the results obtained by investigating the impact of
increasing the order to which matching is achieved. In general, the matching to
higher multiplicities should have little impact for configurations where the four-jet
contribution is insignificant or the approximation within HEJ already provides a good
description. Conversely, the corrections from matching to successive multiplicities
can serve to indicate the stability of the HEJ predictions for observables sensitive to
additional hard radiation. Finally, in section 3.2.4 we match the inclusive Higgs-plus-
dijet cross section to NLO accuracy, thus obtaining the most precise predictions for
H + jj-production, including the effects of VBF cuts. These results are compared
to those obtained at fixed next-to-leading order accuracy.

3.2.1 Setup

To facilitate the comparison with previous results we will adopt the cuts of the
ATLAS experimental analysis of ref. 141, and the parameters of our analysis in
ref. 98. The analysis was implemented in Rivet version 2 [129]. To recapitulate,
we consider the gluon-fusion-induced production of a Higgs boson together with at
least two anti-kt jets with transverse momenta pj⊥ > 30 GeV, rapidities |yj| < 4.4,
and radii R = 0.4 at the 13 TeV LHC. While it is unrelated for the considerations of
the QCD corrections considered in this chapter, we consider the Higgs-boson decay

8Note that for our specific setup a direct comparison between both approaches is not possible
since there is no analogue to the concept of unweighted fixed-order events in the “old” approach.
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into two photons with

|yγ | < 2.37, 105 GeV < mγ1γ2
< 160 GeV,

pγ1⊥ > 0.35mγγ , pγ2⊥ > 0.25mγγ ,
(3.2.1)

and separations ∆R(γ, j),∆R(γ1, γ2) > 0.4 from the jets and each other. To be
consistent with our previous analysis we set the Higgs-boson mass to mH = 125 GeV,
a width of ΓH = 4.165 MeV and a branching fraction of 0.236% for the decay into two
photons. We use the CT14nlo PDF set [142] as provided by LHAPDF version 6 [61].
In addition to inclusive quantities with the basic cuts listed above, we also consider
additional VBF-selection cuts applied to the hardest jets as in ref. 141:

|yj1 − yj2| > 2.8, m12 > 400 GeV. (3.2.2)

In the first step, we generate LO events with two, three and four jets. With our new
matching procedure we are free to use an arbitrary fixed-order event generator for this
purpose. For the present analysis we employ version 2.5.5 of MadGraph5_aMC@NLO [55].
For each jet multiplicity we produce about 2000 sets of unweighted events, each
comprising 10 000 events for the sets with two or three jets and 1000 events for sets
with four jets.

As the transverse momenta of the jets are modified during resummation through
eq. (3.1.6), we have to generate at least a fraction of events with Born-jet momenta
below the threshold of 30 GeV required from the observed jets. As already shown in
fig. 3.1 the contribution after the resummation from such tree-level configurations
in the matching drops off very rapidly below the jet transverse momentum analysis
scale of 30 GeV. Passing this information to the underlying fixed-order generator,
such that only a small fraction of events are generated below the nominal transverse
momentum threshold could improve the sampling efficiency considerably. Having
such an option would therefore be highly desirable. For the time being, we manually
generate 200 additional sets of Born-level events with transverse momenta down to
20 GeV for each jet multiplicity.

Events with more exclusive jets than can be reasonably evaluated at leading order
in MadGraph5_aMC@NLO are unmatched and generated with HEJ FOG instead of full
leading order. In this way, we can supplement the fixed-order input with events
including up to ten jets obtained within the HEJ approximation. These events are
simply passed through the same matching mechanism based on eq. (3.1.4) just as
the lower-multiplicity events obtained using MadGraph5_aMC@NLO. The maximum
multiplicity of ten is an arbitrary cut-off, based on an explicit check that the impact
on the shown observables at this multiplicity is negligible.
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Figure 3.7: Comparison of the new matching procedure to previous
HEJ results obtained in ref. 98. The panels show the
transverse momentum distributions of the Higgs boson
for (a) inclusive cuts and (b) VBF cuts.

Since the final kinematics required for a kinematic scale setting are not known at
the point of generating fixed-order events, we use a fixed renormalisation and factor-
isation scale of µr=µf =mH during the fixed-order generation. After resummation
the events are rescaled to a central scale of µr =µf =HT/2. In order to assess the
scale dependence, we independently vary both the renormalisation and factorisation
scales by factors {1/2, 1/

√
2, 1,
√

2, 2} and discard combinations with µr/µf < 1/2
or µr/µf > 2. In the effective Higgs-gluon coupling, we keep the renormalisation
scale at the Higgs-boson mass and apply the limit of an infinite top-quark mass.
These scale settings and even the use of the infinite top-mass limit are however not
inherent to the use of the high-energy resummation of HEJ, but can be included
with modified components of the amplitudes, similar to ref. 109.

After generating the tree-level input events, we apply resummation as presented
in the previous sections. Recent progress described in ref. 98 allows us to apply
resummation not just for FKL-ordered matching-events, but also the sub-leading
contribution from events with three jets or more, where the rapidity-ordering of
the two most forward or most backward jets is flipped compared to FKL ordering.
This corresponds to a gluon emission outside a rapidity-interval delimited by quark
jets. For each resummation-type tree-level event, we generate 100 weighted trial
configurations in the resummation phase space. For the remaining sub-leading events
we cannot add resummation and simply adjust the factorisation and renormalisation
scales as described above.



78 Chapter 3. Matching HEJ with fixed order

3.2.2 Comparison to previous results

In order to demonstrate the validity of the new approach we compare here first
our results with LO matching up to three jets to those obtained in our previous
work ref. 98 . We find good agreement within the statistical errors. As examples, we
show the transverse momentum distributions for the Higgs boson for inclusive and
VBF cuts in fig. 3.7. The previous and new method of organising the calculation
are equivalent. For the comparison, we have adjusted our settings to match those
in ref. 98 as closely as possible. Apart from restricting the fixed-order matching to
configurations with at most three jets, this also means that the extremal partons
are required to have a fixed minimum transverse momentum of 27 GeV instead of a
fraction of the corresponding jet momentum, as discussed in section 3.1.

3.2.3 Impact of four-jet matching on distributions

The HEJ approximation is exact in the limit of multi-Regge kinematics, i.e. for large
rapidity separations between hard jets. An equivalent characterisation is to demand
the centre-of-mass energy and the invariant masses between all final-state jets to be
much larger than the typical transverse momenta of these. If these conditions are
fulfilled, we expect HEJ to produce accurate predictions and hence small matching
corrections. In order to assess the perturbative stability of the final predictions,
we will here study the impact on the resummed and matched cross section of scale
variations and of successive matching to two-jet, three-jet and four-jet tree-level
events.

One of the main goals of HEJ is to improve the prediction of the gluon-fusion
background to Higgs-boson production in weak-boson fusion. Standard VBF cuts
project out a kinematic region with a large invariant mass between the hardest jets,
where the gluon fusion receives significant contributions from higher jet multiplicities.
Figure 3.8a displays the relative contribution of the exclusive two-, three- and four-
jet component to the distribution on the invariant mass between the two hardest
(in transverse momentum) jets. The relative contribution from exclusive three- and
four-jet-events increases with increasing m12. Figure 3.8b displays the impact of
matching of successive multiplicity on the distribution of the invariant mass between
the two hardest (in transverse momentum) jets. The effect of the four-jet matching
is small but non-zero even at large m12. This is because even in this limit a large
separation between all jets is not guaranteed.

The contribution from jet multiplicities of more than or equal to 5 is less than 5%
for an invariant mass of at least 1 TeV. We conclude that the uncertainty on the
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Figure 3.8: Distribution of the invariant mass between the hardest
jets. Panel (a) shows the fractional contributions from
exclusive two-, three-, and four-jet events. Panel (b)
depicts the effects of fixed-order matching up to two,
three, and four jets.

distribution of m12 from terminating the matching at the four-jet contribution is
insignificant for the study here, and well within the quoted scale variation.

A central prediction of BFKL, which arises also within HEJ, is a linear increase in the
number of jets for a growing rapidity span between the most backward and forward
jets.9 This behaviour is demonstrated in fig. 3.9, which also investigates the impact
of matching to tree-level of successive multiplicities. Although the contribution from
higher jet multiplicities increases with the rapidity separation, the effect of fixed-
order matching on this observable actually decreases. This confirms our expectation
that the HEJ approximation works well for large ∆yjf ,jb . It is this linear increase in
the average number of jets versus increasing rapidity span which can be exploited
to suppress the gluon-fusion contribution with a central jet veto [85].

In contrast to this, if the two hardest jets are tagged, and only jets in-between these
are counted as a function of the rapidity difference between the hardest jets, then
the initial linear growth stalls at an average number of jets of around 2.3. The
difference in behaviour to the VBF contribution is therefore less pronounced by
tagging the hardest jets, rather than the most forward and backward hard jets. This
was investigated further in ref. 85. Also, the impact of the matching corrections
remains sizeable for all rapidity separations.

In observables which are neither dominated by higher jet multiplicities nor completely
9This growth continues until the invariant mass of just the forward and backward jets is so large

that no other jets can be emitted due to energy and momentum constraints. The fixed-order NLO
results have a similar behaviour at small ∆yjf ,jb

until the average jet multiplicity is saturated by
the fixed-order truncation.
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Figure 3.9: Average number of jets for fixed-order matching up to
two, three, and four jets. In (a) we show the aver-
age total number of jets over the maximum rapidity-
separation. In (b) we show the number of jets in the
rapidity region of the two hardest jets.
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Figure 3.10: Distribution of the Higgs-boson transverse momentum
and the azimuthal angle between the two hardest jets
(top and bottom respectively). The results on the left
are with inclusive cuts, while on the right we choose
the VBF selection.
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Figure 3.11: Effect of a jet veto between (a) the most forward and
backward jets and (b) the two hardest jets. Events
with additional jets within a distance of yc to the rapid-
ity centre are discarded.

described by the HEJ approximation we observe that the matching corrections are
converging, but the corrections from four-jet matching are non-negligible. In first two
plots of fig. 3.10 we show the distribution of the Higgs-boson transverse momentum
with inclusive and with VBF cuts. While there is a notable difference between the
matching to fixed-order predictions up to two and three jets, the effect of four-jet
matching is much smaller. In all cases the matching corrections are well inside the
scale variation.

The azimuthal angle between jets is of particular interest for the extraction of the
CP -properties of the effective coupling between the Higgs boson and gluons. The
second row of fig. 3.10 shows the effects of fixed-order matching on the distribution
of the angle between the two hardest jets. Similar to the transverse momentum
distribution, the corrections from four-jet matching are uniformly moderate.

In order to achieve a greater reduction of the gluon-fusion background to weak-boson
fusion within the fiducial region, a veto on further jets can be applied. This has
the added benefit of reducing the contribution from higher jet multiplicities, which
is more challenging to predict in perturbation theory. The effectiveness of such
a cut relies on the difference in the quantum corrections to the processes of VBF
and GF [114]. Since this difference is due to the t-channel colour-octet exchange
of the GF process, we will apply a central jet veto only in the regions away from
the tagging jets, since the collinear regions have similar emissions in VBF and GF.
This is a slight improvement on the normal central jet veto cuts, and is inspired by
the Zeppenfeld variable [143]. Here, we consider a veto of events with jets within a
rapidity distance yc to the rapidity centre of either (a) most forward and backward
jets or (b) the hardest jets (see also ref. 85, 143 and section 4.3.4). In case (b), we
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only consider vetoing on further jets which are in between the two hardest jets. The
results are shown in fig. 3.11. As expected, the cross section in case (a) converges for
large yc to the exclusive prediction for the production of a Higgs boson with exactly
two jets, irrespective of the fixed-order matching to higher multiplicities. When
applying the jet veto between the hardest jets in case (b), the overall reduction in
the GF component is considerably smaller.

