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�
Abstract
Weexaminewhatblindanalysisisandwhatmotivatesitsusein particlephysics
experiments.We explore themethodsof blind analysisandgive examplesof
its applicationin realexperiments.

1 WHAT IS A BLIND ANALYSIS?

A blind analysisis ananalysisin which thefinal result,andtheindividual dataon which it is based,are
kept hiddenfrom the analystuntil the analysisis essentiallycomplete. The principal motivation is to
avoid experimenter’s (subconcious)bias.It is obvious,but perhapsworth emphasising,thatthevalueof
ameasurementdoesnotcontainany informationaboutits correctness.Soknowledgeof its valueis of no
usein performingtheanalysisitself. Thetechniquehasbeenusedin thepastby anumberof experiments
including:� Many raredecaysearchesatBNL [1]� E791[2]� KTeV [3]� BABAR [4]� BELLE [5]

Thereareseveraldifferentapproachesto blind analysis,themethodof choicedependingon thetypeof
analysis.

Typically, one hasa Monte Carlo or a control sampletaken from datato simulatethe signal,
andsignalsidebandsin dataor a Monte Carlo sampleto characterisethe backgroundto an analysis.
Blind analysisin a countinganalysismeansoptimisingall the cutsusingsuchsamples,testingfitting
procedures,andevaluatingthesystematicerrorsbeforelooking at thesignaldata.

In maximumlikelihoodfitting, testsmayevenbemadeonthesignaldata,but thefittedvalues(and
any plots which may reveal their approximatevalues)remainhiddenuntil all checkshave beenmade.
Only theerrorsareoutput.Someexamplesof thedetailedimplementationof blind analysisaregivenin
thelatersectionsof this talk.

2 MOTIVATION FOR BLIND ANALYSIS

Theprincipalmotivation is to avoid experimenter’s (subconcious)bias.Eventhemostwell-intentioned
scientistis susceptibleto this! Thereis asurprisingamountof scopefor suchbias,e.g.� Looking for bugswhena resultdoesnot conformto expectation(andnot looking for themwhen

it does).� Looking for additionalsourcesof systematicuncertaintywhena resultdoesnot conform� Decidingwhetherto publish,or to wait for moredata� Choosingto dropaneventwhich is in thesignalregion in a raremode(e.g.becausea trackis 2 �
away from theparticleID expectationfor its type)

Theresultingbiasrepresentsanunquantifiablesystematicuncertainty.

Thereis evidencein a numberof differentplacesin particlephysicsfor such,bias,in additionto
well-documentederrorsin thesubject’s history. Somepossibleexamplesmay be found in plots of the
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Fig. 1: Somemeasurements[6] asa functionof time

neutronand
���� lifetimesandof the � width asa functionof time, asshown in Fig. 1 [6]. Theseshow

periodsof surprisinglysmallvariation,followedby jumpsof severalstandarddeviations(careshouldbe
takenin interpretingthefigures,asthey actuallyshow therunningaverage,andnot just theresultsof the
latestexperimentsasa functionof time).

2.1 Do the LEP ExperimentsAgreeToo Well?

Fig. 2 shows the value of �
	 as obtainedby several of the different LEP experiments. The �
� per
degree-of-freedomis 0.92/7,showing clearly that thereis significantly lessvariationbetweenthe dif-
ferentmeasurementsthanonewould expect for independentmeasurements.Onepossiblereasonfor
this could be thatperhapsthesystematicerrorsareoverestimated,althoughtheoriginal authorswould
doubtlessreject this unlikely interpretation. In order to checkthis possibility, we alsocalculatedthe��� perdegreeof freedomignoring thesystematicerrorsandfound that it is still only 2.1/7,still rather
too small, expecially consideringthat theremustbe somereal systematicerrors,which areignoredin
thiscalculation.Anotherpossiblereasonfor thesmallnessof thevariationbetweenthemeasurements,in
comparisonwith thequotederrors,is thatthemeasurementsaresubconciouslybiasedtowardseachother
and/ortowardsthestandardmodelprediction,perhapsfor oneor severalof thereasonssuggestedabove.
We alsonotethat the meanvalueof all the measurementsis surprisinglycloseto the StandardModel
value. Onelast possiblereasonfor theseeffects is that we have simply chosena particularlystriking
examplefrom an ensembleof ensemblesof LEP measurementsof differentquantitieswhich together
displaya reasonabledistribution of � � values.A completestudyof suchmeasurementswouldsurelybe
aninterestingexercisein its own right but is beyondthescopeof this talk.

