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Abstract

I study the Bayesian approach to the reconstruction of particle properties using as an illustration the
measurement of the Higgs boson mass. Monte Carlo events generated with various Higgs masses are used
to determine the probability distribution for each Higgs boson mass. The probability is a function of
measured quantities, in this example energies of b-tagged jets as well as the the angle between them. The
probability distributions are fitted using neural networks and the final Higgs mass probability distribution
is obtained as a product of the single event distributions. The miscalibration of the measured quantities
is automatically corrected by the probability distributions.

I also study a complementary method based on a neural network trained to return directly the Higgs

mass.

Introduction

The precision of particle property reconstruction can
be improved by using data analysis methods that
better explore all the accessible information. The
Bayesian approach, based on an interpretation of
probability as a conditional measure of uncertainty,
provides such an opportunity. In this method for ev-
ery event the probability P(m|z) of = belonging to
class m is computed. In our example ”class” m is the
Higgs mass and z is a vector of variables. The event
z is assigned to the class with the highest probabil-
ity. For a sample of many events originating from the
same, but unknown class, the probability is a product
of the single event probabilities:

P(m|1, .., 2) (H P(:mm)) x P(m) ,

where P(m) is a prior on the Higgs mass which we
shall take to be constant. In the limit of a continuous
probability function of the particle mass this method
gives the best possible estimate of the mass, provided
that the probability functions are well measured and
the vector x describing the event contains all the nec-
essary information. One should note, that no explicit

knowledge of the functional dependence of the mass
estimate (invariant mass) is needed.

We consider the reaction H — bb — 2 jets, in
which the Higgs boson decays into two b-mesons pro-
ducing two jets. The obvious and simplest estimate of
the the Higgs boson mass is the invariant mass of the
two jets. To calculate the mass estimate the energies
of two jets and the angle between them are needed.
The same three variables are used in the Bayesian
analysis.

The energies of reconstructed jets are not cali-
brated consequently the invariant mass of two jets is
shifted towards lower values (Fig. 1). In this initial
study, neither physical nor combinatorial background
is present. Only perfectly tagged b-jets are used.

Method

Monte Carlo events were generated using PGS sim-
ulation [1]. Thirteen samples with Higgs masses be-
tween 95 GeV and 155 GeV with 5 GeV increments
were generated. For each of the above Higgs masses
the probability function P(x|m) (where z is a vector
of two jet energies and cosine of the angle between



them - eq,es and cosf) is fitted using a neural net-
work.

All the simulated samples are divided into two sub-
samples: one is used for training the neural network,
the second for further analysis. Following Ref. [3]
each of the samples was trained against a sample with
a flat distribution in all three variables: ej,es and
cosf. The feed-forward network is trained to return
”1” for the PGS Monte Carlo sample and ”0” for the
"flat” sample. The probability P(z|m) is obtained
from the output NN,,; of the adequately trained
neural network:

NNout

P(m‘|m) Ocm .

The network consists of three input nodes, 50 nodes
in the hidden layer and one output node. There are 13
independent networks, each of them trained using a
sample with different Higgs mass. All fitted functions
are later normalized, so the probabilities for different
Higgs masses can be compared. Figure 1 shows the
standard invariant mass compared with the invariant
mass obtained from the fitted 3-dimensional function.
The fit smoothes the distribution, as expected.
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Figure 1: Standard invariant mass (solid line) compared

with the invariant mass obtained from the Neural Net-
work fit (for My = 120 GeV sample).

One advantage of a neural network fit is the fact
that data are not binned, which dramatically im-
proves the quality of the fit while fitting small sam-
ples. Also no analytical formula of the fitted function
is needed. The complexity of the function shape is de-
termined by the number of links (free parameters) in

the neural network. The trained neural network can
be easily converted into a C-language function, which
later returns the probability at very low CPU cost.

For each event the trained neural networks return
the set of probabilities corresponding to each Higgs
mass. To obtain the mass estimate based on a sample
of few events the probabilities should be multiplied.
The mode of the distribution can be taken as an es-
timate of the Higgs mass. Instead of the mode the
mean is an estimate. This estimate reduces fluctua-
tions and improves the mass resolution.

Results

The probability distributions as functions of the
Higgs mass are shown in Fig. 2 for samples of 2300
events generated with four different Higgs masses.
On the Y-axis the In (P(z|m)) is plotted, therefore
heights of the bins differ by orders of magnitude. The
plot shows, that the maxima are located at the true
Higgs mass values.
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Figure 2: Probability distributions for the samples of
2000 events generated at four Higgs masses: 110 GeV,
120 GeV, 130 GeV and 140 GeV'.

It is useful and necessary to test this method on
a sample generated with a Higgs mass different from
the masses used for training. Fig. 3 shows the recon-
structed mass as a function of the number of events
used for reconstruction (MC sample with Higgs mass
137.5 GeV). On the Y-axis the mean mass over many
small subsamples is plotted. The bias at low sample
size is an ”edge effect” due to the weighted average
being take over a finite Higgs mass range. The effect
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Figure 3: Mean reconstructed mass as a function of the
sample size for a sample generated with Higgs mass of
137.5 GeV.

can be reduced by using a wider Higgs mass range.