3.2.4 Matching and comparison to next-to-leading order

The complete reformulation of the formalism for matching and all-order summation
described in section 3.1 has allowed for matching to higher jet multiplicities in
HEJ. The impact of the four-jet matching on the studied distributions is small.
The method presented in the earlier sections has been concerned with a point-by-
point matching of the resummation to full high-multiplicity tree-level accuracy. As
extensively demonstrated in section 3.2.3, this achieves perturbatively stable results
for the shapes of distributions. In order to reduce the scale variation and benefit
from full NLO results for H + jj-production, we will now rescale the results for HEJ
within the inclusive cuts of eq. (3.2.1) to the NLO cross section for each choice of
factorisation and renormalisation scale. Thereby, full NLO accuracy is obtained for
all dijet observables, LO accuracy for trijet observables, and the impact on the shape
of distributions from four-jet contributions is accounted for at LO. This method
was applied also in ref. 85. While this approach does not change the shape of
distributions, the scale variation is reduced to the level of NLO predictions. We will
here compare these predictions to those obtained at fixed NLO using MCFM [54,84]
and Sherpa [29, 92] together with OpenLoops [53,144].

Figure 3.12 compares the predictions for the distribution of the invariant mass
between the two hardest jets. The scale variation on the HEJ results is vastly
reduced to that of fig. 3.8, as generally expected by the inclusion of the full NLO
corrections. The distribution obtained with HEJ for the invariant mass between the
two hardest (in transverse momentum) jets is still significantly steeper than that at
pure NLO, as a result of the inclusion of significantly higher jet multiplicity, and
the fact that hard central jets have a slightly smaller PDF-suppression than hard
forward jets, and therefore the two hardest jets tend to also be central. This means
that the predictions for the cross section within the VBF cuts is significantly smaller
with HEJ than for NLO, and indeed lies outside the scale-variation band obtained
at NLO.

In numbers, the cross sections obtained (at NLO) for pp→ H (→ γγ)jj for inclusive
cuts and with a central scale choice of µr=µf =HT/2 is 6.58+0.08

−0.57 fb. This is obviously
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Figure 3.12: Distribution of the invariant mass between the two
hardest jets. The HEJ result with fixed-order match-
ing up to 4 jets is shown by the black, solid line.
The MCFM NLO prediction corresponds to the blue,
dashed line. The central renormalisation and factor-
isation scale is set to HT/2, and they are varied inde-
pendently by a factor of two.

the same as that obtained with HEJ for inclusive cuts, once the cross sections are
normalised to NLO accuracy. For the VBF cuts, the NLO cross section is 0.87+0.02

−0.09 fb,
and that obtained for HEJ is 0.56+0.03

−0.07 fb. Even though the inclusive cross section
for HEJ is normalised to that obtained at NLO, a sizeable difference in the cross
section within the VBF cuts arises due to a difference in the slope of distribution
in m12 and the requirement of m12 > 400 GeV for the VBF cuts. The VBF cuts
cause a similar reduction in the cross section to 13.2% (NLO) and 8.5% (HEJ) of
the inclusive cross section respectively.

Comparing the results of figs. 3.12 and 3.13 we observe that a choice of a central
scale for the NLO calculation of µr =µf =HT/2 leads to a suspiciously small scale
variation—and indeed the central scale choice gives results close to the extremum
obtained with the variations, despite the scales being varied either side of the central
choice of µr = µf =HT/2. Such a behaviour of the scale variation often indicates
that the NLO scale variation obtained with this scale choice is underestimating the
theoretical uncertainty [145].

In fact, ref. 145 investigated the distribution in m12 for dijet production at NNLO
at the LHC, and found that at large m12 this scale choice is favoured over scales
based on jet p⊥ for perturbative convergence. The invariant mass between the two
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Figure 3.13: Distribution of the invariant mass between the two
hardest jets, for a central scale choice of m12. The
HEJ result with fixed-order matching up to 4 jets is
shown by the black, solid line. The Sherpa NLO
prediction corresponds to the blue, dashed line.

hardest jets obviously is not a stable perturbative scale choice for all bins in the
distribution, which extends to very low values of m12. With a central scale choice of
µr =µf = max(mH ,m12), the central scale choice leads to predictions in the centre
of the variation band. The scale variation bands obtained with NLO and HEJ also
overlap in each bin of the distribution. With this central scale choice, the cross
sections obtained at NLO for inclusive cuts is 6.23+1.11

−1.22 fb. For the VBF cuts, the
NLO cross section is 0.54+0.16

−0.12 fb, and that obtained for HEJ is 0.36+0.05
−0.06 fb. The VBF

cuts cause a similar reduction in the cross section to 8.7% (NLO) and 5.8% (HEJ)
of the inclusive cross section respectively.

It is worth noting that, since at Born-level m12 is given by eq. (2.1.5), a central scale
choice of µr =m12 systematically runs αs, such that αs∆yj1j2 tends to a constant
for large ∆yj1j2 . This would seem to spoil the standard argument of BFKL noting
large and systematic leading logarithmic corrections of the form (αs∆yjf jb)

k at large
∆yjf jb . At least for ∆yj1j2 sufficiently large, m12 is close to the hadronic collision
energy that only two jets exists, because hard radiation, beyond the two required
jets, is suppressed. For events with more than two jets, there is no direct correlation
between ∆yj1j2 and ∆yjf jb . The results for the scale choice of µr=µf =max(mH ,m12)
are discussed further in the next chapter. Here we just note that the apparent
convergence of the perturbative series—i.e. a comparison of the LO and NLO results
and scale variation—is not significantly different for the two scale choices. The scale
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variation around µr=µf =HT/2 is accidentally small, since the central scale choice
leads to the maximum cross section within the variation.

Figures 3.14a and 3.14b investigates the potential for using perturbative corrections
in the form of additional jet-radiation as a means of identifying the gluon-fusion
production channel. For the same event selection, the figure compares the results for
the average number of jets counting additional jets (a) between the most forward and
backward jets, and (b) in-between the two hardest jets only. The results of fig. 3.14a
are relevant for e.g. jet vetos between the most forward and most backward hard jet,
whereas fig. 3.14b is relevant if the veto is applied between just the two hardest jets
in the event. The results for HEJ are identical to those for 4-jet matching in fig. 3.9
(since just the total cross section has been adjusted to the NLO result for H +jj), but
the results are here compared to those obtained using the NLO calculation for QCD
H + jj-production. For reference we also show NLO results for the VBF channel.

Over the full range the VBF channel shows only mild increase in the number of
jets, with only a small scale uncertainty. In contrast, as observed also in previous
analyses [146], the results obtained for gluon-fusion at NLO tends towards 2.5, where
the exclusive, hard three-jet cross section is as large as the two-jet cross section. This
clearly illustrates the slow convergence of the perturbative series for gluon-fusion and
the quick convergence for VBF. The results for NLO and for HEJ begin diverging
already at small ∆yjf jb above ∆yjf jb > 1. It is worth noting that the linear growth
in the number of hard jets over ∆yjf jb has been experimentally confirmed for several
processes with colour octet exchanges in the t-channel [91,94].

Even though exactly the same events are involved, the breakdown of the convergence
is less obvious in fig. 3.14b. The number of jets in-between the two hardest is
obviously smaller, and both the results for HEJ and for NLO appear to asymptote
to a value for the average number of jets of 2.2 for NLO and 2.3 for HEJ. In both
selections, hardest or most forward and backwards, any cut on the third jet would
predominantly affect the gluon fusion-channel, while keeping most of the VBF cross
section.

Figures 3.14c and 3.14d also show the predictions for the Higgs transverse momentum
spectrum obtained at NLO and with HEJ both for inclusive and VBF-cuts. The
distributions are very similar for inclusive cuts, with a peak around 80 GeV, and the
spectrum from HEJ slightly harder. For VBF cuts, the prediction for HEJ is lower
than that for NLO, as a result of the steeper spectrum in m12 and the requirement
of m12 > 400 GeV. The two predictions for the high-p⊥ tail within the VBF cuts
coincide, but in this region the infinite top-mass approximation is certainly not
trustworthy.
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Figure 3.14: Comparison of HEJ results with fixed-order match-
ing up to 4 jets (black, solid) with NLO predictions
from MCFM for gluon fusion (blue, dashed) and weak-
boson fusion (green, dotted). The shown observables
are (a) the average jet multiplicity, (b) the number
of jets in between the two hardest jets, the distribu-
tion of the Higgs-boson transverse momentum with (c)
inclusive and (d) VBF cuts, and the distribution of
the azimuthal angle between the hardest jets with (e)
inclusive and (f) VBF cuts.
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Finally, figs. 3.14e and 3.14f compare the azimuthal angle between the two hardest
jets again for inclusive and VBF cuts respectively. In both the distributions, the
region of back-to-back jets at φ = ±π is slightly suppressed in HEJ compared to
NLO. The valley at φ = 0 for the inclusive cut is due to the jet-algorithm removing
the collinear region. The result within the VBF cuts on fig. 3.14f show that the
reduction in the cross section within the VBF cuts for HEJ compared to NLO
predominantly is in the region of back-to-back jets and jets in the same azimuthal
direction. The region at φj1j2 = 0 is not collinear within the VBF cuts, and so the
structure induced by the jet algorithm within the inclusive cuts of fig. 3.14e is not
present within the VBF cuts of fig. 3.14f.

3.3 Summary

We have presented a reformulation of the matching formalism within HEJ, which
recasts the calculation as one of merging fixed-order samples of increasing multipli-
city. The merging is performed respecting the resummation of perturbative terms
logarithmically enhanced at large ŝ/p2

⊥. While the formalism is mathematically equi-
valent to that previously used, stable results are obtained using orders of magnitude
less CPU time. This allows matching to be performed to higher multiplicity.

The new formalism has been used in a study of Higgs-boson production in association
with dijets. The impact of the higher-multiplicity merging is minimal on the shape
of distributions important for the application of VBF cuts. For a central scale choice
of µr = µf =HT/2, the VBF cuts reduce the inclusive cross section of 6.58+0.08

−0.57 fb
on the H → γγ-channel to 13% (0.87+0.02

−0.09 fb) at NLO, or 8.5% (0.56+0.03
−0.07 fb) once

both NLO and the HEJ-corrections are accounted for. The further suppression
within HEJ is due to a more steeply falling invariant mass spectrum between the two
hardest jets. The NLO scale dependence is estimated by varying the renormalisation
and factorisation scale independently by a factor of up to two. However, the scale
variation around HT/2 is artificially small, since the central scale choice achieves a
value close to the maximum within the variations. With a scale choice of µr=µf =m12

(but bounded from below by mh), the spectrum is similar at NLO and with the
further HEJ-corrections. With the scale choice, the inclusive NLO cross section for
H (→ γγ)jj-cross section is 6.23+1.11

−1.22 fb, and 0.54+0.16
−0.12 fb within the VBF cuts. The

result for HEJ within the VBF cuts is 0.36+0.05
−0.06 fb. The VBF cuts cause a similar

reduction in the cross section to 8.7% (NLO) and 5.8% (HEJ) of the inclusive cross
section respectively.

The formalism presented here has been publicly released in version 2 of HEJ [3], and
will be used as the basis for all expansions to the HEJ. As an example the heavy-
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quark mass effects presented in the next chapter have been implemented within the
new framework.



Chapter 4

Finite quark mass effects in HEJ

In this chapter we calculate the gluon-fusion initiated contribution of Higgs-boson
production in association with two jets supplementing the fixed-order results with the
leading logarithmic corrections in ŝ/p2

⊥ to all orders in the coupling and including full
quark mass effects. The necessary mass-dependent components for the resummation
are derived, allowing us to perform a first calculation of the interference of top- and
bottom-quark mass contributions in H + 2j.

Let us first review the current status of the calculation of the quark-mass effects
in Higgs-boson production. Higgs bosons are produced at the greatest rate at the
LHC through heavy quark mediated gluon fusion, where the Born-level process is
loop-induced and at order α2

s in massless QCD. Since the coupling of the Higgs
boson to a quark is proportional to the quark mass, the gluon-fusion process is
dominated by the contribution from a top-quark loop. Inclusive production is known
differentially to N3LO (to order α5

s) in the limit of infinite top-mass [147–150]. Finite
top-mass effects in the inclusive cross section can be taken into account at one order
lower (to N2LO in αs) by a formal expansion in (mh/mt). The effects on the total
cross section of the finite top-mass are found to be very small indeed [151–153]. An
explicit calculation of the loop contribution using the full propagator dependence
allows also the inclusion of the contribution from bottom-quarks, and it is found
here that the bottom-top interference effects are of the order of −5% [149].