1E-mail:p.f.harrison@qmul.ac.uk
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Fig.2: An ensembleof LEPmeasurementsof thequantity ��� , theiraverage,andtheStandardModelpredictionfor thequantity.

2.2 An Example of Experimenters’ Bias: the “Split A2”

At CERNin themid 1960s,agroupusingamissingmassspectrometerobservedseveralnew mesonsin
themissingmassspectrumfrom theprocess�
����������������� � (1)

The ! � (now known astheI=1 memberof the "$# nonet)wasapparentlysplit, asshown in Fig. 3, andit
wasfitted with a dipole form. Thesplit ! � wasdiscussedfor severalyears,andgeneratedconsiderable
speculationby theorists.Similar experimentsperformedlaterfoundno evidenceat all for a split. Other
experimentsgathereddataon ! � via decaysto

� # � � andalsofoundnoevidencefor asplit.

At the WashingtonAPS meetingof 1971,the spokesmanof the original CERN experiment,re-
vealedthatseveralcutswhichhadbeenmadeon thedatawereunneccessary. Oneof thecutswasbased
on “running conditions”: the groupdiscardedwhole runsin which the split did not show up! This is
widely regardedasanexampleof “innocentbias”.

2.3 Another Example of Experimenters’ Bias: the %
In 1984theCrystalBall collaborationreportedthediscovery of a stateknown asthe % . It wasidentified
by apeakat &('*),+ �.-0/ GeVin thephotonspectrumof eventsreconstructedas:132 +5476 �98��;: (2)

in which : wasmadeup of many hadrons.The“discovery” is shown in Fig. 4.

The % would correspondto a particleof mass8.322GeV<>=?� , width correspondingto theCrystal
Ball resolution,anddecayingpreferentiallyto multiple hadrons. This would have beenan important
discovery!

Thepeakin 8 energy wasenhancedby thefollowing setof cuts:
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Fig. 3: The“discovery” of thesplit @BA in themissingmassspectrumof theprocessCEDGFIHKJLHMF�NON�D .

Fig. 4: The“discovery” of the P in thephotonspectrumof theprocessQSRUTWVEXYJ[Z\F^] .
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� 8 “overlap” (theanglebetweenphotonandany hadron)_a` -cb��d^e TotalMultiplicity e " -� Chargedmultiplicity fL"� Neutralmultiplicity gh+i"� Totalenergy depositedin calorimetergLj GeV� Sphericityof event f 0.16� An additionalsetof “tuning” cuts!

Themosteffective of thesecutswasthefirst.

However, on removing the 8 overlapcut , thephotonspectrumchangedto that shown in Fig. 5,
in which thesignalis absent.Theproblemherewasthatthecutswerechosenwhile looking at thedata.

Fig. 5: ThesameasFig. 4, but without the Z overlapcut.

Later, theCrystalBall did ablind analysison asecondbatchof dataandfoundthatthe % signalwasnot
real.

As ahint at identifying thekindsof thingswhichmaypoint to abiasedanalysis,we maynotethe
very arbitrarylookingmultiplicity cuts,andthe“tuning” cutswhichseemedto beneeded.

3 METHODS AND EXAMPLES OF BLIND ANALYSIS

Blind analysistechniquescanbeappliedto almostany analysis.A few concreteexamplesinclude:� Raredecaysearches� Precisionmeasurements�lknm (rateor time-dependent)asymmetries

Wewill seehow thesehave beenimplementedin realcases.

