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Abstract
A summaryof the basicprinciplesof statistics. Both the Bayesianand Fre-
guentistpointsof view areexposed.

1 TheProblemsthat Statisticsis supposed to Solve.
Statisticalproblemscanbe groupednto five classes:

e Point Estimation:Find the“best” valuefor a parameter

¢ Interval Estimation:Find arangewithin whichthetrue valueshouldlie, with a givenconfidence.
e Hypothesislesting: Comparewo hypothesesk-ind which oneis bettersupportedy the data.

e Goodness-ofF Testing: Find how well onehypothesiss supportedy the data.

¢ DecisionMaking: Make thebestdecisionbasedn data.

In the Frequentistnethodologythis separations especiallyimportant,andbookson Statisticsare
oftenorganizedinto chapterswith justthesetitles. Thereasorfor thisimportances thatoftenthe same
problemcanbe formulatedin differentwaysso thatit fits into different classeshut the fundamental
questiorbeingasledis differentin eachclass sotheresultingsolutionmustbe expectedo bedifferent.
The lessonis: Make sureyou know what questionyou want to ask, andthenchoosethe appropriate
methoddor that question.And be awarethat seeminglyunimportantdifferencesn the way a problem
is posedcanmale large differencesn theanswer The secreto gettingtheright answelis to understand
thequestion.

In theBayesiammethodologythis separations muchlessimportant,andBayesiartreatmentsend
not to be organizedin this way. Bayes’Theoremis the conceptwhich unifiesBayesiannference since
themethoddor solvingproblemsin all classesrebasedon the sametheorem.

2 Probability

All statisticalmethodsarebasedn calculationsof probability.
In Mathematicsprobabilityis anabstrac{undefinedonceptwhich obeys certainrules. We will
needa specificoperationablefinition. Therearebasicallytwo suchdefinitionswe coulduse:
e Frequentisprobability is definedasthelimiting frequencyof a particularoutcomen alarge num-
berof identicalexperiments.

e Bayesianprobability is definedasthe degree of belief in a particularoutcomeof a single experi-
ment.

2.1 Frequentist Probability

This probability of aneventA is definedasthe numberof timesA occurs,divided by the total number
of trials, in thelimit of alarge numberof identicaltrials:

. N(4)
P(A) = lim ——
A=
whereA occursN (A) timesin N trials. Frequentisprobabilityis usedn mostscientificwork, becausé

is objective It can(in principle)bedeterminedo ary desiredaccurag andis the samefor all obserers.
It is the probability of QuantumMechanics.



Justlikethedefinitionof electricchage[1], thedefinitionof frequentisprobabilityis aconceptual
definition which communicateglearly its meaningand canin principle be usedto evaluateit, but in
practiceoneseldomhasto resortto sucha primitive procedureandgo experimentallyto a limit (in the
caseof the electricfield, it is evenphysicallyimpossibleto go to thelimit becausehage is quantised,
but this only illustratesthatthe definitionis moreconceptuathanpractical).

However, eventhoughonedoesnot usuallyhave to repeatexperimentsn orderto evaluateprob-
abilities, the definition doesimply a seriouslimitation: It canonly be appliedto phenomenhatarein
principle exactly repeatable.This implies alsothat the phenomenanustbe random,thatis: identical
situationscan give rise to differentresults,somethingwe are accustomedo in QuantumMechanics.
Thereis greatdebateaboutwhethermacroscopigghenomendike coin-tossingare randomor not; in
principle coin-tossingis classicalmechanicsandthe initial conditionsdeterminethe outcome,soit is
not random. But suchphenomenare usually treatedas random;it is sufficient thatthe phenomenon
behaesasthoughit wererandom:initial conditionswhich are experimentallyindistinguishableyield
resultswhich areunpredictablydifferent.

2.2 Bayesian Probability

Thiskind of probabilityis moregeneralsinceit canapplyalsoto unrepeatablphenomengéfor example,
the probability thatit will raintomorrow). However, it dependsiot only on the phenomenoiitself, but
alsoon the stateof knowledgeand beliefs of the obserer. Therefore,BayesianP(A) will in general
changewith time. Theprobabilitythatit will rainat12:00on Fridaywill changeaswe getcloserto that
dateuntil it becomesitherzeroor oneon Fridayat 12:00.