Higgs-boson production in association with one jet obviously forms a subset of the
higher order radiative corrections to the calculation of inclusive Higgs-boson pro-
duction. As such, it is known to N2LO in αs (to order α5

s) in the limit of infinite
top-mass, and to NLO with full dependence on the heavy-quark propagator [154].1

1Reference 155 combined both calculation to get the ‘current best prediction’, by differentially
reweighting N2LO in the effective theory with the ratio of NLO at finite over NLO at infinite
top mass. This is similar to the approach we will use in section 4.3 to produce improved NLO
predictions for Higgs boson production with two jets.
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This explicit calculation of the quark loops can be used to check the earlier repor-
ted top-bottom interference effects, which were approximated using a small-mass
expansion for the amplitudes involving bottom-quarks, and the infinite mass limit
for the top-quark contribution [156]. For H + j-production at NLO, the effect of
the full dependence on the heavy-quark propagator momentum is a 9% increase in
the overall cross section over the result obtained in the infinite top-mass limit. The
approximation of the infinite top-mass limit in H + j-production is therefore missing
a much larger contribution than for inclusive Higgs-boson production. Furthermore,
there is a strong phase-space dependence: for transverse momenta of the Higgs
boson larger than 800 GeV, the effects of the full dependence on the heavy-quark
propagators leads to a suppression over the result for an infinite top-mass of more
than an order of magnitude. For processes with more than just the Higgs boson
in the final state, the limit of infinite top-mass loses not only the dependence on
the mass of the propagating quarks, but also the full kinematic dependence on the
propagators in the loop-diagrams.

Higgs-boson production in association with two jets can proceed through both of
the processes of weak-boson fusion and gluon fusion. The VBF process is directly
sensitive to the coupling between the Higgs boson and the weak bosons, whereas
the GF H + 2j-process allow for studies of possible CP -admixtures in the Higgs
sector [87, 157]. A precise study of either of these effects requires a separation
of the contribution from the two processes, which has to be guided by detailed
calculations. Luckily, these indicate that the interference between the two processes
is negligible [81–83], so the two processes can in principle be studied independently.

The VBF process is known fully differentially at N2LO [158,159] (i.e. to order α2
sα

2)
and the inclusive cross section is known in the effective structure function approach
to N3LO [160] (i.e. to order α3

sα
2). One important lesson from these calculations is

that while the higher order perturbative corrections to the inclusive cross sections are
very small indeed, within typical VBF-cuts the N2LO-corrections to the NLO-result
can be 3 to 4 times larger, and reduce the cross section by 4%, with effects of up to
7% on distributions.

The contribution through GF to H + 2j is known with full dependence on the
heavy-quark propagator just at LO [86, 161, 162], and at NLO in the infinite top-
mass limit [54, 84]. The situation is the same for H + 3j [163, 164]. In the current
chapter we present a calculation of higher-order perturbative corrections to the GF
component of H +2j-production, maintaining the full dependence on the heavy-quark
propagator in the heavy-quark mediated coupling to the Higgs boson, and including
the effects of propagating both top- and bottom-quarks. The results obtained are
exact in the limit of large dijet invariant mass, which is relevant for the VBF- and
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gluon-fusion CP-studies, and are furthermore matched to the highest-order fixed-
order perturbative result which could be produced with available tools, in this case
Sherpa [29,92] in combination with OpenLoops [53,144].2 The results rely on the
observation that the high-energy limit commutes with any limit taken on the masses
of the propagating quarks in the coupling to the Higgs boson [109].

In section 4.1 we explore the structure of the amplitudes for the different subprocesses
of pp→ H + 2j with full dependence on finite quark masses. We use these results to
construct matrix-elements within HEJ which contain all finite quark mass effects and
maintain accuracy to leading logarithm in |ŝ/̂t| at all orders in αs. This manifestly
includes the calculation of subprocesses with a high number of high-energy jets,
going far beyond what is possible at fixed-order with finite quark mass effects. In
section 4.2 we describe the different types of matching to fixed-order which we employ
in the HEJ predictions. This is quite involved owing to the variety of fixed-order
samples available. In section 4.3 we present our results, focussing separately on
the effects of higher perturbative orders and the effects of finite top-mass, before
we compare our most accurate HEJ prediction with the most accurate available
fixed-order prediction. In section 4.4 we summarise our findings.

4.1 Quark mass effects in Higgs-boson
production with HEJ

As discussed before in the high-energy limit amplitudes factorise into products of
process-dependent currents and universal emission vertices. The production of a
Higgs boson with at least two jets in HEJ has been described in the infinite quark
mass limit in ref. 98. The only difference coming from the Higgs couplings were
contained in the low multiplicity currents, without modifying the resummation.
Thus, this t-channel factorisation of the amplitude lends itself to the inclusion of
finite quark mass effects, because the diagrams and loops do not become any more
complicated than those at leading order for arbitrarily many emissions. Finite quark
mass effects in H + 2j were studied in the high-energy limit in ref. 109. In this
section, we recap some results and describe the necessary adaptation to incorporate
the results in the current-structure of HEJ. We will start our discussion with
the simplest LO configurations, before moving on to more complex arrangements.
The generalisation to all order in αs, and thus the resummation of log |ŝ/̂t| is then
equivalent to section 2.3.

2This gives pp→ H +2j−processes with full quark mass dependence. The corresponding results
for pp → H + 3j in ref. 164 could have been included directly if the implementation was readily
available or if the results were available as event files.
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pa p1

pb p2

pH

pa p1

pb p2

pH

Figure 4.1: Leading-order diagrams contributing to the process
qQ→ qHQ.

4.1.1 Finite mass dependence in qQ → qHQ

We first consider the gluon-fusion production of a Higgs boson with two jets ori-
ginating from two quarks with different flavours q and Q. At leading order, only
two diagrams contribute to this production channel for each quark flavour propagat-
ing in the loop, see fig. 4.1. As illustrated, we choose the momentum assignment
q(pa)Q(pb)→ q(p1)H (pH)Q(p2) with all momenta left-to-right.

The quark-loop insertions in the two diagrams are symmetric under charge conjuga-
tion. They can be written as a colour-diagonal vertex of the form

V µν
H (q1, q2) =

µ
q1

ν

q2
= αsm

2

πv

[
gµνT1(q1, q2)− qµ2 qν1T2(q1, q2)

]
, (4.1.1)

where m is the quark mass, and v is the Higgs vacuum expectation value. For
convenience, we list the form factors T1 and T2 in appendix B.1. The expressions are
given there for a single propagating quark flavour; in practice, we sum the contribu-
tions from a top- and a bottom-quark propagating in the loop at the amplitude level.
We therefore have contributions from both flavours and the interference between
them when we square the amplitude. The colour and helicity summed and averaged
matrix element then takes the factorised form
∣∣∣MqQ→qHQ

∣∣∣2 = 1
4(N2

C − 1)
||SmqQ→qHQ||2 ·

(
g2
sCF

1
t1

)
·
(

1
t1t2

)
·
(
g2
sCF

1
t2

)
, (4.1.2)

where the invariants t1 = q2
1, t2 = q2

2 are defined in terms of the t-channel momenta
q1 = pa − p1, q2 = p2 − pb, and SmqQ→qHQ is the current contraction

SmqQ→qHQ = jµ(p1, pa)V µν
H (q1, q2)jν(p2, pb), (4.1.3)

where jµ(po, pi) is the generic qq-current from eq. (2.3.8).

The amplitude has the same structure as in the limit of an infinite quark mass
eq. (2.3.16) [30–32]. Indeed, the only difference is in the expression for V µν

H , which
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in the limit agrees with eq. (2.3.17)

V µν
H (q1, q2) m→∞−−−→ αs

3πv (gµνq1 · q2 − qµ2 qν1 ) . (4.1.4)

The factorisation of eq. (4.1.2) into a current contraction and a product of t-channel
propagators is exactly what enables us to perform HEJ resummation. We stress that
up to this point we retain the exact expression for the amplitude without having to
resort to approximations valid in the high-energy limit.

Here we have referred to initial quarks; the treatment of initial antiquarks is com-
pletely analogous. The only qualitatively different amplitude is qq̄ → qH q̄, which
receives contributions from both t-channel gluon exchange as in fig. 4.1 and two
annihilation diagrams with s-channel gluon exchange. Both sets of diagrams are
individually gauge independent, but the annihilation diagrams are subdominant for
a large invariant mass between the two jets, so that the leading contribution to
the amplitude is the same as the pure-quark amplitude eq. (4.1.2). One may also
consider the process qq̄ → gHg, but this is not an FKL configuration and hence will
not contribute a leading power in log |ŝ/̂t| to the matrix element.

4.1.2 Finite mass dependence in gq → gHq

We already saw in section 2.3.1 for pure jets that the matrix elements for gluon-
initiated 2→ 2 processes can also be described exactly as a contraction of currents,
where the current for the equivalent quark process, i.e. j±µ (po, pi) in eq. (4.1.3), is
multiplied by a colour acceleration factor eq. (2.3.12). The t-channel factorisation
of an amplitude implies not only that each factor is independent of the momenta of
the rest of the process, but that it is also independent of the particle-content of the
rest of the process. This description of incoming gluons in inclusive dijet production
is therefore also valid in H + 2j production and we will use it in the following.

At leading order, the gq → gHq subprocess is significantly more involved than the
process with two incoming quarks. Of the 20 diagrams contributing to the LO
amplitude, 10 can be obtained from charge conjugation. The remaining diagrams
are depicted in fig. 4.2.

The amplitude with full quark-mass dependence is known for general kinematics [86,
161,162]; it does not have a t-channel factorised form. In the following subsections,
we discuss the different hierarchies which can exist between invariants in the process
and the expressions we will use to describe this process in the corresponding regions
of phase space.
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Figure 4.2: Leading-order diagrams contributing to the process
gq → gH q. Diagrams with clock-wise fermion flow in
the heavy-quark loop can be obtained via charge con-
jugation and are not shown.

Central Higgs-boson emission

Let us first discuss the case where the Higgs boson is emitted in between the two
jets, with a large rapidity separation from each jet. More concretely, we consider
the momentum assignment g(pa)q(pb)→ g(p1)H (pH )q(p2) with the hierarchy

s12 � s1H , s2H � t1, t2,m
2
H , (4.1.5)

where sij = (pi + pj)2 are invariant masses of the outgoing particles, t1 = (pa −
p1)2, t2 = (pb − p2)2. Taking the gluon to be emitted backwards, this hierarchy
implies the rapidity ordering y1 � yH � y2. The forward emission of the gluon is
of course completely analogous.

In ref. 109, it was shown that the amplitude in this limit assumes a similar factorised
form as in the pure quark case. This is also true within the HEJ formalism [98].
As an example, the colour summed and averaged square of the helicity-conserving
amplitude for a positive-helicity gluon and a negative-helicity quark can therefore
be written as
∣∣∣M

g
+
q
−→g+Hq−

∣∣∣2 = 1
N2
C − 1

||Sm
g

+
q
−→g+Hq−||

2
(
g2
sKg(p−1 , p−a ) 1

t1

)
·
(

1
t1t2

)
·
(
g2
sCF

1
t2

)
(4.1.6)
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where Kg(p−1 , p−a ) is the CAM factor from eq. (2.3.12). The current contraction

Sm
g

+
q
−→g+

Hq
− = j+

µ (p1, pa)V µν
H (q1, q2)j−ν (p2, pb) (4.1.7)

is otherwise completely equivalent to eq. (4.1.3) for qQ→ qHQ.

Similar to pure jets, the non-factorising helicity amplitudes involve a flip of the
gluon helicity and identical helicities of the incoming partons [33]. These amplitudes
are suppressed in the high-energy limit and therefore neglected here. Furthermore,
independently of the chosen gauge, the contribution from the box diagrams, figs. 4.2b
to 4.2d, is suppressed in the limit eq. (4.1.5). Thus for central Higgs-boson emission
we can always use eq. (4.1.3)—up to the CAM factor for gluons.

Peripheral Higgs-boson emission

We now consider the case where we drop the strong-ordering requirement between
the Higgs boson and one of the jets. For the case where the Higgs boson is close or
outside in rapidity of a quark, we again invoke t-channel factorisation to treat this
as in the qQ→ qHQ process. There the result with V µν

H is exact wherever the Higgs
boson is emitted and hence in this case we again use eq. (4.1.6).