3.1 Blinding in Rare DecayAnalyses

By “Rare decays”here,we meanthat the branchingfraction is not yet measured,or is poorly known.
In suchcases,the backgroundis probablylarge, a priori, and the analysismustprovide a significant
backgroundreductionfactor. Underthesecircumstances,ablind analysisis highly desirable!
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If theanalysisis of the“cut & count”kind, thehiddensignalboxmethodis recommended.In this
approach,a signal“blinding” box is pre-definedby somecuts,which maybedeterminedusingaMonte
Carlosignalsample.Blinding meansexcludingeventsin thesignalblindingbox from theanalysisAND
plots. In practicethiscanbeachievedby implementingacutwhichremovesthedatain thesignalregion,
and(temporarily)filtering theanalysisdatasetwith this cut beforesubsequentanalysissteps.Thecuts
which definethesignalblinding box shouldbeslighty looserthanthosewhich optimisetheanalysis,in
orderto preventsignalin thetailsleakingoutof thesignalregiondueto poorresolution,or to thefactthat
theoptimalcutsmaybequitetight. Sidebandsareusedto characterisethebackgroundin eachvariable,
andtheanalysiscanbeoptimisedusingthis backgroundcharacterisation,andsignalMonteCarlo. This
methodassumesthatthevariablesareuncorrelated,sothatsidebandsin onevariableaccuratelyrepresent
thedatain thesignalregion in othervariables,anassumptionwhichmaybecheckedwith MonteCarlo.

3.2 Exampleof Rare DecayBlind Analysis: oOp�q rtsKuGv Search at BABAR

An examplefrom BABAR [7] is shown in Fig. 6, in which theyellow box indicatesthesignalblinding
region. The rectagularbox insidethis representstheoptimisedsignalbox. The shadedregionsabove,
below andto theleft of thesignalregion indicatethevarioussidebands,in which theshapeandnormal-
isationof thebackgroundin thetwo variablescanbedetermined.

Fig. 6: Scatterplot of thetwo kinematicvariables:wyx5z {}| R?~Ai� F����t�W����X AW��� A�B� H A� , wherethesubscripts� and � refer

to the ����� D systemandthe � candidate,respectively; and � � { �M�� ��� � ��� , where �M�� is the � candidateenergy in the

center-of-massframe. For signalevents,the former hasa valuecloseto the � mesonmassandthe lattershouldbe closeto

zero.

Figures7 and8 show respectively the ����� and ��& distributions for background,determined
usingon-resonancedatain thesidebandsof Fig. 6, aswell asoff-resonancedataandMonteCarlo.

3.21 Blind Cut Optimisation with (1/2 of) the Data

Thefinal sampleis definedby cutsin many discriminatingvariables,including ����� and �^& . Thecuts
areoptimisedwith respectto someobjective figureof merit e.g.thestatisticalsignificance(numberof
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Fig. 7: w xiz distribution for background,determinedusingon-resonancedatain a) theuppersidebandof Fig. 6, b) the lower

sideband,c) off-resonancedataandd) backgroundMonteCarlo.

Fig. 8: � � distribution for background,determinedusingon-resonancedatain a) theleft sidebandof Fig. 6, b) off-resonance

dataandc) backgroundMonteCarlo.
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standarddeviations): 4| 2 4 ��� 6 (3)

where 4 and � arethe (expected)numbersof signalandbackgroundeventsin thefinal cut-optimised
samples. 4 and � are obtained(as functionsof the cut values)from signal Monte Carlo or control
samplesfor signal(efficiency) andfrom sidebandsfor background,while theactualsignalregionremains
blind. It is importantto avoid over-tuning cuts into statisticalfluctuationsin thesesamples,but large
samplesizeshelp(thesidebandscanbesomewhatlarger thantheeventualsignalregion,which helpsto
increasethestatisticsavailablefor thisoptimisation).