We cannotverify if the Bayesianprobability P(A) is “correct” by observingthe frequeng with
which A occurs,sincethis is not the way probability is defined. The operationaldefinition is basedon
“the coherenbet” (deFinetti[2]). O’Hagan[3] givestwo differentdefinitions,oneof whichis basedn
acomparisorwith thebeliefin the outcomeof a procesdor which thefrequentistprobabilityis known.

Therehasbeenconsiderableffort (in particular by Jefreys) to developanobjective Bayesianism,

but this is generallyconsideredo be not entirely successfulNearly all moderndefinitionsof Bayesian
probabilityaresubjectve, sowe will consideheremainly subjectve Bayesianism.

3 Fundamental Underlying Concepts
Thehypothesisis whatwe wantto test,verify, measuregecide.

ExamplesH: Thedataareconsistenwith the StandardModel.
H: The massof the protonis m,, (unknavn)
H: Aspirin is effective in preventingheartdisease

A Random Variable is datawhich cantake on differentvalues,unpredictableexceptin proba-
bility: P(datahypothesi$is assumednown, provided ary unknavnsin the hypothesisaregivensome
assumedalues.

Example:for a Poissorprocess N is a randomvariabletaking on positive integervalues,and P
is the probability of observingNV eventswhenthe expectedrateis yu:

e FulN

P(N|M):T

A Nuisance parameter is an unknavn whosevalue doesnot interestus, but is unfortunately
necessaryor the calculationof P(datghypothesis.

TheLikelihood Function L is P(datdhypothesi$ evaluatedatthe obsered data,andconsidered
asafunctionof the (unknavnsin the) hypothesis.



3.1 Bayes Theorem

Wefirst needto defineconditionalprobability: P(A|B) meangheprobabilitythatA is true,giventhatB
is true. For example P (symptoniiliness) suchas P(headachinfluenzg is the probability of the patient
having aheadachdé shehasinfluenza.

Bayes'Theoremsaysthatthe probability of both A andB beingtrue simultaneouslyanbe writ-
ten: P(A|B)P(B) = P(B|A)P(A) whichimplies:

P(B|A) = %
which canbewritten: P(A|B)P(B)
P(Bl4) = P(A|B)P(B) + P(A|notB) P(notB)

This theoremthereforetells us how to invert conditionalprobability to obtain P(A|B) whenwe know
P(B|A).
Example of Bayes Theorem

Supposewe have a testfor influenza,suchthatif a personhasflu, the probability of a positve
resultis 90%,andis only 1% if hedoesnt haveit:

P(T™ [flu) = 0.9 [10% falsenegatives]
P(T™ |notflu) = 0.01 [1% falsepositives]

Now patientP testspositive. Whatis the probabilitythathe hastheflu? Theanswetby Bayes' Theorem:

P(T™ |flu) P(flu)

P(fluTt) = P(T+ [flu)P(flu) + P(T+ [notflu) P(notflu)

Sotheanswerdepend®nthePrior Probability of thepersorhaving flu, thatis:
¢ for Frequentiststhefrequeng of occurencef flu in thegenerapopulation.
o for Bayesianstheprior beliefthatthe persorhastheflu, beforewe know the outcomeof ary tests.

If we arein the winter in Durham,perhapsP(flu) is 1% . On the otherhand,we may be in another
countrywhereit is avery rarediseasavith P(flu) = 1076

If we apply the samediagnostictestin eachof thesetwo places,we would get the following
probabilities:

flu=1% flu=10""5
P(flulTt)  0.48 10~*
P(flulT=)  0.001 10-7

Sothis testwould be usefulfor diagnosinghe flu in Durham,but in anothemplacewhereit wasa rare
diseaset would alwaysleadto the conclusionthatthe personprobablydoesnot have theflu evenif the
testis positive.

Note that, aslong asall the probabilitiesare meaningfulin the context of a given methodology
Bayes'Theoremcanbeusedaswell by Frequentistasby BayesiansThe useof Bayes' Theoremdoes
notimply thatamethodis Bayesianhowevertheinverseis true: all Bayesiamrmethodsmale use(atleast
implicitly) of Bayes'Theorem.



4 Point Estimation - Frequentist

Commonnotation: for all estimation(sections4 — 6), we are estimatinga parameterz using some
data,andit is assumedhatwe know P(data|z), which canbe thoughtof asthe Monte Carlo for the
experimentfor ary assumedalueof z.