Thus we are left with only the case where the Higgs boson is not strongly ordered
with respect to the rapidity of the gluon in gq → Hgq. We will still require a
separation from the quark, i.e. y1, yH � y2 or

s12, s2H � s1H , t1, t2,m
2
H . (4.1.8)

We denote such configurations as gq → Hgq, reserving the notation gq → gHq for the
central Higgs-boson emission discussed in section 4.1.2. The t-channel factorisation
of the amplitude is only guaranteed where there is a large rapidity separation between
outgoing particles, and hence in this reduced limit we should not expect to recover
a form with two t-channel poles as in eq. (4.1.6). However, as there is still a large
rapidity separation to the quark line, we expect to find a factorised form about the
pole in t2 as follows

∣∣∣Mgq→Hgq

∣∣∣2 = 1
4(N2

C − 1)
||Smgq→Hgq||2 · (α2

sg
2
sCA) ·

(
1
t2

)
·
(
g2
sCF

1
t2

)
, (4.1.9)

where the remainder of the amplitude

Smgq→Hgq = jµH (p1, pH , pa)jµ(p2, pb) (4.1.10)

has been written as an effective current jµH . This current, dependent on the reduced
set of momenta (p1, pH , pa), is derived in appendix B.2. The derivation follows closely
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the approach in ref. 33 for calculating the effective gluon current. In contrast to that
case, or indeed that of a central Higgs boson, amplitudes flipping the gluon helicity
also contribute.

4.1.3 Finite mass dependence in gg → gHg

As noted above, the t-channel factorisation which arises in the limit of large rapidity
separations implies that the building blocks corresponding to each end of the chain
is independent of the rest of the process. We can therefore describe the gg-initiated
state by taking the expressions for gq → gH q and adding the necessary change for
an incoming gluon derived from pure jets. We find for central Higgs-boson emission
from eq. (4.1.6):

∣∣∣M
g

+
g
−→g+Hg−

∣∣∣2 = 1
N2
C − 1

||Sm
g

+
q
−→g+Hq−||

2

·
(
g2
sKg(p−1 , p−a ) 1

t1

)
·
(

1
t1t2

)
·
(
g2
sKg(p+

2 , p
+
b ) 1
t2

) (4.1.11)

Sm
g

+
g
−→g+Hg− =j+

µ (p1, pa)V µν
H (q1, q2)j−ν (p2, pb). (4.1.12)

Likewise, for a Higgs boson emitted backward of both gluons where only the subset
of hierarchies applies (eq. (4.1.8)), we find from eq. (4.1.9):

∣∣∣Mgg→Hgg

∣∣∣2 = 1
4(N2

C − 1)
||Smgg→Hgg||2 · (α2

sg
2
sCA) ·

(
1
t2

)
·
(
g2
sKg(p+

2 , p
+
b ) 1
t2

)
,

(4.1.13)

Smgq→Hgq = jµH(p1, pH , pa)jµ(p2, pb). (4.1.14)

Note that the gluon closest to the Higgs boson will always have the more complicated
treatment derived in the previous subsection, i.e. it is the momentum of the gluon
closest in rapidity to the Higgs boson which will enter jµH .

4.1.4 The first set of next-to-leading logarithmic
corrections

We have now assembled the HEJ description of the scattering amplitudes for all Higgs
boson plus (exactly) two jets processes which will contribute at leading power for
Higgs-plus-dijets. At the start of this section, we identified the necessary subprocesses
as the FKL configurations of flavour and momenta. In ref. 98, the HEJ framework
was extended to also describe Born processes where the requirement of rapidity
ordering on exactly one gluon was relaxed, allowing it to be emitted outside of the
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pb p3

p2
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pb p3

p1

y1 < y2 < y3 y2 < y1 < y3

Figure 4.3: Rapidity-ordered ladder diagrams for qQ→ gqQ. The
ordering in eq. (4.1.15) (left) contains just one t-
channel gluon propagator, whereas the FKL configura-
tion (right) contains the maximum number, two.

pa p2

pb p3

p1

pH

q1

q2

Figure 4.4: For the rapidity ordering in eq. (4.1.15) where there is
only strong ordering between y2 and y3, we only find
factorisation about the t-channel pole between these
particles so the structure of the amplitude are as shown
in eq. (4.1.17).

rapidity range defined by an outgoing quark, e.g.

q(pa)Q(pb)→ g(p1)q(p2)H (pH )Q(p3) y1 < y2 � y3 . (4.1.15)

We already saw in section 2.2 that this corresponds to an unordered configuration,
which is suppressed by one power of log |ŝ/̂t|. This is formally therefore a next-to-
leading logarithmic contribution to the dijet cross section; however one can still
construct the leading logarithmic contributions to each particular subprocess. This
particular class of processes was chosen as it had been observed after matching
to leading order that they contributed significantly in regions of phase space with
large transverse momentum. Their inclusion therefore allows HEJ to reduce its
dependence on fixed-order matching [98].

From eq. (4.1.15), these subprocesses at Born-level have just one strong rapidity-
ordering between the coloured particles and one therefore constructs an effective
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qj qj qj pa p1

Figure 4.5: Examples for additional gluon emission off the heavy-
quark loop. These emissions are suppressed for large
rapidity separations. Here vertical lines represent off-
shell t-channel propagators and horizontal lines repres-
ent on-shell external particles.

current to describe the q(pa)→ g(p1)q(p2)g∗ end of the chain, denoted juno
µ (p2, p1, pa)

(see fig. 4.4). This must now carry two colour indices as it consists of terms with differ-
ent colour flow. The matrix element for the case of central Higgs-boson emission—in
which the Higgs boson is emitted between the quarks—is then given by

∣∣∣Mqf2→gqHf2

∣∣∣2 = 1
4(N2

C − 1)
||Suno

qf2→gqHf2(p1, p2, p3, pa, pb, q1, q2)||2

·
(
g4
sKuno

1
t1

)
·
(

1
t1t2

)
·
(
g2
sKf2

1
t2

)
,

(4.1.16)

Suno
qf2→gqHf2(p1, p2, p3, pa, pb, q1, q2) = 1√

CF
juno cd
µ (p2, p1, pa)V µν

H (q1, q2)jν(p3, pb)T c3b ,

(4.1.17)

where Kuno = −1/2 and we are using q1 = pa − p1 − p2, q2 = p3 − pb, ti = q2
i (as in

fig. 4.4). It is clear that the arguments of Suno
qQ→gqHQ are not independent; we have

chosen to display the implicit dependence on q1, q2 in anticipation of processes with
additional gluons, where the dependence is explicit. The expression for juno

µ (p2, p1, pa)
is given in appendix B.3.

With this we have constructed the HEJ approximations to Born-level matrix elements.
For the generalisation to arbitrary multiplicity we can follow the procedure outlined
in section 2.3. The only (potential) complication comes from the emission of an extra
gluon from the heavy quark loop in the Higgs-boson coupling (see fig. 4.5). Similar
to the discussion for central Higgs-boson emission, the box diagrams are suppressed
at large rapidity separation between the gluon and the Higgs boson. The absence
of t-channel enhancement is obvious in the limit of a large quark mass, where the
quark loop is absorbed into an effective local interaction. Thus, we can neglect these
terms; the remaining effective Lipatov vertex is then exactly that of eq. (2.3.25).
Consequently, all discussion about the virtual corrections from section 2.3.3 apply.

The final regularised, resummed expressions for the matrix element for the production
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of a Higgs boson in between partons j and j + 1 with incoming flavours f1, f2 is
then3∣∣∣MHEJ
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(4.1.18)

where ·g· stands for arbitrarily many gluon emissions.

The same formula holds for a backward (forward) Higgs-boson emission if f1 (f2) is
a quark or antiquark with j = 1 (j = n). For a peripheral emission close to a gluon,
there is an equivalent expression but the first two lines instead mirror eq. (4.1.9)
and we have one fewer t-channel pole as there is one fewer hierarchy. Explicitly, the
matrix-element-squared is given by

∣∣∣MHEJ
gf2→Hg·g·f2

∣∣∣2 = 1
4(N2

C − 1)
∥∥∥Smgf2→Hgf2

∥∥∥2
· (α2

sg
2
sCA) ·

(
1
t1

)
·
(
g2
sKf2(p+

n , p
+
b ) 1
tn

)

·
n−1∏
k=2

(
−g2

sCA
tk−1tk

V
νk
L (qk−1, qk)VLνk(qk−1, qk)

)

·
n−1∏
i=1

exp
[
ω0(qi⊥)(yi+1 − yi)

]
.

(4.1.19)

Note here that q1 = pa − p1 − pH , qi = qi−1 − pi for i = 2, . . . , n and ti = q2
i .

The regulated matrix element above is valid in the phase space of an arbitrary
number of extra real gluon emissions each with |p⊥| > κ, provided they are between
the extremal partons in rapidity. Note that the extremal partons play a special role
and are not allowed to become soft, since we do not include the necessary virtual
corrections to regulate the fundamental spinor strings. In practice we require the
extremal partons to carry a significant fraction of the extremal jet momentum to
ensure that they remain perturbative.

3Note that the factor of 1/(tjtj+1) in the second line was missing in ref. 98.
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4.2 Matching to fixed order

This section describes the matching of results within HEJ both to the full leading-
order finite quark-mass matrix elements and to the NLO cross sections obtained
for infinite top-mass. We generate our event weights using the procedure outlined
in chapter 3, where we begin from fixed-order samples and supplement these with
resummation. The resummation step only applies to the particle and momentum con-
figurations discussed in section 4.1, namely FKL configurations or pseudo-FKL with
one unordered gluon. If a given fixed-order event is not one of these configurations,
it enters our final event sample with its weight unaltered.

We observed in section 3.2 that a central scale choice of µr = µf =HT/2 leads to
distributions in rapidity and dijet invariant mass with values close to the upper edge
of the scale variation band obtained when µr and µf are varied independently by a
factor of two around this central scale choice, keeping their ratio between 0.5 and
2. The scale variance obtained with a central scale of µr =µf =HT/2 is therefore
pathologically small for distributions at large dijet invariant mass or large rapidity
separations, which are relevant for the VBF studies. While the scale variations
obtained at NLO with a central scale choice of µr =µf = max(mH ,m12) are larger,
they are also more reasonable as an indication of the uncertainty due to higher order
corrections within the VBF-cuts. We therefore use µr=µf =max(mH ,m12) as central
scale in this chapter. We note that, with this choice, the p⊥-based observables such
as pH⊥ show the same pathological scale variance for large values that the invariant
mass-based observable develops for renormalisation and factorisation scales based
on the transverse momenta.

Section 4.2.1 describes the fixed-order samples available which we use as our starting
point and the point-by-point matching applied to the resummation events. Sec-
tion 4.2.2 then describes the matching performed for all events at the level of the
total cross section.

4.2.1 Matching of exclusive amplitudes

HEJ allows the perturbative series for each n-jet phase space point to be matched
to fixed order. This obviously is possible only if amplitudes for the n-jet phase space
point are readily available. In this study, the fixed-order calculations are performed
using Sherpa interfaced with OpenLoops for the evaluation of the pp → H + 2j-
processes with full quark-mass dependence. This fixed-order setup includes just the
effects from the top-quark, and not also those of the loops of bottom-quarks. The
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effect of both top- and bottom-mass is included in the resummation, and will be
discussed later.

Additionally, the H + 3j-processes are unavailable with the full quark-mass depend-
ence even at leading order, and even using the infinite top-mass limit, only the
pp→ H + 2j-process is available at NLO (and therefore pp→ H + 3j at tree-level).

The limitations in the fixed-order results mean that the matching within HEJ has
to use a large number of components than in chapter 3. We will describe them in
the following sections. No point-by-point matching is performed for events with six
or more jets.4 For such multiplicities the fixed-order results are expensive to com-
pute, while typically only contributing less than a percent for all shown observables.
Instead, similar to the previous chapter, we use HEJ FOG to approximate these LO
results.

On top of the matching of exclusive events described in the following, the final
predictions for HEJ will be scaled with the ratio of the inclusive cross section for
pp→ H + 2j calculated at infinite top-mass for NLO and HEJ.