In orderto avoid biasingtheefficiency, only e.g.1/2 of thedata(sidebandandMonteCarlo)are
usedin thecut-optimisation.Oncethecutshavebeendefined,theotherhalf of thedataandMonteCarlo
samplesareusedto obtainthebackgroundnormalisationandthesignalefficiency.

3.22 Unblinding

In BABAR ananalysiswill normallyhave beenpresentedto anAnalysisWorking Group(AWG) before
unblinding.Thepresentationwill include:� A descriptionof thecutoptimisationandbackgroundcharacterisationprocedures.� The expectednumberof backgroundevents in the signal box (as a function of the branching

fraction,if this is completelyunknown)� Thesignalefficiency from MonteCarloor controlsamples� Theexpectedstatisticalsensitivity� An estimationof systematicerrors
After discussion,permissionis soughtfrom the AWG to unblind the signal. For a raredecaycut and
countanalysis,unblindingis essentiallyjust a countingexercise:how many eventsareinsidethesignal
box?

After unblinding,plotsshowing thesignalregion canbemade.Dependingon the importanceof
theanalysis,thedateandtime of unblindingmaybe publicisedwidely within thecollaboration.For a
particularlyhigh profile analysis,theremayeven be an “unblinding party” in a pubic terminalarea,at
which thecrucialpieceof codeis run to “openthebox”, ie. to revealthedatain thesignalregion.

Finally, theappropriateplotsshowing theunblindedsignalregion canbemade.Figure9 shows
thesignalfoundin theBABAR � � �����
�t� branchingfractionanalysis,asanexcessof eventsabove the
background.

3.3 Blinding in PrecisionMeasurements

Precisionmeasurements,suchas � �¢¡ or � and £ lifetimesaregoodcandidatesfor blind analyses.In
suchcases,accurateprior measurementsgenerallyexist anduseof a blind analysisremovesthepossi-
bility of abiastowardsthePDGvalues.Theanalysisis probablysystematics-limited,andblind analysis
ensuresthatthechoicesinvolvedin estimatingthesystematicuncertaintiesarenotbiasedby thevalueof
theresult.

In suchcases,the methodoften involves a maximumlikelihood fit. Then, systematicchecks
necessarilyinvolve re-fitting on the data. In order to blind the measurementwhile performingsuch
checks,onecanusethehiddenoffsetmethod.

3.31 The Hidden Offset Method

In this approach,thefitting codeaddsa fixed,unknown pseudo-randomnumber(or numbers),¤ , to the
fitted valueof themeasuredparameter(s): ¥ �§¦ ¥ � ¤ � (4)
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Fig. 9: The � � J©¨«ª�C­¬ signalregion projectedonto wIxiz and � � axesrespectively. Thesignalcanbeseenasanexcessof

eventsabove thebackgroundlevel which is indicatedby thecurve shown.

¥ � is returned(alongwith thetrueerrorandlikelihoodvalue)insteadof ¥ .¤ is sampledfrom aGaussiandistributionwith mean0 andstandarddeviationequalto afew times
the experimentalstandarddeviation. Any plot of the likelihoodfunction shouldalsohave the random
offset appliedto the valuesof the fitted variable,so that the fitted valuecannotbe read-off from the
minimum. Relative changesin theresult,aschangesaremadein theanalysis(new decaymodesadded
to thesample,for example)canbehiddenusingasecondoffset:¥ � ¦ " ¥¯®t° ±�²�¥ � ¤ � (5)

Oneof thethetwo methodsis chosenat randomaftereachchangein theanalysis.