An Estimator is a function of the datawhich will be usedto estimate(measure}he unknavn
parameter:. The problemis to find that function which givesestimatef z closestto the true value
assumedor z. This canbedonebecauseve know P(datdtruevalueof z) andbecaus¢heestimatds a
functionof thedata. The generalprocedurenvould thereforebeto take alot of trial estimatorfunctions,
andfor eachonecalculatethe expecteddistribution of estimatesboutthe assumedrue valueof z. [All
this canbedonewithoutary experimentabata.] Thenthe best(mostefficient) estimatoris theonewhich
givesestimategyroupedclosestto the true value (having a distribution centredon the true valueandas
narrav aspossible).

Fortunately we don't have to do all thatwork, becauset turnsout thatundervery generalcon-
ditions, it canbe shavn thatthe bestestimatorwill be the onewhich maximizesthe Likelihood £(z).
Thisis thejustificationfor the well-knovn methodof MaximumLikelihood.

Note that the definition of the “narrowestdistribution” of estimategequiresspecifyinga norm
for the width; the usualcriterion, wherebythe width is definedasthe variance leadsto the Maximum
Likelihoodsolution,sincethis is (asymptotically)the minimum-varianceestimator

An importantandwell-knowvn propertyof the Maximum—likelihooqestimateis thatit is metric-
independentlf the hatrepresentshe Maximume-likelihoodestimatethenf(z) = f(£).

5 Point Estimation - Bayesian
For parameteestimationwe canrewrite Bayes’'Theorem:

datghyp) P (hyp)
P(datg

P(hypldat = 2!

andif the hypothesisoncernghevalueof z:

P(dataz)P(z)
P(z|datd = ————————
(z]datd P(dat3g
which is a probability density function in the unknavn z. Sinceit is a pdf, it mustbe normalized:
[, P(z|datg = 1, which determinesP(datg, considerechow asanormalizationconstant.

Assigningnamedo the differentfactors,we get:
Posteriompdf(z) o« L(z) x Prior pdf(z)

The Bayesiamoint estimatds usuallytakenasthe maximumvalueof the Posteriompdf.

If thePrior pdfis takento betheuniform distributionin z, thenthe maximumof the Posteriomwill
occurat the maximumof £(z), which meansthatin practicethe Bayesianpoint estimateis often the
sameasthe Frequentispoint estimate althoughfollowing a very differentreasoning!

Note that the choice of a uniform Prior is not well justified in Bayesiantheory (for example,
it seldomcorrespondgo anyone’s actualprior belief aboutz), so the bestBayesiansolution is not
necessarilyfhe MaximumLikelihood.

Notealsothatthe choiceof the maximumof the posteriordensityhasthe unfortunatepropertyof
beingdependenbn the metric chosenfor z. In particular considerthe “natural” metric, that function
f(z) in whichthepdf P[f(z)] is uniformbetweerzeroandone:in thismetric P hasno maximum.This
problemis easilysolved by choosingthe point estimatecorrespondingo the medianP (50th percentile)
insteadof the mode(maximum),but thenit will notin generakoincidewith the Maximum Likelihood.
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6 Interval Estimation - Bayesian

Herethe goalis to find aninterval which will containthe true valuewith a given probability say90%.
Sincethe PosteriorProbability distribution is known from Bayes’ Theorem(seeabove), we have only
to find anintenal suchthatthe integral underthe Posteriompdfis equalto 0.9. As thisintenal is not
unique,theusualcornventionis to choosehe internval with the largestvaluesof the posteriompdf.

Therearethreearbitrarychoiceso bemadein Bayesiarestimationandthemostcommonchoices
are:
1. Theuniform prior.
2. Thepoint estimateasthe maximumof the posteriorpdf.
3. Theintenal estimateastheinterval containingthe largestvaluesof the posteriomdf.

Note thatall thesechoicesproducemetric-dependentesults(they give a differentanswerunder
changeof variables)but thefirst two happerto cancelto yield the metric-independerftequentistesult.

A metric-independergolutionis easilyfoundfor thethird casethe mostobviouspossibilitybeing
thecentml intervals definedsuchthatthereis equalprobabilityabose andbelow the confidencenterval.
However, this would have the unfortunateconsequencthat a Bayesianresultcould never be given as
anupperlimit: Evenif no eventsareobsered,the centralBayesiarinterval would alwaysbe two-sided
with anupperandalower limit.