The described procedure obtains top- and bottom-mass dependence through the
all-order results, matching to the full top-mass results for pp → H + 2j, and to
pp→ H + 3j, H + 4j and H + 5j in the limit of infinite top-mass.

Two-jet matching with finite quark mass

The exclusive two-jet events are matched to full leading order, with finite quark mass
effects. However, as our fixed-order setup allows for just the top-quark diagrams,
technically the matching is performed by multiplying the all-order results containing
both top- and bottom-mass effects with the ratio of the square of the full Born-level
matrix element evaluated with just the top-quark and the corresponding approx-
imation within HEJ (using just the propagating top-quark, with no bottom-quark
effects). The final event weights are therefore proportional to

|Mmt,mb
HEJ |

2 |M
mt
LO|

2

|Mmt
HEJ,LO|

2 , (4.2.1)

where |MLO|2 is the leading-order matrix element, |MHEJ|2 the all-order HEJ matrix
element, and |MHEJ,LO|2 its truncation to leading order. The superscript indicates
the quark masses that are taken into account.

4We therefore match one more jet compared to section 3.2.3.
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Three-, four- and five-jet matching with infinite quark mass

With the method of chapter 3, the resummation could be constructed starting from
event files from the calculation of Born-level Higgs-boson production in association
with three jets including full momentum and mass dependence reported in ref. 164.
However, since these are not available, the three-, four- and five-jet events will be
matched in the infinite top-mass limit, which can be readily evaluated using Sherpa
and Comix [138]. Technically then, the reweighting of the event is performed with
the ratio of the Born-level evaluation of the HEJ-approximation in the infinite top-
mass and the full Born-level expression in the same limit, while the resummation
is performed using the full expressions developed in section 4.1, including top- and
bottom-mass. The contribution from the matrix elements to the event weights is
then

|Mmt,mb
HEJ |

2 |Meff
LO|2

|Meff
HEJ,LO|2

, (4.2.2)

where the “eff” superscript refers to the effective theory of an infinite top-quark
mass. In this approximation, the interaction between the Higgs boson and gluons is
described by an operator of dimension five, so that matrix elements exhibit unphysical
scaling in the limit of large momenta. Since we choose not to include finite top-mass
corrections in the truncated HEJ matrix element this effect cancels out in the ratio
in eq. (4.2.2).

The emission of quarks and gluons should resolve the dependence on the loop mo-
menta only for large energies of the emission with respect to mt. Since the bulk
of each jet multiplicity consists of jet transverse momenta close to the defined jet
threshold, the quark-mass effects should have only a small effect on the inclusive
cross section. The quality of the approximation can be checked by applying a similar
strategy of reweighting in pp→ H + 2j, where the full expression is known and can
be used as a benchmark.

In fig. 4.6 we show the results for the different approximations of pp → H + 2j at
Born-level. When assuming mt →∞ the simulation undershoots the full finite top-
mass calculation by 5% for transverse momenta of the Higgs boson up to pH⊥ ≈ mt.
At even higher values it diverges from the cross section with full top mass dependence.
While the corrections are relatively small and uniform for the differential cross section
with respect to the azimuthal angle between the two jets and the rapidity of the
Higgs boson, there are systematically increasing corrections to the distribution with
respect to the invariant mass between the two jets, growing to more than 10% for
m12 > 700 GeV. The underestimation of the peak, and the overestimation in the tail
cancel, such that the inclusive cross section shows good agreement between finite
and infinite top-mass, as observed in ref. 109, 164. However, this cancellation is
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Figure 4.6: In these plots we check the quality of reweighting us-
ing a ratio of matrix elements with infinite quark mass,
using pp → H + 2j. The black, solid line shows the
LO calculation with full top-mass dependence and the
green, dot-dashed line shows LO in the effective theory.
The orange, dashed line shows the HEJ result truncated
at Born-level with full top-mass dependence, reweighted
with the ratio of LO to HEJ matrix elements in the in-
finite top-mass limit (see eq. (4.2.2)). The deviation
between the orange and black lines arises from the in-
finite top-mass limit in the reweighting factor.
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accidental and will depend on the transverse cuts used.

We further compare the pure LO calculations to an approximation where a finite
top-mass comes only from the HEJ Born-level matrix element. For this, we multiply
the infinite top mass LO matrix element with the ratio of Born-level HEJ at finite
over infinite top mass. This is similar to the procedure eq. (4.2.2) which we use for
3, 4 and 5 jets. If HEJ would catch all finite top-mass effects for all processes, the
solid (black) and dashed (orange) lines in fig. 4.6 would be identical; on the other
hand if HEJ would not describe any top-mass effect the dashed (orange) and the
dot-dashed (green) line would agree. Thus the difference gives a measure of the
quality of the approximation. We see that for rapidity-distributions, exemplified
by that of the Higgs boson, the level of accuracy obtained is roughly 5%. The
accuracy is better than 12% in the distribution of the azimuthal angle between the
two jets, and similar for the invariant mass between the jets, although here, and for
the transverse mass-distribution of the Higgs boson, the corrections increase with
increasing scale.

We emphasise that the seemingly good agreement in the distribution of yH between
the results using the infinite top-mass and full top-mass dependence is completely
accidental. The normalisation only agrees since yH effectively integrates over pH⊥.
The results presented with the dashed (orange) line and obtained using eq. (4.2.2)
are more accurate.

We conclude that by using finite quark-masses in the simplified HEJ amplitudes,
and applying matching in the infinite top-mass limits we can expect the result with
finite top- (and bottom-)quark mass to be within 20% for all distributions. This is
sufficiently accurate for 3, 4 and 5 jets.

4.2.2 Matching of LO to NLO in the infinite quark mass
limit

The resummation and matching procedure described so far will be compared to
the best possible fixed-order result we can obtain. This consists of Born-level for
full top-mass, but not including the small effect of the bottom-mass, reweighted
bin-by-bin by the differential NLO K-factor calculated for infinite top mass. The
LO and NLO calculations for the distribution of (left) the rapidity separation of the
hardest two jets and (right) the maximum rapidity-difference between any two hard
jets, ∆yfb in pp→ H + 2j with infinite top-mass are shown in fig. 4.7.

The NLO K-factor is particularly interesting: it has a linear growth in both cases
and is large at large ∆y. Where it is plotted as function of ∆yfb, it goes to 1 for



4.2. Matching to fixed order 105
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Figure 4.7: The distribution of the rapidity separation between the
hardest jets (left) and the most forward and backward
jets (right) of Higgs-plus-dijet production for LO (green,
dot-dashed) and NLO (blue, dashed) both in the infinite
top-mass limit. The bottom panel shows the NLO K-
factor in each case. The calculations where done with
a central scale µr=µf =max(mH ,m12).

∆yfb = 0. This represents a region of phase space dominated by exclusive 2-jet events.
For the rapidity separation of the hardest two jets the K-factor reaches a factor of 3
for rapidity differences of ∆y12 = 8, and for the most forward/backward jets reaches
a factor of 6 at ∆yfb = 8. This obviously brings into question the validity of NLO-
calculations at such rapidity-differences. This source of the apparent perturbative
instability in the fixed-order result is treated systematically within HEJ.

It is worth mentioning here that in the MRK-limit the all-order HEJ-resummation
for pp → H + 2j and pp → H + 3j will contain the same effect from the virtual
corrections (and soft emissions) of a suppressing factor exp(ω(k2

⊥)∆yfb) ∝ (ŝ/p2
⊥)ω(k2

⊥)

with ω(k2
⊥) < 0. However, when the perturbative series is terminated at NLO-

accuracy, the effect of the expansion of the exponential suppression is included
only in the events with Born-level kinematics. The suppression is missing at NLO
in the corrections from real emissions because of the fixed-order termination of
the perturbative series. At large rapidity-spans ∆yfb, this will inflate the NLO
predictions compared to the all-order result of HEJ, irrespectively of the choice of
renormalisation and factorisation scale.

The balance between a suppression for H + 2j at NLO at large ∆y of the two-parton
contribution and enhancement of the three-parton contribution discussed above is
obviously influenced by the value of αs and therefore the scale choices. Indeed, the
effect of choosing instead a central scale choice of µr = µf = HT/2 is illustrated
in fig. 4.8. As seen in the right plot, the K-factor tends to unity for ∆yfb → 0,
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Figure 4.8: The distribution of the rapidity separation between the

hardest jets (left) and the most forward and backward
jets (right) of Higgs-plus-dijet production. Setup is the
same as fig. 4.7 but with µr=µf =HT/2.

rises to 1.5 at ∆yfb = 4, stabilises and then starts decreasing at ∆yfb ∼ 7. As a
function of ∆y12, the K-factor starts at 1.3 for ∆y12 = 0, and then decreases to
0.7 at ∆y12 = 8. The smaller K-factors observed for the central scale choice of
µr =µf =HT/2 may seem more appealing than the behaviour observed in fig. 4.7;
however, the variation obtained around this central scale will certainly underestimate
the uncertainty from uncalculated higher orders, since the central scale choice leads
to a result close to the edge of the results obtained by the variation. Furthermore,
the scale variation band for NLO in fig. 4.8 (left) increases with ∆y12, reaching
−70% in the last bin, above ∆y12 > 7. This indicates an instability of the NLO
calculations for µr=µf =HT/2 at large rapidity differences. All the results presented
in the following with µr=µf =max(mH ,m12) are also presented in appendix C for
µr=µf =HT/2. Just as for fixed-order predictions, other processes like W with jets
could be used in order to verify which of the scale choices obtains the best description
of data.

4.3 Results for finite quark masses and all-order
resummation

This section will first present results for a separate investigation of the higher-order
effects included with HEJ compared to the fixed-order approaches. As mentioned
before, we employ Sherpa in combination with OpenLoops to obtain the fixed-
order predictions. To evaluate the finite quark-mass corrections within HEJ, we
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make use of QCDLoop [165]. The input parameters and cuts are (almost) identical
to the ones described in section 3.2.1. In particular, we use the cuts from eq. (3.2.1)
for the inclusive cross section, and eq. (3.2.2) as the VBF selection. Unlike the
previous chapter, we choose a central scale of µr = µf = max(mH ,m12), without
special treatment of the Higgs coupling; all figures in this section are reproduced in
appendix C for the central scale of µr=µf =HT/2.

A discussion of the values chosen for the quark masses is in order. In the gluon-fusion
production of a Higgs boson together with light-flavour jets the heavy quarks only
appear in internal loops and are off-shell. We therefore do not use on-shell masses,
but instead prefer the MS mass-scheme. The scale µm associated with the MS mass
is a priori independent of the renormalisation scale used for the running coupling. It
should be set to a scale characteristic for the heavy-quark loop.

For the bottom-quark, the mass is negligible compared to all other scales in the loop.
Since the observables considered in this work depend only mildly on the bottom-
quark mass, the exact scale choice has little impact on the prediction. To be definite,
we use µmb = mH and mb(mH) = 2.8 GeV, which can be obtained from input values
of mb(mb) = 4.18 GeV [57], αs(mZ) = 0.118 via renormalisation group evolution at
two loops. The effect of higher orders in the evolution is negligible.

The effect of the top-quark mass is much more important. While there are ongoing
efforts [166–171] to relate the very precise values reported by the LHC and Tevatron
experiments [172–174] to a well-defined short-distance scheme, the top-quark MS
mass is not known very precisely at the moment. For this project, the values chosen
are µmt = mH with mt(mH) = 163 GeV, in line with direct determinations of the
MS mass [175, 176] and compatible with a pole mass of 173 GeV [177] within the
uncertainties quoted in ref. 176.

Since the fixed-order setup can take into account the effects only of the top-quark, all
simulations in section 4.3.1 are for finite top-mass only (no effects from the bottom-
quark included). Section 4.3.2 investigates the effects on the HEJ resummation with
finite top and bottom mass compared to infinite top mass. Finally, section 4.3.3
compares the most precise predictions from HEJ, including both top- and bottom-
mass effects, and the matching to fixed order discussed in section 4.2, to that of fixed
order with finite top-mass, scaled to NLO accuracy, as described in section 4.2.2.