The resolution of the mass estimation is obtained
by analyzing the root mean square (RMS) of the re-
constructed mass distribution as a function of the
number of events in the sample. It should scale ac-
cording to the formula

RMS(n) = %‘Z(l)

where n is a number of events in a sample. Fig. 4
shows this dependence for samples generated with
Higgs masses 120 GeV and 137.5 GeV. The viola-
tion of the 1/4/n dependence at small sample size
is due to the fact, that the RMS is limited by the
Higgs mass range (i.e. 95 GeV to 155 GeV). For
greater numbers of events in a sample some violation
of this dependence for My = 137.5 GeV sample is
observed. Since the closest generated Higgs masses
are 135 GeV and 140 GeV, the reconstructed mass
tends to be equal to one of them, and therefore the
RMS is approximately half of the difference between
them, i.e. 2.5 GeV (see Fig. 5). This effect can be
reduced by generating MC samples with intermediate
Higgs masses.

Fig. 6 shows the dependence of the reconstructed
mass (weighted mean for a sample of 57 events) and
single event RMS as a function of the true Higgs mass.
The dependence is fairly linear and the mass is prop-
erly reconstructed. The results are compared to the
mean and RMS of the invariant mass distribution,
which gives the masses significantly lower than the
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Figure 4: RMS as a function of 1/4/n, where n is a
number of events in a sample. Upper plot shows the de-
pendence for a sample with My = 137.5 GeV, the lower
for My =120 GeV.
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Figure 5: Reconstructed mass distribution for a sample
size of 129 events and for My = 137.5 GeV (upper plot)
and for My = 120 GeV (lower plot).

true Higgs boson mass. The invariant mass is scaled
by a factor of 1.25 and compared to the results of
the Bayesian method. The reconstructed masses and
their errors are very similar for both methods, i.e. us-
ing Bayesian probabilities and the standard invariant
mass approach with scaling.

These results show, that the method described here
could be effective when the functional dependence of
the reconstructed mass or other particle property is
unknown.
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Figure 6: Reconstructed Higgs mass vs. the true Higgs
mass for the Bayesian method (circles), mean of the in-
variant mass distribution (squares) and corrected mean of
the invariant mass distribution (crosses). The error bars
represent RMS of the distributions. The data points are
shifted for better visualization.

Neural network trained to return
Higgs mass directly

A more straight forward approach to the particle
mass reconstruction is to train a neural network to
return directly the Higgs mass. This method re-
quires training only one network and therefore re-
quires much less CPU. A neural network with two
hidden layers (10 nodes in each layer) was trained
using the extended data sample (Higgs mass from
95 GeV up to 230 GeV in 10 GeV intervals) to re-
duce the edge effects.

The results are shown in Fig. 7. Also the sam-
ples not used in the neural network training are in-
cluded (samples with Higgs mass 95 GeV', 105 GeV,
115 GeV, 125 GeV,135 GeV, 145 GeV and 155 GeV).
The RMS errors are moderate, however the recon-
structed masses differ from the expected values. They
are shifted towards the middle of the spectrum, i.e.
low masses are higher than expected and high masses
are lower.

The training of the neural network minimizes the
x? difference between the expected and returned
Higgs masses. However, due to the broad invariant
mass distribution, and therefore the similarity of the
events with different masses, the minimal x2 is ob-
tained by narrowing the spectrum of reconstructed
masses. It is clearly visible in Fig. 8, where the
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Figure 7: Reconstructed Higgs mass vs. the true Higgs
mass for the neural network directly returning the Higgs
mass. The error bars represent RMS of the distributions.

mass reconstructed by the neural network is plot-
ted against the regular invariant mass. The events
with very low invariant masses are pushed towards
higher masses and events with high invariant mass
are pushed towards lower masses. This, again, is an
edge effect. A training sample with a much broader
Higgs mass spectrum would be necessary to gain the
linear dependence.
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Figure 8: Higgs mass reconstructed by a neural network
vs. the regular invariant mass.



Conclusions

The Bayesian approach to the problem of the recon-
struction of the particle mass or other particle prop-
erties can be performed without any knowledge of
the functional dependence of the particle property on
measured quantities. However, for this method, as for
other methods, a good Monte Carlo simulation of the
physical processes and the detector is essential. In the
example presented here, where the Higgs boson mass
is measured, the method gives a mass resolution simi-
lar to the one obtained using standard invariant mass
analysis. I conclude that no more information can be
extracted from the jet energies and angle between
them beyond that encoded in the invariant mass. By
adding additional variables it may be possible to im-
prove the power of the Bayesian method.

It was also shown, that the neural network is an
excellent tool not only for signal and background dis-
crimination, but also to perform multidimensional
unbinned fits. The neural network, when already
trained, returns the results and nearly no CPU cost
and can be simply incorporated as a function into the
analysis code.
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