7 Interval Estimation - Frequentist

Assumingasusualthatwe know P(data|x), thegoalis to find two functionsof thedataF} (datdz) and
F>(datdz) suchthat,for ary (true)valueof z,

P(Fi <z < F;)=0.9

Thenthe 90% intenal is definedby F; (obsereddatg and F»(obsereddatg. If we could find such
functions,this would assurehat:

If the experimentwererepeatednary times,andthe dataweretreatedusingthefunctionsF; andF5s to
definetheinterval, thenthe interval would containthe true valuein 90% of the cases.This propertyis
calledcoverage.

J.Neyman[4] shaved how to constructsuchfunctionsin the mostgeneralcase therebysolving
the problemof how to find confidencantervalswhich have agivencoverage.Sincecoverages themost
importantpropertyof confidencantenals, this wasa very importantmilestonein frequentiststatistics.
Somecomments:

1. Coveragealonedoesnot determinethe confidencantenals uniquely Thereis anotherdegreeof
freedomremaining,andthis canberesolhedin variousways,the mostcommonbeing:

e Centrl intervalsarecentralin the data notin the parametersothey canaswell produce
upperlimits astwo-sidedlimits, andthey have the nice propertyof beingunbiasedput also
the not-so-nicepropertythattheinterval canbe empty(for example,anupperlimit couldbe
zerofor aparametethat mustbe positive).

e Feldman-Cousingtervalsarethe closesto central(leastbiasedyamongall intenalswhich
are guaranteedo be non-empty This is currently consideredto be the state-of-the-art.
The authorspoint out that theseintenals are just standardirequentistintervals using the
likelihood-ratioorderingbasedn the Neyman-Pearsoariteriaasgivenin Kendalland Stu-
art[5], however the paperby FeldmanandCousing6] givesthebestunifiedtreatment.

e Ciampolillointervalg7] arethe mostbiasedbut have the nice propertythatwhenno events
areobsered, theupperlimit is independentf the expectedbackground.



All theabore have exactfrequentisicoveragewhenthe datais continuous For discretedatathere
is an additionalproblemthat exact coverageis not always possible,so we have to acceptsome
over-coverage.

2. The Neyman procedurein general,andin particularall of the three examplesabove are fully
metric-independerih boththedataandthe parametespaces.

3. The probability statementhat definesthe coverageof frequentistintervals appeargo be a state-
mentaboutthe probability of the true valuefalling insidethe confidencantenal, but it is in fact
the probability of the (random)confidencantenal covering the (fixed but unknavn) true value.
Thatmeanghatcoverages notapropertyof oneconfidencenterval, it is a propertyof theensem-
ble of confidencantervals you could have obtainedasresultsto your experiment.This someavhat
unintuitive propertycausegonsiderablenisunderstanding.

8 Hypothesis Testing - Frequentist

Comparetwo hypotheses$o seewhich onebetterexplains (predicts)the data. The two hypothesesire
corventionallydenoted:H, thenull hypothesisand H; thealternatve hypothesisif thehypothesesre
simple hypotheses, they arecompletelyspecifiedsowe know P(datgdH,) and P(dataH ).

If W is thespaceof all possibledata,theproblemis to find a Critical Region (in whichwe reject
Hjy) w € W suchthat
P(datac w|Hy) = «
is assmallaspossible andat the sametime,
P(datac W —w|Hy) =
is alsoassmallaspossible.

« is theprobability of rejectingH whenit is true. Thisis theerrorof thefirstkind, orloss. 1 — «
is the acceptance of thetest. Somebooksinterchangehe definitionsof o and1 — «.

B is the probability of acceptingH, when H; is true. This is the error of the secondkind, or
contamination. 1 — g is thepower of thetest.

Whenthetwo hypothesearesimplehypotheseghenit canbe shavn thatthe mostpowerfultest
is theNeyman-Pearsoffiest[8], which consistdn takingasthecritical regionthatregion with thelargest
valuesof A\g/A1, where); is thelikelihoodunderhypothesisH;.

When a hypothesiscontainsunknavn parametersit is saidto be not completelyspecifiedand
is called a compositehypothesis This importantcaseis much more complicatedthan that of simple
hypothesesandthe theoryis lesssatishctory generalresultsholding only asymptoticallyand under
certainconditions. In practice,Monte Carlo calculationsare requiredin orderto calculatea: and g
exactly for compositenypotheses.