4.3.1 Effects of higher perturbative orders

Figure 4.9 compares the results obtained with finite top-mass at LO, the LO predic-
tions rescaled to NLO accuracy in the limit of infinite top-mass, and with all-order
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Figure 4.9: Differential cross section for pH⊥ (a), m12 (b), ∆y12 (c)
and ∆φ12 (d) obtained from HEJ (orange, solid) and
LO (green, dot-dashed) both with full top-mass. Addi-
tionally in blue, dashed is the result of scaling LO full
mt bin-by-bin with the NLO K-factor in the mt →∞
limit. The K-factors and their impact within the VBF
cuts (applied in (d)) are discussed in the text.
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Distribution LO(mt) LO(mt) ∗KNLO(mt →∞) HEJ(mt)
Inclusive 3.8+2.1

−1.3 fb 6.2+1.1
−1.2 fb 5.7+1.0

−1.1 fb
pH⊥ 6.3+1.2

−1.3 fb
m12 6.2+1.0

−1.1 fb
y12 6.2+1.1

−1.2 fb

VBF 0.24+0.12
−0.08 fb 0.53+0.15

−0.13 fb 0.23+0.02
−0.03 fb

VBF, φ12 0.53+0.13
−0.10 fb

Table 4.1: Cross sections obtained at LO, LO scaled with bin-by-
bin K-factor for various distributions, and the HEJ with
the inclusive cross sections scaled to NLO

HEJ (using just finite top-mass but no contribution from the bottom-quark). Com-
paring the cross section over pH⊥ in fig. 4.9a for LO and the rescaling, using the
bin-by-bin K-factor calculated in the limit of infinite top-mass, one sees that the
NLO K-factor (the ratio between the lines in blue and in green, indicated by the
blue band in the lower plots) varies locally between 0.8 and 2 within ranges of the
distributions checked. The NLO K-factor is decreasing for increasing transverse
momentum pH⊥, crossing unity at pH⊥ = 340 GeV.

The NLO K-factors for the distributions in the invariant mass between the two
hardest jets m12 (fig. 4.9b) and the rapidity-difference between the two hardest jets
(fig. 4.9c) have the same systematic behaviour of increasing K-factor as observed for
∆yfb in fig. 4.7 and discussed there. The NLO K-factor for m12 increases from 1.5 to
2.2 at m12 = 1 TeV, and for ∆y12 the NLO K-factor increases in a straight line from
1.5 to 3 at ∆y12 = 8. This obviously then induces a large K-factor when a large
rapidity-separation and invariant mass is required in the VBF-cuts, as illustrated for
φ12 within these plots seen in fig. 4.9d. It can also be seen in fig. 4.9c that the ratio
between HEJ and LO decreases linearly as a function of ∆y12; this is an illustration
of the logarithmic suppression of events with exactly two jets where ∆y = log |ŝ/̂t|
for large ŝ.

The fixed-order matching bin-by-bin—as opposed to phase-space point by phase-
space point employed with HEJ—does not ensure the same value for the integrated
cross section. The effect of the matching will depend on the binning width etc.
The size of the variation in the cross sections from the various distributions is one
measure of the residual room for improvement in the matching.

The integrated cross sections obtained from various distributions using the method
of differential K-factors are listed in table 4.1. There is found to be very little
variation in the integrated cross section of just 0.1 fb, well within the scale variation
on the NLO-rescaled cross section of 6.2+1.1

−1.2 fb, and an overall K-factor of 1.6. After
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applying VBF-cuts, the overall NLO K-factor increases to 2.2, and the NLO-rescaled
cross section is found to be 0.53+0.15

−0.13 fb.

Table 4.1 also contains the results for HEJ, which were multiplied by the ratio
between HEJ at all orders and NLO both with infinite top-quark mass. Thus the
matching is different to that applied at lowest order and normalises to the NLO
cross section in the infinite top-quark mass limit. This rescaling is similar to the
one used in section 3.2.4. The inclusive cross section for HEJ matched as described
is found to be 5.7+1.0

−1.1 fb, slightly lower than the LO prediction for finite top-quark
mass multiplied by the NLO K-factor from the infinite top-quark mass.

While the inclusive cross sections are similar at NLO and in HEJ, the distributions
differ significantly. As is evident from fig. 4.9, the differential distribution from
HEJ is harder in pH⊥ compared to the scaled LO-result, while the spectrum is
decreasing significantly faster for both m12 and ∆y12. This means that even though
the total cross section for HEJ is matched to NLO (in the infinite top-mass limit)
with a scale-dependent K-factor of 1.4+0.4

−0.4, within the VBF-cuts the cross section of
0.23+0.02

−0.03 fb happens to be closer, but with a reduced scale dependence, to the LO
cross section of 0.24+0.12

−0.08. It is just a numerical coincidence of the cuts applied that
the cross sections agree. As seen already in the discussion of the NLO corrections,
the perturbative corrections are large in the VBF region. There is no reason to
believe the perturbative series has converged already at NLO.

4.3.2 Effects of the finite top mass

The impact of the full top-quark mass-dependence on the Born-level calculation for
pp→ H + 2j was already investigated in fig. 4.6. While the effect on the integrated
cross section is very small, the effect on the differential distribution in pH⊥ is enorm-
ous. The infinite top-mass approximation undershoots the full-top-mass result by
5% for pH⊥ up to 200 GeV and then increasingly overshoots for increasing transverse
momentum, reaching 40% discrepancy already at pH⊥ = 340 GeV. Similarly, for the
invariant mass between the two hardest jets, the distribution for the infinite top-mass
starts off undershooting the full dependency by 5%, crossing at m12 = 150 GeV and
overshooting by 16% at m12 = 1 TeV. The error due to the infinite top-quark mass
approximation is very small and uniform in the rapidity distribution of the Higgs
boson.

We now turn our attention to the impact of both the finite top-quark and bottom-
quark mass on HEJ. First, we list in table 4.2 the cross section with inclusive and
the VBF cuts for infinite top-quark mass and finite top-quark mass for fixed order



4.3. Results for finite quark masses and all-order resummation 111

Fixed Order HEJ
Inclusive H + 2j VBF cuts Inclusive H + 2j VBF cuts

mt →∞ 6.2+1.1
−1.2 fb 0.54+0.16

−0.12 fb 6.2+1.1
−1.2 fb 0.26+0.02

−0.04 fb
mt = 163 GeV 6.2+1.1

−1.2 fb 0.53+0.15
−0.13 fb 5.7+1.0

−1.1 fb 0.23+0.02
−0.03 fb

mt = 163 GeV - - 5.7+1.0
−1.1 fb 0.23+0.02

−0.03 fb
mb = 2.8 GeV

Table 4.2: Cross sections obtained in fixed-order perturbation the-
ory (either full NLO using infinite top-quark mass or LO
scaled bin-by-bin with the K-factor obtained in the in-
finite top-quark mass limit) and in HEJ for pp→ H + 2j
with inclusive and VBF-cuts. See text for further com-
ments.

(LO scaled with NLO in the limit of infinite top-quark mass). For HEJ we also list
the results using both finite masses for the top and bottom quark.

The finite top-quark mass has a much larger impact on HEJ than at fixed order,
which might at first seem surprising, since the HEJ results are matched to fixed
order. The larger impact of the top-mass effects are therefore not a consequence of
the approximations in HEJ. Instead, as is evident in the distributions of fig. 4.9,
the higher-order corrections of HEJ emphasise the distribution at larger pH⊥, where
the corrections from the finite quark-mass are large. Therefore, the top-quark mass
corrections in HEJ amount to a 9% reduction within the inclusive and 11% within the
VBF-cuts. We do not observe any effect of the non-zero bottom-mass beyond 1% for
any of the observables studied. The impact obviously increases, if the bottom-mass
is chosen larger [164].

Figure 4.10 compares the results obtained with HEJ using the three different de-
scriptions of quark masses, namely infinite top-quark mass, finite mt but mb = 0,
and both mt and mb finite. Evidently, the effect of the finite mb is negligibly small
and uniform in all the distributions. As seen already in figs. 4.6 and 4.9, the infinite
top mass approximation fails for transverse momenta significantly larger than the
top-mass—illustrated here by a plot of the distribution in the transverse momentum
of the Higgs boson in fig. 4.10a. Similarly, using an infinite top-mass overshoots
the cross section with finite top-mass by 20% at an invariant mass between the
two hardest jets of 400 GeV, increasing to 40% at 1 TeV. This is relevant for the
description of the contribution from the QCD process within the VBF-studies of
pp→ H + 2j. The corrections from finite quark masses to the distributions in ∆y12

(fig. 4.10c) or ∆φ12 with additional VBF cuts (fig. 4.10d) reach just 10%.
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Figure 4.10: Differential cross section of the all-order matched pre-
diction from HEJ with three descriptions of the quark
masses: infinite top-quark mass (red, dotted), finitemt

(orange, dot-dashed), and finitemt andmb (black/grey,
solid). See text for further details.
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Figure 4.11: The results obtained with HEJ compared with fixed
order for various key distributions. See text for further
details.

4.3.3 Most accurate results

In this section we compare the most accurate predictions obtained using the methods
described in this study in HEJ to those obtained at fixed order. We start by
comparing the observables already investigated previously; as such, the red and
grey bands in fig. 4.11 are identical to those on fig. 4.10, but are here compared to
Born-level with finite top-quark mass, rescaled bin-by-bin with the NLO K-factor
obtained using infinite top-quark mass. We see in fig. 4.11a that the fixed-order
result is significantly softer in the transverse momentum of the Higgs boson than
that obtained with HEJ. We have already discussed how this leads to a larger impact
of the finite quark masses within HEJ than at fixed order.

Figure 4.11b illustrates that the distribution in the invariant mass between the two
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hardest jets is increasingly suppressed for increasing m12 in HEJ compared to fixed
order. While the cross sections are similar for small m12, the ratio of fixed order
over HEJ reaches 1.5 at m12 ≈ 500 GeV. Similarly, as illustrated in fig. 4.11c the
results of HEJ are largely suppressed compared to NLO at large ∆y12. The ratio
of fixed order to HEJ found here increases linearly finally reaching 5 at ∆y12 = 8.
As discussed around fig. 4.7, this is due to the absence of a logarithmic suppression
of the 3-jet component in the NLO prediction. Although the HEJ cross section is
matched to the NLO value, this does not change the differences in the shapes of the
distributions and the large K-factor at large m12 therefore persists.

Figure 4.11d shows the distribution with respect to the azimuthal angle between the
two hardest jets, measured relative to the positive rapidity direction, thus exploring
the full interval from −π to π. VBF cuts have again been applied in addition to the
general cuts. These require a significant invariant mass and rapidity separation of
the hardest two jets and hence the suppression in figs. 4.11b and 4.11c translates
into a large difference (around a factor of 2) in the cross section between the HEJ
and fixed order predictions (as also seen earlier in table 4.2). The distinctive shape
which arises as a consequence of the CP structure of the ggH vertex [87,157,178] is
seen in all the predictions.

We present in figs. C.1 to C.3 the results for the alternative central scale choice of
HT/2. The main conclusions of the plots are unchanged; the impact of the higher-
order corrections in HEJ lead to a harder distribution in pH⊥, which enhances the
finite quark mass and loop propagator effects. This in turn leads to a suppression of
the prediction at large m12, and the predicted impact of a VBF cut is more severe
in the all-order calculations of HEJ than that seen in fixed-order predictions.

4.3.4 Central jet veto

To end this section we present results for an alternative to a traditional jet veto [87,
114, 143, 157, 178]. We begin by defining two tagging jets t1 and t2: firstly as the
hardest two jets in the event t1,2 = j1,2 and secondly as the most forward/backward
jets, t1,2 = jf,b. We may then construct y0 = (yt1 + yt2)/2 for each event. The
event will then be vetoed if it contains a further jet with transverse momentum
above 30 GeV in-between the two tagging jets which satisfies |yj − y0| < yc [85].
This procedure applies more focused region in rapidity than a traditional jet veto,
which vetos all jets in the gap. Thus the same level of suppression can be obtained
with a higher—and therefore perturbatively safer—transverse momentum cut. As
discussed in ref. 85 this type of jet veto has, for yc up to 1.5, very little impact on the
VBF process itself, and is an efficient tool in distinguishing the contribution from
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Figure 4.12: Ratio of gluon to weak-boson fusion production for
different central jet veto cuts yc. For red and blue the
cut is applied to the hardest, and for yellow and green
to the most forward and backwards jets. From ref. 85.

the two processes for pp→ H + 2j (see fig. 4.125). This is a direct consequence of
the average number of jets over ∆y we discussed before (cf. figs. 3.14a and 3.14b);
extra emissions in VBF are not enhanced with increasing rapidity separation, and
therefore mostly produced close in rapidity to the Born-level jets.