3.4 Blinding ³µ´¶<·³ at KTeV

KTeV [3] is aprecisioncountingexperiment- ³µ´¸<·³ dependsonthenumbersof
���� and

�¹�º decayseachto� # � � and � � � � . Theexperimenterswantedto useall theeventsto make systematicchecks(measuring»i¼ �� and ��� ¼ ) andto checktheir methodof extractionof ³ ´ <·³ , without biasingthemselves. In other
words,they wantedto look at their datawithout beingbiased.Theblinding strategy which wasadopted
allowedthis. They performedtheanalysisjustasany otherexperiment,exceptthatthevalueof ³ ´ <·³ was
kept hiddenfrom the experimentersuntil the analysiswascomplete. They fitted the dataandhid the
valueof ³ ´ <·³ asfollows: ½ ³µ´¶<·³µ¾ � ¦À¿ +² +\Á�Â ³µ´¶<·³ � ¤ � (6)

The Ã 1 or -1 Ä and ¤ werechosenat randombut kept fixed,oncechosen.Thesignflip wasto make it
uncertainwhetherthevalueof ³µ´¶<·³ wasgoingup or down with analysischanges.
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Toy MonteCarlofits weredonewith no blinding to verify their fitting procedures.Two analyses
wereperformedin parallel,with differentrandomchoices,to avoid biasingeachother. Oncebothwere
completed,therandomchoicesweremadethesame:ablind comparisoncouldbemade!Theresultwas
finally unblindedandannouncedto thepublic oneweeklater. No analysischangesweremadeduring
thisweek.

3.5 Blinding Time-dependentkIm Asymmetries

Thetime-dependentkIm asymmetryin neutral � mesondecaysto kIm -eigenstatesis manifestedin the
shapesof the time- ( Å���Æ -)distributions of suchdecays,for both � � or � � mesons.It is fit by the
maximumlikelihoodmethodusingthehiddenoffsetmethod.However, theasymmetryis readilyvisible
by eye,evenwith smallstatistics,in bothdistributionsseparately, aswell asby comparingthem,ascan
beseenin Fig. 10. Thisvisualcluealsoneedsto beblinded.

Fig. 10: Time-dependentÇBÈ asymmetriesin the goldenmode � � JÊÉ �µËÍÌ �� , for a) high statisticsandb) low statistics

samples.
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This canbeachievedby plottingonly½ÏÎ5ÐÒÑµÓ ��Æ·¾ � ¦ Î5ÐÒÑµÓ �^Æ � ¤ (7)

where
Î5ÐÒÑµÓ

is thesignof thetag.No informationis lost,excepttheasymmetrybetween� � and � � , and
themagnitudeof theasymmetrybetweenpositive andnegative �^Æ . Exampleplotsareshown in Fig. 11,
in which the histogramsfor � � and � � areapproximatelycongruent,and the magnitudeandsign of
theasymmetryhasbeenhiddenby theunknown randomvariable ¤ . Hiding thefitted asymmetryis a

Fig. 11: Time-dependentÇBÈ asymmetriesin the goldenmode � � JÔÉ �µËÍÌ �� with the tag informationhidden. In a), the

relative signbetween� � and � � hasbeenremovedby multiplicationby thefactor �WÕ×ÖÙØ . In b) therandomoffset(with random

sign)hasalsobeenadded.

separateoperation,exactlyanalogousto hiding ³ ´ <·³ .
4 CLOSING COMMENTS

Blind analysisbringsparticlephysicsinto line with bestpracticefrom otherbranchesof science.It is
morea formalisationof goodexperimentalpracticethana radicalnew idea. It is certainlyno panacea,
and is not a substitutefor careful, thoughtful analysis,but it is an additionalsafeguard. An analysis
which is notblind is notnecessarilyawronganalysis,andananalysiswhich is blind is notnecessarilya
right analysis.However, thefield hashadits fair shareof embarrassingwrongresultsandthetechnique
canonly help in reducingthesein thefuture. Evenwhenanunblindanalysishasbeenperformedin an
unbiasedway, just thepossibilityof experimenters’biasreducesour own andothers’confidencein our
results.If wecanreducetherisk of bias,why notdo so?
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