9 Hypothesis Testing - Bayesian
Recallthataccordingto Bayes'Theorem:
P(datghyp) P(hyp)
P(datg
The normalizationfactor P(datg canbe determinedor the caseof parameteestimationwhereall the
possiblevaluesof the parameteareknown, but in hypothesidestingit doesnt work, sincewe cannot

enumeratall possiblehypothesesHowever it canbe usedto find the ratio of probabilities for two
hypothesessincethenormalizationsancel:

P(hypidatd =

_ P(Ho|data _ L(Ho)P(Ho)

R= P(H,|datg ~ L(H,)P(H;)




10 Goodness-of-Fit Testing (GOF)
Herewe aretestingonly onehypothesisH,. Thealternatve is everythingelse,unspecified.

The Frequentismethodfor GOF is the sameasfor hypothesigesting,exceptthatnow only H
and o areknown. We cannotknow the power of the testsincethereis no alternatve hypothesigwe
dont know whatwe aretrying to exclude). We canonly saythatif the datafall in the critical region,
they fail thetest(incompatiblewith the hypothesis).

The mostimportantGOF testis the PearsorChisquarediest[9]. Indeedit is without a doubtthe
mostoften usedstatisticalmethodin history Onecanestimatethatin the reconstructiorof HEP data
alone,it is probablyinvoked thousand®f timespersecondn computersaroundthe world.

For the Pearsortest, the teststatisticis the sumof the squareof deviationsbetweendatapoints
andthe hypothesiswith eachdeviation divided by the standarddeviation of the data. Pearsorshaved
thatunderthenull hypothesisthis statisticis distributedasymptoticallyasa known function(now usually
calledthe Chisquaredrunction)with N degreesof freedomif thereare N datapoints,independentiyf
the hypothesideingfitted. Testsfor which the expectedvaluesof the teststatisticdo not dependon the
hypothesisarecalleddistribution-free

Therearemary othertestswhich have beenfoundto work well for particularproblems.For physi-
cists,themostimportantis probablythe Kolmogora-Smirnor testfor compatibility of one-dimensional
distributions (unbinned).

Thereis no way to do Bayesiarhypothesigestingwithout an alternatve hypothesis.Goodness-
of-fit testingis thereforethe domainof Frequentisstatistics.

11 Decision Theory

For decision-makingve needto introduceanew conceptthelossincurredin makingthewrongdecision,
or moregenerallythe lossesincurredin taking differentdecisionsasa function of which hypothesidgs
true. Sometimeshe negative loss(utility) is used.

Simplestpossibleexample:Decidewhetherto bring anumbrellato work.

Thelossfunctionmaybe: Loss(umbrellaif rain) =1
Loss(umbrellaif norain) =1
Loss(noumbrellaif norain)=0
Loss(noumbrellaif rain) =5

In orderto make adecisionwe need,n additionto thelossfunction,adecision rule. Themostobvious
andmostcommonrule is to minimizethe expectedoss. Let P(rain) bethe (Bayesian)robabilitythatit
will rain. Thenwe canwrite:

Expectedosqumbrella =1 x P(rain) +1 x P(norain) =1
Expectedosgnoumbrella= 5 x P(rain) + 0 x P(norain) =5 x P(rain)

The expectedossdepend®nthe probability of rain, andwith thislossfunctionit is minimizedif
you take anumbrellato work wheneer the probability of rainis morethan1/5.

An exampleof a differentdecisionrule is the minimaxrule which consistsin minimizing the
maximumloss. This rule doesnot requireknowing the (Bayesian)robability of rain andis thereforea
non-Bayesiardecisionrule. The minimax decisionin the presentcasewould be to carry the umbrella
always,sincethe maximumlossis thenonly onepoint.

It canbe shawvn thatfor ary non-Bayesiamecisionrule, thereis alwaysa Bayesiarrule which is
asgoodor better(in the sensehatit leadsto no morelossthanthe non-Bayesiamule).



Sincethelossfunctionis in generalsubjectve, andin view of theresultthatno decisionrule can
be betterthana Bayesiandecisionrule, it is naturalandreasonabléo treatthe whole decisionprocess
within the domainof Bayesiarstatistics.
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