In fig. 4.13a, we choose the two hardest jets as the tagging jets, while in fig. 4.13b
the tagging jets are the most forward/backward jets. In both cases, the cross section
had reached a plateau by about yc = 2. The difference between the two choices
is relatively small but the cross section for a given value of yc is lower for the
forward/backward choice for the tagging jets than for the hardest jet choice. We saw
that the VBF cuts themselves have a relatively larger impact on the cross sections of
HEJ than fixed order, because of the faster reduction in the cross section with m12

and ∆y12. Figure 4.13 shows that a further cut on jet activity will have a yet larger
effect on HEJ compared to fixed order. This is all expected since the fixed-order
results fail to reproduce the rise in jet activity with increasing rapidity separation,
which is observed in both data and HEJ [94,95].

For both selections, the dependence of the finite top-mass on the yc cut is mild. The
main difference comes from the difference cross section after VBF cuts. This is not
surprising since the radiation pattern of the extra emission is mostly independent of

5The scale choose in ref. 85, and consequently also fig. 4.12, was µr=µf =HT /2. Thus the cross
sections in figs. 4.12 and 4.13 are different.
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Figure 4.13: Cross section from HEJ and at NLO as a function of
a jet veto, yc, defined in the text. In (a) the tagging
jets are the two hardest jets; in (b) the tagging jets
are the most forward/backward jets.

the top loop—which is exactly why an inclusion of massive quark-loops in HEJ is
possible for any multiplicity.

4.4 Summary

We have calculated the gluon-fusion contribution to H + 2j including both

• leading logarithmic corrections in ŝ/p2
⊥ to all orders in αs, and

• full dependence on top- and bottom-masses, including the loop-propagator
kinematic effects absent in the mt →∞ limit.

The components necessary for implementing the full quark-mass dependence within
the all-order resummation scheme of High Energy Jets were calculated, such that
both the quark mass and the systematic logarithmic corrections within the VBF
cuts could be investigated. This goes far beyond the current state-of-the-art fixed
order predictions. The results thus obtained have been compared to the fixed-order
full top-mass-dependent prediction at Born-level, but rescaled bin-by-bin with the
NLO K-factor obtained in the limit of mt →∞.

While at fixed order the cross section with finite mt differ very little from those
obtained for mt →∞, we find a much larger reduction of 9% on the inclusive cross
section in HEJ; this is because the transverse momentum of the Higgs boson is found
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to be harder with HEJ than at LO, and that the finite mass corrections are larger
at large transverse scales. For the first time, our calculation allows the computation
of the interference between the top- and bottom-quark contributions beyond leading
order in H + 2j. We find that the interference is extremely small for the running
values of mb(mH) and mt(mH), less than a percent for all observables.

Further, for a scale choice of µr =µf = max(mH ,m12) the NLO K-factor increases
systematically for bothm12, ∆y12 and most dramatically for ∆yfb (see fig. 4.7). With
a scale choice of µr = µf =HT/2 however, the K-factor decreases with increasing
m12 or ∆y12. The balance between the large negative virtual corrections and the
positive real corrections are clearly scale dependent. The large corrections illustrate
a serious perturbative instability of the fixed-order expansion within the VBF-cuts.
This instability is specifically addressed by HEJ.

At large ∆y12 and m12, the all-order predictions from HEJ are systematically sup-
pressed compared to fixed order. The discussion of scale choice is independent of the
discussion of the behaviour at large m12 and so is the conclusion that a resummation
of the leading terms at large m12 leads to a reduction of the cross section within the
VBF cuts. Our results show that the gluon-fusion contamination in VBF studies is
less severe than the fixed-order estimate would imply. The finite-mass corrections
to HEJ within the VBF-cuts lead to a further 11% suppression compared to the
assumption of infinite top-mass.





Chapter 5

Conclusion

In this thesis we have shown how high energy logarithms are crucial to model accur-
ately collisions at the LHC. We focused at Higgs boson production together with
multiple jets, where the inclusion of cuts to suppress the QCD channel from gluon
fusion lead to an enhanced sensitivity to logarithms log |ŝ/̂t|. We resummed these
high energy logarithms in gluon fusion within the framework of HEJ. To increase the
accuracy of the result we developed a new matching method to combine HEJ with
LO calculations. The new merging works by starting with a fixed order phase space
point and adding multiple resummation events. Compared to the previous merging,
we therefore need less fixed-order events to reach the same statistical uncertainty.
The expensive generation of fixed-order events is factored out into (standard) Monte
Carlo generators that specialise in this task, further decreases the computational
costs. With the new setup we have been able to match LO and HEJ for up to Higgs
boson plus five jets. In principle merging at even higher multiplicity is possible,
but gains in the accuracy are marginal even for sensitive observables, while the
computational cost would increase significantly.

To further improve the predictions for Higgs plus dijets, we included finite quark-
masses. In HEJ this required the addition of new currents for low multiplicity matrix
elements, without affecting the implementation of the resummation per se. The finite
top mass was shown to be particularly important for large transverse momenta of
the Higgs boson. Since HEJ creates harder Higgs bosons compared to fixed order,
the difference between finite and infinite quark-mass are more pronounced in the
results produced by HEJ. In particular LO showed an accidental cancellation in the
total cross section, where the peak of the pH⊥ distribution was undershot and the
tail overestimated in the infinite top mass approximation. In HEJ we observed a
9 % and 11 % decrease in the inclusive and VBF selection cross section respectively.

The code used to generate all predictions in this thesis has been publicly released as
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version 2 of HEJ (see ref. 4, 5). More processes, like W and Z boson with jets, are
in development, and will be made available in the next minor release. Additionally
HEJ 2 offers a much more flexible code base, which will utilised further in the future,
e.g. through an reimplementation of the HEJ with Pythia merging [99] for arbitrary
process. The new merging algorithm should also be generalisable for merging HEJ
with NLO predictions, which would improve the perturbative stability and reduce
the scale variations.



Appendix A

Spinor-helicity formalism

Calculating amplitudes in QCD can become quite involved, with many different
terms. The spinor-helicity formalism can help to organise such calculations more
efficiently [39, 179]. We start by separating the amplitudes into a colour flow and
a colour-stripped amplitude. As the name suggests, the colour flow gives the colour
exchange in the colour space. The colour-stripped amplitude contains all kinematic
effects, which can be expressed through the spinor-helicity formalism. Each (Dirac)
spinor gets spit according to its helicity into a left- and right-handed (Weyl) spinor
respectively

|i〉 = u+(pi), |i] = u−(pi), (A.1.1)

〈i| = u−
†(pi)γ0, [i| = u+†(pi)γ0, (A.1.2)

where pi is the momentum of particle i. Similarly gluon i can be expressed as

ε+µ = 1√
2
〈r|µ|i]
〈r i〉

⇔ /ε+ =
√

2 |i] 〈r|+ |r〉 [i|
〈r i〉

, (A.1.3)

ε−µ = 1√
2

[r|µ|i〉
[r i] = ε+µ

∗ ⇔ /ε− =
√

2 |i〉 [r|+ |r] 〈i|[r i] , (A.1.4)

with [i|µ|j〉 = [i| γµ |j〉. The polarisation of each gluon is fixed by an arbitrary
reference momentum r satisfying r · pi 6= 0. The spinor-helicity formalism removes
redundancies in calculations, since each contractions can be related back to Mandel-
stam variables1

sij = 2 pi · pj = 〈i j〉 [j i] . (A.1.5)

1We assume all particles to be massless, i.e. p2
i = 0 ∀i.
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The product of two spinors with different helicity is antisymmetric

〈i j〉 = −〈j i〉 , (A.1.6)
[i j] = − [j i] , (A.1.7)

For real momenta with the same signed energies we further find [i j] = 〈j i〉∗. Con-
tracting only one helicity gives zero

〈i j] = [i j〉 = 0. (A.1.8)

We can generalise this by adding extra γ matrices; each contraction with an even
number of γ matrices is antisymmetric

〈i|µ1 · · ·µ2N |j〉 = −〈j|µ2N · · ·µ1|i〉 (A.1.9)

and with an odd number symmetric

〈i|µ1 · · ·µ2N+1|j] = [j|µ2N+1 · · ·µ1|i〉 , (A.1.10)
〈i|µ|j〉 = [i|µ|j] = 0. (A.1.11)

We further realise that

/pi = |i〉 [i|+ |i] 〈i| . (A.1.12)
(A.1.13)

Hence, each momentum reduce the number of γ matrices by one. We are left with
four basic cases

〈i|µ1 . . . µI/rµI+1 . . . µ2N+1|j] =

〈i|µ1 . . . µI |r] 〈r|µI+1 . . . µ2N+1|j] I even

〈i|µ1 . . . µI |r〉 [r|µI+1 . . . µ2N+1|j] I odd
,

(A.1.14)

〈i|µ1 . . . µI/rµI+1 . . . µ2N |j〉 =

〈i|µ1 . . . µI |r] 〈r|µI+1 . . . µ2N |j〉 I even

〈i|µ1 . . . µI |r〉 〈r|µI+1 . . . µ2N |j]∗ I odd
.

(A.1.15)

These cases can be automatically be employed to expand amplitudes with any
number of γ matrices, such that we are left with only terms containing either none
or exactly one open index. The terms remaining open indices have to be contracted
over different terms via the Fierz identity

〈i|µ|j] 〈r|µ|s] = 2 〈i r〉 [s j] . (A.1.16)
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In total we can express any (tree-level) amplitude to a multiplication of terms like
〈i j〉 and [i j], which is essentially a multiplication of complex numbers.

As a simple example we consider the scattering of two quarks with different flavours.
All helicity configurations in which only one helicity is different from the rest vanish.
We are left with only four amplitudes, and two unique terms

M
q
−
Q
−→ q

−
Q
− = 1

t
〈1|µ|a] 〈2|µ|b] (A.1.17)

= 2
t
〈1 2〉 [b a] =M∗

q
+
Q

+→ q
+
Q

+ , (A.1.18)

M
q

+
Q
−→ q

+
Q
− = 1

t
[1|µ|a〉 〈2|µ|b] (A.1.19)

= 2
t
〈a 2〉 [b 1] =M∗

q
−
Q

+→ q
−
Q

+ . (A.1.20)

In the second and fourth line we used the Fierz identity from eq. (A.1.16). The
remaining terms already show the structure of eq. (A.1.5). We can then directly
read off the helicity averaged (colour stripped) matrix element

∣∣∣MqQ→ qQ

∣∣∣2 = 2s
2 + u2

t2
. (A.1.21)

For completeness we also repeat the definition of the currents from eq. (2.3.8) here

j−µ (pi, pj) = 〈i|µ|j] , (A.1.22)
j+
µ (pi, pj) = [i|µ|j〉 = j−µ (pj, pi). (A.1.23)

With this the structure of eqs. (A.1.18) and (A.1.20) gets even more obvious

M
q
−
Q
−→ q

−
Q
− = 1

t
j−µ (p1, pa)j−µ (p2, pb), (A.1.24)

M
q

+
Q
−→ q

+
Q
− = 1

t
j+
µ (p1, pa)j−µ (p2, pb). (A.1.25)





Appendix B

HEJ currents with finite quark
masses

B.1 Form factors for the Higgs-boson coupling
to gluons

Quoting eq. (4.1.1), the coupling of the Higgs boson to gluons via a virtual quark
loop can be written as

V µν
H (q1, q2) =

µ
q1

ν

q2
= αsm

2

πv

[
gµνT1(q1, q2)− qµ2 qν1T2(q1, q2)

]
. (B.1.1)

The outgoing momentum of the Higgs boson is pH = q1 − q2. The form factors T1

and T2 are then given by [109]

T1(q1, q2) = − C0(q1, q2)
[
2m2 + 1

2
(
q2

1 + q2
2 − p2

H

)
+ 2q2

1q
2
2p

2
H

λ

]

− [B0(q2)−B0(pH)] q
2
2

λ

(
q2

2 − q2
1 − p2

H

)
− [B0(q1)−B0(pH)] q

2
1

λ

(
q2

1 − q2
2 − p2

H

)
− 1,

(B.1.2)
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T2(q1, q2) = C0(q1, q2)
[

4m2

λ

(
p2
H − q2

1 − q2
2

)
− 1− 4q2

1q
2
2

λ

− 12q2
1q

2
2p

2
H

λ2

(
q2

1 + q2
2 − p2

H

)]

− [B0(q2)−B0(pH)]
[

2q2
2

λ
+ 12q2

1q
2
2

λ2

(
q2

2 − q2
1 + p2

H

)]

− [B0(q1)−B0(pH)]
[

2q2
1

λ
+ 12q2

1q
2
2

λ2

(
q2

1 − q2
2 + p2

H

)]

− 2
λ

(
q2

1 + q2
2 − p2

H

)
,

(B.1.3)

where we have used the scalar bubble and triangle integrals

B0 (p) =
∫ ddl

iπ
d
2

1(
l2 −m2

) (
(l + p)2 −m2

) , (B.1.4)

C0 (p, q) =
∫ ddl

iπ
d
2

1(
l2 −m2

) (
(l + p)2 −m2

) (
(l + p− q)2 −m2

) , (B.1.5)

and the Källén function

λ = q4
1 + q4

2 + p4
H − 2q2

1q
2
2 − 2q2

1p
2
H − 2q2

2p
2
H . (B.1.6)

The relation to the form factors A1, A2 given in ref. 109 is

A1(q1, q2) = i

16π2T2(−q1, q2), (B.1.7)

A2(q1, q2) = − i

16π2T1(−q1, q2). (B.1.8)

In the infinite top-mass limit

lim
m→∞

m2T1(q1, q2) = 1
3q1 · q2 , (B.1.9)

lim
m→∞

m2T2(q1, q2) = 1
3 . (B.1.10)

Thus eq. (B.1.1) converges to eq. (2.3.17).
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B.2 Effective current for peripheral Higgs-boson
emission

We describe the emission of a peripheral Higgs boson close to a scattering gluon with
an effective current. In the following we consider a light-cone decomposition of the
gluon momenta, i.e. p± = E±pz and p⊥ = px+ ipy. The incoming gluon momentum
pa defines the − direction, so that p+

a = pa⊥ = 0. The outgoing momenta are p1 for
the gluon and pH for the Higgs boson. We choose the following polarisation vectors:

ε±µ (pa) = j±µ (p1, pa)√
2ū±(pa)u∓(p1)

, ε±,∗µ (p1) = − j±µ (p1, pa)√
2ū∓(p1)u±(pa)

. (B.2.1)

Following ref. 86, we introduce effective polarisation vectors to describe the contrac-
tion with the Higgs-boson production vertex eq. (4.1.1):

εH ,µ(pa) = T2(pa, pa − pH)
(pa − pH)2

[
pa · pHεµ(pa)− pH · ε(pa)pa,µ

]
, (B.2.2)

ε∗H ,µ(p1) = −T2(p1 + pH , p1)
(p1 + pH)2

[
p1 · pHε∗µ(p1)− pH · ε∗(p1)p1,µ

]
, (B.2.3)

We also employ the short-hand notation from appendix A and

[i|H |j〉 = j+
µ (pi, pj)pµH . (B.2.4)

Without loss of generality, we consider only the case where the incoming gluon has
positive helicity. The remaining helicity configurations can be obtained through
parity transformation.
Labelling the effective current by the helicities of the gluons we obtain for the
same-helicity case

j++
H ,µ(p1, pa, pH) = m2

πv

[

−

√√√√2p−1
p−a

p∗1⊥
|p1⊥|

t2
[a 1]ε

+,∗
H ,µ(p1) +

√√√√2p−a
p−1

p∗1⊥
|p1⊥|

t2
〈1 a〉ε

+
H ,µ(pa)

+ [1|H |a〉
( √

2
〈1 a〉ε

+
H ,µ(pa) +

√
2

[a 1]ε
+,∗
H ,µ(p1)− 〈1 a〉T2(pa, pa − pH)√

2(pa − pH)2 ε+,∗µ (p1)

− [a 1]T2(p1 + pH , p1)√
2(p1 + pH)2 ε+µ (pa)−

RH4√
2 [a 1]

ε+,∗µ (p1) + RH5√
2 〈1 a〉

ε+µ (pa)
)

− [1|H |a〉2

2t1
(pa,µRH10 − p1,µRH12)

]
(B.2.5)

with t1 = (pa − p1)2, t2 = (pa − p1 − pH)2 and R = 8π2. The form factors Hi are
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given in ref. 109.

The current with a flip in the gluon helicity reads

j+−
H ,µ(p1, pa, pH) = m2

πv

[

−

√√√√2p−1
p−a

p∗1⊥
|p1⊥|

t2
[a 1]ε

−,∗
H ,µ(p1) +

√√√√2p−a
p−1

p1⊥

|p1⊥|
t2

[a 1]ε
+
H ,µ(pa)

+ [1|H |a〉
( √

2
[a 1]ε

−,∗
H ,µ(p1)− 〈1 a〉T2(pa, pa − pH)√

2(pa − pH)2 ε−,∗µ (p1)− RH4√
2 [a 1]

ε−,∗µ (p1)
)

+ [a|H |1〉
( √

2
[a 1]ε

+
H ,µ(pa)−

〈1 a〉T2(p1 + pH , p1)√
2(p1 + pH)2 ε+µ (pa) + RH5√

2 [a 1]
ε+µ (pa)

)

− [1|H |a〉 [a|H |1〉
2 [a 1]2

(pa,µRH10 − p1,µRH12)

+ 〈1 a〉[a 1]

(
RH1p1,µ −RH2pa,µ + 2p1 · pH

T2(p1 + pH , p1)
(p1 + pH)2 pa,µ

− 2pa · pH
T2(pa, pa − pH)

(pa − pH)2 p1,µ + T1(pa − p1, pa − p1 − pH)(p1 + pa)µ
t1

− (p1 + pa) · pH
t1

T2(pa − p1, pa − p1 − pH)(p1 − pa)µ
)]
.

(B.2.6)

If we instead choose the gluon momentum in the + direction, so that p−a = pa⊥ = 0,
the corresponding currents are obtained by replacing p−1 → p+

1 , p
−
a → p+

a ,
p1⊥
|p1⊥|
→ −1

in the second line of eq. (B.2.5) and eq. (B.2.6).
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B.3 The current for a single unordered gluon
emission

In section 4.1.4, we use an effective current, juno cd
µ (p2, p1, pa), to describe the emis-

sion of an unordered gluon (one additional gluon outside in rapidity of an FKL
configuration). The current for q(pa)→ g(p1)q(p2)g∗(q̃2) was derived in ref. 98 to be

juno µ cd(p2, p1, pa) = iε1ν

(
T c2iT

d
ia (Uµν

1 − Lµν) + T d2iT
c
ia (Uµν

2 + Lµν)
)
. (B.3.1)

where

Uµν
1 = 1

s21
(jν21j

µ
1a + 2pν2jµ2a) , Uµν

2 = 1
ta1

(2jµ2apνa − jµ21j
ν
1a) , (B.3.2)

Lµν = 1
ta2

(
−2pµ1jν2a + 2p1.j2ag

µν + (q̃1 + q̃2)νjµ2a + tb2
2 jµ2a

(
pν2
p1.p2

+ pνb
p1.pb

))
,

(B.3.3)

q̃1 = pa − p1 and q̃2 = q̃1 − p2. This differs from our other currents as there is no
longer a single overall colour factor, and hence colour factors (with free indices c and
d) must be included. Upon contracting with another current squaring, this leads to
terms with different colour factors. For example, for q(pa)Q(pb)→ g(p1)q(p2)Q(p3),
we find [98]

∣∣∣MHEJ
tree qQ→gqQ

∣∣∣2 =− g6
s

16t2b3

∑
ha,h1,hb,h2

CF

[
2Re

([
j3b µ(Lµν − Uµν

1 )
] [
j3b ρ(Lρν + U ρ

2 ν)
]∗)

+ 2CF
CA

∣∣∣j3bµ(Uµν
1 + Uµν

2 )
∣∣∣2 ]

≡− g6
s

16t2b3
CF

∥∥∥Suno
f1f2→gf1f2

∥∥∥2
.

(B.3.4)

The factor we require in eq. (4.1.17) is therefore given by

∥∥∥Suno
qf2→gqHf2

∥∥∥2
=

∑
ha,h1,hb,h2

[
2Re

([
Jµ(Lµν − Uµν

1 )
] [
Jρ(Lρν + U ρ

2 ν)
]∗)

+ 2CF
CA

∣∣∣Jµ(Uµν
1 + Uµν

2 )
∣∣∣2 ], (B.3.5)

where we use the shorthand Jµ = V µν
H (q1, q2)jν(p3, pb).





Appendix C

Finite quark mass results with
µr=µf =HT/2

In this appendix we study the effect of using a central scale of µr=µf =HT/2 instead
of µr = µf = max(mH ,m12) used in chapter 4. In table C.1 we present the cross
section results for a central scale choice of µr=µf =HT/2. These correspond to the
results in table 4.2 in section 4.3.2. We continue in figs. C.1 to C.3 by repeating the
comparisons of figs. 4.9 to 4.11. While there are variations in numerical values, we
find that the conclusions of the impact of the higher-order corrections in HEJ and
of the finite quark mass and loop propagator effects are unchanged.

The results obtained at NLO for the two central scale choices µr=µf =max(mH ,m12)
and µr=µf =HT/2 are compared in fig. C.4. It is noteworthy that the difference in
the results in fig. C.4d for the cross section within the VBF-cuts is similar to the
difference between the results of NLO and HEJ obtained with the same scale.

Finally, fig. C.5 compares the results obtained for HEJ with the two central scale
choices. The differences in the results for the distributions are significantly larger

Fixed Order HEJ
Inclusive H + 2j VBF cuts Inclusive H + 2j VBF cuts

mt →∞ 6.4+0.3
−0.9 fb 0.82+0.02

−0.11 fb 6.4+0.3
−0.9 fb 0.56+0.04

−0.09 fb
mt = 163 GeV 6.6+0.3

−1.0 fb 0.82+0.02
−0.11 fb 6.2+0.3

−0.9 fb 0.51+0.03
−0.08 fb

mt = 163 GeV - - 6.2+0.3
−0.9 fb 0.52+0.03

−0.08 fb
mb = 2.8 GeV

Table C.1: Total cross section predictions for the central scale choice
µr=µf =HT/2 and different values of the heavy-quark
masses. See table 4.2 for the corresponding predictions
with µr=µf =max(mH ,m12).
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than indicated by the scale variation. This is not surprising, since the leading
logarithmic behaviour at large m12 is unrelated to β0-terms from the running of the
coupling. As stated earlier, comparisons with data for other processes can determine
which of these scale choices obtains the best description. The discussion of scale
choice is independent of the discussion of the behaviour at large m12, and so is the
conclusion that a resummation of the leading terms at large m12 leads to a reduction
of the cross section within the VBF cuts.
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Figure C.1: Predictions for various distributions obtained with HEJ,
pure leading order, and leading order rescaled with
differential K factors for the central scale choice µr =
µf =HT/2. See fig. 4.9 for the corresponding plots with
µr=µf =max(mH ,m12).
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Figure C.2: HEJ predictions for various distributions and different
choices for the heavy-quark mass with the central scale
choice µr=µf =HT/2. See fig. 4.10 for the correspond-
ing plots with µr=µf =max(mH ,m12).
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Figure C.3: Comparison between HEJ and the rescaled leading-
order prediction for various distributions with the cent-
ral scale choice µr = µf =HT/2. See fig. 4.11 for the
corresponding plots with µr=µf =max(mH ,m12)
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Figure C.4: Comparison between pure NLO results with cent-
ral scale choices µr = µf = HT/2 and µr = µf =
max(mH ,m12)
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Figure C.5: Comparison between HEJ results with central scale
choices µr=µf =HT/2 and µr=µf =max(mH ,m12)
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